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ABSTRACT

Image processing is an essential work component for material science researchers, and
there’s a constant quest for novel ways to explore it. One of the areas this can be done is in
computerized tomography (CT) processing. CT images are an efficient and commonly used
method to characterize materials. The resulting images can be combined and processed by
a GPU. Work on CT image processing has been done previously, however the appearance of
novel programming languages allows for further improvement. Julia programming language
has the advantage of being both fast and user-friendly and poses an interesting resource for
the image processing area.

In this dissertation, the development and evaluation of an application written in Julia
capable of processing CT images is described. Additionally, an analysis of the potential this
programming language has on the image processing field was performed. It was possible to
conclude that Julia contributes as an useful tool for material science researchers, and that the
solution developed can aid developing their work.

Keywords: Julia, Computerized tomography, GPU, Image processing
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RESUMO

O processamento de imagens constitui um elemento base no trabalho desenvolvido por
investigadores de engenharia de materiais. Isto resulta numa procura contínua de novas ma-
neiras de explorar este tema. Uma das áreas de processamento de imagem em que se pode
fazê-lo é no processamento de tomografia computadorizada (TC). As imagens de TC sãomeios
eficazes e comumente utilizados para caracterizarmateriais. As imagens resultantes podem ser
posteriormente combinadas e processadas por uma GPU. No passado já foram desenvolvidos
projetos no âmbito de processamento de imagens TC, contudo o aparecimento de linguagens
de programação mais recentes abrem espaço para novos testes e desenvolvimentos. A lin-
guagem de programação Julia, em particular, apresenta a vantagem de ser simultaneamente
rápida e de ter uma sintaxe de fácil compreensão, pelo que pode constituir um recurso útil
para a área de processamento de imagem.

Nesta dissertação é descrito, o desenvolvimento e avaliação de um programa de computa-
dor escrito em Julia capaz de processar imagens de TC. Adicionalmente, é feita uma análise
do potencial desta linguagem de programação no campo de processamento de imagem. Foi
possível concluir que Julia contibui como uma ferramenta útil para investigadores de de enge-
nharia de materiais, e que a solução desenvolvida pode auxiliar a desenvolver o seu trabalho
no futuro.

Palavras-chave: Julia, Tomografia computadorizada, GPU, Image processing
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INTRODUCTION

1.1 Context

Material science researchers use tomographic images to analyse samples of composite ma-
terials, which combine a base material with reinforcements of distinct nature. The main goal
of their analysis is to evaluate the results obtained by a given method of producing the material.
The quality of the fabrication process is assessed by obtaining a geometric characterization of
the reinforcement population.

A tomographic image is stored in memory as a 3D matrix where each voxel is represented
by an integer value, corresponding to a gray level. Before the reinforcement characterization,
several image processing operations must be performed in order to get a black and white
image, where white represents the base material and black the reinforcements. After getting
a binary image, a labeling process assigns a unique identifier to each reinforcement, which
corresponds to a set of connected voxels [2].

Due do the size of the data and the complexity of some processing steps, the
pre-characterization and characterization steps require great computational power, suggesting
the use of parallel processing. Due do the data organization, the use of GPUs [3] allows a
significant reduction of the execution time.

In a recent work [4], the above image processing algorithms were implemented using
Python, CUDA, and Numba. Numba is a compiler that translates a subset of Python into
fast machine code. The use of a Numba compiler improved Python’s performance, compared
to when Python. However, execution times obtained were still not satisfactory when compared
with the corresponding C/CUDA versions.
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CHAPTER 1. INTRODUCTION

1.2 Thesis goal

The main goal of this work is to evaluate alternative implementations of the algorithms
needed for the tomographic image analysis, more specifically the use of the Julia programming
language [5].

The goal of this project is to process CT images in a way that allows the isolation of each
material particle, so that material science researchers are able to classify the features and
characteristics of the different elements that compose them. Ultimately this will allow to aid
researchers in developing their work in the material science domain. The project will be done
by resorting to GPU and Julia programming language.

An additional goal of this work is to test how Julia performs in the image processing area.
This evaluation could provide interesting findings since a project like this has never been
developed before in this university.

1.3 Methodology

To achieve the goals proposed, first the materials tomographic image will be converted
from a gray-scale image to a black and white image. This duality of colors will allow separating
the base material, in white, from the study material, in black, with higher precision. This step
is further explained in section 2.2.1.2 Afterward, the material will be subjected to a connected-
component labeling algorithm that will separate the different material particles, represented
by continuous voxel units.

1.4 Contributions

After concluding the implementation of the work, material science researchers will have
an additional tool to aid in their work. Additionally, this project could provide performance
statistics for Julia in the image processing field. This parameter could be relevant considering
the novelty of this programming language.

1.5 Structure

This dissertation will describe what the project proposed to develop consists of, as well
as the steps and methods utilized to do so. The text follows a logical organization in six main
chapters, further divided into subsections.

The first chapter introduce the project and what is to be accomplished with its develop-
ment. It also exemplifies the project’s utility and how this knowledge could be incorporated
upon further research in the material science domain.

In the second chapter, the basic concepts will be elaborated on to build the foundation of
knowledge necessary to understand how the project will be developed.

2



1 .5 . STRUCTURE

Chapter three will go into the variety of program implementation options available for our
program, discussing both the advantages and disadvantages each one has. Additionally, the
chosen approach will be properly justified in this chapter.

In chapter four the implementation of the solution chosen in chapter three will be demon-
strated. This will be done through the use of code snippets and text descriptions, to provide a
complete overview of the code developed.

Chapter five will cover the results obtained through the implemented solution. This will
include time metrics and image comparison between before and after processing, that will be
further discussed and analysed here.

Finally, chapter six will conclude this dissertation by providing a broad overview of the
work developed and the final results obtained. Additionally, future advancement alternatives
will be discussed.

3
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BASIC CONCEPTS

In the present chapter the relevant concepts for this dissertation will be introduced. It’ll be-
gin with an introduction on what tomographic images are, how they are generated, stored and
visualized. Next, the basis of image processing will be introduced, including the image trans-
formation, cleaning and segmentation. Afterward, the concept of program parallelism and its
relevance for the present work is going to be expanded on. Finally, Julia, the programming
language of choice for this work will be introduced and explained.

2.1 Tomographic Images

Computerized Tomography (CT) is a useful technique to characterize a diverse set of ma-
terials, such as ceramics, metal foams, metal alloys, and bio-materials. It generates a three-
dimensional reconstruction of the material, that can be further processed and analyzed. The
technical basis behind the generation of CT images, and how they are formatted and visualized
will be discussed in this subsection.[2]

2.1.1 Image generation

A computerized tomography, or CT for short, is an imaging procedure where beams of x-
rays are aimed at a person or object. These X-rays will interact with the matter and attenuate.
Their degree of attenuation will depend on the materials absorptivity. This means that differ-
ent materials will generate different X-ray intensities. Multiple x-ray projections are taken by
rotating the x-ray source, detector or the material sample. These image projections of various
orientations can be joined and transformed from a 2D specimen to a three dimensional object.
[6]

4



2.1 . TOMOGRAPHIC IMAGES

Figure 2.1: 3D reconstruction from 2D cross-sectional images. [6]

When referring to a CT volume, the term voxels is used alternatively to pixels. A voxel is
the volumetric representation of the pixel. The geometric detail in tomographic imaging is
determined by voxel size. A decrease in voxel size corresponds to a higher image quality. [6]

2.1.2 Composition

The tomographic images that will be analysed are composed by two components: the base
material and target material. The base material, that occupies the largest area, needs to be
separated from the target material that we intend to analyze to allow for better visualization
of the material in study.

In some cases image noise might be present and need to be removed resorting to image
processing techniques, which will be described later on. This will allow to provide a better
visualization of the target material in study.

2.1.3 Format

Nearly Raw Raster Data (NRRD) file format is commonly used for image processing and
it will be used to store CT images. A NRRD file is composed by two main parts: the header
and the data. A header example is shown in the figure below. After the header there is a blank
line to help identify where the header ends and where the data begins. Note that data is not
shown in the figure below. The purpose of the header is to define how the data after the blank
line is organized.[7]

NRRD0001
type: unsigned char
dimension: 3
sizes: 200 200 200
spacings: 0.002 0.002 0.002
encoding: raw

Figure 2.2: NRRD File Header Example

5



CHAPTER 2. BASIC CONCEPTS

The specifications vary from file to file. Not all have to be present except for some manda-
tory fields, such as format version, type, dimension, sizes, and encoding. The "format version",
represented by NRRD000X in the example above, follows an alphanumeric code where the last
number, represented by X, identifies which version of NRRD file format is being used. The
"type"field corresponds to the type of each element of data. The "dimensions"specification
indicates the number of dimensions the data has. For example, if the data contains three di-
mensions, it will represent a three-dimensional object. The "sizes"field informs us about the
number of elements that each data dimension has. The "spacings"field represents the size of
each voxel in each dimension. The encoding parameter gives us information regarding how
the data is written. [7]

2.1.4 Visualization

There are many tools to visualize CT images with NRRD format. Paraview was the chosen
tool to use during this project for being an intuitive free software. Since it will only be used to
verify the results, a more sophisticated and powerful tool is not needed. [8]

Figure 2.3: Paraview software interface.

2.2 Image Processing

After receiving the CT image, changes to the base image must be made to generate a new
and better version. This statement comes from the need to achieve better visualization and
classification results.

The RGB color model corresponds to an additive color system, where red, green, and blue
are combined in a variety of ways to form secondary colors. When equal amounts of red,
green and blue are added, this will always result in various shades of gray. The shade of gray

6



2.2 . IMAGE PROCESSING

will depend on the intensity of color components. Zero intensity for each component will
represent the darkest color, black. In opposition, full intensity of all color components will
represent white. This color model allows to display colored images on electronic systems, such
as computers. When generating histograms or 3d material models this color system will be
used.

2.2.1 Image Binarization

The first transformation that will be applied will be to enhance the separation between the
base material and the material in study. To achieve this the strategy will start by transforming
the image to black and white, being the black portion the composite material and the white
one the base material[2].

2.2.1.1 Histogram Generation

The first step will be to generate an histogram based on voxel RGB values with the objective
of identifying the two highest peaks.[2]

Figure 2.4: Histogram of Voxel Gray Level Intensity Distribution

The most sizeable peak represents the color of the base material, since it is the dominant
material in the CT image, as seen in 2.1.2. The second highest peak represents the color of the
material that we want to focus on and separate from the base material. At this point the two
material’s main color are identified and can be used to determine for each voxel, if it belongs
to the base or composite material.[2]

2.2.1.2 Image Cleaning

Image cleaning constitutes an assortment of image processing techniques, whose use is to
remove image noise and thus enhance the starting image. Image enhancement refers to the
improvement of the detectability of relevant image details, by either a man or a machine. This
will be based on the important notion that an image contains signals that are unwanted and
that we wish to suppress, alongside signals or structures that we want to extract and preserve.

7



CHAPTER 2. BASIC CONCEPTS

Several methods can be employed to meet this end, such as the removal of small components
and grey level mapping, the latter of which will be described below. [9]

In gray level mapping, the pixels value will be changed by transforming them through a
function. This function will map input grey values into new output values. This technique can
be utilized to obtain a black and white image. Voxels with an RGB value near the value of the
highest peak will be assigned the value 255, meaning they will turn white. The same procedure
will be applied to the second highest peak, but instead of 255, they will be set to 0 so they can
turn black. By doing this, the majority of the points of interest will change color.[2, 9]

This will create an intermediate zone between both histogram peaks that wont be changed,
this is called the grey zone. To deal with the grey zone the color assignment to each voxel will
be based on its neighbouring voxels. The software will analyze all the voxels surrounding our
target voxel. If the majority of the voxels surrounding it are black, the target voxel will be black.
If the majority of them are white, the target voxel will be white. Like in a cube, each voxel has
26 other voxels surrounding it: one in each corner, totalling 8, one on each surface, totalling 6
and one at each edge, totalling 12. A schematic representation of this is shown below.

Figure 2.5: Voxel neighbourhood.[10]

Deciding the color of the target voxel based on its neighbours poses an issue: There is an
even number of voxels surrounding our target voxel, making it possible for a tie to happen
between the number of white and black voxels. This is overcome by randomly assigning a
color in cases where there is a tie.[2]

In image 2.6 we can see the result of image cleaning a gray scale CT image to black and
white.

8



2.2 . IMAGE PROCESSING

(a) Before (b) After

Figure 2.6: Image cleaning of a CT

2.2.2 Segmentation

Image segmentation refers to the division of an image into the multiple regions that com-
pose it. The ending point is that the different regions represent separate and meaningful areas
of the same image. These regions can correspond to separate groups of voxels in a 3D object,
such as the CT images being transformed. By decomposing these images it is possible to anal-
yse its components and characteristics separately, since the voxels get organized in a more
meaningful manner. [9]

After the image binarization mentioned in the last section, the composite material is now
easier to visualize and able to be segmented. Each fragment, represented in black, is a particle
of the material being studied.

The identification of the different particles of the material will be based on notion of neigh-
bouring voxels, already described above. It will start with one known voxel belonging to the
composite material. The voxels next to that target voxel are either white (non-material) or
black (material). If a neighbouring voxel is black, it will then be added a tag meaning that the
voxel in question belongs to the same particle set as the neighbour. This procedure will be
repeated until all voxels in a voxel neighbourhood are either white voxels or black voxels that
already have a tag assigned to them. When this happens, an independent set of voxels is found
and it can be said that a particle of the material was found. This will be repeated until all black
voxels have a label assigned, in order to find all the particles that the CT image contain. In the
end, each tag will represent a particle, that form a fragment composed by a set of continuous
black voxels. Segmentation can be observed in the image 5.1. In the (b) image, a larger portion
of the material can be seen due to material particles overlap.

9



CHAPTER 2. BASIC CONCEPTS

(a) Before (b) After

Figure 2.7: Image segmentation of a CT

2.3 Parallelism

While running a program on a computer, by default only one core of the Central Processing
Unit (CPU) is used. This will lead to heavy computation that will take a long period of time to
terminate. One approach to make heavy programs run faster is to parallelize them if possible.

The parallelization technique consists in splitting the work or/and tasks among workers.
Those workers will then execute the operations simultaneously and merge the results in the
end. This means that the minimum time that a parallel program takes to execute is equal to
or higher than the maximum amount of time the workers take to finish it.

Despite the existence of multiple parallel programming architectures, SIMD is the one that
the solution to be developed will focus on.

SIMD means that the initial data set will be split in a way that all workers execute the same
instructions on the slice of data that is assigned to them. In the current problem, the initial
data set will be the matrix of voxels of the tomographic image, then the matrix will be sliced
and assigned to a pool of workers. This way, the handling of the extensive amount of voxels
will be processed simultaneously and consequently faster [3] [11].

Figure 2.8: Architecture of SIMD. [12]

10



2.3 . PARALLELISM

2.3.1 Shared Memory

In a shared memory system, each CPU core has access to the same memory. Parallelism
benefits from a system like this, since data can be centralized in the global shared memory
and different CPU cores are able to read and modify it. In parallel programming each core
can work on top of a portion of the global shared memory, splitting the processing work. Two
solutions to build parallel programs using CPU cores are PThreads and OpenMP. [13]

Another technique commonly used in the image processing area to make parallel programs
is to make use of Graphics Processing Unit (GPU) processing power, which can benefit from
having more cores than CPU and still process the data in a SIMD approach.[3]

This method can be employed through the use of OpenCL or CUDA, the latter in case an
NVIDIA GPU is being utilized.[14]

2.3.1.1 CUDA

CUDA is a platform developed by NVIDIA that allows programmers to execute regular
functions on their GPUs. When CUDA code is compiled it generates machine code for the CPU
and GPU. The portion of code that runs on the CPU is responsible for sending and receiving
the data from GPU, initializing variables, and defining the execution of kernel functions. The
portions of code that run on GPU are called kernels. These can be composed of operations over
arrays or matrices of data, such as 2D and 3D image representations. When a kernel function
is executed multiple instances of that function are created. Different instances are assigned to
different threads, and run in parallel, resulting in a SIMD processing pattern. GPU parallelism
potential will be explored in this project since GPUs provide a significantly larger amount of
cores when compared to CPU. This allows for image processing algorithms to run faster. There
are plenty of programming languages that support interaction with the CUDA platform, and
Julia programming language is one of them. A closer look into how Julia interacts with CUDA
will take place in section 2.4 since the machine where the project will be developed on contains
an NVIDIA GPU. [3, 11]

2.3.2 Distributed Memory

In a distributed memory system, each CPU has its own memory. These memories have
their addresses shared among the other CPUs and can be accessed by them through an inter-
connection network This allows to obtain more computation power and be able to process
bigger data in memory, in opposition to shared memory in a local computer, where the there
is a limit in the amount of CPUs and memory that computer has. However, this system poses
a challenge: since different machines are being used, there is time expanded in inter-machine
communication. This needs to be taken in consideration when making the decision between
a shared memory and distributed memory system, to opt for the most time efficient option.
Two good examples of this are MPI and Spark.

11



CHAPTER 2. BASIC CONCEPTS

Figure 2.9: Architecture of distributed memory. [12]

2.4 Julia

Depending on the problem nature, different programming languages are more appropriate
to different solution scenarios. Looking at a problem where the speed of the solution is the
most important, a low level and statically typed language like "C"would probably be the best
approach. One of the problems of building programs in low level languages is that sometimes
it can be difficult to write, read and maintain when compared to high level and dynamically
typed languages like "Python"for example. Trying to get the advantages of both worlds was
how Julia programming language was born.[5]

Julia is a dynamically typed high level programming language with several favorable char-
acteristics that led to it being chosen. First, Julia’s remarkable speed was possible owing to
two main factors: being a Just In Time (JIT) compiled language and using a Low Level Virtual
Machine (LLVM) compilation infrastructure. A JIT compilation consists on a technique where
high level languages are converted to machine code when they are being run on a CPU. This
makes them independent from the source languages runtime, unlike what happens in inter-
preted languages. The LLVM is a compiling technology and toolkit that automates many of the
tasks involved in language creation. This compiler does not make a language faster by itself,
but Julia’s design and the way it employs types allowed this to happen. One example lies in the
ˆ (power) operator that can be used with either an integer or floating points argument. Julia
will compile both versions of the code and call the appropriate one, avoiding type checks and
making it faster. [5]

Julia is a programming language built by a group of scientists, engineers, and mathemati-
cians to overcome their needs. Often time, researchers need to opt between a user-friendly
syntax or a faster language. Julia is characterized by performing nearly as quickly as C program-
ming languages, while at the same time maintain good code readability, similarly to Python.
This programming language uses a Read Evaluate Print Loop (REPL) console, that allows for
faster code compilation by only compiling the code once. This is possible through a mecha-
nism where the first time the code is executed, it is compiled and stored in memory, thus the
following times it is executed there is no need to wait for the compilation to happen. In this
manner, Julia allows for the best of both worlds, by providing exceptional speed and a pleasant
and familiar interface. [15]
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REPL is a computer programming environment that, as the name suggests, takes individual
user inputs and reads, evaluates and then returns them to the user. This mechanism creates a
loop that ends when the user closes the program.

In recent years Julia has gone through an increase of popularity and continuous devel-
opment of new packages. These factors aroused the curiosity of recreating the previously
developed image processing solution, described in 1, in Julia. By doing this it would be possi-
ble to evaluate how Julia performs in image processing efficiency and efficacy. It is expected
to improve existing work and save a significant amount of time lost during compilation. 2.4.

2.4.1 Julia Code Example

The Julia code snippet available below was used to generate the CT image transformation
shown in image 2.6. The material voxels were made black (represented as value 0 in the code)
and the remaining voxels were made white (represented as value 255 in the code).

� �
using FileIO

using NRRD

function image_transform(img)

for idx = 1:length(img)

if img[idx] > 60 && img[idx] < 90

img[idx] = 0

else

img[idx] = 255

end

end

return img

end

function main()

img = load("base_image.nrrd")

img = image_transform(img)

save("new_image.nrrd", img)

end

main()� �

2.4.2 Parallelism Support

From the vast list of features that Julia provides, one that will be essential for the develop-
ment of the proposed project is parallelism support. Julia supports several categories of parallel
programming, including multi-threading, distributed computing and GPU computing.

SIMD, as described above, constitutes a parallelizing method where a task data is split and
processed by several processing units simultaneously. LLVM compiler allows the code to run
in parallel even in the absence of external hints, except in the presence of some limitations.
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To guarantee that certain operations will run as SIMD instructions the use of SIMD.jl package
provides the necessary types and functions to specify this.[5]

Threads refers to the independent and simultaneous execution of code on multiple CPUs.
The number of threads Julia can run on is set at startup, unless if it remains undefined, in
which case the default number of threads is 1. In Julia the @threads macro can be used before
a loop, which will result in that loop being parallelized in different threads. [5]

Code can also be accelerated through the use of a GPU, by running thousands of threads si-
multaneously. Julia’s interoperability with C makes it possible to call GPU libraries like CUDA.jl
package. This package resulted from merging several previously existing packages, including
CUDAnative.jl and CuArrays.jl. From all the parallelism options Julia offers. CUDA will cer-
tainly be used since the machine where the program will be developed uses an NVIDIA GPU.
[5]

Other relevant packages to mention include FileIO.jl alongside the NRRD.jl package, since
together they will simplify the interaction with NRRD files. The built-in package manager is
a very useful Julia feature on this topic, since it simplifies the process where the user obtains
the latest and correct packages. [5]

Now that there is a complete understanding of the relevant basic concepts, it is possible to
move forward and develop the intended solution.
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SOLUTION

In the present chapter, the solution organization, as well as the decisions behind it, will be
described thoroughly.

3.1 Organization

In order to accomplished what was proposed, the project will need to be divided in two
main portions. Firstly, the initial image will be split into two parts. Each voxel will be assigned
one of two possible values: 0 or 255. The value 0 corresponds to the target material that we
intend to study, while 255 corresponds to the base material. There are a lot of ways in which
this can be done. Some of them, including the method chosen and applied in this scenario,
will be covered in the next section.

To begin the second step it is necessary that the target material and base are already prop-
erly separated. Following that first step, the different material particles will have to be uniquely
identified. To achieve this, contiguous groups of voxels will be attributed an unique value or la-
bel each. The unique label of each particle will allow researchers to analyse the characteristics
and properties of each fragment individually.

It is to be noted that this whole process will be performed resorting to a GPU. The relevant
choices that had to be made regarding its implementation will be explained and justified in
the subsection bellow.

3.2 Specification

In the present section specifications of the solution developed, namely of the GPU, material
labeling and particle labeling, are presented.
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3.2.1 GPU

Expanding on the topic above, Julia contains three main packages that assist with the GPU
interaction. They are oneAPI.jl, AMDGPU.jl and CUDA.jl packages.

The first runner up, oneAPI.jl package, makes use of the oneAPI framework developed by
intel.

This package, according to the most recent documentation regarding Julias implementa-
tion, oneAPI.jl is currently only supported on 64-bit Linux. This is a downside, considering
that the machine used for project development and testing runs a Windows operating system.
Furthermore, it currently only supports a limited set of Intel GPUs. This package is still under
significant development, so it is expected to have some bugs and missing features. Hardware
support is also limited, and the package has not been extensively tested, making it possible
that performance issues might be present. For the reasons listed above, this package was not
put into use in this current project.

Another package alternative is the AMDGPU.jl package. This package, however, is also
only supported by 64-bit Linux. A necessary prerequisite to use this Julia package is to have
a working ROCm stack installed. ROCm, short for Radeon Open Compute platform, is AMD’s
open-source GPU computing platform. This platform is only supported by most modern AMD
GPUs and some AMD Accelerated Processing Unit (APU)s. Currently, ROCm works solely on
Linux, with no future plans to support either Windows or macOS announced by AMD until
present time. Since the machine used to develop the project is a 64-bit windows machine, it
was not possible to utilize the AMDGPU.jl package. Additionally, this package did not have all
the features and performance level of the CUDA.jl package.

This leads us to our choice, the CUDA.jl package. As mentioned previously, the machine
chosen to develop and test this project has a Windows 10 64-bit operating system and an
NVIDIA GPU. CUDA, or Compute Unified Device Architecture, is a technology developed
mainly to be used alongside NVIDIAs graphic cards. This package is, additionally, the most
stable and complete Julia package available for users at the present time.

In summary, the GPU interaction package chosen to for this project was CUDA.j. De-
spite the fact that the machine in which the program was developed contains two GPUs: An
NVIDIA and Intel GPU, the NVIDIIA graphics card is more powerful. Furthermore, even though
CUDA.jl was developed for NVIDIA GPUs, Julia’s package implementation can also interact
with both Intel and NVIDIA graphic cards. Additionally, CUDA.jl is a more stable, bug-fee
version of the other packages, according to the documentation available.

3.2.2 Material Labeling

To separate the base material from the material synthesized by the researchers, it was de-
cided to start by thresholding. Thresholding corresponds to a simplified way to differentiate
whether or not a voxel belongs to out target material, based on a set of values attributed to
voxels. This method is simpler but consequently less precise. It was concluded that by perform-
ing an imprecise method at first the number of iterations needed for the hysteresis algorithm
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would decrease. This allows to decrease the execution time for hysteresis while maintaining
the quality of the classification of different materials. This was inferred through trial and error.

3.2.2.1 Thresholding

To perform thresholding, it is necessary to define a minimum and maximum, according
to the histogram of the voxel value distribution of the CT image.

In the histogram, each material corresponds to a peak, since each peak represents a con-
glomerate of voxels with a value close to each other. In this scenario, there are two materials,
the base and study material, and thus there are two peaks. It can be assumed that starting the
beginning of the horizontal axis until the first peak we have the first material, and from the
second peak onward we have the second material. This leaves us with an interval of voxels be-
tween the two peaks that need to be classified as belonging to one material or the other. To do
this, it is required a more precise classification mechanism to precisely identify the border that
separates the two. The function below can exemplify the voxel value classification, assuming
that the first peak would be the material that is being processed.

𝐹 (𝑥) =


0 0 ≤ 𝑥 ≤ min
𝑥 min < 𝑥 < max
255 max ≤ 𝑥 ≤ 255

3.2.2.2 Hysteresis

At this point it would become beneficial to apply an algorithm that would allow to separate
the two materials with greater precision

The method found to achieve the correct labelling of the voxels in the "gray area"was to
iterate through these voxels and classify them based on their neighbours. Meaning that a voxel
will be attributed the same value, as the absolute majority of the neighbouring voxels that
surround it. This process could not label every single voxel in a single execution, since voxels
with a majority of unassigned neighbours might exist. However, this could be solved with
more iterations, since with each one more and more voxels get labels assigned to them, and
those could be neighbours to other unassigned voxels. By this logic, the algorithm would be
executed an X amount of times, where X corresponds to the number of times at least a single
voxel of the image had its value altered.

When the iteration cycle ends and no voxels were altered in the last iteration, there might
still be unassigned voxels remaining. This might happen because no neighbour has an assigned
value, or there is no absolute majority of a label in the assigned neighbours.
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Figure 3.1: Example of how absolute majority voxel assignment works in a 2D image slice.

To continue the label attribution to each voxel, the process will need to be slightly altered
and the precision of the classification will decrease as well. Instead of the label attribution
being based on the absolute majority of the neighbouring pixels, it will be based on the relative
majority. This means that irrespective of the number of neighbours, the label assigned to the
voxel will correspond to their majority. This can be better comprehended by observing the
figure bellow. Even if only one of the neighbours has a label assigned, that voxel will be assigned
that same label.

Figure 3.2: Example of how the simple majority voxel assignment works in a 2D image slice.

When the image doesn’t suffer any changes after an execution, it is to be expected that
at least 99 percent of pixels are properly labelled. The remaining minority exists due to the
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number of neighbour voxels assigned to the backgroundmaterial and the target material being
the same.

In this scenario the most extreme and imprecise method for voxel classification is used.
Through a single iteration, voxels are randomly assigned as belonging to the background or
target material. By the end of this step, it is guaranteed that every voxel in the image is labelled
either 0 or 255. Considering the image is completely labelled, it is possible to proceed to the
next step.

3.2.3 Particle Labeling

Now every voxel in the image was attributed one of two possible values. The easiest way to
distinguish every particle of the target material from the background is to look at every voxel
with the corresponding label, and detect contiguous voxel groups. In this case in particular,
the study material was labeled as 0. Each contiguous voxel group will correspond to a material
particle.

Connected Component Labeling (CCL), or connected component labeling algorithms, con-
stitute a way to achieve the separation described above. The CCL algorithms provide an anal-
ysis of every pixel present in an image, or voxel when applied to a CT scan. It is assumed that
the input image is a binary image composed of a background and foreground. In this case,
the foreground corresponds to the study material. These algorithms have the purpose of label-
ing every pixel or voxel of an image based on its neighbours, and to do so it usually requires
multiple iterations. In the first run, if the voxel is considered to be part of the background, it
is attributed the label -1. If a voxel is considered part of our study material it is attributed an
unique numerical label. In the second run, the algorithm will iterate through each volume
slice, with the thickness of one voxel, first by row then by column.

In this step, different labels attributed to voxels in the same particle acquire the same label.
This is done analysing voxel’s neighbourhood. If the labels of the neighbours differ from the
label attributed to the current voxel, the voxels with the highest label will be assigned the
smallest label in the neighbourhood.

Since this previous step can generate label changes based , the algorithm does multiple re-
runs until there aren’t label changes. The end goal of CCL is to label every connected voxel, by
attributing them the same label. Often this is done after a segmentation algorithm is applied to
the input image. A variety of CCL algorithms exist, such as Accelerated Connected Component
Labeling (ACCL), Block-based Union-Find (BUF) and Block-based Komura Equivalence (BKE).
ACCL in particular is a known algorithm in the image processing field. As the name suggests,
it corresponds to a faster version of CCL that can run on NVIDIA’s CUDA framework, among
others. It is used to decrease the time needed to run an image analysis, compared to CCL

Based on the dissertation written by João Ribeiro [4] on the performance of the three
algorithms cited above, it was concluded that ACCL demonstrated superior performance in
almost every case, except for some highlighting run-based algorithm deficiencies. For this
reason, the algorithm chosen for particle labelling was ACCL.
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3.2.3.1 Image representation

To ensure ACCL performance is magnified, the initial CT image matrix is divided into two.
This is done after the first step of this algorithm. From this point onward the CT image will
be split into the two following matrices: The Runs matrix and the Labels matrix, as can be
observed in picture 3.3.

The index corresponds to the voxel position in a certain line, where the count begins at
0. The Runs matrix is where the indexes that represents where the contiguous voxel portions
begin and end are stored. It is to be noted that the maximum size the Runs matrix corresponds
at most to the size of the initial matrix plus one. In this scenario, the line would need to have
an odd number of elements that are all discontinuous voxels, meaning if one belongs to the
material, the following voxel wouldn’t, and so forth. The size of this matrix will correspond at
most to X/2 contiguous voxel portions, rounded up, where X equals the number of columns of
the original matrix. This is due to the run matrix registering two positions for each contiguous
voxel group (the index where it begins and the index where it ends). X / 2 rounded up times 2
equals at most X + 1, therefore, the maximum number of elements per row in the Runs matrix
would be X+1.

The Labels matrix, as the name suggests, is the matrix where the labels are stored. Each
contiguous voxel group will have an unique label attributed. Since, as demonstrated above, a
row could have a maximum of x / 2 labels rounded up, the maximum size of this matrix will
correspond to half the size of the original matrix, rounded up.

Figure 3.3: New method of image representation through two matrices in a 2D image slice.

3.2.3.2 Find Runs

Now that the image restructuring is understood, lets more forward to the first part of the
ACCL algorithm: Find runs. This algorithm will only be executed once and will attribute a
value to each voxel that belongs to our target material. A counter is present to indicate the
value of the current label being attributed. The label attribution is performed in the following
manner: - If the current voxel belongs to the material, the the value of the label attributed to it
corresponds to the current counter value - If the last voxel processed belongs to the material
and the current voxel doesn’t, the label counter increments by one. This means the previous

20



3.2 . SPECIFICATION

contiguous voxel group has ended. - If both the last voxel processed and the current voxel don’t
belong to the material, then the current voxel is ignored and the algorithm moves forward to
the next voxel.

By the end of the execution, every contiguous voxel group in each row has a unique label
attributed. However, when observing the image by columns or slices, it is possible for contigu-
ous voxel groups to have different labels attributed. For this reasons, the next step will consist
in normalizing that situation and assuring only one label is attributed to each group.

3.2.3.3 Merge Runs

In this step, much like hysteresis, multiple executions will be needed until all labels con-
verge and there are no image changes during a full iteration.

The algorithm will go through each voxel and look at the neighbours that have a label
attributed to them, meaning they belong to our material. When the algorithm locates a neigh-
bouring voxel with a label different from the label of our current voxel, it will assign the smallest
label of the group to voxels with different labels. This will make all voxels in the same particle
to have same label.

Note that due to the new image representation, explained above, if one of the elements in
the "Labels"matrix is changed, every voxel in that row of neighbouring slice that are continuous
with the voxel will be altered.

When the algorithm is executed and no labels are changed, it means that all contiguous
voxel groups have had their labels corrected and every particle is properly identified. However,
the image processing is still not complete, since the matrix needs to be represented as it was
before, and not by 2 matrices.

3.2.3.4 Decompression

The last step of ACCL algorithm, decompression, is executed in a single iteration. This step
consists in filling a matrix, the same size of the original image, based on the Runs and Label
matrices values. By the end of this step, a new image will be generated, where every particle
is individualized and separated from the others.

Described above are all the steps that make up the developed algorithm. This theoretical basis
will ease the understanding of the code implementation described in the next chapter.
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IMPLEMENTATION

In this chapter all the previously described concepts and methods will be put into practice.
Code snippets alongside explanations provide a full overview on how the developed solution
works.

4.1 Image Cleaning

The first implementation step consists of image cleaning, as explained in chapter 3. Firstly,
the chosen tomographic image, in NRRD format, needs to be imported. To import the image
the NRRD.jl package was used. This package implements the FileIO.jl interface, allowing the
user to interact with the file in a simple and efficient manner. An alternative method would
be to open the CT image with the FileIO.jl directly. This, however, would read the image as
a text document that would later need to be interpreted and analysed. The NRRD.jl package
will be used again later to save the image after its processing stage.

After importing the target image, its data then needs to be processed by a GPU. The ma-
chine where this project was developed has an NVIDIA graphic card, and the CUDA.jl package
was chosen to handle the interaction with the graphic card. Another package could have been
used, but this one was chosen based on its specificity for NVIDIA graphics cards.

The data needs to be converted to a format the GPU can read. Then, after data processing,
the GPU output will then be re-converted to a CPU readable. To convert the data type between
CPU and GPU data, the functions "gpu"and "cpu"from the Flux.jl package were used.

The following code snippet loads the "image_file.nrrd"image, converts it to a GPU readable
datatype and creates an auxiliary variable with the same size of the image where the GPU
output will be place.
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� �
img = load("image_file.nrrd")

gpu_img = img |> gpu

gpu_img_aux = CUDA.zeros(size(img))� �

4.1.1 Thresholding

The algorithm used for thresholding was relatively simple. Through themap! function, the
get_value function was applied on each voxel. Afterward the resulting image was saved as an
auxiliary image with the same size as the original.

The function get_value receives the three following parameters: voxel, min and max. The
voxel parameter corresponds to the singular intensity of the voxel being processed. As ex-
plained in chapter 2, each voxel has a value assigned to it. The min parameter corresponds to
the maximum voxel value accepted for the value 0 to be assigned to that voxel. In opposition,
the max corresponds to the minimum voxel value accepted for the value 255 to be assigned to
that voxel.

This way, every voxel with a value between 0 and the min, excluding those with a value
equal to min, will be assigned the value 0. The same way, every voxel with a value between
the max and 255, excluding those with a value equal to max, will be assigned the value 255.
This will create a gray area, where the voxels with a value between min and max, including
those with a value equal to min and max, won’t be assigned a new value and will maintain
their initial value. This grey area was previously explained in chapter 2.

� �
function get_value(voxel, min, max)

if voxel < min

final_v = 0

elseif voxel > max

final_v = 255

else

final_v = voxel

end

return final_v

end

map!(elem -> get_value(elem, 85, 110), gpu_img_aux ,gpu_img)� �
By the end of this stage, our initial image will be divided in three components: material A

with an assigned value of 0, material B, with an assigned value of 255, and the gray zone.

To finalize image cleaning in a precise manner, voxels from the gray zone need to be as-
signed either 0 or 255. To separate the gray zone voxels hysteresis is used..
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4.1.2 Hysteresis

Hysteresis can be split into three main steps. In the first step, the decision algorithm will
run for each voxel in the gray area. This algorithm will decide the new value attributed to those
voxels. This decision will be based, as explained in chapter 3, in the neighbouring voxels that
surround the target voxel. If the absolute majority of the neighbouring voxels is 0 or 255, our
target voxel will be assigned that respective value. The algorithm will run iteratively until no
voxel value is changed during a full iteration.

The second step is only faintly different to the previous one, and is applied when the abso-
lute majority of the neighbouring voxels can’t be used as a deciding factor to assign a gray area
voxel a value. For example, if a target voxel has less than or equal to half of it’s neighbours with
0 value and 255 value assigned. In this situation, the relative majority of neighbouring voxels
is used. Meaning that to make a decision the algorithm will assign the value that corresponds
to the largest number of neighbouring voxels, regardless if there are more than fifty percent of
the neighbours with the same value assigned, as it was done in the previous step

In the function bellow there are 3 parameters: img, that corresponds to the image input;
img_out, that corresponds to the processed image, with the changed voxels; and maj, the flag
to indicate if the function is going to user either the absolute or relative majority as deciding
factor.

� �
while gpu_img_aux != gpu_img

copyto!(gpu_img, gpu_img_aux)

@cuda threads=config.threads blocks=config.blocks

hysteresis!(gpu_img, gpu_img_aux, 1)

end� �
� �
function hysteresis!(img, img_out, maj)

(x_size, y_size, z_size) = size(img)

x = (blockIdx().x -1) * blockDim().x + threadIdx().x

y = (blockIdx().y -1) * blockDim().y + threadIdx().y

z = (blockIdx().z -1) * blockDim().z + threadIdx().z

if x <= x_size && y <= y_size && z <= z_size

voxel = img[x, y, z]

if voxel % 255 != 0

count_mat1 = 0

count_mat2 = 0

total_neigh = 0

for x_idx = max(1, x - 1):min(x + 1, x_size)

for y_idx = max(1, y - 1):min(y + 1, y_size)

for z_idx = max(1, z - 1):min(z + 1, z_size)

total_neigh = total_neigh+ 1

neighbour = img[x_idx, y_idx, z_idx]

if neighbour == 0

count_mat1 = count_mat1 + 1
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elseif neighbour == 255

count_mat2 = count_mat2 + 1

end

end

end

end

if maj == 1

if count_mat1 > Int(ceil(total_neigh/2))

img_out[x, y, z] = 0

elseif count_mat2 > Int(ceil(total_neigh/2))

img_out[x, y, z] = 255

end

else

if count_mat1 > count_mat2

img_out[x, y, z] = 0

elseif count_mat1 < count_mat2

img_out[x, y, z] = 255

end

end

end

end

return

end� �
The third and final step of hysteresis is performed when after the previous steps it wasn’t

possible to attribute all the gray area voxels to eithermaterial A or B. This happens, for example,
when a target voxel has the same amount of neighbouring voxels with value 0 as with value 255.
In this instance each remaining unassigned voxel will be randomly assigned either the value 0
or the value 255. This will be performed during a single iteration with the map! function, as
can be observed in the code snippet bellow.

� �
function hysteresis_random(voxel)

if voxel % 255 != 0

return rand((0,255))

end

return voxel

end

map!(elem -> hysteresis_random(elem), gpu_img ,gpu_img_aux)� �

4.2 Segmentation

From this point forward there are 2 distinct materials, fully separated. This makes it pos-
sible to now identify isolated voxel groups, and each voxel group is classified as a particle of
material.

Numerous Connected Component Labeling, or CCL algorithms are available, but the one
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used in this project was ACCL. This algorithm didn’t have a significant performance differ-
ence when compared to other algorithms available that are more complicated and difficult to
maintain as explained in chapter 3.

4.2.1 ACCL

ACCL, as explained in chapter 3, is a labeling algorithm. This algorithm has the goal of
identifying groups of connected voxels that compose each particle. The ACCL implementa-
tion is divided into three portions: "Find Runs", "Merge Runs"and "Decompression". The
decompression is only needed for optimization purposes, as explained bellow.

4.2.1.1 Find Runs

The "Find Runs"function consists of finding voxel sequences of the study material line by
line in an image slice with the thickness of one voxel. Each sequence found will increment the
next label value by one.

To improve machine performance two matrices were used instead of working with a full
image. These matrices have position indexes representative of the original position of the
elements and the according labels in the original matrix. These matrices are the runs matrix
and the labels matrix. Only one iteration is required to achieve both matrices. This matrix
structure is explained in detail in chapter 3.

� �
function find_runs!(img, runs, labels)

(x_size, y_size, z_size) = size(img)

# slice to be processed by this thread

slice = (blockIdx().x -1) * blockDim().x + threadIdx().x

# row to be processed by this thread

row = (blockIdx().y -1) * blockDim().y + threadIdx().y

# runs and labels matrix current index initialization

pos_runs, pos_labels = 1, 1

# does previous voxel belong to the material in study?

run_found = false

# column to be iterated by this thread

column = 1

# ensure that index are within matrix bounds

if slice <= x_size && row <= y_size

# iterate all columns of the the current slice and row

for idx = 1:z_size

column = idx

# if the voxel belongs to the material in study

if img[slice, row, column] == 0

# if previous voxel does not belong to the material

if !run_found

# mark previous voxel as belonging to the study material

run_found = true

# calculate an unique identifier based on the
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#current slice, row and column combination and

# assigned to the current particle.

labels[slice, row, pos_labels] =

y_size * z_size * (slice - 1) + z_size * (row - 1) + column

# assign starting index of the particle to the

# correspondent runs matrix index

runs[slice, row, pos_runs] = column

# increment labels matrix insert position

pos_labels = pos_labels + 1

# increment runs matrix insert position

pos_runs = pos_runs + 1

end

# if the voxel does not belong to the material in study

else

# if the previous voxel belongs to the material in study

if run_found

# assign previous voxel as not belonging to the

# material in study

run_found = false

# assign ending index of the particle to the

# correspondent runs matrix index

runs[slice, row, pos_runs] = column - 1

# increment runs matrix insert position

pos_runs = pos_runs + 1

end

end

end

# If last processed voxel belongs to the material, the ending position of

# the particle must be assigned in runs matrix

if run_found

runs[slice, row, pos_runs] = column

end

end

return

end� �
4.2.1.2 Merge Runs

The second step, "Merge runs"consists of finding runs with different labels that neighbour
each other and merge them into a single label. The label chosen to keep is always the one
with lowest value among them. This is a iterative algorithm that runs until there are no further
changes in the labels values.

� �
function merge_runs!(runs, labels)

# slice to be processed by this thread

slice = (blockIdx().x -1) * blockDim().x + threadIdx().x

# row to be processed by this thread

row = (blockIdx().y -1) * blockDim().y + threadIdx().y

(x_size, y_size, z_size) = size(labels)

# ensure that index are within matrix bounds

if slice <= x_size && row <= y_size

# iterate all columns of the the current slice and row
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for column = 1:z_size

# obtain the current label of the labels' matrix

curr_label = labels[slice, row, column]

# if the current label does not belong to the material

# in study, end execution of this thread.

if curr_label == 0

return

end

# get start index of the particle

run_start = runs[slice, row, column*2 - 1]

# get end index of the particle

run_end = runs[slice, row, column*2]

# x_idx - x position of the neighbourhood

for x_idx = max(1, slice - 1):min(slice + 1, x_size)

# y_idx - y position of the neighbourhood

for y_idx = max(1, row - 1):min(row + 1, y_size)

# z_idx - z position of the neighbourhood

for z_idx = max(1, column - 1):min(column + 1, z_size)

# get previous slice label

prev_slice_label = labels[x_idx, y_idx, z_idx]

# stop checking neighbourhood if the previous slice

# does not belong to the material in study

if prev_slice_label == 0

break

end

# get start index of the neighbour particle

prev_slice_run_start = runs[x_idx, y_idx, z_idx*2 - 1]

# get end index of the neighbour particle

prev_slice_run_end = runs[x_idx, y_idx, z_idx*2]

# if neighbour particle and current one connect

if (prev_slice_run_start >= run_start - 1

&& prev_slice_run_start <= run_end + 1) ||

(prev_slice_run_end >= run_start - 1

&& prev_slice_run_end <= run_end + 1)

# if neighbour particle label is lower than

# the current

if prev_slice_label < curr_label

# assign the neighbour label value to

# the current particle

labels[slice, row, column] = prev_slice_label

# if current particle label is lower than

# the neighbour

elseif curr_label < prev_slice_label

# assign the current label value to

# the neighbour particle

labels[x_idx, y_idx, z_idx] = curr_label

end

end
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end

end

end

end

end

return

end� �
4.2.1.3 Decompression

As a final step, the initial matrix will need to be recreated taking the previous two matrices,
runs and labels, as a starting point. Note that this step is only needed because the initial matrix
was initially split into two in order for performance reasons. A single matrix is generated, with
the same size as the initial image and with all the individual particles identified. Only a single
iteration is needed to achieve this.

� �
function decompression!(runs, labels, out_img)

slice = (blockIdx().x -1) * blockDim().x + threadIdx().x

row = (blockIdx().y -1) * blockDim().y + threadIdx().y

(x_size, y_size, z_size) = size(labels)

if slice <= x_size && row <= y_size

for column = 1:z_size

curr_run_label = Int(labels[slice, row, column])

if curr_run_label == 0

return

end

run_pos = column * 2

curr_run_start = Int(runs[slice, row, run_pos-1])

curr_run_end = Int(runs[slice, row, run_pos ])

for i = curr_run_start:curr_run_end

out_img[slice, row, i] = curr_run_label

end

end

end

return

end� �
Now, with a solution fully developed, it is possible to proceed to the assessment of its

applicability. To do this, the program will be tested on several CT image examples.
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RESULTS AND DISCUSSION

In this chapter the solution developed will be tested on several tomographic images. Some
of these images are synthesised through a synthetic image generation method. Others, are
real life examples of CT images obtained by material science researchers. As the results are
presented, they’re discussed and explained throughout this chapter.

5.1 Processing Time

When analysing the processing time, several variables need to considered, such as sample
size, machine specifications, and the method with which these values were obtained. In terms
of size, the samples have a variable size, and consequently a variable number of voxels. The
machine used to run the program had the following specifications:

CPU Intel core i7 4710HQ 2.5GHz up to 3.5GHz
GPU NVIDIA GTX 850M 2GB
RAM 8GB

Table 5.1: Machine Specifications

An analysis of time and memory metrics in relation to the solution steps over a sample is
shown in the table below 5.2. The results displayed are divided in the same way as discussed
in chapter 4. The "Main"line in the table consists of the time it took for the complete program
to run, including loading and image saving time.

In order to retrieve a non biased metrics, the machine ran the code over the samples a total
of six times. The first time the @time function is called, the time measured will include the
compilation time. This causes the first run of code to display larger times and space allocations
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than what was expected. For this reason, the first run was neglected. In the five following
runs, the best (shortest time) and worse (longest time) runs were discarded.This was done to
normalize the values and minimize errors. The remaining 3 runs were selected and averaged,
giving the value displayed in table 5.2.

Time (s) Space (MB)
Thresholding 2.19 141.94
Hysteresis 5.80 175.26
Segmentation 2.06 66.43
Main 9.33 410.90

Table 5.2: Time and Space Metrics

5.2 Image Output

An example of the image output along all the intermediate steps between the initial un-
processed image and the final result, is displayed in this subsection.

In the initial image (a), can be observed an extensive palette of colors, where the greens
and yellows correspond to the base material and the blues to the target sample material.

After thresholding (b), can be seen a more distinct color separation between blue, our
sample, and red, the base material is wished to remove. Here, there are also present other
colors, that belong to the intermediate gray zone, as described in chapter 2. These will be
assigned to either sample or base material through hysteresis, as described in chapter 4.

In (c) a duality between red and blue is visible after hysteresis.

Bellow, in picture (d), each particle of the sample material was attributed a unique color,
representing a label, to isolate each particle.

Finally, in figure (e), can be observed the final result, where the base material was removed
and the whole sample particles can clearly be visualized.
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(a) Initial Image (b) After Thresholding

(c) After Hysteresis (d) After Segmentation

(e) The Study Material

Figure 5.1: Implementation Output
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5.3 Test Cases

As a means to test the developed solution, test cases will be performed. These can be
of two types: real or synthetic synthetic images. These images have varying material pixel
percentages, material particle numbers and image dimensions.

5.3.1 Synthetic Images

The first tests were performed on the synthetic images. These images were generated
through a program written in C language that generates cubes within a volume of 400 x 400 x
400 voxels Each cube generated intends to represent a material particle from a material synthe-
sized by researchers. The CT image generator allows the user to set strict parameters, therefore
one can be certain of the volume each cube occupies, by comparing it to the sample. This
allows to have certainty on the results obtained after processing the image with the solution
developed.

Three synthetic samples were generated, with an escalating percentage of volume occupied
by the material, represented by cubes. The first sample is filled by five percent of material, then
ten percent and finally fifteen percent. These three values were chosen because they are similar
the usual percentage values of the material in study that occupies a real-life sample. A real
sample usually contains around that ten percent of material volume, in relation to its total
volume.

(a) Initial Image (b) After Processing

Figure 5.2: Pre- and post-processing synthetic CT image with 5% sample volume
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(a) Initial Image (b) After Processing

Figure 5.3: Pre- and post-processing synthetic CT image with 10% sample volume

(a) Initial Image (b) After Processing

Figure 5.4: Pre- and post-processing synthetic CT image with 15% sample volume

As it can be observed in the examples above, in all the three tests, the particles were cor-
rectly identified.

Regarding the processing time of the developed solution, it is possible to observe in fig-
ure 5.5 that it slightly increases as the amount of voxels belonging to the study material also
increases. The specific values are specified in the graph bellow. This can be explained by the
fact that the ACCL algorithm transformed the original matrix into a new representation. The
algorithm needs to work upon that new representation and process more voxels, leading to
an increased processing time. This mechanism was explained in depth in subsection 3.2.3.1.
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Figure 5.5: Processing time according to material percentage in a 64 million voxel Sample

A test was conducted on an 100x100x100 voxel image that consisted of a single spiral cov-
ering the whole sample, as can be observed in the image bellow. This test took 7.26 seconds
to run and is particularly interesting due to the existence of only a single large particle within
the whole sample. It is visible that after image processing the resulting image only has one
color, meaning that the solution created was able to identify successfully the single particle.
This example acts as evidence that the merge runs step of ACCL algorithm is working properly,
regardless of the number of material particles present in a sample.

(a) Initial Image (b) After Processing

Figure 5.6: Pre- and post-processing artificial CT image consisting of a continuous spiral-
shaped particle
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5.3.2 Real Images

As explained above, it is possible to be certain that the program is correctly classifying every
voxel in each particle of the synthetically generated material. Now the developed solution can
be tested on real life examples. Next, two sections of the sample C63C2 results are going to
be presented and discussed. The CT image bellow represents the first section. This section is
composed by 200x200x200 voxels and contains 107 particles in it. The time it took to run the
solution on this sample is presented in table 5.2.

(a) Initial Image (b) After Processing

Figure 5.7: Pre- and post-processing of a real CT image fragment, cut from sample C63C2 with
8 million voxels

Additionally, the full C63C2 image from the previous sample was tested, with the intent
to verify how the program would perform when faced with an extremely large voxel number.
Unfortunately, due to the testing machine specifications, the program was not able to run
properly. In order to process a 719 x 701 x 900 CT image, more than 2GB of memory dedicated
are needed, more than what the GPU used has. Alternatively, a larger slice of the C63C2 sample
with A size of 500 x 500 x 500 was generated. This sample was 15.63 times bigger than the
previous sample, with a total of 1013 particles took 55.46 seconds to be processed. This time,
the program was able to run and the output image presented a positive result. As seen in the
picture below, the whole volume voxels were labelled correctly.
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(a) Initial Image (b) After Processing

Figure 5.8: Pre- and post-processing of a real CT image fragment, cut from sample C63C2 with
125 million voxels

The solution developed was confirmed to be functioning on all images it was tested on, re-
gardless of the intrinsic characteristics of said images. However, this will be further discussed
in the next chapter.
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6
CONCLUSIONS

Material science researchers are in the constant search for new methods to improve upon
previously developed software, be it in terms of speed or result acuity. For this thesis in partic-
ular, it was proposed to develop a program able to take an NRRD image format and distinguish
the different materials contained within it. Thus, the goal was to be able to separate the dif-
ferent materials as well as identify the individual particles of the material being studied. This
project expands upon previously developed work, by utilizing Julia, a new language, as well as
the use of a GPU to accelerate the image processing algorithms. This newer language poses
some advantages, such as a high processing speed and elevated comprehensibility, making it
an interesting option to develop new work.

The program was developed as intended originally, and every algorithm presented was
written in Julia and built through the use of a GPU. Research was continuously conducted to
choose which algorithms to implement, as to maximize program speed and efficacy.

Testing was performed, on both real and artificial samples, of varying size and particle
complexity. In all the tests performed, the program was able to separate and identify every
single material particle correctly. Additionally, this was performed with acceptable processing
time. With this, it is possible to conclude that the proposed goals for this dissertation were
fulfilled in full.

In terms of future developments, it would be interesting to utilize distributed computa-
tional resources. The computational power is limited to the resources the machine it runs on
can allocate. Considering this, an alternative to process extremely large tomographic images
in a more efficient manner would be to slice the image into sections and send those sections
into a cluster with several machines. These machines could process those sections simultane-
ously, reducing processing time considerable. After the sections were processed, they would
be returned to the machine that made the processing request, to join them and compose the
final processed image.
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