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ABSTRACT 

Breast Cancer (BC) is the second type of cancer with a higher incidence in women, it is responsible for 

the death of hundreds of thousands of women every year. However, when detected in the early stages 

of the disease, treatment methods have proven to be very effective in increasing life expectancy and, 

in many cases, patients fully recover. Several medical image modalities, such as MG – Mammography 

(X-Rays), US - Ultrasound, CT - Computer Tomography, MRI - Magnetic Resonance Imaging, and 

Tomosynthesis have been explored to support radiologists/physicians in clinical decision-making work-

flows for the detection and diagnosis of BC. MG is the imaging modality more used at the worldwide 

level, however, recent research results have demonstrated that breast MRI is more sensitive than mam-

mography to find pathological lesions, and it is not limited/affected by breast density issues. Therefore, 

it is currently a trend to introduce MRI-based breast assessment into clinical workflows (screening and 

diagnosis), but when compared to MG the workload of radiologists/physicians increases, MRI assess-

ment is a more time-consuming task, and its effectiveness is affected not only by the variety of morpho-

logical characteristics of each specific tumor phenotype and its origin but also by human fatigue. Com-

puter-Aided Detection (CADe) methods have been widely explored primarily in mammography screen-

ing tasks, but it remains an unsolved problem in breast MRI settings.  

This work aims to explore and validate BC detection models using Machine (Deep) Learning algorithms. 

As the main contribution, we have developed and validated an innovative method that improves the 

“breast MRI preprocessing phase” to select the patient’s image slices and bounding boxes representing 

pathological lesions. With this, it is possible to build a more robust training dataset to feed the deep 

learning models, reducing the computation time and the dimension of the dataset, and more importantly, 

to identify with high accuracy the specific regions (bounding boxes) for each of the patient images, in 

which a possible pathological lesion (tumor) has been identified. In experimental settings using a fully 

annotated (released for public domain) dataset comprising a total of 922 MRI-based BC patient cases, 

we have achieved, as the most accurate trained model, an accuracy rate of 97.83%, and subsequently, 

applying a ten-fold cross-validation method, a mean accuracy on the trained models of 94.46% and an 

associated standard deviation of 2.43%. 

 

Keywords: Breast Cancer Detection, Magnetic Resonance Imaging, Computer Vision, Machine Learn-

ing, Deep Learning, Convolutional Neural Networks. 
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RESUMO 

O cancro da mama (CdM) é o segundo tipo de cancro com maior incidência nas mulheres. É respon-

sável pela morte de centenas de milhares de mulheres todos os anos. Contudo, quando detetado nas 

fases iniciais da doença, os métodos de tratamento provaram ser muito eficazes aumentando a espe-

rança de vida e, em muitos casos, os pacientes recuperam totalmente. Têm sido exploradas várias 

modalidades de imagem médica, tais como MG - Mamografia (Raios-X), US - Ultra-som, CT - Tomo-

grafia Computadorizada, MRI - Ressonância Magnética e Tomossíntese, para apoiar radiologistas nos 

fluxos de trabalho clínico para a deteção e diagnóstico do CdM. A MG é a modalidade de imagem mais 

utilizada a nível mundial, contudo, resultados de pesquisas recentes demonstraram que o MRI é mais 

sensível do que a mamografia para encontrar lesões patológicas e, também, não é limitada ou afetada 

por questões de densidade mamária. Consequentemente, atualmente é uma tendência introduzir a 

avaliação mamográfica baseada em MRI nos fluxos de trabalho clínico - rastreio e diagnóstico -, mas 

quando comparada com a MG, a carga de trabalho dos radiologistas aumenta. A avaliação por MRI é 

uma tarefa mais demorada, e a sua eficácia é afetada não só pela variedade de características morfo-

lógicas e origem de cada fenótipo tumoral específico, mas, também pela fadiga humana. Os métodos 

de deteção assistida por computador (CADe) têm sido amplamente explorados principalmente em ta-

refas de rastreio mamográfico, mas continua a ser um problema por resolver em ambientes de resso-

nância magnética mamária.  

Este trabalho visa explorar e validar modelos de deteção de CdM usando algoritmos de Machine 

(Deep) Learning. Como contributo principal, desenvolvemos e validámos um método inovador que me-

lhora a "fase de pré-processamento das imagens de ressonância magnética mamária" para selecionar 

as fatias de imagem do paciente e as respetivas caixas de contorno que representam as lesões pato-

lógicas. Com isto, é possível construir um conjunto de dados de treino mais robusto para alimentar os 

modelos de deep learning, reduzir o tempo de computação, reduzir a dimensão do conjunto de dados 

e, mais importante, para identificar com alta precisão as regiões específicas para cada uma das ima-

gens do paciente nas quais foi identificada uma possível lesão patológica (tumor). Os resultados expe-

rimentais, num conjunto de imagens de ressonância magnética de domínio público totalmente anotado 

com 922 casos de doentes com CdM, mostram no melhor modelo uma taxa de exatidão de 97.83%. 

Foi aplicado um método de validação cruzada de 10 folds do qual resultou uma exatidão média de 

94,46% com um desvio padrão de 2,43% nos modelos treinados. 
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GLOSSARY 

Accuracy The degree of closeness of measurements of a quantity to that quantity's true 
value. Accuracy = Correct Classification / All classification. (Wikipedia, 2022a) 

Cancer A disease in which some of the body’s cells grow uncontrollably and spread to 
other parts of the body (National Cancer Institute, 2021). 
 

Histopathology Microscopic examination of tissue to study the manifestations of the disease. 
Specifically, in clinical medicine, histopathology refers to the examination of a 
biopsy or surgical specimen by a pathologist, after the specimen has been pro-
cessed and histological sections have been placed onto glass slides (Wikipe-
dia, 2022d). 

Magnetic Reso-
nance Imaging 

A medical imaging technique used in radiology to form pictures of the anatomy 
and the physiological processes of the body. MRI scanners use strong mag-
netic fields, magnetic field gradients, and radio waves to generate images of 
the organs in the body. MRI does not involve X-rays or the use of ionizing ra-
diation, which distinguishes it from CT and PET scans (Wikipedia, 2022g). 

Mammography / 
Mastography 

Is the process of using low-energy X-rays (usually around 30 kVp) to examine 
the human breast for diagnosis and screening. The goal of mammography is 
the early detection of breast cancer, typically through the detection of charac-
teristic masses or microcalcifications (Wikipedia, 2022e). 

Mitosis Refers to the cellular process where a single cell division results in two identical 
cells. Identical means that both cells have the same number of chromosomes 
and genetic content (BiologyOnline, 2021). 

Neoplasm A type of abnormal and excessive growth of tissue. The abnormal growth usu-
ally forms a mass, when it may be called a tumor (Wikipedia, 2022f). 
 

Patient-wise Operations (arithmetical) on an array/string of patients. When the unit is the 
patient. 

Precision The fraction of relevant instances among the retrieved instances. TP=TP/FP 
(Wikipedia, 2022b) 

Recall The fraction of relevant instances that were retrieved. TP=TP/FN (Wikipedia, 
2022b) 

Tomography Imaging by sections or sectioning using any kind of penetrating wave. The 
method is used in radiology, archaeology, biology, atmospheric science, geo-
physics, oceanography, plasma physics, materials science, astrophysics, 
quantum information, and other areas of science (Wikipedia, 2022h). 

Tomosynthesis Tomosynthesis, also digital tomosynthesis (DTS), is a method for performing 
high-resolution limited-angle tomography at radiation dose levels comparable 
with projectional radiography. It has been studied for a variety of clinical appli-
cations, including vascular imaging, dental imaging, orthopedic imaging, mam-
mographic imaging, musculoskeletal imaging, and chest imaging (Wikipedia, 
2021). 
 



 

17 

 

Tumor-wise Operations (arithmetical) on an array/string of tumors. When the unit is the tu-
mor. 

Type I Error In statistical hypothesis testing, a type I error is the mistaken rejection of a true 
null hypothesis (also known as a "false positive") (Wikipedia, 2022c). 

Type II Error In statistical hypothesis testing, a type II error is the failure to reject a false null 
hypothesis (also known as a "false negative") (Wikipedia, 2022c). 
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1. INTRODUCTION 

In 2020, approximately a total of 2.26 million women were diagnosed with Breast Cancer (BC) and 685 

thousand women diagnosed with breast cancer died (Sung et al., 2021). Also in 2020 breast cancer was 

the most prevalent cancer and the fifth most common cause of cancer death worldwide. However, early 

detection and accurate diagnosis are significant to improve the prognosis and increase the survival rate 

of patients with BC by 30% to 50% (World Health Organization, 2022). The treatment of BC is highly 

effective when it is detected in the early stages of the disease (World Health Organization, 2021). There-

fore, the early detection of BC is a critical issue that represents an urgent global priority. 

In the coming years, countries with weak health systems and lower incomes will suffer more severe con-

sequences in terms of both diagnosis and mortality related to breast cancer (Barrios, 2022). The Covid 

19 pandemic severely hampered the process of cancer diagnosis and treatment at a worldwide level, 

e.g., developed countries such as Canada, the Netherlands, Germany, Italy, the United Kingdom, and 

Australia even suspended their national breast cancer screening programs for periods of between one 

and six months (Figueroa et al., 2021). 

The heterogeneity of breast cancer results from a diversity of factors, in general, dominated by the mor-

phological characteristics of tumors and the origin of the neoplasms (Viale, 2012). The complexity of 

automated detection and/or classification of breast tumors arises from their variety of types and subtypes.  

It is currently an unsolved problem with added difficulties for radiologists in terms of Magnetic Resonance 

Imaging (MRI) image analysis.  

BC Computer-Aided Detection (CADe) systems aim to support medical decisions and prescriptions. This 

work aims to explore and validate BC detection models using Machine (Deep) Learning algorithms for 

developing a more robust and precise solution capable of assisting radiologists in this process. 

Currently, the problem of BC detection has been addressed by applying Artificial Intelligence (AI) tech-

niques, namely Machine (Deep) Learning (MDL) and Computer Vision (CV) algorithms and methods. In 

this work, we are focused on the development of robust and precise MDL detection models. For this 

purpose, we have explored already released public domain datasets (MRI-based) and associated 

metadata (e.g., patients' clinical history, Breast Imaging and Data System (BIRADS), verified biopsies, 

etc.). 

In addition, a collaborative scientific research project is being carried out between IPS and the Public 

Hospital of the district of Setubal, Portugal. This project will allow the building of a new benchmarking BC 

digital repository and validate the proposed detection method on national (Portuguese) patients’ cases. 

The departments of Radiology and Imaging in public and private hospitals are using machines (comput-

ers) as medical Imaging Workstations (IW). IWs are interfaces/terminals that are used to ease the work 

of radiologists to examine medical images. These IWs can communicate with Picture Archiving Commu-

nication Systems (PACS), which are servers to store and manage patients’ data (images and other 
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relevant clinical data).  This fact is a clear advantage for this project, due to it can be straightforward to 

deploy/integrate any developed prototype or validated solution as an Application Programming Interface 

(API) on IWs. 

1.1. Document Structure 

This document is structured in 9 chapters.  

CHAPTER 1, this introduction, to the scope of the problem and the main directions and motivation for this 

project. 

CHAPTER 2, overall planification of this work, setting the objective and schedule for this project as well 

as the definition of the methodology. 

CHAPTER 3, research on the current state of the art in medical imaging, as well as methodologies and 

applications of machine (deep) learning in the field of breast cancer detection and an overview of convo-

lutional neural networks. Also, it contains a brief description of the popular metrics used for evaluating 

deep learning models. 

CHAPTER 4, presentation, and analysis concerning materials and methods (i.e., details of the dataset 

selected to explore detection algorithms and methods, as well as, a description of the proposed method, 

highlighting the contributions to the data preprocessing phase. Description of the chosen deep learning 

architecture and evaluation methodology.  

This section also encompasses the description of the environment, development, and implementation of 

the proposed method, details, and options of the solutions proposed. 

CHAPTER 5, setup, and presentation of the achieved results as well as communication actions, outlining 

the current state of the work in events related to the domain area of this work. 

CHAPTER 6, Conclusions of this thesis and future work proposals considering how the work could be 

expanded and how the method can be improved.  
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2. PLANNING 

2.1. Scope 

• This project arises bound to my software engineering master’s degree final project and it was 

conceived by Professor Miguel Angel Guevara Lopez, my project mentor, and sponsor. 

• This project aims to help radiologists (physicians) accelerate the process of detecting pathologi-

cal breast cancer lesions in MRI-based workflows. The project builds on my supervisor's previous 

work concerning the development of machine (deep) learning methods for supporting the detec-

tion and diagnosis of pathological lesions in breast cancer patients and, it answers to one of the 

defined tasks inside an ongoing scientific collaboration protocol between the Setúbal Polytechnic 

Institute and the Centro Hospitalar de Setúbal. 

• The main goal of this project is the creation of an AI method capable to improve the early detec-

tion of breast cancer pathological lesions on MRI. This is relevant as the process of breast cancer 

detection in MRI workflows is a high time-consuming process, affected by physicians’ fatigue, 

and requires highly specialized skills. 

• Since the early detection and diagnosis of breast cancer is a critical issue, the detection accuracy 

of the models should be at least 95%, thus ensuring a very small number of False Negatives (FN) 

(Type II errors). The alternatives are human analysis of hundreds of MRI images per patient for 

visual detection of breast tumors. 

2.2. S.M.A.R.T 

The goal of this project is to develop a computer vision solution for the detection 

of breast cancer lesions on MRI with an accuracy of over 95% within eight 

months. 
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2.3. Objective 

This project aims to the development of a breast cancer detection model using a machine (deep) learning 

approach. As mentioned, there are five main medical imaging modalities used for detection, the focus will 

be on MRI. The selection of this over the remaining four modalities as it is still an unsolved problem and 

one of the more human-demanding modalities which could benefit from automatization. MRI analysis is 

an expensive and time-consuming procedure that requires highly specialized skills to perform and is con-

ditioned by human factors such as fatigue. 

Also, in terms of communication, this mission intends to produce a scientific contribution in form of a 

presentation at a scientific conference and a publication in a scientific journal.  

2.4. Methodology 

This project is highly dependent on external (public) datasets, which will be closely connected to the 

detection model’s success and therefore will require specific metrics and testing procedures to evaluate 

the accuracy and rethink model parametrization. For this reason, and to allow some responsiveness and 

strategy reorganization, the project management will be approached from an Agile perspective.  

Agile software development assumes that requirements – either functional, quality, or environmental – 

can change during the project. One of the major advantages of Agile methods is the possibility of splitting 

usual preliminary software design – as, for instance, good practice in waterfall methodologies - into 

smaller chunks of functionalities resulting in more flexibility. 

The agile methodology follows the Manifesto for Agile Software Development (Beck et al., 2001) as sum-

marized in the following four key principles: 

• Individuals and interactions over processes and tools 

• Working software over comprehensive documentation 

• Customer collaboration over contract negotiation 

• Responding to change over following a plan 
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2.5. Gant Chart 

 

 

Table 1: Gant Chart 
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3. STATE OF THE ART 

3.1. Medical Imaging Modalities 

In general, most of the work developed to date on Computer-Aided Detection / Diagnosis (CADe/CADx) 

methods/systems in BC pathological lesions (tumors), particularly on classification systems, is based on 

Histopathology (HP) biopsy images and or 2 Dimensions (2D) X-Ray Mammography (MG). However, 

other modalities including Ultrasound (US), Digital Tomosynthesis, and Magnetic Resonance Images 

(MRI) have been explored (Murtaza et al., 2020).  

Of all BC tumors, 70% to 80% are related to one of the major histopathological types, Invasive Ductal 

Carcinoma (IDC) and Invasive Lobular Carcinoma (ILC). These two main classes group most of the di-

verse spectrum of types (Viale, 2012) (Motlagh et al., 2018). The remaining 20% to 30% of BC tumors 

not typed as IDC or ILC fit into other categories weakly represented in datasets, a characteristic that 

traditionally is an impairing factor for DL solutions. 

Histopathology biopsy is an invasive and conclusive medical imaging modality. It is considered the which 

offers rich phenotypic details (Khaliliboroujeni et al., 2022). Although their results in terms of ML algorithms 

for multi-class classification are not optimal (McCann et al., 2015), it is still widely used for Deep Learning 

(DL) classification solutions (Gupta et al., 2021). 

Mammography is one of the most used modalities for early screening. This modality is not only useful to 

help determine the tumor mass but also its location (Gupta et al., 2021). Nevertheless, alongside 2D MG 

additional screening with supporting modalities, such as the US, is required as an MG has low sensitivity, 

particularly in presence of dense breast tissue images (Aristokli et al., 2022). 

The advantage of the US, when compared to other techniques is the fact of not having radiation involved. 

However, in addition to these advantages, there are other limiting factors. For instance, the US is limited 

in its ability to distinguish between calcifications and cancerous masses. Their poor image quality is prone 

to cases of misinterpretation; in part, the US is also used as the ancillary methodology for the screening 

of BC and to assist in the decision of prescribing further analysis with other modalities such as biopsy 

(Youk et al., 2017). 

Digital tomosynthesis is one of the less studied modalities as it was recently introduced and there less 

available datasets (Buda et al., 2020). Compared to 2D MG, DTS enables a more effective BC diagnostic 

capacity and produces more trustful interpretations (Abdel-Nasser et al., 2020). Its 3D views prove to be 

more powerful for the detection of abnormalities. However, as it is more challenging to handle 3D data for 
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automated detection, 2D MG classification results were demonstrated to be more efficient (Tariq et al., 

2021).  

MRI is the most accurate radiological method for accessing tumor size, multifocality, and multicentricity 

(Durhan et al., 2021), it has better sensitivity and higher diagnostic accuracy (Wu et al., 2022) but it’s not 

used for screening on its own, is considered too expensive and time-consuming (Rezaei, 2021) as for the 

analysis and assessment of MRI sequences which can easily group several hundreds of images for a 

single patient. 

Until a few years ago, MRI had only been used as an ancillary modality for non-conclusive US and MG 

increasing their detection rates and it’s predominantly used for evaluating other features such as size and 

for detecting other tumor areas (Aristokli et al., 2022). As aforementioned, MRI is particularly expensive 

as an activity that requires endeavor, it is highly dependent on human efforts, nevertheless, the same 

author states that 7 out 8 of his studies reveal that the mean sensitivity of MRI is 95.6%. Therefore, it is 

crucial to reduce human effort in MRI evaluation and take advantage of its high sensitivity performance/ca-

pacity to detect pathological lesions. 

The studies reviewed address both detection and classification - as one of the two main types - the binary 

early detection (including classification), between benign and malignant tumors, or the multiclass classi-

fication, which aims not only to distinguish benign and malignant but also different tumor types and sub-

types/phenotypes. 

3.2. Machine (Deep) Learning: Methods 

Detection is essentially a discovery process. A process capable of analyzing either the presence or ab-

sence of something or at the more generic level of computational language, of objects. Detection is an 

important process of Computer Vision, and a preliminary process for other processes such as segmen-

tation and classification (Zou et al., 2019). 

The Textural Analysis (TA) of MRI is already identified as having the potential to assist in classifying 

tumors as benign or malign (Brown et al., 2021) (Bębas et al., 2021). There are also studies on DL 

Figure 1: Image modalities samples 
A: Breast histopathology sample image (Munir Shah et al., 2021). 
B: Mammography sample image (Abdelrahman et al., 2021). 
C: Breast ultrasound sample (Byra et al., 2022). 
D: Breast digital tomosynthesis sample image (Zhang et al., 2020). 
E: Breast MRI sample image (Saha et al., 2021). 
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algorithms for other modalities such as MRI Background Parenchymal Enhancement (BPE) classification. 

It is not BC classification but may affect diagnostic accuracy and therefore becomes relevant for this study.  

Breast tumors are divided into several categories, 20 major types, and 18 minor subtypes. Apart from the 

binary classification, over 70% of breast cancers belong to one of two types of BC, Invasive Ductal Car-

cinoma (IDC) and Invasive Locular Carcinoma (ILC) (Jannesari et al., 2019). This uneven distribution of 

tumors results in added difficulty in automatically detecting breast cancer lesions using machine (deep) 

learning techniques. Breast tumor type distribution alone embodies some concerns in terms of dataset 

representativeness. As an example, in terms of training ML models the standard is to split between train-

ing and testing subsets – often randomly – with percentages between 70-30 to 85-15 depending on sev-

eral aspects. This approach enables testing the model in fresh data that was previously isolated from the 

training data subset. In terms of DL model training, the dataset is normally split into 90% for the training 

set and 10% for the testing set. 

However, as DL algorithms are used when there are available massive amounts of data, this ratio is used 

when we have Bigdata. In terms of cancer tumors, with less than 30% representing 18 major types of BC, 

it means that – assuming a dataset with all tumor types - the training set eventually may not include some 

of BC types, and, probably, the testing set would not include some of the tumor types. 

3.3. Review of Artificial and Convolutional Neural 
Networks 

DL is a subset of ML concerning the set of algorithms that allow computers “to learn from large collections 

of data” without the need for domain-specific (handcrafted) set of rules. In recent years ANNs have be-

come one of the emergent (trendiest) concepts in terms of AI and DL algorithms. 

Warren McCulloch and Walter Pitts began to study this sort of algorithm in the first half of the XX century, 

proposing in 1943 the first model of an artificial neural network (McCulloch & Pitts, 1943), called percep-

tron, with the current and increasing computational muscle, the research and improvement of ANNs are 

becoming ambitious in proportion. Nevertheless, ANNs are still very computationally expensive when 

used for image pattern recognition for detection and/or classification purposes. 

ANNs approach images as sets of pixels, where each pixel is considered a feature, that is, each input 

feature matches one input node, as well as one output node, matches one class (Isaac Abiodun et al., 

2018). Feature extraction aims to transform the input features into a new, smaller, feature set whose 

informational relevance is as identical as possible to the original input features thus reducing the number 

of features and therefore the number of input nodes (Ghojogh et al., 2019). This is especially important in 

terms of image classification as before feature extraction an image has as many features as pixels. 

A simple image (Figure 2) as the black and white handwritten smile face in 20x20 pixels has an enormous 

feature map with a vast number of elements, more precisely 400. In terms of colored pictures, the standard 
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is to separate three distinct feature maps for Red, Green, and Blue (RGB) channels (Gonzalez, 2018; 

Jost et al., 2019), one for each color.  

The colored picture in Figure 3, has 20x20 pixels, which is equivalent to 1200 features. In Vanilla (default) 

ANN (V-ANN) each feature is inputted to a separate node, and, as each pixel is a feature, V-ANN would 

need 1200 input nodes for a simple 20x20 pixels colored image. In Convolutional Neural Networks (CNN) 

there are a set of operations which may reduce de number of features. 

Convolutions are a set of operations executed in a dedicated layer before inputting features to the NN 

nodes. The convolution layer itself serves as a feature extractor (Rawat & Wang, 2017). In the convolu-

tional layer, each neuron is connected to its neighbor neurons forming feature maps capable of retaining 

the representation of the image dimensionality (Rawat & Wang, 2017). 

3.3.1. Artificial Neural Networks 

In DL, neurons, or perceptrons – the first artificial version of a biological neuron –, are processing nodes 

with connections between each other. These neurons are organized into sequential interconnected lay-

ers, as described in section 3.3.1.2 “Layers”. Single neurons send and receive signals from the previous 

and next layers. This is done by processing some input data, along with some weights and biases, and 

outputting its result value to another node (Han et al., 2018). Each neuron calculates the weighted sum 

of the input values and connections weights as described in section 3.3.1.2.3 “Hidden Layer”. The 

weighted sum suffers a transformation process through an Activation Function (AF) so that they become 

comparable and evaluated to either 0 or 1. 

Figure 2: Black and White hand-drawn image of a 
smile with 20x20 pixels. 

Figure 3: Colored hand-drawn image of a smile with 
20x20 pixels. 
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3.3.1.1. Activation Functions 

Activation functions, also called Transfer Functions (TF), are used for transforming output values into 0 

and 1, transforming values into numbers between 0 and 1, or into values greater than 0. There are plenty 

of alternatives, depending on the function used. Among the several TF, the major references are the 

Sigmoid Function (SF) and the Rectified Linear Units (ReLU) (Konde & Thakur, 2021). 

The SF is a nonlinear function that turns any value into a value between 0 and 1, illustrated in Figure 4. 

The ReLU function (Figure 5) is used to transform negative values into zero, that is, select the maximum 

value between the node output and zero. In part, its popularity is due to its processing cost it is much less 

expensive (computationally) as the only calculation is to figure out if a value is negative or not. When the 

input is negative outputs zero otherwise outputs the input value. Also, apart from the computation cost, 

the underlying meaning of 0 (zero) as an activation function output that will be passed to the neurons on 

the next layer is the nullifying value of the corresponding parcel of the weighted sum equation (section 

3.3.1.2.3 “Hidden Layer”) meaning that it is the value of a deactivated neuron and so not contributing to 

the prediction result. 

The neuron output is a normalized value, and the application of the activation function is done inside the 

neuron (Konde & Thakur, 2021) as depicted in Figure 6. 

Figure 5: Sigmoid Function Figure 4: ReLU Function 

Figure 6::Application of the Activation Function inside the Neuron 
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3.3.1.2. Layers 

Artificial Neural Networks (ANN) is a way to represent groups of neurons. ANNs group neurons on three 

different types of interconnected layers (Figure 7) that have distinct roles. The input layer, the hidden 

layers, and the output layer. The input layer – this first layer on an ANN - is responsible for inputting the 

features into the network and is connected to the first hidden layer. The output layer – the last layer on an 

ANN - connected to the last hidden layer has as many nodes as classes and receives as input the output 

of the last hidden layer neurons. The hidden layer, connecting the input layer and the output layer, is the 

layer responsible for performing calculations and passing normalized values between nodes (neurons). 

3.3.1.2.1. Input Layer 

The input layer has as many neurons as input features. This is one of the disadvantages regarding image 

classification in V-ANN where each image pixel corresponds to a feature in a one-dimensional array. It 

Figure 7: Artificial Neural Network Architecture 
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loses the notion of the bi-dimensionality of images interpreting them as one-dimension objects, hence not 

only losing information but also decreasing performance. This characteristic of V-ANN is the brightest 

side of Convolutional Neural Networks. Another important step contributing to the feature enhancement, 

although independent from ANN themselves, is the pre-processing of images, which can cover a consid-

erable type of transformations, such as contrast enhancement, noise, and dimensionality reduction (Arya 

& Shankar Modani, 2019). 

3.3.1.2.2. Output Layer and Backpropagation 

ANNs can also be pictured as an acyclic-directed graph of artificial neurons (Aloysius & Geetha, 2018). 

The previous statement is half true as the connections can work in both directions, one at a time. If the 

connections were to work in both directions arbitrarily the graph would then be cyclic which in turn would 

negatively influence the pipeline and perhaps trapped on an endless loop. So, information travels from 

input nodes to output nodes. And afterward from output nodes to input nodes in a process also known as 

backpropagation which aims to adjust the connection weights.  

The output has as many nodes as there are classes in the problem domain to be approached. Finding 

the error (or loss) between the predicted class and the actual class (Han et al., 2018) is crucial and a 

precursor of the learning process, and allows to the network building its hypothesis, which is not possible 

in traditional machine learning classifiers (Dong et al., 2021). This is possible by updating the neural net-

work connection weights. It’s an iterative process that aims to minimize the loss and, ideally, reach its end 

when the loss is minimal. This is achievable by propagating the calculated loss backward and adjusting 

the connection weights and biases during the training phase.  

The perceptrons read input and output values using the back propagated loss value to alter the weights, 

aiming to decrease the variation between the predicted and actual class (Isaac Abiodun et al., 2018). The 

loss calculation and correction value weights regulation are not static procedures, distinct methods may 

well be used. One of the most used combinations is to use the logarithmic loss (or cross-entropy) (Xie et 

al., 2021) for error calculation and the gradient descent method to find out the weights and biases regu-

lation values. 

3.3.1.2.3. Hidden Layer 

Hidden layers are responsible for the core calculations of neural networks. An ANN can have one or more 

hidden layers. The input layer outputs into the first hidden layer nodes (neurons). The output layer inputs 

the last hidden layer nodes’ output values. When an ANN has more than one hidden layer the same logic 

applies, i.e., a layer L is fed by its previous L-1 layer nodes and feeds the L+1 layer nodes. Each hidden 

layer node outputs the normalized weighted sum of its input nodes. Each node on the network has a value 

and its connection a weight associated.  

The weighted sum of the input nodes is the sum of each input node multiplied by its connection weight 

plus a bias value. Its result value is in turn normalized using the activation function mentioned in the 

Activation Functions section. After transformation by the activation function, the value is passed to the 

next layer nodes next to node N (Figure 7). 
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Large output values strengthen the emitting node signal as low values diminish the signals. As for the AF 

effect, if its output ranges from 0 to 1, a 0 valued weight has the nullifying effect of the corresponding input 

node (Han et al., 2018), in such case, the nodes with zero value weight connection are a deactivated 

node. Further on, the node N output of Layer L is in turn the input of the nodes in layers L+1 (Equation 1) 

depending on the ANN architecture. A connection is a relation between an input and an output. 

3.3.1.2.4. Gradient Descent 

The gradient descent (GD) is a first-order iterative optimization algorithm for finding a local minimum of a 

differentiable function. The idea is to take repeated steps in the opposite direction of the gradient (or 

approximate gradient) of the function at the current point because this is the direction of steepest descent. 

GD method is an optimization algorithm to guide the learning process (Yamashita et al., 2018) reducing 

the value of the loss function which is calculated at the end of each epoch (one epoch is running all 

training set samples one time). Computing GD is a crucial step to subtract or add (feeding a negative v) 

(Equation 1) some value to each weight and bias when backpropagating the error. 

This method determines the step size (v) for the weights and biases adjustments. The value v is influ-

enced by the Learning Rate (LR). LR is a hyper-parameter that controls the weights of ANNs defining 

Figure 8: Weighted sum illustration. Input from the previous layer and output 
to the next layer. 

Equation 1: Weight and biases update functions 

𝑤⬚ : each weight 

𝑏⬚ : each bias 

𝑣 : value to be subtracted or added 

L : Loss function 

W : weights vector 

LR: Learning Rate 

v = calcV(L, W, LR) = LR *  

adjustWeigths(w, v) = 𝑤⬚ − 𝑣 

adjustBiases(b, v) = 𝑏⬚ − 𝑣 



 

31 

 

how quickly an ANN updates the concepts it has learned. LR values ranges between 0 and 1, generally 

close to use to limit the step size so that it does not become too abrupt. The v value is the quotient of the 

loss function differential and the weight vector differential inhibited by the LR.  

LR will also influence the overall training process as a greater LR will produce a greater v value which will 

result in reaching the minimal loss more swiftly. Once reached the minimal loss value, the learning pro-

cess will end. 

On the other hand, a smaller LR will result in reaching the minimal loss more gently, dragging the learning 

process throughout more time but resulting in a less optimal result as the stop nearest to the lowest loss 

may have a wider difference resulting in a less suitable process (Cui, 2018) as represented in Figure 9. 

3.3.2. Convolutional Neural Networks 

Figure 10 represents the global architecture of CNN with one convolutional layer, one ReLU layer, one 

pooling layer, and one fully connected layer (FCL). 

Figure 9: Gradient decent. Illustration for different learning rates (Cui, 2018) 

Figure 10: CNN Layers 
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3.3.2.1. Convolutions Layer 

Convolutions have given the name to this architecture, as it is the core operation of a convolutional neural 

network (CNN). Its purpose is to perform feature extraction. It is executed by applying the same sets of 

values – kernel or filter - smaller than the input across all possible fitting positions on the input. This is 

done by calculating the product of each relative position on both the input and the filter (or kernel) (Yam-

ashita et al., 2018). Taking the image in Figure 11 as input of 7 pixels by 7 pixels and calculating the 

convolutional result for a filter, the result will be a new 2D array with x columns and y rows. 

The convolution resulting array size can be determined by applying Equation 2 and Equation 3. It has 5 

columns and 5 rows. 

In a convolution, the filter slides horizontally and vertically over the input vector on every combination 

possible. This sliding operation is given the designation of Convolution (Indolia et al., 2018). The convo-

lution result for the yellow filter is shown in Figure 12:E where it is depicted the higher values forming a 

diagonal from the convolution result map position 1,1 to position 5,5. The position 1,1 of the convolution 

result map has the value 1.0 denoting the perfect match of the filter on that set of pixels. The center 

(position 3,3 of the convolution result map) has the lowest value of the diagonal as the cross of the other 

diagonal is not represented on the yellow filter and so inhibiting that filter value for that position. The set 

of feature maps resulting from each application of the filter to the input is called the convolution layer. 

Figure 11: On the left: Representation of an imperfect X on a 7x7 pixels image. On the 
right: Three filters are identifiable by their background color. The yellow filter represents a 
diagonal line also referenced as the angles 120 and 315 measured from the center box. 
The green filter represents a diagonal line and is also referenced with the angles 45 and 

225 measured from the center box. The red filter is the representation of a perfect X. 

Equation 3: Number of columns of the convolution result. 

𝐼𝑐 : Input number of columns 

𝐹𝑐: Filter number of columns 

 𝑥 = 1 + 𝐼𝑐 − 𝐹𝑐 

Equation 2: Number of rows of the convolution result. 

𝐼𝑅 : Input number of rows 

𝐹𝑅: Filter number of rows 

 𝑦 = 1 + 𝐼𝑅 − 𝐹𝑅 
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As for a mathematical approach, the convolution can also be calculated by applying Equation 4 on the 

input array for each filter generating new feature maps. 

 

3.3.2.1.1. ReLU  

As mentioned in section 3.3.1.1, “Rectified Linear Unit” is an activation function to normalize the network 

values. This is also useful to apply on convolution layers. By setting the minimum value to 0 it can have 

an inhibitory (deactivating) effect on features improving the network performance. 

The application of ReLU on the filtered feature maps has the effect shown in Figure 13 with all negative 

values being turned to zero. In the same figure, the ReLU result in yellow, denotes a clear diagonal with 

the same slope as the yellow filter. It is also shown by the green feature map a curvy pattern formed by 

the highest values (0.56); this green curvy pattern still resembles the shape of the diagonal of the green 

filter; the arch-shaped arms of the imperfect X reveal the exciting influence of this filter on the feature map. 

As for the convolutions with the red filter, the image center (with 1.00 value) reveals the core of the cross 

– the arms intersection. 

Figure 12: Demonstration of the application of the convolution operation with the yellow filter and the convolution 
result for the application of the yellow filter on the input image. The filter slides over each 3x3 (filter size) combi-
nation of features multiplying its values with the filter values at the same position. The multiplication results in a 
feature map. The result of the convolution is the resulting averages of each feature map. 
A: Filter. 
B: Input image with highlighted feature combinations. 
C: Resulting feature maps. 
D: Averages of feature maps results. 
E: Convolution result. 

 

 
Equation 4: Formula to calculate each convolution array position result 

𝐹𝑅: Filter number of rows 

𝐹𝑐: Filter number of columns 

𝑥: Column Index of the first row and column of the overlayed filter on the input array 

𝑦: Row Index of the first row and column of the overlayed filter on the input array 
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3.3.2.1.2. Pattern Learning Process 

The CNN kernels (filters) are patterns composed of values. The filters mentioned before (Figure 11) are 

not pretrained or previously conceived. The learning of these filters results from back-propagation just like 

in the ANN. From the fully connected layer output nodes’ loss is backpropagated to the convolution layers 

(Indolia et al., 2018). These filters shaped as diagonals and crosses are convenient for explaining the 

process and were completely made up by me just to illustrate the process, a human-friendly tool.  The 

actual patterns may be irrelevant for a human to understand. CNNs also learn the patterns based on 

weights and the ANN learning process which has been previously described in Section 3.3.1.2. 

3.3.2.2. Pooling Layer 

The role of the pooling layers is to pick a representative sampling of the feature map to reduce the number 

of features and so cut the number of parameters fed to the FCL, improving the performance. 

Max pooling is one of the most used algorithms used in the pooling layer. It consists of dividing the feature 

map into non-overlapping patches of the same size and shape, for instance, 2x2 pixels, and selecting the 

max value of each patch (Ting et al., 2019) which will help to excite the sharpest elements in an image 

and inhibit the less sharp objects. As shown in Figure 14:C the much smaller max pooled feature map 

still clearly denotes a diagonal shape.  

The amount of information retained is indirectly proportional to the size, i.e.., as the size increases the 

relevance decreases. In edge situations, if we use only one patch with the same size as the whole map, 

all features are lost and replaced by only one feature with one value. On the opposite side, if the size and 

shape are 1x1 pixels, no information is lost. But, of course, there is no dimensional reduction which is the 

purpose of the pooling operation.  

The resulting feature maps for all the max pooling operations applied to the convolutions resulting maps 

for each filter are shown in Figure 15 where is noticeable the similarities with the original image. 

Figure 13: ReLU application on features map for each of the filters, yellow, green, and red. 
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3.3.2.3. Feature Extraction Discussion 

As is, for this specific case, filter size and pooling strategy, after applying one convolution layer and one 

pooling layer, across all resulting feature maps from the application of all three filters there is a total of 3 

* 3 * 3 features which is 55% of the original features.  

More convolutional or pooling layers can be stacked after the pooling to decrease even more the number 

of features, or other order could have taken place. There could have been applied two convolutional layers 

and the pooling after, or a convolutional layer then pooling then another convolutional layer, or even a 

convolution layer followed by two pooling layers. The point is, there is no static solution to all problems. 

Figure 15: Max pooling resulting feature maps for each of the filters. 

Figure 14: Max pooling result for the feature max resulting from the yellow filter convolution operation. 
A: Input feature map. 
B: Pool of each combination. 
C: Resulting map of max pooling. 
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Each problem can have 1its stacking configuration so besides the FCL both convolutional and pooling 

layers can be reordered and stacked. 

3.3.2.4. Fully Connected Layer 

The fully connected layer (FCL) is an ANN and the last layer of CNN. After features are extracted in the 

convolution layers the feature maps are flattened into a 1-dimension arrays and supplied to the FCL (Yu 

et al., 2021). It is an Artificial Neural Network to which the flattened features array is fed as the ANN input 

and in turn, its output layer nodes will vote the class that most likely is represented by the input features. 

3.3.3. Summary 

One of the greatest advantages of convolutional neural networks compared to other standard ANN is the 

fact that the feature extractions is carried out by the convolutional layers and pooling layers. Where the 

V-ANN for image processing would use as input features all pixels flattened out as a 1-dimension array, 

CNNs have the capability and preserve the 2-dimensional attributes. This allows to preserve significant 

image features, such as shape and contrasts, and simultaneously significantly reduces the size of the 

feature maps. As demonstrated on a small image of 7x7 pixels (Figure 11), one single convolutional layer 

and one pooling layer managed to reduce the number of features by 55%. 

3.4. Popular Metrics for Object Detection Networks 

As depicted in Table 2, the most popular object detection models use Average Precision (AP), mean 

Average Precision (mAP), and Intersection over Union (IoU) metrics (Padilla et al., 2021). 

 

AP is calculated for each object class. The mAP is calculated for the entire model, over all classes, and 

is an extension of AP. Finally, IoU is a metric to evaluate the similarity of areas, in object detection on, 

bounding boxes. Intersection over Union is calculated to distinct areas (Equation 5). 

Equation 5: Intersection over Union 
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Table 2: Popular object detection methods along with the datasets (common objects dataset, not medi-
cal) and metrics used to report their results. This information is retrieved from the actual models’ publi-
cations (Padilla et al., 2021). 
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4. MATERIAL AND METHODS 

4.1. Dataset 

As mentioned in the introduction section, the objective of this thesis is to explore and validate algorithms 

and methods to support the detection of BC pathological lesions in MRI. Therefore, after reviewing/visiting 

several datasets released for the public domain, it was decided to use the Duke Breast-Cancer-MRI da-

taset (a compilation of dynamic contrast-enhanced magnetic resonance images of breast cancer patients 

with tumor locations), available at “The Cancer Imaging Archive” (TCIA) (Clark et al., 2013; Saha et al., 

2018) . This dataset comprises a collection of 922 positively diagnosed BC patients’ (biopsy proven) cases 

fully annotated and anonymized developed by the Duke Hospital, Durham, North Carolina, USA. The 

patient’s age range is 21 to 89 years old, and the average age is 52 years old. Annotations were performed 

by 8 radiologists to whom the cases were randomly assigned. The pathological lesions (tumors) annota-

tions are identified using 3D bounding boxes delimited by 2D coordinates, plus a set of slices where the 

tumors were found, as depicted in Figure 16. For each patient are available 5 or 6 image sequences 

(series). A sequence is a series of radiofrequency pulses, each one with its specific settings, resulting in 

Figure 16: Illustration of the annotation schema for the bounding boxes delimiting the tumor. The first and 
last few slices may have loose bounding boxes. Effect of lesions edges on the 3D boxes. 
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a set of images (slices). This dataset includes five to six sequences of pre-operative dynamic contrast 

enhanced MRI. A non-fat saturated T1-weighted sequence, a fat-saturated gradient echo T1-weighted 

pre-contrast sequence, and mostly three to four post-contrast sequences. The non-fat saturated MRI se-

quences are not to be used (Saha et al., 2021) as they do not match the annotation. 

The MRI scans were performed using equipment from 2 manufacturers, GE Medical Systems and Sie-

mens, 8 distinct models were used, as illustrated in Table 3. 

Overall, the dataset is composed of a total of 772439 images (slices) distributed by 922 patients, an 

average of 838 images per patient. The complete dataset occupies a disk storage space of approximately 

342 Gigabytes, each DICOM image has an average of 443KB. All images are square in shape and the 

size varies between 320x320 pixels (33 cases), 448x448 pixels (261 cases), and 512x512 pixels (628 

cases). However, the size of the images remains the same in all images from the same patient (patient 

case). 

It can be observed that tumor features, shape, and size, differ highly depending on the type and subtype. 

The minimum number of slices where a tumor is identified/detected in a patient case is 2 slices and the 

maximum number of slices is 131. A negative feature of this dataset is that each patient only had one 

tumor annotated. The radiologists only annotated the largest biopsied tumor of each patient. Meaning that 

in cases where patients have more than one tumor, the smaller tumors (even if confirmed by biopsy) were 

not annotated at all (Saha et al., 2021).  

Therefore, this can cause undesired False Positives (FP) occurrences (Type I Error) as result. It’s ex-

pected to have mismatched detections. Without ground truth annotations it's impossible to validate these 

FPs. There is no means to assess whether false positives are real or just a result of the lack of annotation. 

This inability to evaluate FP and False Negatives (FN) tumor-wise detections leads to the incapacity to 

calculate precision and recall tumor-wise. As the dataset doesn’t include patients’ cases without BC 

pathological lesions, it is only possible to measure True Positives (TP) and FN patient-wise, in which we 

can compute patient-wise metrics. 

Table 3: Case count by MRI equipment model and manufacturer. 
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4.2. Proposed Method 

The proposed method aims to train CNN models for learning breast cancer pathological lesions (tumor 

patterns) using (golden standard) annotated image sets. The main goal is to improve the detection of 

pathological lesions in MRI, i.e., new (unannotated) images. The method includes three main steps (Fig-

ure 17): preprocessing, training, and evaluation (metrics assessment). All three steps can be configured 

according to several settings by editing specific configuration files described throughout this section. The 

prototypes for these configurations can be observed in section 8 “Appendix”. The main contributions are 

in the preprocessing step, but also the setting up of an optimal evaluation metrics approach. 

The focal point of this project is not to evaluate the network performance - which is already thoroughly 

tested for common objects datasets and very well documented and rated (Faster R-CNN Inception Res-

Net V2 (Huang et al., 2017; Lin et al., 2017; Szegedy et al., 2016)) - but rather help physicians detect BC. 

Specifically, point out where - which sequence and slice - the tumor is most noticeable and its classifica-

tion score. The most negative weakness – or damaging aspect - of the medical assisting AI model are 

the false negatives (Type II errors) which can produce misleading evaluations, i.e., not identifying a tumor 

when it exists. The regions detected by the model - possible breast cancer lesions - should be pointed 

out to radiologists, with indication of the specific sequences and slices, so that further analysis can be 

performed. 

Figure 17: High-level workflow of the proposed method. 
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4.2.1. Pre-processing 

Pre-processing implementation options are further described in section 4.3.2. 

This step aims to prepare the dataset before starting the training process. It includes loading, selecting, 

extracting, and preprocessing the necessary information from the DICOM files’ digital content (MRI im-

ages) and associated image metadata. This step, divided into several stages (Figure 18), aims to prepare 

the dataset before for training process. It includes loading and interpretation of DICOM files and their 

image-associated metadata. This step is crucial (phase) as DICOM image metadata includes specific 

features about the scanning options used.  

The images are all resized to 448x448 pixels, nevertheless, the original size is not discarded given that it 

is necessary to calculate the coordinates of the bounding boxes for the new image size. With all the 

data/information needed, well-identified and organized, we build an annotation XML file that is generated 

for each image indicating the bounding box coordinate 

To increase image diversification, several operations of data augmentation are performed. This process 

typically covers transformations on images by inverting and rotating images and adjusting brightness and 

contrast. This process is further described in the next section as it will be processed in the ANN model. 

Figure 18: Pre-processing workflow 
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To be ready for the training process, patients’ cases are separated into training and test sets. This process 

must be done patient-wise, rather than image-wise, to ensure that there are no images of the same pa-

tients in both training and test sets. Image selection is also part of pre-processing. The purpose of choos-

ing only a few images from each patient is to exclude images that have too little information and too much 

noise. This process is only performed after the dataset is split into training and test subsets (patient-wise). 

This is an important aspect to highlight, the fact that we only want to filter out the slices with a tumor to 

include into the training set, to avoid bounding box looseness issues. The proposed slice selection method 

is not applied to the test subset because it should take all slices where a tumor is identified into consider-

ation, i.e., the inference process doesn't take into account the bounding box annotations so there is no 

looseness, the model should be able to detect all tumors. Again, the loose bounding box is only a problem 

for the training process since it is desirable not to introduce noise into the model. 

4.2.2. Training: Faster R-CNN Approach 

Deep Neural Networks (DNN) have proven their efficiency in object detection; therefore, it was a decision 

to approach the problem by making use of already existing networks. In specific, it is used the Faster R-

CNN model implementation, composed by two modules; the first module implies a CNN for region pro-

posal and the second module for object detection on the proposed region (Ren et al., 2015). Its architec-

ture is illustrated in Figure 19. 

The chosen model is the Faster R-CNN Inception ResNet V2 which combines Residual Network (ResNet) 

architecture, which addresses the exploding/vanishing gradient problems by introducing normalization 

layers (Residual Blocks) allowing to build of deeper neural networks (He et al., 2015) and, on the other 

side, this model also uses Inception V3 modules. Inception networks stack multiple inception modules 

that have in their architecture extra convolution layers of 1x1 filters (Szegedy et al., 2015) allowing 

Figure 19: Faster R-CNN high-level architecture (Ren et al., 2015). 
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dimensionality reduction and in turn saving heavily on computational power, hence, allowing to build of 

deeper and more efficient neural networks. 

As the goal is tumor detection, there is only one object (binary class, i.e., pathological, or non-pathological 

lesions). The model produces a binary classification. For each region submitted to the classifier, either 

there is or there isn't a tumor. The classifier produces a SoftMax probability score. In this work, only scores 

equal to or greater than 0.5 are considered detections. 

4.2.2.1. Data Augmentation 

As stated in the previous sub-section (4.2.1 Pre-processing), the data augmentation is performed by the 

pre-implemented network. So, it is crucial to configure the network to run extra epochs to process suffi-

cient times each image as well as each image’s tweaked versions. The data augmentation procedures 

used on this project are horizontal flip, vertical flip, 90º rotation, brightness adjustment, and contrast ad-

justment. Inversion and rotation contribute greatly to the diversification of the data and to covering a larger 

number of possible scenarios. Also, MRI images are produced with different orientations and even with 

the patients in different positions, as in Figure 20 slices A and B. In some cases, patients are scanned 

starting from the feet to the head and in other cases from the head to the feet. Another particularity, 

regarding the annotations, is that some bounding boxes include the boundary between the breast mass 

and the air, i.e., part of the bounding box is beyond the breast mass, as depicted in Figure 20 slice C. 

This will cause some filters in the convolutional layers to learn these patterns. Overall, by rotating and 

inverting the images we can generalize these cases to patients being examined in different positions.  

4.2.3. Evaluation 

Traditionally, in CNNs, and Machine Learning systems in general, performance is measured by evaluating 

the scores of the trained models with some pre-established metrics. This evaluation is done by assessing 

the model on the elements of a previously set aside subset of the data used in the process, commonly 

referred to as the test dataset.  

For our problem of detecting breast pathological lesions (tumors) in patients, the element is not each 

object of any image (concerning the object – object-wise - or, in this case, concerning the tumor – tumor-

Figure 20: Three MRI slices with tumors from different patients. Slice C is marked without a bounding box sur-
rounding the tumor. The top left vertex of the bounding box in slice C is clearly beyond the breast mass. 
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wise). In this problem, a specific set of images is targeted, i.e., a set of images of each patient (concerning 

the patient – patient-wise). Assuming this position, there is no interest in achieving optimal scores on 

every image of every patient. In this work, our goal is to find the best score among all the images (slices) 

on each patient’s case to reduce the false negatives (Type II errors) to a minimum. 

Concerning object detection networks, the most popular metrics to evaluate the produced models are AP, 

mAP, and IoU, having each object as a base unit (object-wise). As explained in section 4.1 “Dataset”, we 

have used a fully annotated and anonymized dataset comprising a total of 922 patient cases, in which 

radiologists have only identified (annotated) one pathological lesion (tumor) per patient case, even in 

those cases where a patient has more than one biopsied tumor. With this, in this work, we decide to 

perform an evaluation patient-wise with adjusted metrics to the information available on the dataset. In 

this sense, we have used a patient-wise metrics approach that includes accuracy, recall, and IoU.  

Regarding the IoU metric, it is expected to have poor IoU results due to the ground truth bounding box 

looseness issue observed in the 3D representation of the tumor annotations (Figure 16). It is also notice-

able in Figure 21:B where can be seen the oversized ground truth bounding box clearly larger than the 

actual tumor.  

The opposite effect may also occur. In many cases the trained samples include noisy areas (background) 

surrounding the actual lesion, as depicted in Figure 21:B. This effect is due to the existence of several 

slices with loose bounding boxes being fed to the model. Similarly, training will be performed using the 

10-fold cross-validation method which is explained in more detail in the section 5.4 “Cross-Validation”.  

The metrics will be evaluated for all cross-validation folds. Standard deviation will also be calculated to 

estimate more clearly how can the model be expected to perform in production settings (i.e., clinical work-

flows). 

Figure 21: Blue box: ground truth; green box: detection; red box: true positive. A: Slice from a patient with code 45 
denoting a tight fit to the tumor. B: Slice 65 from patient 640 denoting a loose fit to the tumor. 
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4.3. Implementation 

4.3.1. Environment Setup 

Computing is performed by 2 clusters of systems, cluster A and cluster B. Cluster A consists of a single-

node workstation with 1 GPU and cluster B is a supercomputer with 2 nodes of 8 GPUs each, as described 

in Table 4. While cluster A was entirely allocated to this project, cluster B is a shared resource and for 

that reason, it would not be possible to guarantee consistent use of all the capacity of an entire node 

throughout all the experiments. Therefore, only 50% of the capacity of one of the two nodes (4 GPUs) 

was used to ensure consistent usage throughout the project. 

Cluster A was used for all software programming, data preprocessing, parameter tuning, model inference 

on new data, and metric calculations. Cluster B was used exclusively for model training with all artifacts 

pre-generated. Although cluster A also has a configuration suitable for training deep learning models, it 

is, in comparison, considerably slower than cluster B. Using cluster A for this task would result in a signif-

icant delay concerning project planning. Therefore, the most intensive GPU work was performed on clus-

ter B. 

A benchmark was executed to find the performance of the cluster using the same dataset. As the goal of 

the benchmark is to find each cluster’s performance for the available resources, this test was carried out 

using all GPU computational power of cluster A. As for cluster b, for the reasons described, we only use 

4 of the total GPUs. Both configuration and results for the benchmark can be found in Table 5. 

In all phases, the scripts developed were programmed using Python 3. Python is one of the best-known 

programming languages for data science projects. It is a high-level language suitable for various types of 

goals. Its multi-paradigm characteristics allow different approaches to be used for different challenges, 

which is ideal for this project. It also counts for a considerable community, which means that it can be 

easy to find help in any difficulties that may arise. The Python environment and packages were managed 

using miniconda version 4.12.0. 

Table 4: System specifications with CPUs, GPUs, and memory details. Cluster B belongs to the VISTA Lab 
Research Center of the University of Evora, Portugal. 
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For training the models, the TensorFlow 2 Object Detection API is used. It is an easy-to-use framework 

built on top of TensorFlow and provides a comprehensive set of tools to perform any of the tasks related 

to training and implementing detection models. Also, it counts on a collection of pre-trained models which 

facilitates the network implementation. 

For pre-processing stage, several python libraries were used to help achieve the desired operations. 

Namely, pillow, pydicom, dict2xml, xmltodict, NumPy, pandas, scikit-image, and OpenCV. 

4.3.2. Pre-Processing Implementation 

One major challenge is the selection of the set of images (per patient) that improves breast tumor detec-

tion. This process is performed by a collection of scripts that generate the training artifacts fed to the 

TensorFlow Object Detection API. On one hand, the dataset has complex pre-processing requirements, 

due to its specifications described in section 4.1 “Dataset”, on the other hand, the dataset is great in size, 

over 340GB, which takes a lot of time to process and can result in memory shortage if handled incorrectly.  

Most of the patients in this dataset have slices with tumors not tightly fit into the bounding box as depicted 

in Figure 21 and illustrated as well in Figure 16. In Figure 16 the initial and last slices show significantly 

loose tumors within the bounding boxes. This can lead to the decline of the model performance as it 

introduces noise that will be backpropagated to the network (model) weights (Famouri et al., 2016). 

Preliminary tests, both with all slices and with too few slices, revealed difficulty for the model in learning 

the patterns. Removing slices is removing information, not only do we not want to remove too many slices, 

but we also don't want to remove too few slices which would result in the inclusion of excessive noise due 

to loosen boxes. To mitigate this problem, the need arose to develop a generic function capable of calcu-

lating the number of slices to remove.  

By observation of the dataset, in most cases, it would be appropriate to remove half of the slices. However, 

since there are many smaller tumors with total slices between 2 and 10, it would not be a good approach 

to remove half of these images. In this sense, a logarithmic funneling function (see Equation 6) was de-

veloped for helping to dynamically select what are the slices to keep and what are the slices to remove. 

Of course, configured so as not to remove too many slices in the smaller tumors. In Equation 6 a and b 

are constant values to control the funneling effect. These a and b values were heuristically obtained by 

Equation 6: Logarithmic funneling function. 

𝑓(𝑥) = 𝑡𝑜𝑡𝑎𝑙_𝑛𝑢𝑚𝑏𝑒𝑟_𝑜𝑓_𝑠𝑙𝑖𝑐𝑒𝑠_𝑤𝑖𝑡ℎ_𝑡𝑢𝑚𝑜𝑟 ∗ 𝑎 ∗ 𝑙𝑛(𝑏) 

Table 5: Clusters benchmark for GPUs settings using the same dataset and network configurations. 
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trials starting with a valuing 1 and b valuing 2. In the end is used a = 0.75, b = 1.9625. The resulting value 

of that equation is then rounded up. That will be the total amount of slices to maintain for a given patient.  

To calculate the total number of slices to be removed, the value resulting from Equation 6 is subtracted 

from the total number of tumor-containing slices for that patient. The value resulting from the subtraction 

is then divided by two to get the number of slices to be removed from each side (left and right). If the 

result is not an integer value, the value is rounded down for the initial slices to be removed and rounded 

up for the final slices to be removed. 

With these settings, for example, a patient with 108 slices with a tumor, would keep only 55 central slices 

after applying this equation. A total of 53 slices would be removed, 26 slices from the beginning of the 

tumor and 27 slices from the end of the tumor.  For a patient with a total of 10 slices with a tumor, we 

would get to keep only 6 slices and would remove 2 from each side. As illustrated in Code 1 and Code 2. 

FUNCTION: CalcNumOfSlicesToRemove 
Input:  
  Integer: total_number_of_slices_with_tumor 
  Integer: total_number_of_slices 
Output: 
  Integer 
 
 
BEGIN 
  Real funnel_result := funneling_function(total_number_of_slices_with_tumor) 
 
  RETURN total_number_of_slices - ceil(funnel_result) 
END 

Code 1: Pseudo-code: Application of the funneling function. As the result of the funneling function is a real num-
ber, the value must be converted to an integer. We do so by rounding the value up (ceiling). 

Code 2: Pseudo-code: Based on the total number of slices, this algorithm calculates the number of slices to 
remove from each end of the slices with tumor range. When the total number of slices to remove is an odd 
number, we round down (floor) the number of slices to remove from the beginning of the range and round up 
(ceil) the number of slices to remove from the end of the range. 

FUNCTION NumberOfSlicesToRemoveFromEachSide 
Input:  
  Integer: total_number_of_slices_with_tumor 
  Integer: total_number_of_slices 
Output: 
  Tuple(integer, integer) 
 
 
BEGIN 
  Integer number_of_slices_to_remove := CalcNumOfSlicesToRemove( 
      total_number_of_slices_with_tumor, total_number_of_slices 
    )  
  Real number_of_slices_to_remove_on_each_side := num_of_slices_to_remove / 2 
 
  RETURN  
    ( 

floor(number_of_slices_to_remove_on_each_side), 
ceil(number_of_slices_to_remove_on_each_side) 

    ) 
END 
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In terms of the methodology for excluding slices with loose bounding boxes, for example in the tumor 

represented in Figure 22, we would want to exclude slices CS-4, CS-3, CS+3, and CS+4. Slice CS-2 and 

CS+2 will already introduce much noise, but anyway, still have some beneficial info, and the bounding 

boxes are not as loose as the end slices. 

By applying this slice exclusion, patients end up removing 4 slices and keeping 5 slices, which is the result 

we would get from applying the set of calculations in Code 1 and Code 2 on this sample of 9 slices, as 

illustrated in Figure 23. As illustrated in Table 6, it is seen from the color gradients the effect of the fun-

neling function. In the descending gradient, in green, it can be observed that gradually the total number 

of slices is decreasing when compared to the original count. In the minimal case - patients with tumors 

with a maximum count of 2 - no slice will be removed by the algorithm. As the total number of slices 

increases, the number of slices to be removed also increases. This is also observable in the red ascending 

gradients, which represent the number of slices to remove at the beginning and end of the tumor. 

Given the complex requirements for pre-processing of the dataset and due to its size, the pre-processing 

stages are well delimited both in script files and in key phases on which data is saved to the filesystem. 

The stages workflow is illustrated in Figure 18. 

The slice selection described in the section is only applied to the train data set. As mentioned, the goal is 

to reduce the number of images where the tumor was not fit into the bounding box. For the test dataset, 

all slices are used as the model can detect scaled versions of the object for which it was trained. 

4.3.2.1. Pre-processing Input 

This module has as input a raw dataset itself and a configuration file. The configuration file must be divided 

into five main sections (image, patterns, paths, dataset split, and annotation template) as the described 

in following child section. These settings must be part of a configuration python file to be imported by the 

sub-modules structured as exemplified in Code 5. 

Figure 22: Illustration of bounding boxes looseness on a 9-slice tumor. Slice CS represents the central slice. CS-
4 represents the first slice and CS+4 represents the last slice. The central slice (CS) is well fit to the bounding box, 
from CS to each of the sides, the bounding boxes have increasing looseness (Centeno Raimundo et al., 2022). 

Figure 23: Illustration of the slices to be removed from a case with a tumor size distributed in 9 slices. 
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4.3.2.1.1. Image settings prototype 

This configuration section holds settings related to both input and output images. Its prototype is demon-

strated in Code 6 where can be specified the known image types to interpret, the image extraction exten-

sion, resize size to output, and the original mandatory configuration present in DICOM meta. As for this 

last setting, as referenced in section 4.1 “Dataset” the dataset only has an annotation for fat-suppressed 

MRI sequences, which are represented in DICOM metainformation with the initials FS or SFS. 

Table 6: Calculated values by applying the funneling function on Equation 6. Some 
rows are skipped to save vertical space. 
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4.3.2.1.2. Patterns settings prototype 

This configuration (Code 7) purpose is to declare the regular expression patterns for identifiers (patient 

codes, sequences codes, slice numbers) both raw and pre-processed sets. And, also, the patterns in-

tended to exclude (filter out) some sequences. 

4.3.2.1.3. Paths settings prototype 

This configuration (Code 8) purpose is to specify the dataset working directory, raw directory name, pre-

processed directory name, split sets directories, split patients’ declaration file when not in cross-validation 

mode and cross-validation patients split declarations files when in cross-validation mode. Also, this con-

figuration holds the path for the original annotations file which must include for each patient the bounding 

box coordinates and start and ending slices where the lesion can be found. 

4.3.2.1.4. Annotation template prototype 

This configuration is itself the prototype for the annotation files. One annotation file is created for each 

image. It is structured as a python dictionary object but before writing it to the filesystem it is converted to 

XML. It follows the Pascal VOC annotation format, and its python dictionary version is represented in 

Code 9.  

4.3.2.2. Pre-processing Output 

Depending on the stage, this module outputs a directory with all preprocessed images with corresponding 

XML annotation files, a set of declaration files describing which patients were included in which image set 

(training, validation, and testing), and directories with the actual preprocessed images split (patient-wise) 

alongside with their annotation XML files. 

4.3.3. Model parameterization 

Epoch configuration: One epoch is one network pass through the data. One step is one network passing 

through one batch of images, backpropagation included. Using TensorFlow Object Detection API, the 

model and network are configurable by editing a settings file called pipeline. config. It has settings for all 

stages of the Faster R-CNN workflow. The network has parameters to define the total number of. Batch 

size, which is a setting highly related to the GPU memory available, is shown in Table 5. The batch size 

must be divisible by the number of GPUs used. In this project, on cluster B, 4 GPUs were used and a 

batch size of 32, which means a batch of 8 for each GPU and, 5 GB of GPU memory allocated to each 

image. The number of epochs is a relation between batch size and the total number of steps, as demon-

strated in Equation 7.  

𝑛𝑢𝑚𝑏𝑒𝑟𝑂𝑓𝐸𝑝𝑜𝑐ℎ𝑠 =
𝑡𝑜𝑡𝑎𝑙𝑁𝑢𝑚𝑏𝑒𝑟𝑂𝑓𝑆𝑡𝑒𝑝𝑠 ∗ 𝑏𝑎𝑡𝑐ℎ𝑆𝑖𝑧𝑒

𝑡𝑟𝑎𝑖𝑛𝑆𝑒𝑡𝑆𝑖𝑧𝑒
 

Equation 7: Calculation of the number of epochs 
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Learning Rate: The learning rate is one of the most important parameters, it controls the magnitude of 

the values used in back-propagation to update the weight of each node. As referred to in section 3.3.1.2.4 

“Gradient Descent”, a learning rate that is too small will cause the model to take longer to train. On the 

other hand, a higher learning rate will train faster, but it may never reach the optimal value of the weights. 

This is because in this scenario the weights would be constantly updated with values higher than the 

difference between the current value and ideal value, and thus may never converge to an optimal value 

or at least to point near the optimal value. 

This project is used cosine learning rate decay. The goal is to initially use larger values to update the 

weights, but as the model trains, the value will gradually decrease. This leads to a higher probability of 

finding the optimal value and thus avoiding the described effect. The decay effect depicted in Figure 24 

is the visualization of the learning rate decay in a 200-thousand-step trained model. 

Data augmentation: As mentioned in section 4.3.2 “Pre-Processing”, the model was configured to apply 

the following data augmentation procedures: horizontal flip, vertical flip, 90º rotation, brightness adjust-

ment, and contrast adjustment. This process, along with a high number of epochs, resulted in the data 

diversifying and expanding in number. 

Classification (scoring): The network will be configured to use the SoftMax score converter on the last 

layer to output probabilistic value because of the output nodes. 

4.3.4. Inference 

This module must mark each image with metrics and bounding boxes of detection finding and generates 

a patient summary to export. Figure 25 is the high-level representation of the inference module. The 

controller is responsible for interpreting the configuration file, dealing with IO tasks, submitting images to 

the trained model, and calculating IoU for each image. The model classification score and detected boxes 

are returned by default from the detection function provided by the TensorFlow 2 Object Detection API. 

 

    

    

     

    

     

    

     

    

     

    

                                     

Figure 24: 0.05 learning rate cosine decay visualization on 200 000 steps trained model. 
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4.3.4.1. Inference Input 

These module input artifacts are the MRI resulting images. They should be uploaded to a previously 

declared path. In the python configuration file (Code 10, Code 11) must be declared the regular expres-

sion pattern for identifying the sequence code, patient code, and slice number, as usual in MRI outcome 

files. The MRI system output is already structured in this fashion as depicted in Figure 26. For a structure 

like the one illustrated in Figure 26 a DICOM file path would be for instance as exemplified in Code 3 and 

for this structure, being the case of our dataset, we use the following regular expressions in Code 4. 

 

 

Figure 25: Inference Module: High-Level Architecture.  

".\Breast_MRI_002\01-01-1990-NA-MRI BREAST BILATERAL W  WO-51972\601.000000-Ph1ax 
3d dyn-36797\1-005.dcm" 

Code 3: Example of DICOM image file relative path. 

Patient code: “(?<=\/)Breast_MRI_\d{2,}(?=\/)” 
Sequence code: “(?<=\/)[\w\d\.\-\s]+(?=\/[\w\d\.\-\s]+\.(dcm|jpg|png|tiff|bmp))” 
Slice number: “(?<=\-)\d+?(?=\.dcm)” 

Code 4: Regular expressions for identifying patient code, sequence code and slice number. 
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4.3.4.2. Inference Output 

For each input image, one output image is generated. Alongside this new image, a summary file is created 

with the same filename pattern. This file (with prototypes as described in Code 12 and Code 13), besides 

the identification of the patient as well as slice number and MRI sequence id, contains the score results, 

both the detection score and IoU score.  

 

Figure 26: MRI result structure. red: patient code; green: sequence code; blue: file-

names with slice number. 
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5. EXPERIMENTAL RESULTS 
AND ANALYSIS 

5.1. Data Augmentation Setup 

As for data augmentation, as previously mentioned in section 4.2.2.1 “Data Augmentation”, it was used 

the TensorFlow Object Detection API to perform transformations randomly. The transformations applied 

were horizontal flip, vertical flip, 90º rotation, brightness adjustment, and contrast adjustment. 

Horizontal flip: 50% chance to flip the image horizontally. 

Vertical flip: 50% chance to flip the image vertically. 

90ª rotation: 50% chance to rotate the image. 

Brightness: Changes the image brightness up to a maximum delta of 0.05. 

Contrast: Changes the image contrast by a value between 0.5 and 0.95. The value is to be multiplied by 

the image’s initial contrast. 

5.2. Network Weights Initialization 

The network weights were initialized with values from a uniform distribution within -limit and +limit. Being 

the limit calculated as demonstrated in Equation 8.  

 

 

𝑙𝑖𝑚𝑖𝑡 = ඨ
3

𝑛
 

Equation 8: Limit calculation for weight initialization. The n 
value is the average of the count of units from the input and 
output tensors. 
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5.3. Preliminary model Training 

5.3.1. Preliminary Models Setup 

The preliminary models (hereinafter referred to as model A and model B) were trained on cluster B (Table 

4) and were carried out using the dataset setups, as described in Table 7. In model A we used all slices 

available. In model B we used the proposed slice selection method described in 4.3.2 Pre-Processing. 

Both setups share the same patients’ cases for training (866) and test (56) datasets. The test dataset is 

the same for both models, as no slices are excluded for the test set and case selection is equal. Model A 

counts a total of 77963 images for the training set and Model B, which used the proposed slice selection 

method, has 53% of model A images count for training, i.e., 41317 images.  

The training process ran 160 epochs on batch sizes of 32 with a learning rate of 0.05 and cosine decay. 

5.3.2. Preliminary Results 

These results allow us to evaluate the effect of the slice selection algorithm as opposed to using all images 

and draw some conclusions. 

As summarized in Table 8, Model B achieved better results in all metrics. Not only Model B has fewer 

false negatives (patient-wise), a better SoftMax score, and better Intersection over Union, but also it has 

trained in fewer images (53% of total slices of Model A) and therefore, for the same number of epochs, 

the Model B is faster to train taking less 27.16 hours than Model B. 

Table 7: Dataset setups for preliminary models. The train set image count for model A is 144.5% of the size of 
the model B train set. The train set image count for model B is 69.2% the size of model A train set. 
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5.4. Cross-Validation 

5.4.1. Cross-Validation Setup 

The model is trained using cross-validation methods with 10 folds. Thus, 10 models were trained on dif-

ferent combinations of the training and test sets. To produce this partition the patients are shuffled and 

divided into 10 batches. The training set will always have 9 batches and the test set 1 batch. For each of 

the 10 training phases, a different batch (1/10 of the patients) is used as the test set.  

At the end of all 10 training phases, the predicted output scores and bounding boxes are used to calculate 

the evaluation metrics. Thus, in each training phase, the model is trained on 90% of the total patients and 

tested on 10% of the total patients. The 10-fold cross-validation scheme is depicted in Figure 27. A par-

ticular caveat regarding this method is that the dataset has 922 patients. As 10% of 922 is 92.2 and the 

rest of the patients are not divisible by 10, the 2 extra patients will be used in the training sets. 

The specific slices to be used in the training sets are selected according to the procedures described in 

section 4.2.1 “Pre-processing”. As mentioned in the same section, the slice selection algorithm is only 

applied to the training set as it is advantageous to test the model on all slices of each patient to properly 

evaluate the model. 

The experiment was conducted on the Dukes’ Hospital Breast Cancer MRI Dataset described in section 

4.1 “Dataset”. As referred, we split the dataset patient-wise, and only after patient splitting process the 

slice selection process starts. As forementioned, each tumor has its particular shape and size, and, of 

course, a different number of slices where the tumor is identified. This means that each of the cross-

Table 8: Summarization of the preliminary results. 
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validation folds has a different total image count, as depicted in Table 9. Nevertheless, the network pa-

rameterization was the same for all folds. The training process ran 162 epochs on 200000 steps, with a 

batch size of 32, a learning rate of 0.05, and cosine decay. 

Although it was used in cross-validation the same hyper parameters as the previous section model B, 

because in the training set for the cross-validation we are using less patients and less images and the 

same number of training steps, the number of epochs increases accordingly. 

 

5.4.2. Cross-Validation Results 

From the cross-validation exercise, two tables with the result were produced. One table containing the 

results uses as a base metric the average of each patient’s IoU and an average of each patient’s average 

SoftMax score (Table 13 in Appendix). The other table contains the results using as base metrics the 

maximums of each patient’s IoU and SoftMax scores (Table 12 in the Appendix).  

Both tables have the same structure. In each table, there are 20 columns, 2 for each cross-validation fold. 

In the header, there is information identifying the fold numbers, the count of false negatives (marked FN), 

and the accuracy of the fold.  

For each fold, there are two columns, the first relating to the IoU metrics and the second relating to the 

SoftMax score metrics. The first-row values right below the header are the average of all patients; below, 

the second-row values (marked with @IoU > 0) are the average of all patients where the tumor was 

successfully detected. In Table 12 the average represents the average of maximum values for each pa-

tient; in Table 13 the average represents the average of averages of each patient. 

Table 10 summarizes the contents of Table 12 and Table 13 and presents the standard deviation. Across 

all folds, the average accuracy in detecting the breast cancer tumor is 94.46% with a standard deviation 

Figure 27:10-Fold cross-validation scheme. 

Table 9: Cross-validation of patient and image count for each fold. 
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of 2.43%, which is a good result. The average IoU and the average score are important results to evaluate 

the models and their performance object-wise. But, as for the ability to assist radiologists in prescriptive 

analysis, they are of minimal value.  

The average IoU and scores are relatively low, reflecting the failure to detect several slices, generally 

corresponding to the edge slices. More important are the maximum metrics which generally score well, 

with 89.16% for the average maximum score and 69.08% for the average maximum IoU in cases where 

the tumor was detected. These two metrics effectively reveal the model's ability to detect and pinpoint the 

slices where a tumor is best identifiable, thus providing actionable insight and aiding physicians in pre-

scriptive analysis. 

The folds which performed better are the 3rd fold and the 1st fold. The 3rd fold is for best accuracy (97.83%) 

and Average Score @ Max IoU (91.56%); the 1st fold is for best Average Max IoU (71.34%). 

5.5. Preliminary Results on Portuguese Patients 

The Centro Hospitalar de Setúbal supplied us a total of 11 fully anonymized (biopsy proven) patients’ 

cases from the historical archive for training purposes which we also used for testing model B. While 11 

patients’ cases are a statistically irrelevant number, the assessment achieved a high accuracy, the model 

B was able to correctly detect pathological lesions in all 11 cases. As can be observed in the Figure 28 

and Figure 29 below, the bounding box markings created by the inference module reflect the comments 

in the clinical summary resulting from the MRI scans as depicted on the examples’ figures. The findings 

are classified in terms of the Breast Imaging Reporting and Data System (BI-RADS) as well which has 

each category described in Table 11 (American Cancer Society, 2022). 

Table 10: Standard deviation calculation for each fold. Heatmap summarizing Table 12 and Table 13. 
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Left breast: BI-RADS 6: Nodule and 
ductal enhancement extending to the 
areola-papillary complex. 
Intramammary ganglion on the left. 
 
Right breast: BI-RADS 1: No evidence 
of suspected contrast highlight. 

Figure 29: Patient 2 MRI detection results (findings) after applying the model B. 

Left breast: BI-RADS 6 
Extensive proliferative lesion, 
including the biopsied nod-
ule, in the mid transition of 
the upper quadrants/11 
hours, 6 cm from the nipple, 
extending to the region of up-
per and internal tumourec-
tomy, and aspect of focal in-
tra ductal segmental uptake 
with small suspicious peri 
ductal nodules to the nipple. 
 
 
Right breast: BI-RADS 4 
Small non-specific retroareo-
lar nodule at right, deserving 
a 2nd look ultrasound and ul-
trasound-guided microbi-
opsy. 

Figure 28: Patient 1 MRI Scan conclusion and image with model B detection depicting the findings. 
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5.6. Results Dissemination 

As mentioned in section 2.3 “Objective”, we aim to fully communicate/disseminate the results of our work 

in all possible formats/ways: (1) oral presentation at conferences, (2) proposals for scientific articles in 

journals, and (3) direct presentations to teams of radiologists/physicians in hospitals and health centers. 

However, at the time of writing, this objective has not yet been fully achieved. 

A scientific extended abstract paper entitled "Breast Cancer Detection in MRI using a Faster R-CNN 

model" (Centeno Raimundo et al., 2022) was accepted and presented at the 28th Edition of the Portu-

guese Conference on Pattern Recognition (RECPAD 2022), held in Leiria, 28th October. 

In addition, an abstract proposal entitled "Detection of breast cancer pathological lesions in MRI" has 

been submitted to the European Congress of Radiology (ECR) for oral presentation, however, we will 

only have confirmation whether it was accepted in December of 2022. Moreover, we have planned to 

develop and submit an article to a peer review journal (e.g., Computer Methods in Biology and Medicine, 

IEEE Journal of Biomedical and Health Informatics) to disseminate the main results of this thesis work.  

Table 11: BI-RADS categories (American Cancer Society, 2022). 
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6. CONCLUSION AND FUTURE WORK 

The main result of this thesis is the development of an innovative methodology for slice selection in mag-

netic resonance imaging, which allows reducing background noise and computational time, building 

benchmarking datasets and thus, improving the accuracy of machine (deep) learning detection models. 

As have been demonstrated here, the proposed framework has been successfully validated in Breast 

Cancer settings on a dataset of 922 patients' cases. 

Overall, the trained models using the 10-fold cross-validation technique achieved an average accuracy of 

94.46% with a standard deviation of 2.43% in a population of 92 subjects.  

The above presented results are based on heuristically computed arguments, which we consider has 

produced acceptable results. However, we do not assume this are the best results possible. Therefore, 

we recognize it is needed more experimentation. As the biggest constraint for this project being the time 

for trainings, finding the optimal arguments for the funneling function can take up several months. 

The S.M.A.R.T objectives defined in section 2.2 were achieved. The models were trained and tested 

achieving the desired minimum accuracy of 95% in breast cancer tumor detection within 8 months.  

A small set of MRI scans from 11 anonymized and biopsy proven patients’ cases from Centro Hospitalar 

de Setúbal historical archive with confirmed pathological lesions was presented to our trained models and 

the identified lesions by radiologists were successfully detected. 

Finally, with the purpose of having broad validation of the proposed method, preliminary results of this 

work were presented at the 28th RECPAD 2022 (Portuguese Conference on Pattern Recognition). It has 

also been submitted an abstract for ECR 2023 (European Congress of Radiology). In addition, it is being 

written a more complete article proposal to a peer review impact factor journal. 

6.1. Future Work 

Future work will aim to extent the dataset building a wide ranging anonymized and fully annotated Portu-

guese digital repository, MRI-based, of breast cancer patients' cases, and try to improve the precision of 

the developed detection models. With this, we expect that in a near future it will be possible to introduce 

the developed models in real clinical/radiological workflows. 
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8. APPENDIX 

 

 

 

 

 

 
 
  

image = <image_configs.proto> 
patterns = <pattern_configs.proto> 
paths = <path_configs.proto> 
dataset_split = <dataset_split.proto> 
template = <annotation_template.proto> 

Code 5: Prototype: configuration file prototype (pre_processing_config.py.proto) 

{ 
    "known_types": array<string>, 
    "extraction_extension": string, 
    "resize": { 
        "width": integer, 
        "height": integer 
    }, 
    "mandatory_scan_options": array<string>, 
} 

Code 6: Prototype: image configuration prototype (pre_processing_config_image.proto) 

{ 
    "raw": { 
        "patient_id_pattern": string, 
        "slice_number_pattern": string, 
        "series_id_pattern": string, 
    }, 
    "preprocessed": { 
        "patient_id_pattern": string, 
        "slice_number_pattern": string, 
        "series_id_pattern": string, 
    }, 
    "series_to_exclude": array <string> 
} 

Code 7: Prototype: patterns configuration prototype (pre_processing_config_patterns.proto) 
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{ 
    "dataset_base_working_directory": string, 
    "raw_dir": string, 
    "preprocessed_dir": string, 
    "set_dirs": { 
        "train": string, 
  "validation": string, 
  "test": string, 
    }, 
    "split_patients_ids_file": string, 
    "cross_validations_split_files": { 
        "subpath": string, 
        "base_name": string, 
        "extension": string, 
    }, 
    "annotations_file": string 
} 

Code 8: Prototype: paths configuration prototype (pre_processing_config_paths.proto) 

{ 
    "new_filename": string, 
    "annotations": { 
        "meta": { 
            "annotation": { 
                "folder": string, 
                "filename": string, 
                "path": string, 
                "size": { 
                    "width": integer, 
                    "height": integer 
                } 
            } 
        }, 
        "object": { 
            "name": string, 
            "bndbox": { 
                "xmin": integer, 
                "ymin": integer, 
                "xmax": integer, 
                "ymax": integer, 
            } 
        } 
    } 
} 

Code 9: Prototype: annotation configuration prototype (pre_processing_config_annotation.proto) 
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{ 
    "validation_set_path": string, 
    "result_path": string, 
    "model_path": string, 
    "labels_path": string 
} 

Code 10: Prototype: Inference set configuration (inference_config_set.proto) 

inference = { 
  "min_score_thresh": float, 
  "sets": array<inference_set_configuration.proto> 
} 
 
patterns = { 
  "patient_id_pattern": string, 
  "slice_number_pattern": string, 
  "series_id_pattern": string, 
} 

Code 11: Prototype: Inference configuration (inference_configuration.py.proto) 

{ 
    "patient_id": string, 
    "slice_number": integer, 
    "series_id": string, 
    "image_path": string, 
    "inference_path":string, 
    "metrics": array<metric.json.proto> 
} 
 

Code 12: Prototype: Image inference result (inference_result.json.proto) 

{ 
    "iou": float, 
    "box": { 
        "ymin": integer, 
        "xmin": integer, 
        "ymax": integer, 
        "xmax": integer 
    }, 
    "truth_box": { 
        "xmax": integer, 
        "xmin": integer, 
        "ymax": integer, 
        "ymin": integer 
    }, 
    "score": float 
} 

Code 13: Prototype: Inference metric (inference_result_metric.proto) 
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