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Abstract

Multiple Sclerosis (MS) is a chronic neurological disease, in which immune-mediated mechanisms lead to pathological processes
of neurodegeneration. Optical coherence tomography (OCT) has recently begun to be used to diagnose and monitor patients with
MS. Morphological changes in the choroid have been linked to the onset of MS, so an accurate segmentation of this layer is
critical. Conventional OCT has several limitations in obtaining accurate images of the choroid, which has been improved through
the use of systems such as Enhanced Depth Imaging (EDI) OCT. Unfortunately, many longitudinal studies that have collected
samples over the years in the past have been performed using highly variable settings and without the use of the EDI protocol (or
similar variants). For these reasons, in this work we propose a series of fully automatic approaches, based on convolutional neural
networks, capable of robustly segmenting the choroid in OCT images without using the EDI protocol. To test the robustness and
efficiency of our method, we performed experiments on a public dataset and a collected one. The Dice score obtained by the best
proposed architecture is 89.7 for the public dataset, and 93.7 for the collected dataset.
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1. Introduction

Multiple Sclerosis (MS) is a chronic neurological disease of the central nervous system, in which immune-mediated
mechanisms lead to pathological processes of inflammation and neurodegeneration [18]. MS mainly affects young
adults, and is currently the leading cause of non-traumatic neurological disability in this population group. Approx-
imately 50% of affected patients will require walking assistance within 15 years of disease onset, and 2/3 of them
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will be unable to carry out their usual work activities. This has a serious impact on the economic burden of patients,
impairing their quality of life and limiting their personal relationships [23]. According to the results of the Global
Burden Disease Study 2016 [26], the average prevalence of MS is increasing since the 1990s, being currently about
30 cases per 100,000 population. This increase in prevalence, coupled with the deterioration in the quality of life of
patients suffering from this disease, motivate the creation of new treatments and techniques for early detection and
monitoring of the disease.

One of the main techniques used for the detection and follow-up of MS is magnetic resonance imaging (MRI).
However, like any diagnostic test, MRI has limitations. An abnormal MRI does not necessarily imply the existence of
MS, as there are other diseases that cause very similar brain damage. On the other hand, an MRI with a normal result
does not completely rule out MS, as there may be spinal cord damage or lesions not visible on the MRI. Finally, the use
of MRI is limited by other factors such as its cost and the long time needed to obtain the images [10]. These reasons
led to the use of alternative imaging techniques to characterize and detect MS, such as Optical Coherence Tomography
(OCT). OCT is a non-invasive in vivo technique based on the different reflectance of the layers present in the ocular
structure that allows the acquisition of cross-sectional images of the retina with semi-histological resolution. The OCT
volumes can be obtained in different regions of the eye (macular, peripapillary, etc.) using different configuration
parameters. This results in volumes with different resolutions, number of slices and characteristics depending on the
region and way of capture [17, 16].

Several clinical studies have linked changes in different retinal layers to the development of MS [2, 6, 5, 8, 7] so
OCT has recently started to be used to detect and characterize MS. One of the relevant biomarkers for the analysis
of MS on OCT images is the characterization of changes in the choroid, a vascular tissue that provides oxygen and
nutrition to the outer retinal layers. Different morphological changes in the choroid have been related to the onset and
progression of MS, so accurate segmentation of this layer is essential to diagnose and follow the progression of MS
using OCT imaging. In contrast to the other retinal layers, the choroid is usually segmented manually in the clinical
setting which is time consuming and laborious. So a fully automated system is significantly useful, helping clinicians
to make a decision about diagnosis and treatments more robustly, reducing the subjectivity of the process. However,
conventional OCT has several limitations in obtaining accurate images of the choroid. The choroid is located posterior
to the retinal pigment epithelium (RPE), a layer that absorbs large amounts of light. This, together with the light
scattering caused by the dense vascular structure of the choroid, results in a poorly defined choroid in conventional
OCT images, limiting and hindering its characterization and segmentation due to its diffuse structure and boundaries
[28]. To solve these problems and improve the visualization of the choroid, in 2008, Spaide et al. proposed the EDI-
OCT (Enhanced Depth Imaging OCT) system. [24]. Essentially, in this system the spectral domain OCT objective
lens is placed closer to the eye. This causes the backscattered light from the choroid to be closer to the zero-delay
line producing an image where the choroid is much more sharply defined. In Figure 1 an image obtained using the
EDI protocol and three images obtained using a conventional OCT are shown. The difference between the two types
can be seen at the lower limit of the choroid. Unfortunately, many longitudinal studies that have collected samples
over the years in the past as well as current clinical analyses have been performed without the use of the EDI protocol
(or similar variants). Moreover, these studies have been performed in different regions of the eye, using OCT capture
devices with different configurations, resulting in studies with quite diverse OCT images. For all these reasons, there is
a need for a fully automatic system capable of robustly segmenting the choroid in images obtained in different regions
of the eye without using the EDI protocol.

Due to the great relevance of general layer segmentation for different pathologies, several works have been pro-
posed aiming at choroid segmentation [12, 29, 22]. Salafian et al. [22] presented an automatic choroidal segmentation
method based on transforming each EDI-OCT image to a neutrosophic space. On the other hand, in Kajic et al. [12], a
two-stage texture-based statistical model for choroidal segmentation of normal and pathological eyes was presented.
Recently, convolutional neural networks have been applied to segment images obtained from various imaging modal-
ities vastly improving the results obtained with classical methods [27, 1, 19]. Regarding the segmentation of different
retinal layers, the most commonly used models are encoder-decoder variants of fully convolutional network architec-
tures [15] such as the UNet [21]. In George et al. [9], a Chan Vese model for segmenting EDI-OCT images of cornea
and choroid in the macula region was presented. In Chen et al. [3], the choroid is segmented in macular EDI-OCT
images using a convolutional neural network that detects the lower and upper edges of the choroid. Finally, in Li et
al. [13], all retinal layers are segmented in peripapillary images of glaucoma patients using a two-stage multiscale
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Fig. 1. Image obtained using the EDI protocol (left) and three images obtained using conventional OCT (right).

convolutional neural network. In summary, all of the state of the art works presented here propose methods to seg-
ment the choroid, or alternatively find the upper and lower boundaries, in an accurate manner in different pathologic
contexts. All of these papers use images of a single region (either macular or peripapillary) or use EDI or similar
enhanced images captured with a single configuration. As previously discussed, the problem is that many routine
clinical studies as well as longitudinal studies collected in the past have been created without using the EDI protocol.
In addition, the use of OCT images obtained in a single region of the eye (either macular or peripapillary) with a
specific parameter setting is limited in their potential clinical utility. All these factors make it important to develop a
segmentation method capable of robustly segmenting the choroid in OCT images obtained in different regions of the
eye using different settings and without using EDI.

In this work, we propose a robust approach, based on convolutional neural networks, for the automatic segmentation
of the choroid in OCT non-EDI images with various configurations. In a series of experiments, we compare different
neural architectures with various combinations of encoders to determine the best segmentation approach. To test both
the robustness and the efficiency of our method, we performed experiments in two different datasets. Thus, we use a
public dataset to compare our approaches with the state of the art and a collected dataset of non-EDI images captured
with several settings in different eye regions from healthy and MS patients. To the best of our knowledge, this work is
the first approach to attempt to segment the choroid in a large set of non-EDI OCT images with varying configurations.

2. Materials and Methods

2.1. Datasets

Two different datasets were used to carry out the experiments. We used the public dataset collected by Li et al for
comparison with the state of the art [13]. This dataset consists of peripapillary OCT images obtained from 61 subjects
using the DRI OCT-1 Atlantis (Topcon Corporation, Tokyo, Japan). Each image is labeled with several retinal layers
including the choroid. In our case we used only the choroid label to perform our experiments. More details about this
dataset can be found at [13].

Additionally, we collect a dataset that consists of a total of 224 images with different configurations, randomly
extracted from 50 OCT cubes from a previous study. These cubes belong to 37 different subjects where 22 of the 37
subjects and, respectively, 103 of the 224 images correspond to healthy subjects while 15 subjects and 121 images
correspond to patients suffering from MS. All cubes were created using two equivalent Spectralis R OCT capture
devices from Heidelberg Engineering. Within these cubes there are four different types of cubes in which both the eye
region and the resolution of the images vary. The first type corresponds to radial OCT cubes with 27 slices centered in
the peripapillary region, whereas the remaining three types correspond to cubes centered in the macular region. The
second type corresponds to cubes with 61 slices of the posterior pole and an image resolution of 768 x 496. The third
type corresponds to cubes with 25 slices centered on the macula and an image resolution of 512 x 496. Finally, the
fourth type corresponds to 512-slice cubes that are obtained as an intermediate by-product of an ophthalmological test
frequently performed in the clinical setting and have a resolution of 512 x 496.
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region and the resolution of the images vary. The first type corresponds to radial OCT cubes with 27 slices centered in
the peripapillary region, whereas the remaining three types correspond to cubes centered in the macular region. The
second type corresponds to cubes with 61 slices of the posterior pole and an image resolution of 768 x 496. The third
type corresponds to cubes with 25 slices centered on the macula and an image resolution of 512 x 496. Finally, the
fourth type corresponds to 512-slice cubes that are obtained as an intermediate by-product of an ophthalmological test
frequently performed in the clinical setting and have a resolution of 512 x 496.
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This set was divided into two groups. On the one hand, a group consisting of 196 images was used to train and test
the models. The images in this group were labeled by an expert, so that each image has an associated segmentation
mask, where all pixels were labeled as background or choroid. On the other hand, the remaining 28 images were
labeled by three different medical experts. Each expert labeled the lower contour of the choroid in each image twice
(once using the raw image and once using an image with improved local contrast) giving a total of six edge labels per
image. This set of 28 images serves to validate whether there are differences between the segmentation performed by
our approaches and that performed by different medical experts. Examples of both labelings can be seen in Figure 2.

Fig. 2. On the left, an example of OCT image and its associated segmentation mask. On the right, an example of the contour line labeled by one of
the experts in an example image.

2.2. Software and Hardware resources

This work was developed in Python (version 3.9.5) and using PyTorch (version 1.9.1 with cuda 11.2) [20] to create,
train and validate the models. The encoders of the models were obtained from the PyTorch segmentation model library
[30]. OpenCV (4.5.3) and Numpy (1.20.3) were used to perform image processing operations. Regarding Hardware,
training and validation were carried out using an Intel(R) Core(TM) i9-9900K CPU @ 3.60GHz and an NVIDIA
GeForce RTX 2080 Ti.

2.3. Network architectures

In this work, we study the application of several base architectures of convolutional neural networks to segment
the choroid. As base architectures we use, on the one hand, the UNet [21], an architecture that extracts feature maps
at different scales in a progressive manner. In this architecture, the loss of information is avoided through the use
of skip connections, with which the feature maps are reconstructed at the original image size. On the other hand,
we use a Feature Pyramid Network (FPN) [14] adapted to a semantic segmentation task. This type of architecture
allows extracting feature maps at different scales, which are used together to perform the final model prediction.
The feature maps obtained at different scales allow to make a more accurate segmentation of the different objects
and their boundaries. Figure 3 shows the general structure of the UNet architecture (left) and the general structure
of the FPN architecture (right). Each convolutional layer is followed by a batch normalization layer and a nonlinear
layer. A Log Softmax is applied after the final convolutional layer in the channel axis. This way, the class of each pixel
(background or choroid) is set by simply selecting the channel with the maximum value. The parts of each architecture
that correspond to the network encoder, in charge of extracting and encoding the feature maps that will lead to the
prediction, are represented in blue. It is essential to have a suitable encoder, which has the ability to extract feature
maps containing all the necessary information to segment the target into images with many variations with different
textures and noises. For this reason, for each of the architectures, we tested three different encoder configurations with
different characteristics and number of parameters, resulting in six configurations. These encoders are part of neural
architectures commonly used in similar application domains:



730 Emilio López-Varela  et al. / Procedia Computer Science 207 (2022) 726–735
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• Densely Connected Convolutional Network [11]: DenseNet networks are based on the progressive concatena-
tion of features from previous layers in order to strengthen feature propagation. In this work the DenseNet201
was used as an encoder.

• Efficientnet [25]: Efficientnet corresponds to a family of models created by balancing network depth, width
and resolution in an efficient and effective way. In this work, Efficientnet-bo and Efficientnet-b7 were used as
encoders.

Fig. 3. General structure of the UNet architecture (left) and general structure of the FPN architecture (right). The parts of each architecture that
correspond to the network encoder are represented in blue.

2.4. Training details

Regarding the public dataset, the parameters and the division of the dataset specified in the original work [13] were
used. Specifically, the split ratio between the training, validation and test sets was 6:2:2. The learning rate was set to
0.001 and decreased by an order of magnitude every 20 epochs. Moreover, the Adam optimizer was used. We also
divided the 196 images of the collected dataset into three parts, 100 images for training, 48 images for validation and
48 images for test. In each set the ratio of healthy and MS images was 54:46 and there was the same proportion of
each OCT image type.

Regarding the training process, knowing the small size of our dataset and to avoid overfitting, the encoders of the
models were first initialized using a pre-training on the ImageNet dataset [4]. The models were then pre-trained on
the original public dataset. This greatly helps to adapt to our segmentation task by avoiding overfitting. Each of the
models was trained on our dataset for 80 epochs, using an initial learning rate of 0.001 that was reduced by half an
order of magnitude every 10 epochs. Momentum and weight decay coefficients were set to 0.9 and 0.0001 respectively.
We used Adam as an optimizer to train the model with a batch size of 1. To make the model more robust and avoid
overfitting, an exhaustive data augmentation process has also been applied. Some transformations were grouped so
that only one from the group could be applied at a time. Table 1 shows all the transformations applied to the images.
As loss function we use the sum of two loss functions. We use the Dice loss and the CrossEntropy loss (Eq. 1) where
gi and pi indicates the ground truth and the probability in prediction of pixel x belonging to of class i, and M is the
number of classes in the segmentation network.

Dice = 1 − 1
M

M∑
i=1

(
2
∑

x∈Ω pi(x) · gi(x)∑
x∈Ω pi(x) +

∑
x∈Ω gi(x)

)
CrossEntropy = − 1

M

M∑
i=1

gi log(pi) (1)
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Table 1. Transformations applied to images in each batch. From each group only one transformation can be applied at a time.

Group 1 Group 2 Group 3 Group 4 Group 5 Group 6 Group 7

Applied
Transformations

Coarse
Dropout

Elastic Transform,
Piecewise Affine

Shift Scale
Rotate

Horizontal
Flip

Gaussian Blur,
Blur

Brightness Contrast,
CLAHE

Multiplicative Noise,
Gauss Noise

Regarding model evaluation, all models were evaluated in two ways. On the one hand, for the test set of images,
the Dice score (DSC) and pixel accuracy (PA) (Eq. 2) were obtained, where X represents the prediction region and
Y is the ground truth region. On the other hand, for the 28 independent images where the lower contour was labeled,
the Euclidean distance (EUC) (Eq. 2) was calculated. The values obtained by the network were compared with those
obtained by the three medical experts using a student’s t-test.

DSC =
2 · |X ∩ Y |
|X| + |Y | PA =

|X ∩ Y |
|Y | EUC =

√
(x1 − x2)2 + (y1 − y2)2 (2)

3. Results and Discussion

3.1. Public dataset results

First, we show the results obtained by evaluating our models on the public dataset along with the state of the art.
Table 2 shows the DSC and PA obtained for the different architectures tested along with the baseline of the dataset.
Figure 4 shows an example of an OCT image with the overlay mask predicted by each network. These images show
qualitatively the differences between the segmentations performed by the different networks as well as their errors.
As can be seen, several models outperform the state of the art in choroid detection. Specifically, the FPN architecture
using a Densenet201 as an encoder is particularly effective in this task.

Table 2. DSC and PA obtained for the segmentation of the public dataset for all the models tested. The best values are marked in bold.

Metric
Li
et al
[13]

UNet FPN

Densenet Efficient Efficient Densenet Efficient Efficient
201 b0 b7 201 b0 b7

DSC 89.2 89.5 88.8 89.3 89.7 88.9 89.4
PA 89.2 89.0 86.8 89.8 90.0 89.0 89.4

3.2. Collected dataset results

We compared the lower choroidal boundary detected by the networks with the average of the six labelings of the
lower choroidal contour performed by the experts. The distances obtained for the three models using the UNet base
architecture are 704 for Densenet201, 930 for Efficientnet-b0 and 695 for Efficientnet-b7. The distances obtained
for the three models using the FPN base architecture are 657 for Densenet201, 881 for Efficientnet-b0 and 701 for
Efficientnet-b7. For reference, the expert who performed the closest labeling to the mean of experts obtained a distance
of 662. These results show that there are significant differences in the contours predicted by the different networks.
Specifically UNet and FPN using Efficientnet-b0 as encoder give worse results than the other models. The results
obtained by the best performing network (FPN Densenet) versus the six labelings performed by the experts are shown
and compared in Figure 5. Table 3 shows an expert vs. expert confusion matrix (the network is also included), where
the mean EUC obtained by comparing the contours labeled by one expert with each of the others is shown.

Table 4 shows the DSC and PA obtained for the different architectures tested. As can be seen, as in the case of
the public dataset, the FPN using the Densenet201 is the network with the best segmentation results. Figure 6 shows
several examples of segmentation masks obtained by this model. It can be seen how the network is able to segment
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used. Specifically, the split ratio between the training, validation and test sets was 6:2:2. The learning rate was set to
0.001 and decreased by an order of magnitude every 20 epochs. Moreover, the Adam optimizer was used. We also
divided the 196 images of the collected dataset into three parts, 100 images for training, 48 images for validation and
48 images for test. In each set the ratio of healthy and MS images was 54:46 and there was the same proportion of
each OCT image type.

Regarding the training process, knowing the small size of our dataset and to avoid overfitting, the encoders of the
models were first initialized using a pre-training on the ImageNet dataset [4]. The models were then pre-trained on
the original public dataset. This greatly helps to adapt to our segmentation task by avoiding overfitting. Each of the
models was trained on our dataset for 80 epochs, using an initial learning rate of 0.001 that was reduced by half an
order of magnitude every 10 epochs. Momentum and weight decay coefficients were set to 0.9 and 0.0001 respectively.
We used Adam as an optimizer to train the model with a batch size of 1. To make the model more robust and avoid
overfitting, an exhaustive data augmentation process has also been applied. Some transformations were grouped so
that only one from the group could be applied at a time. Table 1 shows all the transformations applied to the images.
As loss function we use the sum of two loss functions. We use the Dice loss and the CrossEntropy loss (Eq. 1) where
gi and pi indicates the ground truth and the probability in prediction of pixel x belonging to of class i, and M is the
number of classes in the segmentation network.
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Table 1. Transformations applied to images in each batch. From each group only one transformation can be applied at a time.
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Regarding model evaluation, all models were evaluated in two ways. On the one hand, for the test set of images,
the Dice score (DSC) and pixel accuracy (PA) (Eq. 2) were obtained, where X represents the prediction region and
Y is the ground truth region. On the other hand, for the 28 independent images where the lower contour was labeled,
the Euclidean distance (EUC) (Eq. 2) was calculated. The values obtained by the network were compared with those
obtained by the three medical experts using a student’s t-test.
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3. Results and Discussion

3.1. Public dataset results

First, we show the results obtained by evaluating our models on the public dataset along with the state of the art.
Table 2 shows the DSC and PA obtained for the different architectures tested along with the baseline of the dataset.
Figure 4 shows an example of an OCT image with the overlay mask predicted by each network. These images show
qualitatively the differences between the segmentations performed by the different networks as well as their errors.
As can be seen, several models outperform the state of the art in choroid detection. Specifically, the FPN architecture
using a Densenet201 as an encoder is particularly effective in this task.

Table 2. DSC and PA obtained for the segmentation of the public dataset for all the models tested. The best values are marked in bold.
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3.2. Collected dataset results

We compared the lower choroidal boundary detected by the networks with the average of the six labelings of the
lower choroidal contour performed by the experts. The distances obtained for the three models using the UNet base
architecture are 704 for Densenet201, 930 for Efficientnet-b0 and 695 for Efficientnet-b7. The distances obtained
for the three models using the FPN base architecture are 657 for Densenet201, 881 for Efficientnet-b0 and 701 for
Efficientnet-b7. For reference, the expert who performed the closest labeling to the mean of experts obtained a distance
of 662. These results show that there are significant differences in the contours predicted by the different networks.
Specifically UNet and FPN using Efficientnet-b0 as encoder give worse results than the other models. The results
obtained by the best performing network (FPN Densenet) versus the six labelings performed by the experts are shown
and compared in Figure 5. Table 3 shows an expert vs. expert confusion matrix (the network is also included), where
the mean EUC obtained by comparing the contours labeled by one expert with each of the others is shown.

Table 4 shows the DSC and PA obtained for the different architectures tested. As can be seen, as in the case of
the public dataset, the FPN using the Densenet201 is the network with the best segmentation results. Figure 6 shows
several examples of segmentation masks obtained by this model. It can be seen how the network is able to segment
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Fig. 4. Example of the segmentation masks predicted by the different models. Blue areas show the prediction that match the labeling, while red and
yellow areas show the false positives and false negatives, respectively.

Fig. 5. From left to right: The original image, the contours delimited by the experts as well as the differences between the contours delimited by
the network and the experts. In this last image, the contour delimited by the network is shown in yellow, the average contour is represented in red
whereas the area of the dispersion of the contour is shown in blue.

the choroid in images with very different characteristics, even in images where the lower boundary of the choroid is
subtle.

3.3. Discussion

The results presented show how several of the proposed approaches surpass the state of the art in segmenting
the choroid, even without using the EDI protocol. Among the proposed approaches, the FPN using the Densenet201
encoder obtains the best segmentation results. As can be seen in Figure 5, there is some variability among medical
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Table 3. Expert vs. expert confusion matrix, showing the mean EUC obtained by comparing the contours labeled by one expert with each of the
others.

Expert 11 Expert 12 Expert 21 Expert 22 Expert 31 Expert 32 Network
Expert 11 0 391 811 823 858 834 629
Expert 12 - 0 823 789 833 730 574
Expert 21 - - 0 855 1130 976 832
Expert 22 - - - 0 985 951 783
Expert 31 - - - - 0 867 807
Expert 32 - - - - - 0 711
Network - - - - - - 0

Table 4. DSC and PA obtained for the segmentation of the collected dataset by all the models tested. The best values are marked in bold.

Metric
UNet FPN

Densenet Efficient Efficient Densenet Efficient Efficient
201 b0 b7 201 b0 b7

DSC 92.5 89.0 93.0 93.7 91.6 93.1
PA 90.5 88.8 91.1 92.3 88.2 90.1

experts when it comes to delimiting the lower contour of the choroid. This is due to the fact that this contour is often
diffuse, which makes its exact delimitation complicated. We can see how the proposed network delimits this contour
in a similar way to the experts, without significant differences. In Figure 6 it can be seen how this network obtains
accurate segmentation results in images obtained from both peripapillary and macula regions. This network is able to
adapt to different types of images, where the texture and shape of the choroid changes very abruptly, producing robust
segmentation of this layer under highly variable conditions. This approach is followed by UNet using Efficientnet-b7
as the encoder. From the results, it can be seen how, in general, FPN seems to perform better using a Densenet type
encoder, while UNet seems to perform better using an Efficientnet type encoder. The Densenet type encoder, through
its dense connections, seems to contribute in a better way to make the set of final FPN multiscale feature maps more
coherent with each other. For the UNet case, the Efficientnet encoder seems to better extract the features of each
scale individually improving the reconstruction of the final feature maps. Models using Efficientnet-b0 as the encoder
obtain the worst segmentation results. As can be seen in Figure 4, these models produce false positives in regions that
do not belong to the choroid. This encoder is much smaller so it has a smaller number of parameters (4M) than the
Densenet201 (18M) or the Efficientnet-b7 (63M). A smaller encoder can, a priori, help to generalize better and reduce
possible overfitting in small datasets like ours. However, in this problem, it does not work since the size of the model
limits its ability to accommodate the intense variety of textures and shapes presented by the choroid in the image set.

4. Conclusions

Many routine clinical studies as well as longitudinal studies collected in the past have been created without using
the EDI protocol or similar variants. In addition, the use of OCT images obtained in a single region of the eye (either
macular or peripapillary) and with a specific parameter setting is limited in their potential clinical utility. In this paper,
we present several approaches to accurately segment the choroid in OCT non-EDI images with varying configurations.
We demonstrate how several architectures, most notably the FPN with a Densenet201 encoder, is capable of robustly
accomplishing this task. This network outperforms the state of the art and is able to segment the choroid in images
with different texture and shape characteristics. We showed its effectiveness on several datasets and prove that the
lower boundary of the choroid predicted by the network does not differ significantly from those labeled manually by
different clinical experts. This segmentation is performed accurately and automatically in both healthy subjects and
MS patients which facilitates the use of choroid appearance as a biomarker. This helps the clinical expert in the task of
diagnosis and follow-up of this disease, lightening his work and reducing the subjectivity of the process. In the future,
this method can be integrated into a larger system that uses the complete 3D OCT cubes to make a comprehensive
analysis of the patient.
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Fig. 6. Multiple examples of the segmentation masks predicted by the FPN model with Densenet201 encoder. The predicted areas that match the
labeling are shown in blue while the false positives and false negatives are shown in red and yellow, respectively.
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