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Abstract
Background: Diabetes is a heterogeneous and multifactorial disease. However, 
glycemia and glycated hemoglobin have been the focus of diabetes diagnosis and 
management for the last decades. As diabetes management goes far beyond glu-
cose control, it has become clear that assessment of other biochemical parameters 
gives a much wider view of the metabolic state of each individual, enabling a 
precision medicine approach.
Methods: In this review, we summarize and discuss indexes that have been used 
in epidemiological studies and in the clinical practice.
Results: Indexes of insulin secretion, sensitivity/resistance and metabolism have 
been developed and validated over the years to account also with insulin, C-
peptide, triglycerides or even anthropometric measures. Nevertheless, each one 
has their own objective and consequently, advantages and disadvantages for spe-
cific cases. Thus, we discuss how new technologies, namely new sensors but also 
new softwares/applications, can improve the diagnosis and management of dia-
betes, both for healthcare professionals but also for caretakers and, importantly, 
to promote the empowerment of people living with diabetes.
Conclusions: In long-term, the solution for a better diabetes management would 
be a platform that allows to integrate all sorts of relevant information for the per-
son with diabetes and for the healthcare practitioners, namely glucose, insulin 
and C-peptide or, in case of need, other parameters/indexes at home, sometimes 
more than once a day. This solution would allow a better and simpler disease 
management, more adequate therapeutics thereby improving patients' quality of 
life and reducing associated costs.

K E Y W O R D S

C-peptide, glycemic variability, HbA1c, indexes, insulin resistance, insulin sensitivity, oral 
glucose tolerance test, prediabetes, type 2 diabetes
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1   |   INTRODUCTION

Diabetes is a complex, multiple etiological disease, which 
comprises multiple organs and includes alterations in var-
ious biochemical parameters. Glycemia has been the focus 
for both diagnosis and monitoring of diabetes. However, it 
is now largely known that diabetes management goes far 
beyond glucose control. Being a complex condition, dif-
ferent factors, mediators and mechanisms play a role in 
sustaining disease progression.1

Insulin resistance is the core defect in type 2 diabetes 
(T2D) and the primary factor in the glucose imbalance in 
three pivotal tissues: skeletal muscle, liver and adipose 
tissue. Furthermore, excessive lipid accumulation in cells 
may lead to insulin resistance leading to compensatory 
increase in insulin secretion and hyperinsulinemia. The 
identification of a routinely applicable indicator, simple 
and reliable markers of disease related to glucose and lipid 
metabolism, with higher sensitivity and specificity than 
classical parameters (such as waist circumference [WC], 
body mass index [BMI] and lipid profile), could be use-
ful not only for diabetes but also for cardiometabolic risk 
assessment and contribute to promote personalized early 
interventions in the clinical setting.

In an era of precision medicine, it is fundamental to 
have a wider view on metabolic disorders such as diabetes 
and consider other factors involved in glucose homeosta-
sis, as insulin and C-peptide. These values are rarely used 
in clinical practice, and they are not measured on a daily 
basis nor in an attempt to monitor disease progression 
and/or effectiveness of therapeutic.

2   |   TYPE 2 DIABETES: 
GLUCOCENTRIC VISION VERSUS 
INTEGRATIVE VISION

Glycemia and its surrogate indicator – glycated haemo-
globin (HbA1c) are the gold standard to diagnose and 
monitor disease progression.2 More recently, continuous 
glucose monitoring (CGMs) has brought some advances 
in disease control independently of the type of diabetes, 
introducing new metrics and enabling the discussion on 
glucose variability.3,4 Indeed, this chronic disease is reli-
ant on patient awareness and empowerment for glycemia 
control.

When Banting and Best firstly reported the effect of 
insulin based on the pancreatic extracts in 1922, it was 
revealed that insulin had a ‘great potency in controlling 
carbohydrate and fat metabolism in normal and diabetic 
animals as well as in patients suffering from diabetes melli-
tus’.5 Due to the difficulty of measuring insulin in plasma, 
which only occurred in 1960s, all known effects of insulin 

were based on its capacity to produce hypoglycemia or 
glucose uptake by isolated organs.6 In consequence, this 
phenomenon brought glycemia as a central player for the 
diagnosis and management of diabetes undermining the 
role of insulin.

However, over the last years, it has become evident that 
evaluation of other biochemical parameters gives a much 
wider view of the metabolic state of each individual. With 
the concept of precision medicine, and that diabetes has 
different phenotypic contours,7,8 it is more important than 
ever to assess other key parameters involved in diabetes 
onset and progression, such as insulin, C-peptide and lipid 
profile, which will aid in determining the most appropri-
ate therapeutic strategy aiming at precision medicine.

Although this need is well-identified and recognized,9 
the implementation of the evaluation of these parameters 
on a daily basis has failed. This mostly happens due to a 
lack of quick and unexpensive methods that would allow 
to do it in point-of-care or at homecare as is the case for 
glycemia.

Besides the clinical values per se, the usage of sur-
rogate indexes based on insulin, C-peptide or glycemic 
levels at a specific time should be very important to ex-
tract clinically-relevant information.10,11 Of relevance, 
and using these values, one can for example assess in-
sulin secretion, which when decreased could result 
from either defects of β-cell function or a reduction in 
β-cell mass. On the contrary, insulin sensitivity or insu-
lin resistance, the latter as a result of the incompetence 
of insulin action to promote glucose uptake or insulin 
clearance/metabolism, have been also evaluated based 
on indexes that are still far beyond expected to be used 
in clinical practice.

For instance, defects in the interplay of insulin secre-
tion, action and metabolism (Figure 1) are not a contin-
uum and some individuals might have a more pronounced 
insulin-resistant phenotype and others a deficiency in in-
sulin secretion, among other phenotypes.8 These features 
may even be altered throughout the day and with the 
prandial state, meaning that an individual can have an al-
teration in the fasting that does not mirror the alterations 
in the postprandial and vice versa. Even further away 
from common evaluation is insulin metabolism,12 which 
is rarely accounted to phenotype an individual and to be 
of any relevance for therapeutics.

In general, even though the use of different indexes to 
indirectly assess insulin resistance has been established, 
they are still laborious and time-consuming and far from 
patient awareness. In addition, the cut-offs currently used 
for these indexes vary a lot and comprise vast intervals, 
which makes them not consensual within the clinical 
community. Therefore, a new perspective to be incor-
porated in clinical practice on the usage of these types 
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of indexes should be addressed to take advantage of all 
the available tools to manage diabetes and its associated 
comorbidities.

3   |   LIFESTYLE AND 
THERAPEUTICS

Lifestyle interventions based on physical activity and/or 
diet are determined for improved glycemic control car-
diometabolic health and prevention management of dia-
betes complications. There are numerous intervention 
programs and, they are scarcely based on the phenotypic 
metabolic profile of an individual. Usually, the inter-
ventions are based on a trial-and-error approach. It is 
known that different nutrients have a dissimilar impact 
on glycemic levels in two individuals that have the same 
glucose excursion during an oral glucose tolerance test 
(OGTT).13 The distinctive postprandial plasma milieu, 
glycemia and lipidemia are characteristics of different 
pathophysiological mechanisms, which can be attrib-
uted to genetic and environmental features.8 The same 
rational can be ascribed to different physical activities. 
Therefore, before understanding the milieu thru omics 
data, it is necessary to pinpoint which type of mecha-
nisms are altered in a specific patient since the milieu 
is a resultant of changes in mechanisms. This does not 
take away the relevance of understanding the outcome 
of the changes in mechanisms. Moreover, in a more ac-
curate and complex picture, carbohydrates can be con-
verted to lipids and the other way around depending on 
the type of altered mechanisms and diet.

The same rational applies to therapeutic interven-
tions. The concept of precision medicine has been 

recommended, which goal is to achieve the most effec-
tive approach for a similar group of patients regarding 
genetic, environmental, lifestyle and clinical factors, 
within others.14 Therapeutic guidelines arise to first ad-
dress glycemic control and subsequently the reduction in 
complications/comorbidities. An interesting twist is that 
nonalcoholic fatty liver disease (NAFLD) can be viewed 
as either driver or consequence of T2D. So, should we ad-
dress NAFLD or T2D first? Or does a specific individual 
have hepatic or skeletal muscle insulin resistance? In the 
milieu, it is expected that hepatic insulin resistance drives 
preferentially fasting hyperglycemia and skeletal muscle 
insulin resistance impacts postprandially. The lipid pro-
file of one case might be completely different from the 
other. Therefore, should we address both cases in the 
same way? To achieve precision medicine, the therapeu-
tic approach is chosen subsequently phenotyping the 
patient and identifying the individual specificities. For 
example, in precise medicine of T2D, an individual with 
poorly controlled glycemia with hypertension (without 
atherosclerotic disease or chronic kidney disease), when 
on metformin, can be prescribed with one of five drugs: 
DPP-4 inhibitors, GLP-1 agonists, SGLT-2 inhibitors, thi-
azolidinediones, sulfonylureas. Presently, each doctor 
will decide to take into account the broader view of the 
guidelines. Which is the best treatment for a patient in 
this condition? Should we just be aiming at putting him/
her in a good track for glycemic control without under-
standing which mechanisms are compromised? By using 
indexes, we understand mechanisms and together with 
the milieu content, we can allocate one individual into 
a group of people sharing common features of the over-
all metabolic condition, which will respond well to a de-
fined therapeutic.8

F I G U R E  1   Insulin secretion, metabolism and action. Insulin secretion from pancreatic β-cells in response to increased glucose levels 
encompasses a series of events that results in the fusion of secretory granules with the plasma membrane. After being released to circulation, 
insulin reaches the liver through the portal vein. Here, insulin is metabolized in the hepatocytes in a process named insulin clearance, but it 
also exerts actions, namely activates glycogen synthesis, decreases gluconeogenic gene expression and increases lipogenic gene expression. 
After reaching the liver, insulin also reaches other organs such as the muscle, where it leads to increased glucose uptake and glycogen 
synthesis, among others.
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4   |   USAGE OF INDEXES FOR 
ASSESSING INSULIN SECRETION, 
METABOLISM AND SENSITIVITY/
RESISTANCE

Hitherto, quantifying insulin secretion, metabolism and 
resistance in humans, has been of great importance for 
epidemiological studies, and clinical and basic science 
investigation, using direct and indirect methods of vary-
ing complexity. However, the use of algorithm-derived 
methods needs validity and reproducibility, and the cost 
is also an important factor to be considered when choos-
ing a particular method.15 These methods may rely on the 
single (one timepoint) analysis of glucose, insulin and/
or C-peptide or on dynamic testing (several timepoints). 
Although less informative than dynamic tests, single 
measurements are more common in clinical practice due 
to their simplicity. The single measurements of glucose, 
insulin and C-peptide are usually performed under fast-
ing conditions (basal state). In healthy subjects, the fasting 
condition represents a basal steady-state where glucose is 
homeostatically maintained in normoglycemia such that 
insulin levels are not significantly changing and hepatic 
glucose production is constant. Basal insulin secretion by 
pancreatic β-cells determines a relatively constant level 
of insulinemia that will be lower or higher in accordance 
with insulin sensitivity/resistance, such that hepatic glu-
cose production matches whole-body glucose disposal 
under fasting conditions. Methods based on fasting glu-
cose and insulin concentrations reflect primarily hepatic 
insulin sensitivity/resistance. Under most conditions, he-
patic and skeletal muscle insulin sensitivity/resistance is 
proportional. However, in the diabetic state with fasting 
hyperglycemia, fasting insulin levels are inappropriately 
low and insufficient to maintain euglycemia. Another 
limitation for the measurement of fasting plasma insulin 
is the pulsatile mode of insulin secretion (pulses with a 
periodicity of 10–15 min and ultradian oscillation periods 
of 1–3 h). The periodicity, amplitude and ultradian oscil-
lations of insulin pulses vary in the fasting state and are 
altered in subjects with dysmetabolism.16 Thus, these spe-
cificities of insulin secretion should be considered when 
assessing the most useful evaluation methods and/or 
indexes.

Glucose disposal after a meal is mediated by a complex 
network that includes absorption, glucose effectiveness, 
neurohormonal and incretin actions, insulin secretion 
and metabolic actions of insulin that primarily determine 
the balance between peripheral glucose utilization and 
hepatic glucose production.

Blood glucose measurements in the postprandial state 
are usually performed in specific timepoints of the OGTT 
or the standardized meal tolerance test (MTT).17 These 

methods consider both fasting steady-state and dynamic 
postload, either glucose or meal, plasma glucose and in-
sulin levels. Although the oral route of glucose/meal de-
livery is more physiological, the poor reproducibility of 
the OGTT and standardized MTT due to variable glucose 
absorption, splanchnic glucose uptake and additional in-
cretin effects needs to be incorporated in a new view.

Since several guidelines state that ‘the OGTT is not 
recommended for routine clinical use’, the MTT, which is 
a ‘physiologic’ variant of OGTT, becomes an interesting 
alternative for an in-depth assessment of glucoregula-
tion. The MTT offers several advantages, namely: (i) lack 
of artifactual postload hypoglycemia, thus making this 
test suitable for the study of postprandial hypoglycemia, 
usually due to high insulin sensitivity, or in a context of 
insulin resistance to hyperinsulinism; (ii) use of a physio-
logic stimulus triggering a cephalic phase proportional to 
palatability scores; and (iii) possibility to measure insulin 
sensitivity with a modified algorithm based on the mini-
mal model as well as glucose effectiveness and insulin se-
cretion. The MTT can represent a simple procedure, less 
unpleasant for the subject than any other assessment of 
glucose metabolism (including the standard OGTT) while 
providing both a physiologic picture of glucoregulation 
and a sophisticated analysis of it in terms of insulin sensi-
tivity, glucose effectiveness and insulin secretion.

5   |   INSULIN SECRETION

There are several methods used to evaluate insulin se-
cretion and β-cell function, namely HOMA-B, insulino-
genic index (IGI) and blood C-peptide to glucose ratio 
(Table  1). Indeed, besides glucose and insulin, some 
insulin secretion-related indexes consider C-peptide, a 
well-known marker of β-cell function. C-peptide is split 
from insulin in the beta-cell secretory granules and co-
secreted with insulin.18 Since insulin, but not C-peptide, 
is extracted by the liver, serum and urinary C-peptide 
levels reflect the absolute amount of endogenous insu-
lin secretion.19 However, as the kidney is a major site of 
C-peptide clearance through glomerular filtration and 
uptake from peritubular capillaries, it is not a good in-
dicator of insulin secretion and β-cell function in cases 
of nephropathy.19,20 Usually, C-peptide is measured after 
overnight fasting. As the plasma glucose level is rela-
tively stable during fasting, insulin secretion is assumed 
to be stable. Thus, the assessment of β-cell function using 
fasting samples is reproducible and more easily compa-
rable within and between individuals. However, insu-
lin secretion increases in a postprandial state. Since in 
a postprandial state, not only the higher plasma glucose 
level but also incretin effects stimulate insulin secretion, 
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T A B L E  1   Indexes of insulin secretion, resistance and/or metabolism derived from fasting and MTT/OGTT measurements.

Index Formulae Advantages Limitations Ref.

Insulin secretion and β-cell function

HOMA-β 360× I0
G0 (mg ∕ dl) − 63

or
20× I0

G0 (mmol ∕L) − 3.5
Simple
Minimally invasive
Predicts fasting steady-

state G and I levels143

Only fasting 23

Insulinogenic index (IGI) I30 − I0
G30 −G0

Detects early insulin 
response to glucose 
changes;

Measures postprandial 
β-cell function

More than one 
timepoint

143

C-peptide to glucose ratio C− peptide

Glucose
× 100 Fasting and postprandial

Assesses β-cell function, 
even in patients under 
insulin therapy

Alterations in C-peptide 
metabolism and/
or therapeutic 
interventions that 
act on β-cells may 
induce a bias

144

Urinary C-peptide to 
Creatinine ratio 
(UCPCR)

C− peptide (nmol ∕L)

Creatinine (mmol ∕L)
Noninvasive
Stable

Inappropriate for 
individuals with 
kidney disease

32

Insulin resistance/sensitivity

Gutt index
Insulin sensitivity index 

(ISI)

75.000+(G0 −G120) × 0.19×BW

120×
G0 + G120

2
× log

(

I0 + I120
2

)

Reliable
Good at predicting 

diabetes onset

Several timepoints
Difficult to calculate

75

Cederholm index 75.000+(G0 −G120) × 1.15× 180× 0.19×BW
120×Gmean × log (Imean)

Reliable
Good at predicting 

diabetes onset

Several timepoints
Difficult to calculate

74

Matsuda index 10,000
√

G0 × I0 ×Gmean × Imean
Assesses both hepatic 

and peripheral tissue 
sensitivity to insulin

Weak index for people 
with diabetes

73

Oral glucose insulin 
sensitivity (OGIS)

f (G0, G90, G120, I0, I90, I120, D0), where 
D0 is the oral glucose dose (g/m2 
body surface area)

Calculated in a spreadsheet or in a web 
OGIS calculator

Alternative to 
hyperinsulinemic 
euglycemic clamp

Can be used with both 
common and SI units

Time-consuming
Multiple timepoints

70

Homeostasis model 
assessment 
(HOMA-IR)

G0(mg ∕ dl) × I0
405

G0(mmol ∕L) × I0
22.5

Consistent
Precise
Minimally invasive

Only fasting
Cannot be used when 

glucose <3.5 mmol/L

22

HOMA2-IR Calculated with a spreadsheet One single sample Only fasting 53

HOMA-AD G0 × I0
Adiponectin

One single sample Only fasting 97

Duncan index
Fasting insulin resistance 

index (FIRI)

G0 × I0
25

Similar to HOMA-IR but 
can be used with any 
value of glucose

One single sample

Only fasting 77

Quantitative insulin 
sensitivity check index 
(QUICKI)

1

log (I0)+ log (G0)
One single sample Only fasting 62

Fasting glucose to insulin 
ratio

G0

I0
Simple
One single sample

Only fasting 52

Insulin metabolism

Insulin clearance (IC) C− peptide AUC

Insulin AUC
Need of an MTT or 

OGTT
145

(Continues)
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postprandial C-peptide levels more likely reflect the 
maximal insulin secretory capacity compared with fast-
ing C-peptide level, namely in patients with T2D.

5.1  |  Insulinogenic index

Insulinogenic index estimates insulin secretion and can 
be calculated from the OGTT data, i.e. the ratio between 
the increase in plasma glucose and insulin levels 30 min 
after the glucose load. The IGI at 30 min of OGTT is fre-
quently used to assess β-cell function. Although there is 
no gold standard for β-cell function, C-peptide is a much 
better marker of pancreatic activity than peripheral in-
sulin. If IGI is used for β-cell function during OGTT, in-
dexes of insulin resistance/sensitivity such as HOMA 
should be avoided, because they are strongly influenced 
by the fasting measurements, included also in IGI. IGI is 
an acceptable index of β-cell function and is able to dis-
criminate among subjects with various degrees of glucose 
tolerance.21

5.2  |  HOMA-β

HOMA-β, in turn, produces a single readout of β-cell 
function.22 It is a surrogate marker that only requires 
paired fasting insulin and glucose measurements, so it 

has been used in large epidemiological and pharmaceu-
tical studies. However, HOMA-β is not an appropriate 
model for subjects on exogenous insulin nor to evaluate 
and compare drugs with similar effects on blood glucose 
but different modes of action (e.g. DPP4 inhibitors vs. 
sulfonylureas).22–24 Indeed, it can be used in subjects on 
insulin secretagogues such as sulfonylureas, but the re-
sults need to be interpreted accordingly.25

5.3  |  C-peptide to glucose ratio

As glucose is a major stimulator of insulin secretion, 
blood C-peptide to glucose ratio allows for a more ac-
curate assessment of β-cell function than only C-
peptide, especially in patients with hyperglycemia.26,27 
Postprandial but not fasting blood C-peptide to glucose 
ratio significantly correlated with disposition index (DI) 
(see below) calculated by glucose clamp, reflecting cor-
rect β-cell function adjusted for insulin sensitivity.27,28 
As insulin secretion is higher in the postprandial state, 
the use of the postprandial blood C-peptide to glucose 
ratio allows for the analysis of β-cell functional capac-
ity.29 Indeed, it was already described that postprandial 
blood C-peptide to glucose ratio anticipated not only 
the need for multiple daily insulin injections in patients 
with type 2 diabetes30 but also predicted better treat-
ment strategies.31

Index Formulae Advantages Limitations Ref.

Disposition index (DI) (SI × AIRg) Difficult to calculate 84

Oral disposition index 
(DIO)

I30 − I0
G30 − G0

I0

Alternative to DI 86

Other indexes

Visceral adiposity index 
(VAI)

VAImen = 
(

WC

39.68+ 1.88×BMI

)

×
(

TG

1.03

)

×
(

1.31

HDL

)

VAIwomen = 
(

WC

39.68+ 1.88×BMI

)

×
(

TG

0.81

)

×
(

1.52

HDL

)

Useful surrogate marker 
for visceral adiposity

Different formula for 
men and women

100

Lipid accumulation 
product (LAP)

LAPmen = (WC − 65) × TG0

LAPwomen = (WC − 58) × TG0

Simple Only fasting
Different formula for 

men and women

105

Triglycerides and glucose 
index (TyG) ln

TG0

(

mg

dl

)

×G0

(

mg

dl

)

2

Simple
One single sample

Only fasting
Needs further validation 

in diabetes

90

Fatty liver index (FLI) e0.953×ln(TG)+0.139×BMI+0.718×ln(GGT)+0.053×WC−15.745

1+ e0.953×ln(TG)+0.139×BMI+0.718×ln(GGT)+0.053×WC−15.745
× 100 Simple

Minimally invasive
112

Fibrotic nonalcoholic 
steatohepatitis index 
(FNI)

e−10.33+2.54×ln(AST(U∕L))+3.86×ln(HbA1c(%))−1.66×ln(HDL(mg∕dl))

1+ e−10.33+2.54×ln(AST(U∕L))+3.86×ln(HbA1c(%))−1.66×ln(HDL(mg∕dl))
Simple
Minimally invasive
Validated in diabetes

121,122

Abbreviations: AST, aspartate aminotransferase; AUC, area under the curve during the OGTT; BW, body weight; G, glucose; GGT, ɣ glutamyl transferase; Gx, 
glucose values in the x timepoint of the OGTT; HbA1c, glycated haemoglobin; HDL, high-density lipoproteins; I, insulin; Ix, Insulin values in the x timepoint of 
the OGTT; OGTT, oral glucose tolerance test; TG, triglycerides; WC, waist circumference.

T A B L E  1   (Continued)
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      |  7 of 19MENESES et al.

5.4  |  Urinary C-peptide to 
creatinine ratio

Urinary C-peptide to creatinine ratio (UCPCR) is a 
noninvasive alternative to serum C-peptide measure-
ment,32 especially when the appropriate storage of blood 
samples (e.g. access to fridges and centrifuges) is lim-
ited. Indeed, when collected in boric acid, C-peptide in 
urine samples is stable at room temperature for 72 h.33 
It is used either in fasting or postprandial but, as previ-
ously mentioned, should not be used in cases of renal 
disease.19 One of the first studies assessing its applica-
bility demonstrated that 2  h UCPCR was as sensitive 
as plasma C-peptide measurement after a glucagon test 
in individuals with diabetes, under insulin therapy or 
not.34 For insulin secretion assessment during an MTT, 
UCPCR at 120 min has also been shown to be an alter-
native to 90 min serum C-peptide in children with type 
1 diabetes.35 Importantly, UCPCR also helps to distin-
guish maturity-onset diabetes of the young (MODY) 
from type 1 diabetes,36 although the diagnosis should be 
further confirmed by a genetic test.

6   |   INSULIN RESISTANCE AND 
ITS ASSESSMENT

Different direct and indirect methods have been proposed 
and used for assessing insulin resistance. Choosing the ap-
propriate index, either direct or indirect, should consider 
the aim of each particular study. For epidemiologic and 
research studies where insulin resistance is of primary in-
terest, the hyperinsulinemic euglycemic clamp is usually 
used.37 However, for assessing insulin sensitivity on a daily 
basis in clinical practice and under normal physiological 
conditions, indexes such as quantitative insulin sensitivity 
check index (QUICKI), HOMA-IR and Matsuda index are 
usually preferred.38,39

6.1  |  Dynamic tests

Dynamic tests such as the hyperinsulinemic euglycemic 
clamp or the frequently sampled intravenous glucose tol-
erance test (FSIVGTT) are more complex and difficult to 
employ.

6.1.1  |  Hyperinsulinemic euglycemic clamp

The hyperinsulinemic euglycemic clamp is the refer-
ence method for measuring insulin sensitivity/resist-
ance.40 This test requires a constant infusion of insulin 

and varying infusion of glucose to maintain euglycemia. 
Consequently, this is not a physiological test and is not 
the adequate method when the goal is to estimate insulin 
action and glucose dynamics under normal physiologi-
cal conditions. As it requires intravenous insulin infusion 
and frequent blood sampling over a 2 h period, this pro-
cedure is operator-dependent, time-consuming, expensive 
and limited to people that can tolerate it.41 Due to these 
disadvantages, other methods have been developed.

6.1.2  |  Frequently sampled intravenous 
glucose tolerance test

Frequently sampled intravenous glucose tolerance test 
assesses insulin sensitivity by a computed mathematical 
analysis of glucose and insulin dynamics.42 There were 
already some modifications to the original model, which 
consisted of an intravenously administered bolus of glu-
cose, after which blood samples were frequently collected. 
The most common modification of FSIVGTT consists of 
a glucose bolus administration and an infusion of insulin 
20 min after glucose injection.43 Blood samples are col-
lected frequently and periodically before and until 180 min 
after glucose infusion. Besides being an accurate tech-
nique for the measurement of insulin sensitivity in adults, 
adolescents and children,44,45 FSIVGTT is also a useful 
tool for the identification of subtle, nonsymptomatic met-
abolic abnormalities even before the onset of type 2 diabe-
tes.44 Although easier to perform than a clamp, FSIVGTT 
is time-consuming, invasive and requires experienced per-
sonnel to perform it. Moreover, without the administra-
tion of insulin, it can fail in subjects with impaired glucose 
tolerance or T2D.46

6.2  |  Indirect methods

The indirect and static methods for insulin resistance 
assessment such as HOMA-IR, QUICKI, Matsuda and 
insulin sensitivity index (ISI) (Table  1), are based on 
mathematical relations between plasma glucose, insulin 
and/or C-peptide. These methods have gained attention 
due to their lower complexity, lower cost and easy appli-
cation. However, these methods also have advantages and 
disadvantages between them, such as ease of calculation 
and need for several timepoints from the OGTT/MTT (e.g. 
Matsuda index). In fact, the advantage of surrogates based 
on dynamic testing is that information about insulin se-
cretion can be obtained at the same time as information 
about insulin action. However, if the main goal is to es-
timate insulin sensitivity/resistance, fasting surrogate in-
dexes are preferable to dynamic ones as they are simpler 
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to obtain and do not require multiple timepoints of blood 
sampling.47 Although indirect methods were mostly used 
in fundamental research, their application has been in-
creasing both in clinical and epidemiological studies, as 
well as in clinical practice, due to the abovementioned 
advantages.

6.2.1  |  Fasting insulin

The increase in fasting insulin levels indicates increased 
insulin resistance in a subject without diabetes. Thus, 1/
fasting insulin can be used as an index on insulin sensi-
tivity and will decrease as insulin resistance progresses.48 
However, and as previously mentioned, insulin levels are 
not normally distributed, so the correlation of this index 
with results from glucose clamp is not high. Moreover, this 
index should not be used in people with dysglycemia as it 
does not account for possible defects in insulin secretion.

6.2.2  |  Fasting insulinogenic index

Insulinogenic index, the ratio of insulin to glucose in 
fasting, has also been proposed for assessing insulin sen-
sitivity and predicts the development of T2D in some pop-
ulations.49,50 As expected, it correlates well with fasting 
insulin that can, in some situations, be used for assessing 
insulin sensitivity.48 The opposite can also be calculated 
(i.e. glucose to insulin ratio) and insulin resistance will be 
assessed. However, in the case of people without diabetes, 
this ratio will be similar to 1/fasting insulin due to normo-
glycemia.51 The glucose/insulin ratio has been especially 
used in cases of polycystic ovarian syndrome, which is 
characterized by insulin resistance.52

6.2.3  |  HOMA-IR

Among the simple and indirect methods, HOMA-IR, 
based on glucose and insulin at fasting, is the best known 
and validated. HOMA was first described in 1985 as an 
easy calculation between insulin and glucose at fasting 
(Table  1).22 This was later improved in 1998 to account 
for variations in hepatic and peripheral glucose resist-
ance, rises in the insulin secretion curve for glycemia 
above 180 mg/dl and the contribution of circulating pro-
insulin and was named HOMA2-IR.53 Due to all these 
variables, the latter is calculated through a computer 
model. Although HOMA2-IR is more accurate, HOMA-IR 
continues to be largely used as it does not require any 
specific software.23 In fact, HOMA-IR has been used in 
numerous studies, not necessarily in the diabetes and 

obesity field, and either in dietary or physical activity 
interventions.54–59 However, it may not be very accurate 
measuring insulin resistance once it uses fasting values 
and hyperinsulinemia generally results from a postpran-
dial state.60 Furthermore, HOMA-IR should not be used 
in individuals with poor glycemic control, marked β-cell 
dysfunction or under exogenous insulin treatment.38 Also, 
it cannot be used when fasting glycemia is lower than 63 
mg/dl (3.5 mmol/L).22

6.2.4  |  Quantitative insulin sensitivity 
check index

Quantitative insulin sensitivity check index is based on 
fasting glucose and insulin, reflecting the balance be-
tween hepatic glucose production and insulin secretion 
maintained by the liver and pancreatic β-cells.61 As in-
sulin does not have a normal distribution, QUICKI takes 
advantage of a log transformation (Table 1). In this way, 
QUICKI has a linear correlation with the hyperinsuline-
mic euglycemic clamp, considered to be the gold stand-
ard method for assessing insulin action in vivo.62 Indeed, 
QUICKI is very similar to HOMA-IR but the log transfor-
mation leads to QUICKI having the best correlation with 
the hyperinsulinemic euglycemic clamp, when compared 
to other indirect methods, such as HOMA-IR, HOMA2-IR 
and Matsuda index.62–64

Quantitative insulin sensitivity check index allows 
the prediction not only of changes in insulin sensitivity 
after therapeutic interventions but also the onset of dia-
betes.65,66 Moreover, it performs better in insulin-resistant 
subjects,62 being a good index to evaluate the progression 
of T2D. Indeed, it was already demonstrated that QUICKI 
is useful for following improvements in insulin sensitiv-
ity after dietary intervention and exercise in patients with 
T2D.67 However, in sedentary individuals without diabe-
tes, QUICKI did not properly detect changes in insulin 
sensitivity with exercise.68 It was also not able to reflect 
changes in insulin sensitivity by obesity or growth hor-
mone therapy.69 Due to its calculation, QUICKI may be-
come difficult to apply in subjects with severe diabetes to 
whom is not safe to withdraw the medication to perform 
the test.62

6.2.5  |  Oral glucose insulin sensitivity

Oral glucose insulin sensitivity estimates insulin sensi-
tivity during an OGTT, either of 2 or 3 h, and is the result 
of a mathematical model based on the dynamic relation-
ship between insulin and glucose.70 Although the calcu-
lation is not easy, it can be done using a spreadsheet. As 
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OGIS only requires blood sampling in three timepoints 
of the OGTT (0, 90 and 120 for a 2 h OGTT; 0, 120 and 
180 min for a 3  h OGTT) and as it correlates with the 
results obtained with hyperinsulinemic euglycemic 
clamp,70 OGIS is an attractive alternative for insulin sen-
sitivity assessment. There are also studies using OGIS to 
assess insulin sensitivity during an MTT.71,72 However, 
its accuracy in these cases is contradictory and thus still 
needs further validation.

6.2.6  |  Matsuda index

Matsuda index evaluates whole-body insulin sensitivity 
and is calculated from plasma glucose and insulin concen-
trations in the fasting state and during OGTT (Table 1).38 
This index has the advantage of representing both hepatic 
and peripheral sensitivity to insulin.38 Indeed, the fast-
ing state values reflect hepatic insulin sensitivity whereas 
the values during the OGTT represent peripheral insulin 
sensitivity. Nonetheless, as it is calculated from blood 
samples taken before and during the OGTT, there is an 
uncomfortable need for successive blood sampling.73 On 
the contrary, by using five timepoints, Matsuda becomes 
more accurate when compared to other surrogate indexes 
that use less timepoints.47

6.2.7  |  Gutt index/Insulin sensitivity index 
(ISI0,120)

The Gutt index is an ISI based on insulin and glucose 
values obtained at fasting and at 120 min of an OGTT 
(Table 1). It somehow replaced the use of another index, 
Cederholm index, that had a similar calculation but used 
not only fasting and 120 min timepoints, but also other 
timepoints of the OGTT, requiring more blood sampling.74 
Gutt index is well-correlated with direct estimates of in-
sulin sensitivity obtained from the glucose clamp study,75 
across distinct glucose tolerance phenotypes and obesity. 
Moreover, in studies where several indexes derived from 
dynamic tests were compared, Gutt index was the best at 
foreseeing the onset of T2D.63,76 However, this index is 
used only for assessing insulin sensitivity and does not 
have the ability of measuring insulin secretory capacity.75

6.2.8  |  Duncan index/Fasting insulin 
resistance index

The Duncan index is an index of insulin resistance very 
similar to HOMA-IR, but the normalization factor is 25 

instead of 22.5.77 However, this index was never as used as 
HOMA-IR, and its use and value are not consensual within 
the scientific community.78–80 However, it can be a valu-
able index, as the use of HOMA-IR is not recommended 
for fasting glycemia levels <63 mg/dl (<3.5 mmol/L) 
while Duncan index can be used in the entire range of 
glycemia.63,77

In summary, different studies highlight the impor-
tance of such indexes in the assessment of insulin re-
sistance. Nonetheless, several limitations can still be 
highlighted when considering the usage of surrogate 
insulin resistance indexes: (i) lack of reproducibility 
observed in fasting insulin levels, which is due to its 
pulsatory secretion from the pancreas rather than with 
the indexes per se60; and (ii) lack of established and con-
sensual intervals and cut-offs, as these vary too much 
between studies and populations.

Another drawback of surrogate indexes is the lack of 
reproducibility when measuring glucose and insulin, 
which comes from the unavoidable biological variabil-
ity and from differences regarding the used analytical 
methodology.61

7   |   INSULIN METABOLISM

Insulin clearance has recently been pointed out as an es-
sential feature of glucose/insulin metabolism, as it has 
been hypothesized that its impairment could be related to 
an increased risk of developing T2D.81,82

It is well-known that immediately following release 
from the pancreatic β-cells, insulin enters the abdominal 
portal vein and then flows directly into the liver. In the 
postprandial state, about half of newly secreted insulin 
is taken up by hepatocytes on the first pass through the 
liver before entering extrahepatic circulation. Insulin 
that survives the first pass through the liver enters the 
hepatic veins and, thus, the systemic circulation where 
it can act on tissues. Finally, it is cleared by insulin-
sensitive tissues including skeletal muscle, kidneys and 
liver (after recirculation). Circulating plasma insulin is 
thus determined by the balance between insulin release 
and clearance, which are both important parameters to 
establish plasma insulin levels. Insulin clearance can be 
estimated by direct or indirect methods. The term insulin 
clearance is used to describe the disappearance of insu-
lin from the bloodstream in the entire organism, which 
can be conceptualized as the sum of two independent 
processes: hepatic clearance and extrahepatic clearance. 
Insulin clearance can be estimated by the ratio between 
C-peptide area under the curve (AUC) and insulin AUC 
along the OGTT.
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7.1  |  Disposition index

The DI is an integrating index between insulin secretion, 
resistance and metabolism. It is the product of insulin 
sensitivity and insulin secretory response and quanti-
fies β-cell capacity to promote plasma glucose decline 
and, in a more complete index, integrates the insulin 
clearance. The feedback loop between insulin secretion 
and insulin sensitivity was first described as a hyper-
bolic curve by Bergman83 and was further confirmed by 
Kahn and colleagues.84 In the latter, the authors used 
the acute-insulin-response-to-glucose and the ISI ob-
tained during the FSIVGTT. However, large clinical and 
epidemiologic studies mostly use data from the OGTT 
to calculate the DI. In prospective studies, DI calculated 
with the original formula decreases before the onset of 
diabetes, being a putative marker for inadequate β-cell 
compensation.85

Due to the difficulty of calculating DI, simpler sur-
rogate indexes have been studied to infer DI, as is the 
case of IGI/fasting insulin, named oral disposition index 
(DIO).86 The latter was shown to be reliable in large-
scale epidemiological studies with obese adolescents 
with normoglycemia, prediabetes and diabetes, where 
the use of FSIVGTT or OGTT is limited due to feasibil-
ity and cost.87 However, in nondiabetic children, DIO 
showed a modest correlation with DI.88 Regarding the 
normoglycemic adult population, DIO is predictive of 
diabetes onset over 10 years.86

8   |   OTHER INDEXES/MEASURES 
FOR METABOLIC DISORDERS

Considering the importance of glycemic variability 
throughout a day lately time in range (TIR) has been 
addressed with great interest. Moreover, indexes con-
sidering other variables rather than glucose, insulin 
and C-peptide have been found to assess the risk of in-
sulin resistance, T2D and metabolic syndrome. Indeed, 
indexes such as the HOMA-Adiponectin (HOMA-AD), 
visceral adiposity index (VAI), the lipid accumulation 
product (LAP) and the triglyceride-glucose index (TyG 
index) were shown to be suitable surrogates of insulin 
resistance in different pathological conditions such as 
diabetes, hypertension, cardiovascular disease, NAFLD 
and metabolic syndrome.89–91

8.1  |  Time in range

With the increased use of CGMs devices, that have a 
sensor that measures interstitial glucose levels, other 

metrics of glycemic control have emerged. Although 
these include time above range and time below range, 
TIR has been the most used one (Figure 2). In diabetes, 
TIR refers to the amount of time in which a subject liv-
ing with diabetes is within the target glucose range.92 
Conceptually, this range varies with each patient, and 
in theory, it approaches a more precise medicine inter-
vention. For most patients, a TIR >70% is acceptable, 
for a range between 70 and 180 mg/dl (Figure 2).93 TIR 
inversely correlates with HbA1c94 and has been shown 
to predict the risk of long-term diabetes complications, 
such as retinopathy95 and microalbuminuria.95,96 Given 
the increasing use of CGMs, it is expected that the 
usage of metrics such as TIR also increases becoming 
an important tool for the management of the disease. 
Nevertheless, it is still far from the reality that one can 
know which mechanisms are affected (e.g. insulin se-
cretion, metabolism and/or sensitivity) when TIR is not 
within the recommended values.

8.2  |  HOMA-Adiponectin

HOMA-Adiponectin index was proposed based on 
a study in the Japanese population as an upgrade to 
HOMA-IR.97 By adding adiponectin levels to the HOMA 
formula (see above), it indirectly adjusts to the indi-
vidual degree of adiposity. However, there are studies 
that calculate this index with minor changes: some, in-
cluding the original, replace the constant 22.5 by adi-
ponectin levels, while other studies incorporate serum 
adiponectin levels in the denominator of the index. 
Probably due to the influence of adiposity, studies with 
obese individuals98 show better performance and need 
of this index rather than studies in lean individuals,99 
where HOMA-AD does not have any clear advantage 
compared with HOMA-IR and even requires the meas-
urement of adiponectin.

8.3  |  Visceral adiposity index

Visceral adiposity index is a gender-specific indicator 
based on anthropometric measures (BMI and WC) and 
laboratory tests (triglycerides [TG] and high-density lipo-
protein cholesterol [HDL-c]). It was firstly described in 
2010 as a marker of visceral adipose function and insulin 
sensitivity.100 Moreover, it is also associated with cardio-
metabolic risk.100 In children and adolescents with obe-
sity, VAI correlated with QUICKI and HOMA-IR and was 
shown to identify metabolic syndrome and was indicated 
as a powerful tool in the management of obesity together 
with dietary assessment.101
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8.4  |  Lipid accumulation product

The LAP is also a gender-specific index based on WC and 
triglycerides102–104 thus representing the anthropometric 
and physiological changes associated with excess lipid 
accumulation.105 It has been demonstrated that LAP is a 
good predictor of metabolic syndrome104 and that it pro-
vides a good distinction among individuals with prediabe-
tes and diabetes.89

8.5  |  TyG index

The TyG index is a simple, reliable and inexpensive tool 
to assess/predict body composition outcomes in response 
to dietary counselling.90 Indeed, it revealed a potential to 
predict weight loss after energy restriction, with clear im-
plications for personalized management of obesity in clin-
ical and community settings.106 Furthermore, TyG was 
sensitive to body fat changes after dietary intervention. On 
a nondiabetic population, TyG index and the TyG/HDL-C 
ratio had a moderate correlation with a direct method for 
assessing insulin-mediated glucose uptake, suggesting 
that these indexes are helpful for detecting subjects with 
insulin resistance when faced with the problems related to 
insulin measurement and action.107

The association between TyG index and liver fibro-
sis progression risk showed an increased TyG index that 
was found to be positively correlated with NAFLD fibro-
sis score and worsening of NAFLD severity. Additionally, 
higher serum levels of total cholesterol, triglycerides, low-
density lipoprotein cholesterol, alanine aminotransferase, 

aspartate aminotransferase and HOMA-IR were observed 
in patients with higher quartiles of TyG index, while ele-
vated TyG index was correlated with lower HDL-c serum 
concentrations.91 Khamseh et al. proposed that TyG index 
and its related indexes including TyG-BMI and TyG-WC 
could identify NAFLD and liver fibrosis in overweight/
obese subjects.108,109 In a cross-sectional study, TyG index 
was exhibited to be the best test for screening simple 
steatosis and nonalcoholic steatohepatitis (NASH).110 
Additionally, TyG index was suggested as a steatosis bio-
marker that had an adequate diagnostic accuracy for the 
presence of steatosis.111 The simplicity of calculation of 
the TyG index from two routine, low-cost biochemical 
measurements warrant further investigation of its role as 
an alternative evaluator of insulin resistance to improve 
the detection of subjects with high cardiometabolic risk 
and so facilitate the prevention of the development of 
chronic diseases associated with insulin resistance.

8.6  |  Fatty liver index

The fatty liver index112 (FLI) is a noninvasive and sim-
ple surrogate index of fatty liver. FLI is based on BMI, 
WC, triglycerides (TGs) and γ-glutamyltransferase. FLI 
is used to screen for hepatic steatosis, where FLI ≥60 
rules in for hepatic steatosis, identifying subjects who 
should have lifestyle counselling and specialized care.112 
Studies have revealed FLI's utility in foreseeing the pos-
sibility of NAFLD in both healthy controls and insulin-
resistant individuals with obesity.112,113 Moreover, FLI has 
been shown to be useful for predicting the onset of T2D 

F I G U R E  2   Time in range. Left—Representative images of two glucose levels profiles for 24 h (A and B). Right—Percentage of time that 
the A and B glucose levels profiles were above range (>180 mg/dl), in range (70 mg/dl ≤ x ≤ 180 mg/dl) or below range (<70 mg/dl). TIR, time 
in range.
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during  a 10-year  period.114 A higher FLI was also asso-
ciated with T2D in several studies,115–117 demonstrating 
once more a link between NAFLD and T2D and how valu-
able this index is as an early indicator of T2D risk. As FLI 
is a simple and affordable index, consecutive measures 
may be useful to assess dynamic changes in NAFLD.

8.7  |  Fibrotic nonalcoholic 
steatohepatitis index

Although the first steps of NAFLD include simple stea-
tosis, it can progress to NASH, which is characterized by 
inflammation and fibrosis, and even to hepatocellular car-
cinoma.118,119 Therefore, it is of most relevance to address 
steatosis and fibrosis and detect NAFLD as soon as pos-
sible. Even though FIB-4 has been widely used in the last 
years for hepatic fibrosis, it does not perform well in a pop-
ulation with T2D.120 Recently, Fibrotic nonalcoholic stea-
tohepatitis index (FNI), an index that takes advantage of 
AST, HbA1c and HDL cholesterol was developed and vali-
dated as a tool to screen for fibrotic NASH.121,122 Although 
recent, it was also already validated for people with diabe-
tes and it is not affected by glycemic severity nor by T2D 
duration.122 In both validation studies in people with met-
abolic diseases, FNI performed better than FIB-4.120 FNI 
is thus an accurate, inexpensive and simple noninvasive 
score that can be used to screen for fibrotic NASH in both 
primary healthcare and diabetes-specialized settings.

A wide variety of methods are available for assessing 
metabolic control. However, when addressing patient 
metabolic control, several important factors need to be 
considered. We need mainly predictive indexes, that allow 
predicting how diabetes and its associated complications 
will progress in each individual and further technological 
advances that allow for better disease management.

9   |   TECHNOLOGY 
DEVELOPMENT—TYPE 2 DIABETES

Technological development for the management of diabe-
tes in home settings has been centered around glycemic 
control, with an overwhelming segment of the market 
being related to portable biosensing technologies for glu-
cose determination. Indeed, it is expected that glucose 
monitoring will increase in the coming years, boosted 
not only by mature and established technologies, such as 
standard blood glucose meters (BGMs), but also advances 
in other portable devices, including CGMs.123 BGMs and 
CGMs have been the focus of great advancements, both 
in industrial and academic sectors, aiming at improving 
their analytical sensing performance and patient opinion 

and experience throughout their use of such technologies, 
enhancing aspects such as noninvasiveness, connectiv-
ity and integration.124 To do so, several routes have been 
taken, starting with investigating alternative biosensing 
schemes and transduction methods that can complement 
the gold standard glucose oxidase (GOx)-based, electro-
chemical sensors, using a range of new nanomaterials 
and recognition elements.125,126 Alternatively, a major 
trend in the development of such CGMs has been the 
translation of technologies into fully wearable, noninva-
sive systems, that can harness chemical information from 
a range of different body fluids, such as sweat. A myriad 
of epidermal-worn systems have been put forward, im-
proving on the minimally invasive, needle-based CGMs 
for interstitial fluid (IF) glucose detection, while opening 
the possibility to more dynamically study the fingerprints 
of glucose metabolism in these physiological fluids and 
its implication in diabetes.127 Concurrently, CGM tech-
nologies have been used in integrated systems, including 
sensor-augmented insulin pumps, that can improve pa-
tient outcomes in glycemic control, in an attempt to reach 
artificial pancreas technologies using automated insulin 
delivery systems.128 However, such devices still present 
some technological drawbacks, related to the physiology 
of glucose metabolism, that result in lag time regarding 
actual blood glucose levels measured by BGMs and the 
ones measured in target matrices of CGMs, mainly IF. As 
such, technological advancements that improve on this 
aspect are still needed, not only at the hardware level but 
also through predictive control software that can accu-
rately estimate real blood glucose levels and trends for 
more accurate therapeutics,129,130 using technologies 
such as deep learning and artificial intelligence (AI). 
Concurrently, the translation of technological knowl-
edge for the development of biosensors and detection 
systems for the quantification of alternative biomarkers 
such as insulin, C-peptide or HbA1c has been a research 
focus.131,132 With the possibility of measuring such bio-
markers remotely at the point-of-care and outside the 
clinical setting, better adjustment of both short-term, 
glycemic control and long-term management of diabetes 
outcomes could be achieved. However, some technologi-
cal barriers still need to be overcome, regarding the low 
circulating concentrations of some biomarkers and the 
more complex biosensing schemes that need to be imple-
mented to accurately measure such metabolites, when 
compared to glucose detection. As such, if many or all of 
these aspects are included in comprehensive systems to 
be employed in homecare settings, it is expected that pa-
tient perception of diabetes technologies improves while 
encouraging the use of telemedicine principles in diabe-
tes management, with the rise in digital diabetes technol-
ogies that implement all aspects of remote measurement, 
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data analysis and transmission to health providers and 
tailored therapeutics towards more personalized, preci-
sion diabetes management.

10   |   DATA PROCESSING

One of the critical factors for the success of the technologi-
cal approach presented above is the ability to collect and 
process patient data. Throughout this work, different met-
rics were mentioned to assess a patient's condition and 
deliver precise care and monitoring. All of this is possible 
by collecting patient data over time. In order words, the 
major data sources to infer a patient state are time series 
describing each metric. Data following this structure en-
able the prediction of future values of each metric, which 
can be used to alert a patient against unnoticed, harmful 
situations or simply inform the tendency of such values 
over the next hour. Currently, said tasks are easily han-
dled by deep learning techniques such as temporal convo-
lution networks133 and auto encoders.134

However, these methods depend on regular sampled 
data at a fixed time interval, which cannot be guaranteed 
in a scenario where the patient is responsible for collect-
ing the measurements. Thus, we need noise-robust meth-
ods, capable of handling missing and irregular sampled 
data over long periods of time. Fortunately, improve-
ments regarding the training of Neural networks135 spiked 
variations of already existing networks, robust to noise 
and capable of maintaining accuracy on irregular data, 
namely Liquid Time-constant networks136 and Ordinary 
Differential Equation Long Short-Term Memory networks 
(ODE-LSTM).137

Data processing can be approached via two paradigms: 
batch and streaming. Batch processing can handle large 
amounts of data and deliver accurate and robust results. 
This is achieved by scheduling processing jobs capable 
of using large computational resources. An immediate 
downside of this approach is the slow delivery of results. 
Since processing jobs need to be scheduled, results are 
updated following those schedules and are not available 
immediately.

Contrary to batch processing, stream processing de-
livers results in near real time. This means that as fast as 
data comes in, results come out, providing fast responses. 
Nonetheless, the focus on fast delivery comes with some 
compromises with processing power: resources are limited 
to applying simpler tasks to incoming data. Such tasks in-
clude using simple forecast models and outlier detection, 
for instance.

Data processing platforms built upon the lambda ar-
chitecture model138 allow to combine both approaches, 
providing both sophisticated analytics based on big data 

and AI models and techniques, as well as fast delivery of 
simple, intuitive analytics and early warnings on poten-
tially dangerous conditions being developed.

Finally, great concern must be placed on the privacy 
of patient data. Although the breakthroughs in healthcare 
enabled by data processing and AI are highly valuable, 
they cannot be achieved at the expense of patient privacy, 
especially from a regulatory perspective. The goal is to 
ensure that only certain players (including the patients 
and the accredited health professionals that take care of 
them) are able to associate a patient's identity with his/
her data. As data are collected and processed by platform 
operators, they must ensure that such an identity associ-
ation is always possible, while at the same time, neither 
they themselves nor any other third party has no means to 
do it on their own. This can be achieved through the con-
cept of data pseudonymization, as provided under frame-
works like the General Data Protection Regulation,139 and 
its implementation in health-related scenarios is a major 
research challenge.

11   |   PATIENT PERSPECTIVE—
TYPE 2 DIABETES

The World Health Organization defines health as a state 
of complete physical, mental and social well-being and 
not merely the absence of disease or infirmity.140 In diabe-
tes this translates into considering the quality of life (QoL) 
of people living with diabetes as a key parameter in diabe-
tes management.141

The QoL represents the ultimate objective of all treat-
ment methodologies and health interventions. It can 
be measured by different tools and is considered as the 
status of the person's physical and mental well-being.142 
The main factors that impact positively the QoL are a 
good control of diabetes, which are also dependent on 
good self-management and the absence of diabetes-
related complications. Also, the perceived ability of the 
people living with diabetes to control their own disease 
is a continuous learning process that results in an im-
proved QoL.

We need also to consider that people living with a 
chronic illness live 24/7 with the disease and are the ones 
that take countless daily decisions regarding their treat-
ment. This is a challenge for people living with diabetes 
because the demands are substantial.

Thus, all methods that allow a more efficient way of 
obtaining relevant information that can facilitate a better 
and easier management of diabetes are essential. Namely, 
the methods that people can use at home, at the point of 
care, in particular technologies that are not costly, compli-
cated nor time-consuming.
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The fact that there is no need to travel to the healthcare 
centres is also relevant for people with diabetes because 
it permits as well as a better use of their time. Besides 
the travelling, we need to consider the time spent at the 
healthcare centre. Self-management also requires remote 
control with a liaison with the healthcare practitioners. 
Mixed models of diabetes management are desirable, and 
they can be altered with time depending on the need of 
the patient. The possibility of both patients and health-
care practitioners to have access to the same information 
in real life allows a better management of the disease and 
QoL for the patient.

12   |   FUTURE PERSPECTIVES AND 
CONCLUSIONS

Whereas glycemia will always be a key parameter for dia-
betes diagnosis and monitoring, there is an urgent need 
for an update in the way clinicians look at this complex 
disease.

There is an increasing awareness that each person is 
unique, and there is no such thing as one treatment fits 
all. Precision medicine proposes to consider individual 
differences in genetics, environment and lifestyle when 
considering disease prevention, presentation, diagnosis 
and treatment. Diabetes treatment is no longer glucocen-
tric and apart from glucose management, there are other 
effective tools to slow the progression of the disease.

Evaluation of other biochemical parameters such as in-
sulin, C-peptide and lipid profile is of utmost relevance for 
a better disease diagnosis and monitorization. Although 
these parameters are evaluated at diagnosis, there is still 
not an integrated overview of these, which individually 
are relevant but in combination can be much more in-
formative and drive a more suitable clinical approach for 
each patient.

Usage and incorporation of the indexes referred 
throughout this review will certainly contribute to more 
precise and adequate therapeutics, greatly contributing to 
precision medicine.

One way of tackling this is the clustering approach,7 
which was designed to be more flexible, not providing de-
finitive subphenotypes for individual patients in a clinical 
setting. This approach can be very useful for characteriz-
ing the metabolic heterogeneity prior to the clinical man-
ifestation of T2D. The identification of subphenotypes 
suggests some potential therapeutic implications. The 
combined information from a few variables central to the 
development of diabetes is superior to the measurement 
of only one metabolite, glucose. By combining this infor-
mation from diagnosis with information in the healthcare 
system this study8 provides a first step towards a more 

precise, clinically useful, stratification, representing an 
important step towards precision medicine in diabetes.

Furthermore, it is now the perfect timing to implement 
a digital platform combining all the information given 
by simply measuring a few parameters (dealing properly 
with the privacy concerns mentioned above). In an era 
where people can easily access information in real time 
by using smartphones, it is enormous the potential for 
a platform where not only people with diabetes but also 
caretakers and healthcare practitioners would be able to 
easily access patient's information. In addition, these apps 
can be programmed not only to simply give information 
but to instruct people with diabetes, to help them better 
manage their disease.

The current literature highlights the importance of 
surrogate indexes of insulin resistance and insulin secre-
tion for clinical and epidemiological studies. However, 
these are still not being used on a daily basis in clinical 
practice. Inclusion and usage of these surrogate indexes 
in clinical practice would allow not only better disease 
management but more appropriate and targeted phar-
macotherapy. Still, in order to expand the usage of these 
indexes some practices should be implemented, namely, 
an easier and quicker way of measuring insulin and C-
peptide. Alternatives to the currently used methods using 
less amount of biological samples and a system where the 
result could be assessed in much less time would allow 
measuring more than one parameter in real time.

An additional but crucial step would be the integration 
and analysis of all the gathered data. Once the person with 
diabetes is able to measure glucose, insulin and C-peptide 
or, in case of need, other parameters/indexes at home, 
sometimes more than once a day, this information needs 
to be transformed in a way that is accessible and under-
standable by the person with diabetes.

In long term, a platform like this could integrate all 
sorts of relevant information for the person with diabetes 
and for the healthcare practitioners, allowing a better and 
simpler disease management, more adequate therapeutics 
thereby reducing associated costs.
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