
Computers & Operations Research 142 (2022) 105722

A
0

Contents lists available at ScienceDirect

Computers and Operations Research

journal homepage: www.elsevier.com/locate/cor

The Probabilistic Travelling Salesman Problem with Crowdsourcing
Alberto Santini a,b,c,∗, Ana Viana d,e, Xenia Klimentova d, João Pedro Pedroso d,f

a Universitat Pompeu Fabra, Spain
b ESSEC Business School, France
c Institute for Advanced Studies, CY Cergy Paris Université, France
d INESC TEC, Portugal
e Polytechnic of Porto, Portugal
f Universidade do Porto, Portugal

A R T I C L E I N F O

Keywords:
Last-mile delivery
Crowdsourcing
social engagement
Stochastic routing

A B S T R A C T

We study a variant of the Probabilistic Travelling Salesman Problem arising when retailers crowdsource
last-mile deliveries to their own customers, who can refuse or accept in exchange for a reward. A planner
must identify which deliveries to offer, knowing that all deliveries need fulfilment, either via crowdsourcing
or using the retailer’s own vehicle. We formalise the problem and position it in both the literature about
crowdsourcing and among routing problems in which not all customers need a visit. We show that to evaluate
the objective function of this stochastic problem for even one solution, one needs to solve an exponential
number of Travelling Salesman Problems. To address this complexity, we propose Machine Learning and Monte
Carlo simulation methods to approximate the objective function, and both a branch-and-bound algorithm and
heuristics to reduce the number of evaluations. We show that these approaches work well on small size
instances and derive managerial insights on the economic and environmental benefits of crowdsourcing to
customers.
1. Introduction

With the increasing growth of e-commerce worldwide, business
models for last-mile delivery (LMD) of parcels need to innovate and
consider fast, cheap and reliable transportation to end customers. One
possibility is to crowdsource some deliveries through digital platforms
to non-professional couriers who use their own transportation means.
While reducing costs and providing a source of income for people
who might otherwise be off the labour market (Castillo et al., 2018),
crowdsourcing also raises concerns about job quality, environmental
impact (Halldórsson et al., 2010) and trust (Devari et al., 2017).

The main motivation for this work is to investigate the practice of
crowdsourcing delivery to end customers as a system that takes advantage
of the benefits of crowdsourcing while mitigating the major associated
drawbacks (see, e.g., Rai et al., 2021). We address the case of retail
companies with physical shops that also sell online. The real-life case
prompting this work is, indeed, that of a supermarket chain that offers
home delivery of groceries. In traditional LMD, a professional fleet
either owned by the chain or outsourced, would deliver the groceries.
In current crowdsourced LMD models, the chain would have a platform
where potential couriers enrol, get offers for some deliveries, and
accept or refuse the offers (this is the model of, e.g., Amazon Flex).

∗ Corresponding author at: Universitat Pompeu Fabra, Spain.
E-mail address: alberto.santini@upf.edu (A. Santini).

Because there is no consolidation of parcels and couriers make journeys
that they otherwise would not, this system generates both extra traffic
and emissions.

In our case, instead, the chain has a loyalty programme in which the
enrolled clients provide their home address. This enables us to defend
a slightly different model where the crowd is composed of clients that
are already in the store and whose home address is close to one of
the delivery points. Because the clients are already heading home, we
reduce the number of cars associated with the ecosystem supermarket-
delivery and also the number of miles travelled. Under this model, the
planner offers participating clients to deliver someone else’s groceries
in exchange for a discount. Since clients can accept or refuse the offer,
at the end of the day a supermarket vehicle will serve all deliveries
which the planner did not crowdsource. (Note that, in grocery retail, it
is commonplace to schedule the supermarket vehicle tour at the end
of the day, because this time coincides with most customers returning
home after a workday Punakivi and Saranen, 2001; Pan et al., 2017.)

Therefore, in a typical implementation, the following would happen:
(i) in the early afternoon the supermarket fixes the list of grocery
deliveries to perform at the end of the day; (ii) then, the supermarket
selects which deliveries it will attempt to crowdsource; (iii) one to
vailable online 7 February 2022
305-0548/© 2022 The Author(s). Published by Elsevier Ltd. This is an open access a

https://doi.org/10.1016/j.cor.2022.105722
Received 26 March 2021; Received in revised form 24 November 2021; Accepted 1
rticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

4 January 2022

http://www.elsevier.com/locate/cor
http://www.elsevier.com/locate/cor
mailto:alberto.santini@upf.edu
https://doi.org/10.1016/j.cor.2022.105722
https://doi.org/10.1016/j.cor.2022.105722
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cor.2022.105722&domain=pdf
http://creativecommons.org/licenses/by/4.0/

Computers and Operations Research 142 (2022) 105722A. Santini et al.

2

w
p

p

i
a
𝑖
p
a
O
w
i
a
t
c
d
i
p
o
b
d

i
a
s

two hours before closing time, which corresponds to peak hour for
in-store visits, the supermarket attempts to crowdsource the set of
deliveries selected in step (ii); (iv) at closing time, the truck performs
all remaining deliveries: those not selected for crowdsourcing and those
selected but not successfully crowdsourced.

A similar scheme was first discussed in the work of Archetti et al.
(2016), in which the authors consider that either a professional fleet
or occasional drivers can carry out deliveries, but assume that the
occasional drivers will always accept offers. In this work we assume
that each crowdsourcing fee (i.e., the compensation or discount offered
to the customer) is fixed and that the probability that some customer
accepts a delivery during the day, provided the decision-maker offers
it, is also fixed and known. We refer the reader to, e.g., the recent
work of Yildiz and Savelsbergh (2019) discussing optimisation models
to set the fees and estimate the probabilities, and to Fadda et al. (2019,
2018, 2017) for the similar problem of optimising crowdsourcing fees
to maximise connectivity coverage for internet-of-things devices. We
also assume that the supermarket’s fleet comprises a single vehicle,
because in our motivating example each supermarket manages its own
home deliveries in a small geographical area. This assumption is, in any
case, easy to relax.

Under the assumptions above, our problem becomes a stochastic
generalisation of the Travelling Salesman Problem which we name the
Probabilistic Travelling Salesman Problem with Crowdsourcing
(PTSPC). Other generalisations of the TSP which do not require to visit
all customers have been studied extensively. In particular, as we discuss
in Section 2, the literature considers the extreme cases in which the
tour planer has either no power or total power in deciding which clients
should not be visited. Our problem sits in between these two extremes.

1.1. Contributions

The main contributions of this paper are the following:

• We introduce the PTSPC, a stochastic generalisation of the TSP.
Other well-known routing problems, such as the Probabilistic TSP
and the Profitable Tour Problem, are special cases of the PTSPC
(see Section 2.2).

• From the point of view of applications, our problem models the
case of a company that wants to crowdsource its deliveries to
its own customers, who can either accept or refuse the offer.
From a theoretical point of view, our problem occupies a novel
niche in the spectrum of TSP generalisations in which the planner
has intermediate power of deciding which customers to visit (see
Section 2).

• We formalise this problem and show that computing the objective
function of even one solution, requires solving an exponential
number of TSPs (each of which is -hard). Thus, we devise
efficient (exact and heuristic) ways to explore the solution space
and to approximate the objective value of the solutions (see
Section 4). In particular, in Section 4.3.2 we show how to use
Machine Learning techniques to accurately predict the value of
the objective function of the PTSPC.

• With an extensive computational analysis, in Section 5 we derive
insights on the benefits of crowdsourcing and prove that the
algorithms we propose are suitable for integration in a support
decision system because they can provide high quality solutions
in short times.

. Problem description

We begin by placing the PTSPC in a spectrum of TSP generalisations
hich do not require to visit all customers, along a gradient of ‘‘decision
ower’’ attributed to the tour planner.

At one extreme of this gradient lies the case in which the tour
lanner has no choice over which customer will require a delivery (we
2

assume that we visit customers to deliver some goods) and which will
not, because a random variable determines customer presence. This
problem is the Probabilistic Travelling Salesman Problem (PTSP) (Laporte
et al., 1994). In the PTSP a decision-maker has to devise a tour to visit
a set of delivery points, some of which might be later revealed not to be
available. Because the decision-maker does not know in advance which
customers will drop out, he/she faces two options.

• The first option is to solve a TSP problem for each possible set of
delivery points, wait until the status of all customers is revealed
and use the TSP tour visiting the customers requiring delivery.
Using this strategy is computationally expensive, but it can also
be inconvenient for operational reasons; for example, if used over
multiple days, it can produce every day a radically different tour
while still visiting a similar set of delivery points (see, e.g., Groër
et al., 2009 for the importance of consistency in parcel delivery).

• A second option, called the a priori approach, addresses this
concern. It consists in first planning an a priori tour visiting
all the customers; when the stochastic outcome is revealed, the
decision-maker amends the solution skipping the deliveries that
are not required, and performing the remaining ones in the same
order as they appear in the a priori tour. This is the first ap-
proach introduced, together with the definition of PTSP, by Jaillet
(1985). It has the advantage that, when the problem is solved for
a multi-day planning horizon, all routes will be similar.

At the opposite extreme there is the case in which the tour planner
has total control over which deliveries to perform, giving rise to the
Profitable Tour Problem (PTP) (Dell’Amico et al., 1995; Feillet et al.,
2005). In this case, visiting a delivery point earns a profit, while
traversing an edge incurs into a cost. The objective is to select the
deliveries and plan the tour that maximise the difference between
collected profits and travel costs.

Intermediate cases arise when the visit requirements are stochastic,
but the decision-maker has some leverage on their outcome. In the
PTSPC, for example, the planner has the power of forcing a visit with
the retailer’s own vehicle if he/she never offers the corresponding
delivery for crowdsourcing. One could imagine more complicated in-
teractions in which, e.g., the decision-maker can increase (decrease)
the compensation offered to raise (lower) the probability of customers
accepting a delivery (see, e.g., Barbosa (2019)).

2.1. Formalisation of the PTSPC

Consider a complete undirected graph 𝐺 = (𝑉 ′, 𝐸) with vertex set
𝑉 ′ = {0, 1,… , 𝑛}. Vertex 0 represents the depot, while 𝑉 = {1,… , 𝑛}
s the set of delivery locations. Let 𝑐𝑖𝑗 ∈ R+ be the cost of traversing
n edge {𝑖, 𝑗} ∈ 𝐸 and assume that, if the planner offers delivery
∈ 𝑉 for crowdsourcing, there is a probability 𝑝𝑖 ∈ [0, 1] that some
rovider will accept the offer. In this case, the decision-maker pays
fee 𝑚𝑖 ∈ R+ and removes 𝑖 from the list of customers to visit.

therwise, if the offer is not accepted, the planner needs to visit 𝑖
ith the retailer’s own vehicle. We assume that probabilities 𝑝𝑖 are

ndependent which, under our motivating example, is a reasonable
pproximation: we expect the number of potential couriers to be larger
han the number of deliveries, and to offer at most one delivery to each
ustomer. Different assumptions might hold if the planner outsourced
eliveries to a logistic provider (e.g., the provider could accept or refuse
n block deliveries in a same area). To estimate the values of 𝑝𝑖 a
ractitioner could use, for example, historical data on the success rate
f crowdsourcing deliveries to the same area, or an estimation method
ased on the density of customers living within a small radius from the
elivery point.

Denote with 𝑂 ⊆ 𝑉 the subset of deliveries offered for crowdsourc-
ng and with 𝐴 ⊆ 𝑂 the set of accepted offers, which is only revealed
t the end of the day (see Fig. 1). In this sense, the PTSPC is a two-
tage problem and the set of accepted offers is only revealed in the

Computers and Operations Research 142 (2022) 105722A. Santini et al.

o

s
f

v
o
t
r
t
𝑝
c
r

E

p
t
t

I
a
w
s
e

Fig. 1. Relation between sets 𝑉 , 𝑂 and 𝐴. The figure also shows the TSP tour of the
wned vehicle when 𝐴 is the set of deliveries accepted for crowdsourcing.

econd stage. The decision-maker has to decide which deliveries to offer
or crowdsourcing, i.e., the elements of 𝑂, assuming that he/she will

reoptimise the end-of-day tour after set 𝐴 is revealed. In other words,
the planner looks for the set 𝑂 with the lowest expected cost with
respect to the random variable 𝐴.

This approach can appear similar to the first approach for the PTSP
mentioned above (computing all possible tours and implementing the
one corresponding to the realised customers), but the two differ in
an important aspect. In the PTSP the decision-maker cannot affect the
outcome of the random variables: he/she will wait for their realisation
and then choose the tour through the customers requiring a visit. In
short, the PTSP becomes equivalent to a sequence of TSPs on the
operational level. On the tactical level, the PTSP decision-maker can
calculate the expected cost of the reoptimised tour (using a weighted
average of all the tour costs) but, differently from our problem, cannot
act to decrease it.

Let 𝑐𝑉 ′⧵𝐴 be the travel cost of the reoptimised tour of the PTSPC:
the shortest simple tour starting and ending at the depot, visiting
all delivery points which were either not offered, or whose offer for
crowdsourcing was not accepted. (Cost 𝑐𝑋 , for a generic subset 𝑋 of
ertices is defined formally in Appendix A.) The cost associated with
ffering deliveries 𝑂 and having deliveries 𝐴 accepted is the sum of
he crowdsourcing fees for the accepted deliveries plus the cost of the
eoptimised tour: 𝐶(𝑂,𝐴) =

∑

𝑖∈𝐴 𝑚𝑖+ 𝑐𝑉 ′⧵𝐴. The probability that a par-
icular set 𝐴 ⊆ 𝑂 is the set of accepted deliveries is ∏

𝑖∈𝐴 𝑝𝑖
∏

𝑖∈𝑂⧵𝐴(1 −
𝑖). We can then calculate, for a fixed set 𝑂 of deliveries offered for
rowdsourcing, what is the expected cost E𝐴

[

𝐶(𝑂)
]

over all possible
ealisations of 𝐴.

𝐴
[

𝐶(𝑂)
]

=
∑

𝐴⊆𝑂

[(

∏

𝑖∈𝐴
𝑝𝑖

∏

𝑖∈𝑂⧵𝐴
(1 − 𝑝𝑖)

)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
Prob. that 𝐴 is the accepted set

⋅

(

∑

𝑖∈𝐴
𝑚𝑖 + 𝑐𝑉 ′⧵𝐴

)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝐶(𝑂,𝐴) = cost when 𝐴

is the accepted set

]

(1)

The objective of the problem is to find the set 𝑂opt which gives the
lowest expected cost:

𝑂opt = arg min
𝑂⊆𝑉

E𝐴
[

𝐶(𝑂)
]

(2)

Any algorithm which aims to solve (2) faces two challenges. First, the
solution space 2𝑉 grows exponentially with the number of delivery
oints. Second, and differently from most other optimisation problems,
he evaluation of the objective function of even one solution is costly:
o compute E𝐴

[

𝐶(𝑂)
]

one has to solve 2|𝑂| TSPs, each of which is
-hard. Our approach will, thus, focus on tackling both aspects.

n Section 4.1 we introduce an exact branch-and-bound algorithm to
void the complete enumeration of all sets 𝑂 ⊆ 𝑉 ; in Section 4.2
e propose alternative, heuristic, strategies to explore the solution

pace; in Section 4.3 we propose approximation methods to efficiently
stimate the value of E𝐴

[

𝐶(𝑂)
]

.

2.2. Relation with classical TSP problems

The PTSPC is a generalisation of two well-studied routing problems.
3

When the crowdsourcing costs are large, 𝑚𝑖 = ∞ ∀𝑖 ∈ 𝑉 , there is
no incentive to offer any delivery for crowdsourcing and the planner
will decide to perform all deliveries with the retailer’s own vehicle.
In this case, the PTSPC becomes the classical Travelling Salesman
Problem. The reduction to the TSP also happens when all probabilities
of providers accepting a crowdsourcing offer are zero, 𝑝𝑖 = 0 ∀𝑖 ∈ 𝑉 .
When the customers always accept crowdsourcing offers, 𝑝𝑖 = 1 ∀𝑖 ∈
𝑉 , the problem reduces to the Profitable Tour Problem with prizes
for performing deliveries with the retailer’s own vehicle equal to the
savings of the corresponding crowdsourcing fees.

We note that these extreme cases are interesting from a theoretical
point of view, but hard to happen in practice. For the case study
considered it is, thus, important to devise a solution method which
works for the general PTSPC because reduction to other problems is
unlikely. At the same time, the solution methods we devise for the
PTSPC heavily address its specificity (e.g., the complexity of evaluating
its objective). Thus, we do not expect our algorithms to be competitive
with state-of-the-art methods for classical problems such as the TSP and
a practitioner faced with such problems should browse the extensive
existing literature on the topic.

3. Literature review

In this section we position the PTSPC in a broader context, high-
lighting the characteristics it shares with other non-deterministic rout-
ing problems and with other optimisation problems arising when inte-
grating crowdshipping in LMD. We also briefly note that the PTSPC
(and the PTSP) belong to a growing group of stochastic combina-
torial optimisation problems in which the data affected by uncer-
tainty is modelled with Bernoulli random variables (see, e.g., Albareda-
Sambola et al., 2006; Beraldi et al., 2005; Ho and Haugland, 2011;
Monaci et al., 2021). By contrast, in the majority of problems aris-
ing in logistics, stochastic quantities such as travel times (Laporte
et al., 1992), costs (Tadei et al., 2017; Fadda et al., 2020), release
dates (Archetti et al., 2016) or demands (Bertsimas, 1992) are modelled
with continuous random variables.

3.1. Crowdsourcing in last-mile delivery

In a recent survey, Alnaggar et al. (2021) review operational re-
search literature on crowdsourced LMD and propose a classification
of problems arising in the field. Under their classification scheme,
the PTSPC: (i) focuses on e-retailers, i.e., the company offering the
delivery is the same that sells the product; (ii) offers a per-delivery
rate determined by the company; (iii) uses pre-planned trips because
drivers were already heading in the direction of the delivery points;
(iv) focuses on self-scheduling individuals, because the customers enter
the supermarket at their own convenience; and (v) considers short-
haul deliveries within the same city. These characteristics set the
PTSPC apart from most other problems considered in the literature,
which focus on crowdsourcing to professional couriers rather than truly
occasional drivers.

Archetti et al. (2016) were among the first to address a problem
arising in outsourcing in LMD: the Vehicle Routing Problem (VRP) with
Occasional Drivers (ODs). In this problem, the company can decide
whether to serve a delivery with a vehicle of its own fleet, or to
outsource it for a fixed fee. The planner assigns deliveries to ODs which
are already heading towards a destination. For the assignment to take
place, the delivery point needs to be close to the driver’s destination.
The model works under the assumption that ODs always accept requests
from the company, provided that they fulfil this ‘‘closeness’’ condition.
This assumption is important, as optimal solutions tend to use a high
percentage of available ODs. The authors propose a Mixed-Integer Pro-
gramming (MIP) formulation, but must resort to a multi-start heuristic
to tackle instances with more than 25 deliveries. They identify three

characteristics affecting the profitability of such a schema: the number

Computers and Operations Research 142 (2022) 105722A. Santini et al.

p
t
w
h
d
d
n
a
O
t
o
o

D
a
a
D
i
a
t
k
k
a
c
t
e
o
s
b
c

i
e
p
k
s
f
t
s
3
s
p
w
O

f
e
a

of available ODs, their flexibility (how far the delivery point can be
from the OD’s original destination) and the compensation amount.

Other authors extended the VRP with ODs model to incorporate
real-life features such as time windows, multiple and split deliver-
ies (Macrina et al., 2017), transshipment nodes (Macrina et al., 2020),
and coordinating ODs on bikes or on foot with a delivery truck from
which they relay (Kafle et al., 2017; Huang and Ardiansyah, 2019).
The MIP model by Huang and Ardiansyah (2019) illustrates well how
even deterministic problems can be hard to solve, when they require
the interaction of traditional and crowdsourced supply chain segments.
The authors, in fact, could solve instances with up to 15 delivery points
using the Gurobi solver. They could not solve any instance with 20 and
30 customers and, sometimes, after a 4-h time limit the solver did not
even provide a valid integer solution.

Recent literature also addressed dynamic versions of the problem, in
which delivery requests and driver availability become known during
the day. Arslan et al. (2019) consider a real-time system in which
ODs make trip announcements and the company can then assign them
ickups and deliveries which are compatible with their announced
ravel (i.e., involving only a small detour) and the recipients’ time
indows. They tackle the dynamic nature of the problem with a rolling
orizon approach, corresponding to a planner who takes decisions at
ifferent moments during the day. The decisions consist in matching
eliveries to ODs and routing the own fleet for deliveries which were
ot crowdsourced. With a simulation study the authors show how this
pproach can produce savings, depending on the time flexibility of the
Ds and their willingness to take larger detours. They also conclude

hat this system is more indicated when all parcels share the same
rigin, such as a central depot, as this greatly reduces the cost to
perate the own fleet.

Other problems share some of the characteristics of the PTSPC.
ayarian and Savelsbergh (2017), for example, propose a model which
lso addresses the case of using in-store customers as occasional drivers
nd an own fleet in charge of completing the distribution of parcels.
ifferently from the PTSPC, they simulate each customer individually;

f a customer has a destination compatible with a delivery point, they
ssume that the customer will accept the delivery. The authors consider
wo cases: a static case, where all customer visits and deliveries are
nown in advance, and a dynamic case, where information is only
nown up to a certain time and the planner reoptimises following
rolling horizon approach. Data on the presence and destination of

ustomers is collected while the customers shop inside the store. For
he dynamic case, the authors also propose to base the decisions at each
poch on forecasts of future demand and in-store visits, which they
btain averaging sample historical scenarios. Through a simulation
tudy, the authors determine a trade-off between the savings obtained
y reducing the own fleet and the risk introduced when relying on
ustomer availability.

Stochastic occasional drivers are also a feature of the Vehicle Rout-
ng Problem with Dynamic Occasional Drivers, introduced by Dahle
t al. (2017). The authors, however, model ODs as stochastic vehicles
ossibly appearing at random times during the day (according to a
nown distribution) in a VRP with time windows. They use a two-stage
tochastic model in which they plan the routes of the own fleet in the
irst stage and, after OD appearance times are revealed, they amend
he routes and assign deliveries to ODs in the second stage. The authors
olve instances with 5, 10, 15 or 20 deliveries, 2 own vehicles, and 2 or
ODs. To do so, they use a MIP model and enumerate all possible 2𝐾

cenarios, where 𝐾 is the number of occasional drivers. The problem
roves hard to solve: for example, they cannot find the optimal solution
ithin 2 h of computation for instances with 10 delivery points and 3
Ds.

Finally, Gdowska et al. (2018) introduced a multi-vehicle problem
or delivery with crowdshipping based on the VRP with ODs (Archetti
t al., 2016), which is most similar to our problem. In their work, the
4

uthors consider a multi-vehicle fleet of own vehicles and propose an
agent-oriented bi-level stochastic model and a local search algorithm
for its solution. With computational experiments on instances with 15
deliveries, they show that solutions using crowdsourcing can produce
savings, but they cannot assess the accuracy of their heuristic, because
they lack exact solutions.

3.2. Probabilistic TSP with profits

The literature on the Probabilistic TSP is vast and its full review
is out of the scope of this paper (we refer the reader to classic works
Jaillet, 1985; Berman and Simchi-Levi, 1988; Jaillet, 1988; Bowler
et al., 2003; Bertsimas and Howell, 1993; Laporte et al., 1994 and
surveys Gendreau et al., 1996, 2014). In the following, we focus on a
class of problems which shares common characteristics with the PTSPC:
the class of Travelling Salesman Problems with Profits and Stochastic
Customers (TSPPSC) introduced by Zhang et al. (2018). This class
contains three problems, which mirror the three classic problems in
the area of TSP with profits: the Orienteering Problem (OP) which
maximises the collected profit under an upper bound on tour duration,
the Prize-Collecting TSP (PCTSP) which minimises tour duration under
a lower bound on collected profit, and the Profitable Tour Problem
(PTP) described in Section 2.

For each of these problems, the authors describe the corresponding
version with stochastic customers. Of the three new problems, the
one most related to the PTSPC is the PTP with Stochastic Customers
(PTPSC). In this problem the decision-maker has to select a subset
of delivery points and plan an a priori tour only visiting the selected
points. When the random outcomes are revealed, the planner amends
the tour skipping the points not requiring service. If a delivery is not
even included in the a priori tour, the delivery point will not be visited
and the corresponding profit will not be collected. This is analogous
to outsourcing the delivery, paying a fee equal to the lost profit to
a provider who is always available to accept requests, highlighting a
sort of duality between the proposed problem and our PTSPC. In our
problem we have certain delivery points but uncertain outsourcing; in
the PTPSC there are uncertain delivery points, but certain outsourcing.
Looking at probabilities, the decision-maker of the PTPSC has the
possibility of setting 𝑝𝑖 = 1 (exclude from the tour) for those customers
he/she does not select in the a priori tour; in contrast, in our problem
the decision-maker can set 𝑝𝑖 = 0 (force in the tour) for those customers
he/she does not offer for crowdsourcing.

Zhang et al. (2017) propose a genetic algorithm to solve the PTPSC
with homogeneous probabilities (i.e., all 𝑝𝑖’s are the same). Their
analysis is limited to 5 instances with 8, 13, 20, 28 and 50 customers.
It shows that, for the two largest instances, the genetic algorithm
produces in a few seconds better results than solving the non-linear
formulation with a commercial solver running for three hours.

Finally, we remark that of the three problems with profits men-
tioned above, there are no exact algorithms for their stochastic-
customer variants in the literature, while heuristics only exist for
the PTPSC (Zhang et al., 2017) and the OP with stochastic cus-
tomers (Zhang et al., 2018; Angelelli et al., 2017; Montemanni et al.,
2018).

4. Algorithms

In this section we propose an exact algorithm based on branch-
and-bound, and four heuristic algorithms to explore the solution space
of the PTSPC in search for the optimal set of offered deliveries. We
also introduce two ways to approximate the objective function of the
problem, which we can use instead of exact evaluation to further

speed-up the heuristic algorithms.

Computers and Operations Research 142 (2022) 105722A. Santini et al.

o
o

4

t
f

𝑧

4.1. A branch-and-bound algorithm

We develop a branch-and-bound (B&B) algorithm in which branch-
ing is associated with the inclusion or exclusion of delivery points in
the set 𝑂 of offered deliveries. At each node of the tree, we denote
with 𝑂 ⊆ 𝑉 the deliveries that the planner will offer for crowdsourcing,
with �̄� ⊆ 𝑉 the deliveries which the planner will not offer, and with
𝐹 ⊆ 𝑉 the deliveries for which a decision has not been made yet. At
the root node of the tree 𝑂 = �̄� = ∅ and 𝐹 = 𝑉 , while at leaf nodes the
planner has decided the status (offered or not offered) of all deliveries
and 𝐹 = ∅. Branching in the tree amounts to selecting an offer whose
status is not fixed (that is, an offer in 𝐹) and creating two children
nodes: one in which the delivery is offered and one in which it is not
offered.

The effectiveness of a B&B algorithm depends on devising upper
and lower bounds for the objective value of the problem at each node,
allowing to prune large portions of the tree. In the rest of this section we
describe the lower and upper bounds we use during tree exploration.
Each node of the tree is determined by the three sets (𝑂, �̄�, 𝐹) described
above; we denote with 𝑧(𝑂, �̄�, 𝐹) the cost of best solution in the subtree
riginating from node (𝑂, �̄�, 𝐹), i.e., the best solution which can be
btained assigning the deliveries of 𝐹 to either set 𝑂 or �̄�.

.1.1. Lower bound 𝑧
A lower bound for 𝑧(𝑂, �̄�, 𝐹) is the following:

̄
𝑧(𝑂, �̄�, 𝐹) =

∑

𝑖∈𝑉
𝑚𝑖 − PTP(�̄�, 𝑂 ∪ 𝐹), (3)

where PTP(𝑋, 𝑌) denotes the value of the optimal solution of a Prof-
itable Tour Problem over delivery points 𝑋 ∪ 𝑌 in which points of the
set 𝑋 are forced to be visited. Intuitively, Eq. (3) is stating that one can
get a lower bound by being optimistic and assuming that the accepted
deliveries will be exactly those (among the offered and the unfixed
ones) which give the lowest total cost. We give a formal definition of
problem PTP(𝑋, 𝑌) in Appendix B, while the following theorem proves
that Eq. (3) defines a lower bound.

Theorem 1. Quantity
̄
𝑧(𝑂, �̄�, 𝐹) defined in (3) is a lower bound on the

value of the objective function, 𝑧(𝑂, �̄�, 𝐹).

Proof. Selecting the best set of deliveries to crowdsource, when we
assume that (i) the ODs will always accept offered deliveries, and (ii)
deliveries in set �̄� cannot be crowdsourced, corresponds to finding the
lowest-cost tour which visits all vertices of �̄� (they must be visited with
the retailer’s own vehicles), while deciding which vertices of 𝑂 ∪ 𝐹 to
visit.

This decision is taken based on whether it is more convenient to
visit vertices in 𝑂∪𝐹 with the own vehicle or to pay the crowdsourcing
fee. We can model this problem as a PTP in which the profit associated
with each vertex of 𝑂 ∪ 𝐹 is equal to the crowdsourcing fee saved if
the retailer’s own vehicle visits that vertex. Formally, the equivalence
between these two problems can be expressed with the following
equality:

min
𝐴⊆𝑂∪𝐹

(

∑

𝑖∈𝐴
𝑚𝑖 + 𝑐𝑉 ′⧵𝐴

)

=
∑

𝑖∈𝑉
𝑚𝑖 − PTP(�̄�, 𝑂 ∪ 𝐹), (4)

where, in the right-hand side, we sum all the crowdsourcing fees in
the first term and then we subtract those of the vertices visited by the
retailer’s own vehicle in the second term (these are the profits of the
vertices included in the optimal PTP tour).

With Eq. (4), we are ready to show that
̄
𝑧(𝑂, �̄�, 𝐹) is, indeed, a lower

bound for 𝑧(𝑂, �̄�, 𝐹):

𝑧(𝑂, �̄�, 𝐹) = min
𝑂′⊆𝐹

∑

𝐴⊆𝑂∪𝑂′

[

(

∏

𝑖∈𝐴
𝑝𝑖

∏

𝑖∈(𝑂∪𝑂′)⧵𝐴
(1 − 𝑝𝑖)

)

⋅
(

∑

𝑖∈𝐴
𝑚𝑖 + 𝑐𝑉 ′⧵𝐴

)

]

⏟⏞⏞⏞⏟⏞⏞⏞⏟
5

(⋆)
≥ min
𝑂′⊆𝐹

min
𝐴⊆𝑂∪𝑂′

(

∑

𝑖∈𝐴
𝑚𝑖 + 𝑐𝑉 ′⧵𝐴

)

= min
𝐴⊆𝑂∪𝐹

(

∑

𝑖∈𝐴
𝑚𝑖 + 𝑐𝑉 ′⧵𝐴

)

=
∑

𝑖∈𝑉
𝑚𝑖 − PTP(�̄�, 𝑂 ∪ 𝐹)

=
̄
𝑧(𝑂, �̄�, 𝐹),

where the first inequality derives from the fact that

∑

𝐴⊆𝑂∪𝑂′

[

(

∏

𝑖∈𝐴
𝑝𝑖

∏

𝑖∈(𝑂∪𝑂′)⧵𝐴
(1 − 𝑝𝑖)

)

]

= 1

and therefore sum (⋆) defines a convex combination of the terms
∑

𝑖∈𝐴 𝑚𝑖 + 𝑐𝑉 ′⧵𝐴. Because the value of a convex combination is always
between those of its smallest and largest terms, the first inequality
follows. The next equality follows from the fact that 𝑂 ∪ 𝑂′ ⊆ 𝑂 ∪ 𝐹
for all 𝑂′ ⊆ 𝐹 , while the second-last equality is Eq. (4) and the last one
is the definition of

̄
𝑧. □

4.1.2. Upper bound �̄�
We can trivially define an upper bound for 𝑧(𝑂, �̄�, 𝐹) in the follow-

ing way:

�̄�(𝑂, �̄�, 𝐹) =
∑

𝑖∈𝑂∪𝐹
𝑚𝑖 + 𝑐𝑉 , (5)

where 𝑐𝑉 denotes the cost of the TSP tour visiting all delivery locations.
The intuition is that in Eq. (5) we assume that we will both visit
all delivery points with the own vehicle (thus term 𝑐𝑉) and that we
will pay all crowdsourcing fees for offered or unfixed deliveries. The
following theorem shows that �̄� is, indeed, an upper bound for 𝑧.

Theorem 2. Quantity �̄�(𝑂, �̄�, 𝐹) defined in (5) is an upper bound on the
value of the objective function, 𝑧(𝑂, �̄�, 𝐹).

Proof. The thesis follows from the definition of 𝑧:

𝑧(𝑂, �̄�, 𝐹) = min
𝑂′⊆𝐹

∑

𝐴⊆𝑂∪𝑂′

[

(

∏

𝑖∈𝐴
𝑝𝑖

∏

𝑖∈(𝑂∪𝑂′)⧵𝐴
(1 − 𝑝𝑖)

)

⋅
(

∑

𝑖∈𝐴
𝑚𝑖 + 𝑐𝑉 ′⧵𝐴

)

]

⏟⏞⏞⏞⏟⏞⏞⏞⏟
(⋆)

≤ min
𝑂′⊆𝐹

max
𝐴⊆𝑂∪𝑂′

(

∑

𝑖∈𝐴
𝑚𝑖 + 𝑐𝑉 ′⧵𝐴

)

≤ min
𝑂′⊆𝐹

(

∑

𝑖∈𝑂∪𝑂′
𝑚𝑖 + 𝑐𝑉

)

≤
∑

𝑖∈𝑂∪𝐹
𝑚𝑖 + 𝑐𝑉

= �̄�(𝑂, �̄�, 𝐹).

The first inequality is due to (⋆) defining a convex combination and,
hus, being smaller than its maximal term. The second inequality
ollows from two other relations. First, ∑𝑖∈𝐴 𝑚𝑖 ≤

∑

𝑖∈𝑂∪𝑂′ 𝑚𝑖 because
the sum of non-negative 𝑚𝑖 cannot decrease when enlarging the set
over which the sum is computed. Second, 𝑐𝑉 ′⧵𝐴 ≤ 𝑐𝑉 because the
cost of the optimal TSP tour cannot decrease when visiting more
vertices (assuming, as usual, that the triangle inequality holds). The
last inequality is valid because the minimum is smaller than any value
its operand takes. The last equality is the definition of �̄�. □

4.1.3. Upper bound �̄�′

While �̄� is a valid upper bound and it is fast to compute, it is not very
tight. We can derive a tighter upper bound �̄�′(𝑂, �̄�, 𝐹) with a reasoning
analogous to the one used to derive

̄
𝑧: in the worst case, the realised

set 𝐴 is the one leading to the highest total cost (accounting both the
TSP and the crowdsourcing fees). In other words, we take

̄′(𝑂, �̄�, 𝐹) = max
𝐴⊆𝑂∪𝐹

{

∑

𝑚𝑖 + 𝑐𝑉 ′⧵𝐴

}

. (6)

𝑖∈𝐴

Computers and Operations Research 142 (2022) 105722A. Santini et al.

T

b
T
a
(
s
T
a
p
t
i
c
p

𝐱

1
1

1
1
1
1
1
2

2
2
2
2
2
2
2

2

2

3
3

w
w
o
c

4

t
a
e

b
w

The proof that �̄�′ is a valid lower bound is similar to the proof of
heorem 1, and that �̄�′ is tighter than �̄� follows immediately from its

definition. The main issue with Eq. (6) is that it requires to solve a hard
maximisation problem. We can rewrite this problem as

max
𝑋⊇�̄�

{

𝑐𝑋 −
∑

𝑖∈𝑋
𝑚𝑖

}

, (7)

which has the same maximiser of (6) (although the two objective func-
tions differ by a constant ∑𝑖∈𝑉 𝑚𝑖). The problem defined in Eq. (7) is a
i-level integer optimisation problem, in which the inner problem is a
SP, required to compute 𝑐𝑋 . The best and, as far as we are aware, only
vailable exact general-purpose solver for bi-level integer optimisation
that of Fischetti et al. (2017)) does not support dynamic cut generation
chemes such as branch-and-cut. Therefore, we cannot model the inner
SP using an exponential number of subtour-elimination constraints,
s in model (27)–(30); we must use a formulation which requires a
olynomial number of variables and constraints. In particular, we use
he multi-commodity flow reformulation by Sherali et al. (2006), which
s known to have one of the strongest continuous relaxations among
ompact TSP formulations (see, e.g., Öncan et al. (2009)). The resulting
roblem reads as follows:

max
,𝐝,𝐭,𝐲

∑

𝑖∈𝑉 ′

∑

𝑗∈𝑉 ′
𝑐𝑖𝑗𝑥𝑖𝑗 −

∑

𝑖∈𝑉
𝑚𝑖𝑦𝑖 (8)

s.t. 𝐱,𝐝, 𝐭 = arg min
𝐱,𝐝,𝐭

∑

𝑖∈𝑉 ′
𝐲

∑

𝑗∈𝑉 ′
𝐲

𝑐𝑖𝑗𝑥𝑖𝑗 (9)

s.t.
∑

𝑗∈𝑉 ′
𝐲

𝑥𝑖𝑗 = 1 ∀𝑖 ∈ 𝑉 ′
𝐲 (10)

∑

𝑗∈𝑉 ′
𝐲

𝑥𝑗𝑖 = 1 ∀𝑗 ∈ 𝑉 ′
𝐲 (11)

𝑑𝑖𝑗 + 𝑑𝑗𝑖 = 1 ∀𝑖, 𝑗 ∈ 𝑉𝐲 (12)

𝑑𝑖𝑗 + 𝑥𝑖𝑗 ≤ 2 − 𝑑𝑗𝑘 − 𝑑𝑘𝑖 ∀𝑖, 𝑗, 𝑘 ∈ 𝑉𝐲 (13)

𝑥0𝑖 ≤ 𝑑𝑖𝑗 ∀𝑖, 𝑗 ∈ 𝑉𝐲 (14)

𝑥01 ≤ 𝑑𝑗𝑖 ∀𝑖, 𝑗 ∈ 𝑉𝐲 (15)
𝑡𝑘𝑖𝑗 ≤ 𝑥𝑖𝑘 ∀𝑖, 𝑗, 𝑘 ∈ 𝑉𝐲

(𝑖 ≠ 𝑗, 𝑘 ≠ 𝑗) (16)
∑

𝑘∈𝑉𝐲
𝑘≠𝑗

𝑡𝑘𝑖𝑗 + 𝑥𝑖𝑗 = 𝑑𝑖𝑗 ∀𝑖, 𝑗 ∈ 𝑉𝐲 (17)

∑

𝑖∈𝑉𝐲
𝑖≠𝑗

𝑡𝑘𝑖𝑗 + 𝑥0𝑘 = 𝑑𝑘𝑗 ∀𝑘, 𝑗 ∈ 𝑉𝐲 (18)

𝑥𝑖𝑗 ∈ {0, 1} ∀𝑖, 𝑗 ∈ 𝑉 ′
𝐲 (19)

𝑑𝑖𝑗 ∈ {0, 1} ∀𝑖, 𝑗 ∈ 𝑉𝐲 (20)

𝑡𝑘𝑖𝑗 ≥ 0 ∀𝑖, 𝑗, 𝑘 ∈ 𝑉𝐲 (21)

𝑦𝑖 ∈ {0, 1} ∀𝑖 ∈ 𝑉 . (22)

Model (8)–(22) is written for the general case of an asymmetric graph
𝐺 for ease of notation. Binary variables 𝑥𝑖𝑗 take value 1 iff arc (𝑖, 𝑗)
is used in the TSP tour, binary variables 𝑑𝑖𝑗 take value 1 iff ver-
tex 𝑖 precedes vertex 𝑗 in the TSP tour, variables 𝑡𝑘𝑖𝑗 arise from a
reformulation-linearisation strengthening of subtour-elimination con-
straints (see Sherali and Adams (1999) and Sherali et al. (2006)), and
binary variables 𝑦𝑖 determine whether vertex 𝑖 should be included in
the TSP. We also use notation 𝑉𝐲 = {𝑖 ∈ 𝑉 ∶ 𝑦𝑖 = 1} and 𝑉 ′

𝐲 =
{0}∪𝑉𝐲. We refer the reader to the survey by Öncan et al. (2009) for a
complete description of each constraint. Here we note that constraints
(10) and (11) are classical TSP flow constraints, constraints (12)–(15)
are precedence constraints and link variables 𝑥 and 𝑑, while constraints
(16)–(18) are the multi-commodity flow constraints and link variables
6

𝑥 and 𝑡. a
Because solving model (8)–(22) is time-consuming, we only use
bound �̄�′ at the root node of the B&B tree.

4.1.4. Overall B&B algorithm

Algorithm 1 Branch-an-bound algorithm for the PTSPC.
1: function BranchAndBound
2: 𝑂 ← ∅, �̄� ← ∅, 𝐹 ← 𝑉
3: 𝑧∗ ← ∞ // Cost of the current best feasible solution
4: ExploreNode(𝑂, �̄�, 𝐹 , true)
5: return 𝑧∗

6: end function

7: procedure ExploreNode(𝑂, �̄�, 𝐹 , computeBounds)
8: if computeBounds then
9: �̄� ← �̄�(𝑂, �̄�, 𝐹) // Upper bound �̄�

10: if at root node then
11: �̄� ← min

{

�̄�(𝑂, �̄�, 𝐹), �̄�′(𝑂, �̄�, 𝐹)
}

// Upper bound �̄�′

2: end if
3: if �̄� < 𝑧∗ then

14: 𝑧∗ ← �̄� // Update best solution
5: end if
6:

̄
𝑧 ←

̄
𝑧(𝑂, �̄�, 𝐹) // Lower bound

7: if
̄
𝑧 > 𝑧∗ then

8: return // Prune the tree
9: end if
0: end if

1: if 𝐹 = ∅ then // Leaf node reached
2: 𝑧 ← E𝐴

[

𝐶(𝑂)
]

3: if 𝑧 < 𝑧∗ then
4: 𝑧∗ ← 𝑧 // Update best solution
5: end if
6: return
7: end if

8: 𝑖 ← argmax𝑗∈𝐹 𝑚𝑗 // Select delivery to branch on

9: ExploreNode(𝑂, �̄� ∪ {𝑖}, 𝐹 ⧵ {𝑖}, true)

0: ExploreNode(𝑂 ∪ {𝑖}, �̄�, 𝐹 ⧵ {𝑖}, false)
1: end procedure

Algorithm 1 shows the high-level structure of the B&B algorithm,
using a depth-first exploration strategy and branching on the unfixed
delivery with the highest crowdsourcing fee. Note that we do not need
to recompute the bounds at each node: in the children nodes in which
we fix a delivery in 𝑂, in fact, the value of the bounds does not change.
Furthermore, because the complexity of calculating E𝐴

[

𝐶(𝑂)
]

increases
ith the size of 𝑂, it is convenient to explore first the child nodes
here deliveries are fixed in �̄�. In this way we delay the exploration
f nodes with large sets 𝑂 and, possibly, we skip it altogether if the
orresponding part of the tree is pruned.

.1.5. Acceleration strategies
An important property of E𝐴

[

𝐶(𝑂)
]

as defined in Eq. (1), is that
runcating the sum at any point gives a valid lower bound. Thus, if
t any moment during the computation of E𝐴

[

𝐶(𝑂)
]

the partial sum
xceeds the current best solution cost 𝑧∗, we can discard the leaf node.

Another way to speed up the algorithm is to use the following
ounding technique. Assume that we store the values of E𝐴

[

𝐶(𝑂)
]

hich we computed during the exploration of the B&B tree and that we
re to compute E

[

𝐶(𝑂 ∪ {𝑗})
]

. We can first compute an upper bound
𝐴

Computers and Operations Research 142 (2022) 105722A. Santini et al.

i
i
s
I
c
a
e
t
t

T

t
𝛾
(
a
f

E

without solving any TSP:

E𝐴
[

𝐶(𝑂 ∪ {𝑗})
]

≤ E𝐴
[

𝐶(𝑂)
]

+ 𝑝𝑗𝑚𝑗 . (23)

If the upper bound, which we denote as �̄�leaf, is already better than
the best solution 𝑧∗ we can update it as 𝑧∗ ← �̄�leaf and we flip a flag
ndicating that 𝑧∗ is not the objective value of an actual solution. Only
f, when exploring a future node, we find a new solution improving on
uch a 𝑧∗, then we have to calculate the actual value of E𝐴

[

𝐶(𝑂∪{𝑗})
]

.
f, on the other hand, value 𝑧∗ is never improved upon, a user might be
ontent with the optimal set and an upper bound on its expected cost
nd, therefore, skip altogether the computation of E𝐴

[

𝐶(𝑂∪{𝑗})
]

. Oth-
rwise, a parallel implementation could dedicate a thread to compute
he expected value and use the bound while exploring the rest of the
ree. The following theorem proves the validity of bound (23).

heorem 3. Given a set 𝑂 ⊂ 𝑉 and a delivery location 𝑗 ∈ 𝑉 ⧵ 𝑂,
inequality (23) is valid.

Proof. For notation convenience we define 𝑚𝐴 =
∑

𝑖∈𝐴 𝑚𝑖 and let
𝑝𝐴,𝑂 =

∏

𝑖∈𝐴 𝑝𝑖 ⋅
∏

𝑖∈𝑂⧵𝐴(1− 𝑝𝑖) be the probability that 𝐴 is the accepted
set when 𝑂 is the offered set. Then, the following equality holds:

E𝐴
[

𝐶(𝑂 ∪ {𝑗})
]

=
∑

𝐴⊆𝑂

[

𝑝𝐴,𝑂 ⋅ 𝑝𝑗 ⋅
(

𝑚𝐴 + 𝑚𝑗 + 𝑐(𝑉 ′⧵𝐴)⧵{𝑗}
)

]

+

∑

𝐴⊆𝑂

[

𝑝𝐴,𝑂 ⋅ (1 − 𝑝𝑗) ⋅
(

𝑚𝐴 + 𝑐𝑉 ′⧵𝐴
)

]

,

where the first sum considers the subsets of 𝑂∪{𝑗} which contain 𝑗 and
he second sum considers those which do not contain 𝑗. Denote with
𝐴,𝑗 the difference between the costs of the TSPs over 𝑉 ′ ⧵ 𝐴 and over
𝑉 ′ ⧵ 𝐴) ⧵ {𝑗}, i.e, 𝛾𝐴,𝑗 = 𝑐𝑉 ′⧵𝐴 − 𝑐(𝑉 ′⧵𝐴)⧵{𝑗}. Note that 𝛾𝐴,𝑗 ≥ 0 because
dding one more vertex cannot reduce the cost of the TSP. Then the
ollowing holds:

𝐴
[

𝐶(𝑂 ∪ {𝑗})
]

= 𝑝𝑗
∑

𝐴⊆𝑂
𝑝𝐴,𝑂

(

𝑚𝐴 + 𝑐𝑉 ′⧵𝐴 + 𝑚𝑗 − 𝛾𝐴,𝑗
)

+ (1 − 𝑝𝑗)
∑

𝐴⊆𝑂
𝑝𝐴,𝑂

(

𝑚𝐴 + 𝑐𝑉 ′⧵𝐴
)

= 𝑝𝑗E𝐴
[

𝐶(𝑂)
]

+ 𝑝𝑗
∑

𝐴⊆𝑂
𝑝𝐴,𝑂

(

𝑚𝑗 − 𝛾𝐴,𝑗
)

+ (1 − 𝑝𝑗)E𝐴
[

𝐶(𝑂)
]

= E𝐴
[

𝐶(𝑂)
]

+ 𝑝𝑗
(

𝑚𝑗
∑

𝐴⊆𝑂
𝑝𝐴,𝑂

⏟⏞⏟⏞⏟
=1

−
∑

𝐴⊆𝑂
𝑝𝐴,𝑂𝛾𝐴,𝑗

)

= E𝐴
[

𝐶(𝑂)
]

+ 𝑝𝑗𝑚𝑗 − 𝑝𝑗
∑

𝐴⊆𝑂
𝑝𝐴,𝑂 𝛾𝐴,𝑗

⏟⏟⏟
≥0

≤ E𝐴
[

𝐶(𝑂)
]

+ 𝑝𝑗𝑚𝑗 . □

4.1.6. Fast solution of many similar TSPs
Throughout the exploration of the B&B tree, we must solve many

TSPs on subgraphs induced by various subsets of 𝑉 ′. For example, at
each leaf node we compute E𝐴

[

𝐶(𝑂)
]

which involves solving one TSP
over vertices 𝑉 ′ ⧵𝐴 for each 𝐴 ⊆ 𝑂. Note how one can cache the values
𝑐𝑉 ′⧵𝐴 required to compute E𝐴

[

𝐶(𝑂1)
]

(for a given set 𝑂1 ⊆ 𝑉) and
then re-use the common ones to compute E𝐴

[

𝐶(𝑂2)
]

(for a different
set 𝑂2 ⊆ 𝑉). This is because the two sets 𝑂1, 𝑂2 are likely to have
common subsets 𝐴 ⊆ 𝑂1, 𝑂2 and the corresponding values of 𝑐𝑉 ′⧵𝐴 shall
be computed only once.

However, it seems reasonable that even to evaluate one objective
value E𝐴

[

𝐶(𝑂)
]

, parts of the solution needed to obtain 𝑐𝑉 ′⧵𝐴1
(for some

𝐴1 ⊆ 𝑂) could be reused to compute 𝑐𝑉 ′⧵𝐴2
(for some other 𝐴2 ⊆ 𝑂):

intuitively, TSP tours over similar subsets are likely to have subpaths
in common.

Following this observation, we devise and compare two strategies
[]
7

to solve the multiple TSPs required to compute E𝐴 𝐶(𝑂) :
• The first strategy (Concorde) is to disregard the fact that the
multiple TSPs over sets 𝑉 ′ ⧵ 𝐴 are related and simply solve
each of them independently. To this end, we use the popular
TSP solver Concorde (Applegate et al., 2003). It has been shown
empirically by Mu et al. (2018) that Concorde solve times scale
as 𝑎 ⋅ 𝑏

√

𝑛, where 𝑎 and 𝑏 are constants (with 𝑏 ≈ 1.25) and 𝑛 is
the number of vertices. For problems of the size considered in this
work, this corresponds to an increase of a factor of approximately
1.25

√

21∕1.25
√

4 ≈ 1.78 between the solution time of the smallest
non-trivial TSP (with 4 vertices) and the largest one (with 21
vertices, the size of the largest instance — see Section 5.1). As
such, solving one TSP with Concorde is almost constant-time
in our situation and, therefore, computing E𝐴

[

𝐶(𝑂)
]

is almost
exponential-time, because it requires to solve 2|𝑂| TSPs.

• The second strategy (HeldKarp) is to use the classical Held–Karp
Dynamic Programming (DP) algorithm (Held and Karp, 1962) to
compute 𝑐𝑉 ′ . The DP algorithm is based on the following cost
function: let 𝑋 ⊆ 𝑉 and 𝑡 ∈ 𝑉 ′ ⧵ 𝑋, and denote with 𝐻(𝑋, 𝑡) the
cost of the shortest Hamiltonian path from 0 to 𝑡 in the subgraph
induced by vertices {0, 𝑡} ∪ 𝑋. The cost of the optimal TSP tour
over 𝑉 ′ is then 𝑐𝑉 ′ = 𝐻(𝑉 , 0) (recall that 𝑉 = 𝑉 ′ ⧵ {0}) and the
DP recursion used is:

𝐻(∅, 𝑡) = 𝑐0𝑡 (24)

𝐻(𝑋, 𝑡) = min
𝑖∈𝑋

{

𝐻(𝑋 ⧵ {𝑖}, 𝑖) + 𝑐𝑖𝑡
}

. (25)

The DP table to compute 𝐻(𝑉 , 0) has one column for each subset
𝑋 ⊆ 𝑉 and one row for each vertex 𝑖 ∈ 𝑉 ′; the entry in the column
indexed by 𝑋 and the row indexed by 𝑖 is 𝐻(𝑉 , 𝑖). Held and Karp’s
algorithm is not cheap to execute: its time grows as 𝑂(2𝑛𝑛2) and
its space (i.e., the size of the DP table) as 𝑂(2𝑛𝑛). However, once
the DP table is built, one can compute 𝑐𝑋 for any {0} ⊂ 𝑋 ⊆ 𝑉 ′ in
constant time, simply accessing the entry in the column indexed
by 𝑋 and the row indexed by 0.

In a preliminary experiment, we used 3168 instances (see Section 5.1)
with 8 to 16 delivery points, i.e., 9 to 17 TSP vertices. For each of
them, we used strategies Concorde and HeldKarp to compute 𝑐𝑋 for
all subsets 𝑋 of delivery points. The results, summarised in Fig. 2,
suggest that using strategy HeldKarp is computationally less expensive
but much more memory hungry than strategy Concorde, to the point
of being impractical for larger instances. For this reason, we resort to
using strategy Concorde in the computational experiments of Section 5.

4.2. Heuristic algorithms

We propose four heuristic strategies to explore the space of sets
𝑂 ⊆ 𝑉 , inspired by stepwise and bidirectional heuristic for variable
selection in statistics (see, e.g., Hocking (1976)):

• The Forward Stepwise heuristic (F-Step) starts with 𝑂 = ∅ and, at
each iteration, adds to 𝑂 the delivery location which decreases
the expected cost the most, if any; otherwise, the heuristic stops.

• The Backward Stepwise heuristic (B-Step) is analogous, but starts
with 𝑂 = 𝑉 and, at each iteration removes from 𝑂 the delivery
which decreases the cost the most.

• The Forward-Backward Bidirectional heuristic (FB-Bid) starts with
𝑂 = ∅ and alternates one forward and one backward phase at each
iteration.

• The Backward-Forward Bidirectional heuristic (BF-Bid) starts with
𝑂 = 𝑉 and alternates one backward and one forward phase.

Algorithm 2 describes in detail the implementation of the FB-Bid heuris-
tic. The other heuristics are implemented similarly.

Computers and Operations Research 142 (2022) 105722A. Santini et al.
Fig. 2. Comparison of strategies Concorde and HeldKarp. Each point refers to the time (left) and memory (right) used to compute the cost of all TSPs, averaged over all instances
of the same size.
𝑐

During preliminary experiments, we implemented variations of the
above heuristics which start from random sets 𝑂 ⊆ 𝑉 . Such varia-
tions did not produce any sensible improvement over the more basic
versions, so we decided to keep the latter for simplicity.

4.3. Approximation of E𝐴
[

𝐶(𝑂)
]

As noted before, computing the objective value E𝐴
[

𝐶(𝑂)
]

of a solu-
tion 𝑂 is hard, because one has to evaluate function 𝐶(𝑂,𝐴) for each
set 𝐴 ⊆ 𝑂 (i.e., 2|𝑂| times) and solve a TSP at each evaluation. Our hy-
pothesis, however, is that it is possible to approximate E𝐴

[

𝐶(𝑂)
]

well,
while evaluating much fewer functions. This hypothesis is intuitively
motivated by the existence of strong concentration inequalities for both
the sum of independent Bernoulli random variables (Mitzenmacher
and Upfal, 2017, Ch. 4) and the length of the Euclidean TSP tour
of points taken uniformly at random in a square (Steele, 1997, Ch.
2). Because 𝐴 is, indeed, a realisation of independent Bernoullis and
𝑐𝑉 ′⧵𝐴 is the length of a TSP over points defined by the realisation of
𝐴, we can expect 𝐶(𝑂,𝐴) to be concentrated around E𝐴

[

𝐶(𝑂)
]

. The
above argument is not formal (e.g., the points in 𝑉 ⧵ 𝐴 are not chosen
uniformly at random) but it motivates the use of methods which work
best when the quantity to estimate is concentrated around its mean.
In the rest of this subsection we present two approximation methods,
which we use to speed up the heuristic algorithms presented above.

4.3.1. Monte Carlo simulation
The first such method is Monte Carlo (MC) simulation: given a

restricted family ⊂ (𝑂) of subsets of 𝑂, we define the MC estimate
of E𝐴

[

𝐶(𝑂)
]

as:

ÊMC
𝐴

[

𝐶(𝑂)
]

= 1
||

∑

𝐴∈

(

∑

𝑖∈𝐴
𝑚𝑖 + 𝑐𝑉 ′⧵𝐴

)

, (26)

where each set 𝐴 ∈ is built selecting each point 𝑖 ∈ 𝑂 with proba-
bility 𝑝𝑖. Controlling the size of , a user can trade-off computation
time and approximation accuracy. Preliminary experiments showed
that setting || = 20 was already enough to provide high accuracy.
In particular, we found that the corresponding estimation allows to
8

identify sets 𝑂 whose expected cost lies under a 1% gap from the
expected cost of the optimal set 𝑂opt, more than 95% of the times (over
all instances and performing 50 re-runs for each instance) and is, in this
sense, stable. We refer the reader to, e.g., Montemanni et al. (2018)
for more advanced methods of tuning parameter || for the related
Probabilistic Orienteering Problem.

4.3.2. Machine learning
Another valid observation is that calculating E𝐴

[

𝐶(𝑂)
]

is faster for
small sets 𝑂, because there are fewer sets 𝐴 ⊆ 𝑂. Defining some
size-independent features of 𝑂, then, we propose to apply a Machine
Learning (ML) algorithm to learn E𝐴

[

𝐶(𝑂)
]

from a training set of small
sets 𝑂 and then predict it for larger sets.

We first describe the features we use as independent variables.
To do so, we must introduce some notation. Let 𝑐(𝑊), 𝑐(𝑊),

̄
𝑐(𝑊) be,

respectively, the largest, the average, and the smallest distance of a
delivery point in set 𝑊 ⊆ 𝑉 from the depot:

̄(𝑊) = max
𝑖∈𝑊

𝑐0𝑖, 𝑐(𝑊) = 1
|𝑊 |

∑

𝑖∈𝑊
𝑐0𝑖, ̄

𝑐(𝑊) = min
𝑖∈𝑊

𝑐0𝑖

Let 𝑚(𝑊) be the sum of crowdsourcing fees for deliveries in 𝑊 , 𝑚(𝑊) =
∑

𝑖∈𝑊 𝑚𝑖. Finally, let 𝑑(𝑊) be the diameter of 𝑊 , 𝑑(𝑊) = max𝑖,𝑗∈𝑊 𝑐𝑖𝑗 .
We define, then, the following features:

• One binary feature for each delivery point 𝑖 ∈ 𝑉 , with value 1 iff
𝑖 ∈ 𝑂.

• One feature representing the fraction of crowdsourcing fees of
offered deliveries, 𝑚(𝑂)∕𝑚(𝑉).

• Three features, representing the ratios between largest, average,
and smallest distances from the depot, between delivery points in
𝑂 and all delivery points: 𝑐(𝑂)

𝑐(𝑉) ,
𝑐(𝑂)
𝑐(𝑉) , ̄

𝑐(𝑂)

̄
𝑐(𝑉) .

• Three features, similar to those above, but referring to 𝑉 ⧵ 𝑂:
𝑐(𝑉 ⧵𝑂)
𝑐(𝑉) , 𝑐(𝑉 ⧵𝑂)

𝑐(𝑉) , ̄
𝑐(𝑉 ⧵𝑂)

̄
𝑐(𝑉) .

• Two features, representing the ratio between the diameters of,
respectively, 𝑂 and 𝑉 ⧵ 𝑂, and the diameter of 𝑉 : 𝑑(𝑂)

𝑑(𝑉) ,
𝑑(𝑉 ⧵𝑂)
𝑑(𝑉) .

We decided to use the features above after data exploration and pre-
liminary experimentation. One can further reduce their number by
performing feature selection. However, the feature we use are quick

Computers and Operations Research 142 (2022) 105722A. Santini et al.

1

1
1

1
1

T
m
t
s

E

Algorithm 2 The FB-Bid heuristic for the PTSPC.
1: procedure CheckImprovingFwd(𝑂, 𝑧,𝓁)
2: 𝑗 ← Null

3: for 𝑖 ∈ 𝑉 ⧵ 𝑂 ⧵ {𝓁} do
4: if E𝐴

[

𝐶(𝑂 ∪ {𝑖}
]

< 𝑧 then
5: 𝑧 ← E𝐴

[

𝐶(𝑂 ∪ {𝑖}
]

6: 𝑗 ← 𝑖
7: end if
8: end for

9: return j
0: end procedure

1: procedure CheckImprovingBck(𝑂, 𝑧,𝓁)
2: 𝑗 ← Null

3: for 𝑖 ∈ 𝑂 ⧵ {𝓁} do
4: if E𝐴

[

𝐶(𝑂 ⧵ {𝑖}
]

< 𝑧 then
15: 𝑧 ← E𝐴

[

𝐶(𝑂 ⧵ {𝑖}
]

16: 𝑗 ← 𝑖
17: end if
18: end for

19: return j
20: end procedure

21: function FB-Bid
22: 𝑂 ← ∅ // Current best set
23: 𝑧 ← E𝐴

[

𝐶(𝑂)
]

// Current best cost
24: 𝑗F ← Null // Best customer to add to 𝑂
25: 𝑗B ← Null // Best customer to remove from 𝑂

26: while true do
27: 𝑗F ← CheckImprovingFwd(𝑂, 𝑧, 𝑗B)
28: if 𝑗F ≠ Null then
29: 𝑂 ← 𝑂 ∪ 𝑗F

30: 𝑧 ← E𝐴
[

𝐶(𝑂)
]

31: end if

32: 𝑗B ← CheckImprovingBck(𝑂, 𝑧, 𝑗F)
33: if 𝑗B ≠ Null then
34: 𝑂 ← 𝑂 ⧵ 𝑗B

35: 𝑧 ← E𝐴
[

𝐶(𝑂)
]

36: end if

37: if 𝑗F = Null and 𝑗B = Null then
38: break
39: end if
40: end while

41: return O
42: end function

to compute when building the training set and leaving any of them
out neither decreases training time nor increases the model’s accuracy
significantly.

We test five simple and fast-to-train ML models:

• the Elastic Net (Zou and Hastie, 2005);
• a single Regression Tree (Breiman et al., 1984);
• a modified regression tree, known as the M5 model (Quinlan,

1992);
• a Random Forest of regression trees (Breiman, 2001);
9

• an ensemble of regression trees trained with the AdaBoost.R2
algorithm (Drucker, 1997).

To create the training and test sets, we evaluate E𝐴
[

𝐶(𝑂)
]

for all sets
𝑂 ⊆ 𝑉 on 1250 instances of size 8 to 12 (see Section 5.1). We use
the two-thirds smallest sets 𝑂 for the training set, and the remaining
one-third for the test set (we denote the test set as in the following).

Let ÊML
𝐴

[

𝐶(𝑂)
]

denote the prediction of an ML algorithm for the
expected cost of set 𝑂. We use two metrics to assess the accuracy of
the models. The first is a classical measure of prediction accuracy for
regression models, the mean absolute relative error (MARE):

MARE = 100 ⋅ 1
| |

∑

𝑂∈

|

|

|

ÊML
𝐴

[

𝐶(𝑂)
]

− E𝐴
[

𝐶(𝑂)
]

|

|

|

E𝐴
[

𝐶(𝑂)
] .

he second is a metric of interest when the prediction from the ML
odel is the objective function of an optimisation model: the error on

he best set (EB). This is the relative difference between the cost of the
et that the ML model identifies as the lowest-cost set in and the cost

of the actual best set:

�̂�ML = min
𝑂∈

ÊML
𝐴

[

𝐶(𝑂)
]

, 𝑂opt = min
𝑂∈

E𝐴
[

𝐶(𝑂)
]

,

B = 100 ⋅
|

|

|

E𝐴
[

𝐶(�̂�ML)
]

− E𝐴
[

𝐶(𝑂opt)
]

|

|

|

E𝐴
[

𝐶(𝑂opt)
] .

This metric is important because it measures the relative loss that a
planner would incur if he/she used �̂�ML instead of 𝑂opt as the offered
set.

Fig. 3 reports the distribution of MARE and EB over the 1250 test
sets used in this analysis (we report detailed results in Appendix C). The
median value for each model is reported in each box, and visualised
with a horizontal line; the rest of the box spans between the first and
third quartiles. Whiskers extend to the rest of the distribution, except
for outliers marked with fliers. Both metrics agree in selecting Elastic
Net as the best model out of the five we compare. We also note that
all methods perform generally well, with the central quartiles of both
distributions well below value 10%. As a result of this preliminary
computational analysis, we decided to use the Elastic Net model.

5. Computational study

After describing the instance generation method that we used, we
propose two main analyses of results. The first aims at understanding
how market environment factors, such as the willingness of customers
to accept offers or the crowdsourcing fee amounts, affect planner’s prof-
itability and environmental sustainability. The indicator of profitability
that we use are the savings that the planner achieves when allowing
crowdsourcing vs. when serving all deliveries with the retailer’s own
vehicle. (The cost incurred when serving all deliveries with the own
vehicle is the cost of the optimal TSP tour over all delivery points.)
The indicator of sustainability is the number of miles saved by the
retailer’s own vehicle when crowdsourcing. This metric assumes that
customers who accept to perform deliveries and use a carbon-emitting
mean of transport, only apply a minimal detour to their originally
planned routes.

The second analysis focuses on the computational contribution of
this paper. We test the performance of the exact and heuristic methods
introduced, propose to speed-up one of the heuristic methods using
Monte Carlo and Machine Learning objective function estimation, and
advise on which algorithms are more appropriate if the decision must
take place within a few minutes.

5.1. Instance generation

We generate a large set of synthetic instances to analyse the impact

of probabilities 𝑝 and crowdsourcing fees 𝑚 on the solutions. We

Computers and Operations Research 142 (2022) 105722A. Santini et al.
Fig. 3. Comparison of MARE and EB error metrics for the five considered Machine Learning model, over the test sets relative to the 1250 instances considered. Each box spans
between the first and third quartiles, with the horizontal line and the numbers indicating the median. The rest of the distribution is included between the whiskers, except for
outliers which are marked with fliers.
consider instances with 𝑛 = 8 up to 𝑛 = 20 deliveries. In each of
them, we place the depot at the origin of the Euclidean plane and
distribute the delivery points uniformly within a radius 𝑅 = 100 from
the depot. In other words, for each delivery point, we generate a radius
𝑟 ∈ [0, 𝑅], an angle 𝜃 ∈ [0, 2𝜋), and then the coordinates of the point as
𝑥 =

√

𝑟 cos 𝜃, 𝑦 =
√

𝑟 sin 𝜃.

We implemented several criteria to generate probabilities 𝑝𝑖 and fees
𝑚𝑖 in each instance. For each criterion we first choose a base probability
𝑝 or base fee 𝑚 from a given set of values, and then generate 𝑝𝑖 and
𝑚𝑖 as described below. The three criteria to assign probabilities to the
delivery points are:

• Uniform criterion: we first fix a base probability 𝑝 and then draw
each 𝑝𝑖 uniformly at random in (𝑝 − 0.05, 𝑝 + 0.05). We consider
values of 𝑝 in {0.05, 0.10,… , 0.55, 0.6}; during preliminary exper-
iments we noticed that higher values lead to solutions in which,
for the considered fee values, it is consistently convenient to offer
all deliveries for crowdsourcing.

• Direct proportional criterion (farther deliveries are easier to crowd-
source): we fix a base probability 𝑝 ∈ {0.25, 0.5} and then let each
𝑝𝑖 = 𝑝+𝛾𝑖 ⋅0.25, where 𝛾𝑖 ∈ [−1,+1] varies proportionally with the
distance between delivery point 𝑖 and the depot. For a point 𝑖 at
distance 0 from the depot, 𝛾𝑖 would be −1; for a point at distance
100, it would be +1.

• Inverse proportional criterion (closer deliveries are easier to crowd-
source): analogous to the previous one, but 𝛾𝑖 varies inversely
proportionally with the distance between the delivery point and
the depot.

We use two criteria to assign the crowdsourcing fees:

• Direct proportional criterion, i.e., each 𝑚𝑖 takes a value in (0, 100⋅𝑚𝑛)
proportional to the value of 𝑝𝑖 compared to the minimum and
maximum probabilities assigned to any delivery point. Here 𝑛 is
the number of delivery points and 𝑚 ∈ {2.5, 2.6,… , 3.4, 3.5} is a
base fee parameter determining the fee paid to the customers.

• Inverse proportional criterion: analogous to the previous one, but
the fee is inversely proportional to the probability.
10
Varying the criteria above we created a dataset of 4576 instances. For
each of the 13 sizes (𝑛 = 8 to 20) we consider, in fact, 16 possible ways
of generating probabilities (12 values of 𝑝 for the uniform criterion, 2
for the direct proportional criterion and 2 for the inverse proportional
criterion) and 22 ways of generating fees (11 values of 𝑚 for each of
the two criteria). This gives a total of 13 ⋅16 ⋅22 = 4576 instances, which
we make available on GitHub (Santini, 2020).

5.2. Analysis of the solutions

With this analysis we want to understand how instance generation
parameters influence the optimal solutions to the PTSPC. These pa-
rameters are linked to properties of real-life scenarios; thus, analysing
their impact can lead to managerial insights on which characteristics
make crowdsourcing to customers more attractive. For example, if
the market for crowdsourced LMD is offer-driven, one can imagine
that higher fees would lead to higher crowdsourcing probabilities,
a scenario modelled with the direct proportional fee criterion. If the
market is demand-driven, the probability of crowdsourcing a delivery
depends mainly on intrinsic characteristics (e.g., it is low for out-of-
the-way delivery points) and a planner must offer high rewards for
deliveries which are hard to crowdsource; this scenario is represented
by the inverse proportional fee criterion. Analogously, one can use the
direct proportional criterion for probabilities to model a supermarket
which is mainly visited by customers living far away and driving a car,
whereas the inverse proportional can model a supermarket in the city
centre, with most of the customers walking there.

Next, we consider two relevant metrics and evaluate how they
vary with the instance generation parameters. The first metric is the
percentage of deliveries offered, 100⋅ |𝑂

opt
|

|𝑉 |

(reported on the left 𝑦 axis in
Fig. 4); the second is the percentage savings when using crowdsourcing,

100 ⋅
E𝐴

[

𝐶(𝑂opt)
]

−𝑐𝑉 ′

𝑐𝑉 ′
(reported on the right 𝑦 axis). The two leftmost

charts in Fig. 4 show how the two metrics vary with parameters 𝑝 and
𝑚, the base probability and base fee, respectively. The two rightmost
chart, report the variation of the two metrics depending on the criteria
used to generate the other probabilities and fees (see Section 5.1). The
figure reports the average of such metrics, over all instances which
share the same instance generation parameters.

Computers and Operations Research 142 (2022) 105722A. Santini et al.
Fig. 4. Percentage of deliveries offered and percentage savings compared to no crowdsourcing (i.e., using the retailer’s own vehicle for all deliveries), as a function of the instance
generation parameters.
As expected, increasing the base probability has a large impact
on the solution: it yields larger offered sets and increased savings.
Increasing the crowdsourcing fees, instead, has the opposite effect.
Note, however, how probabilities tend to have a higher discriminative
power on the savings achieved. For example, when grouping instances
by base probabilities, the instances corresponding to 𝑝 = 0.6 give, on
average, more than 20% of savings. If we group instances by base fees,
though, even the instances with the lowest fees 𝑚 ∈ {2.5, 2.6} give a
more heterogeneous array of savings, which only averages to circa 11%
of savings.

In demand-driven markets the price elasticity curve is often mod-
elled as a sigmoid function (see, e.g., Ayers and Collinge (2005)).
Because, as noticed above, probabilities of acceptance have a large
impact on savings, a planner should price the crowdsourcing fees to
maximise the corresponding increase in probabilities (i.e., up until
the elasticity curve starts flattening). After that, one can conceive
alternative methods of improving the probability of acceptance without
further increasing the fees; e.g., via marketing or providing alternative
benefits. The specific relation between an increase in the fee and
the corresponding increase in acceptance probability is market-specific
and, to some extent, even customer-specific because different peo-
ple have different price sensitivities. Therefore, although the planner
should estimate this relation based on empirical data, as a rule of thumb
we notice that the same relative variation applied to probabilities has
11
a larger effect than applied to fees. For example, increasing the base
probabilities by +40% (from 0.25 to 0.35) causes an increase in savings
of 42% (from 6.53% to 9.25%). But a similar +40% increase in the base
fees (from 2.5 to 3.5) only decreases the savings by 15% (from 10.88%
to 9.29%). As such, if the relation between offered fee and acceptance
probability were roughly linear in this interval, we would have a net
+27% increase in savings under the high-fee/high-probability scenario
compared to the low-fee/low-probability one. Because the critical part
of the sigmoid elasticity curve is approximately linear, such an analysis
seems plausible.

The two considered metrics are also stable when aggregating by
the probability type and fee type parameters, with variations within
1–2 percentage points. This suggests that the advantages a planner can
get by crowdsourcing last-mile deliveries are robust over the scenarios
considered.

While the above analysis justifies the economical benefits of crowd-
sourcing last-mile deliveries, we also investigate on potential environ-
mental benefits, in terms of miles saved. Let 𝑀PTSPC be the length of the
tour of the retailer’s own vehicle in an optimal solution to the PTSPC
and 𝑀TSP be the length of the optimal Travelling Salesman tour for
the same instance. We define the (percentage) miles saved as 100 ⋅
𝑀TSP−𝑀PTSPC

𝑀TSP
. Note that, by definition, the miles saved only depend on

the probabilities 𝑝𝑖 and not on the amount of fees 𝑚𝑖. Fig. 5 shows how
the miles saved vary, as a function of the base probability 𝑝 used during

Computers and Operations Research 142 (2022) 105722A. Santini et al.

𝑧

Fig. 5. Miles saved as a function of the base probability 𝑝 used during instance gen-
eration. Each box spans the two central quartiles of the distribution over all instances
with the given base probability. Whiskers extend to the rest of the distribution, except
for outliers which are marked by fliers.

instance generation (detailed results are available in Appendix C).
Each box spans the two central quartiles of the distribution over all
instances with the given base probability. Whiskers extend to the rest
of the distribution, except for outliers which are marked by fliers. The
figure shows that using crowdsourcing can achieve a reduction in the
amount of miles travelled by the retailer’s own vehicle which ranges
between 10% and 40%. Under the assumption that customers accepting
to crowdsource the deliveries need a minimal detour from their planned
route, almost all these savings translate into reduced vehicle-miles and
into corresponding emissions savings.

5.3. Computational analysis

Table 1 shows an overview of the computational results, comparing
different approaches to solve the PTSPC. Each column corresponds to
an instance size, from 8 to 20 delivery points (here we report average
values over the 352 instances of each size, while in Table 4, Appendix C,
we report standard deviations for the main metric considered), while
each group of rows refers to an algorithm. We run all experiments on a
cluster, in which we reserve one core of an Intel Xeon processor running
at 1.7 GHz with 4 GB RAM.

The first row lists the time needed to enumerate all sets 𝑂 and, for
each of them, compute E𝐴

[

𝐶(𝑂)
]

. This approach is infeasible in practice
because, as expected, time grows exponentially in 𝑛; the enumeration
takes more than fourteen hours for instances with 20 delivery points.
In the next sets of row, we report indicators of the performances of the
other algorithms. Rows ‘‘Time (s)’’ denote the elapsed time in seconds.
Rows ‘‘OptGap%’’ list the percentage gap between the cost of the best
solution found by the algorithm (UB) and the cost of the optimal
solution (OPT). We compute the optimality gap as 100 ⋅ (UB−OPT)∕UB.
For the branch-and-bound algorithm we report two more quantities.
Row ‘‘Gap%’’ gives the gap computed as 100 ⋅ (UB − LB)∕UB, where LB
denotes a lower bound on the objective value of the optimal solution.
This is the gap that the algorithm can report to the user when it does not
know the true optimal objective. Rows ‘‘Closed%’’ report the percentage
of instances of the given size for which the gap was zero. Row ‘‘Nodes’’
lists the number of nodes visited during the exploration of the tree.
12
Next, we report the results of the branch-and-bound algorithm,
which we run with a time limit of 1 h. To highlight the importance of
upper bound �̄�′, we present the results both when we do not calculate
this bound at the root node (rows ‘‘B&B, no �̄�′’’) and when we do
(rows ‘‘B&B’’). When not using �̄�′, the algorithm closes all instances
up to size 12; on the other hand, it cannot solve to optimality any
instance of size 17 and above. For these latter instances, the algorithm
still has large gaps at the end of the runtime (rows ‘‘Gap%’’). However,
because we know (via enumeration) the cost of the optimal solution,
we can also give a measure of the quality of the best feasible solution
found within the time limit in rows ‘‘OptGap%’’. In this case, we see
that the B&B algorithm finds high quality solution, all within 0.10%
of the optimal on average. B&B, thus, identifies low cost solutions but
struggles proving the optimality (or even the quality) of these solutions
because of loose lower bounds. When using bound �̄�′ computation times
increase slightly for the smaller instance sizes. The gaps, however,
improve and the algorithm closes all instances up to size 13, while
it cannot solve to optimality any instance of size 18 and above. For
smaller instances which are solved within the time limit, using �̄�′ allows
to explore fewer nodes before reaching the provably optimal solution.
For larger instances, on the other hand, the algorithm explores more
nodes before the time limit hits, because the tighter bound allows to
enter a node and prune it quickly in more occasions. In general, the
gaps with the optimal solution (row ‘‘OptGap%’’) remain small, because
they are more influenced by lower rather than upper bounds.

To see the different quality of the bounds directly, Fig. 6 shows
the upper and lower bound gaps at the root node. These gaps are
respectively defined as 100 ⋅ (UB − OPT)∕UB and 100 ⋅ (OPT − LB)∕OPT,
where UB and LB are the values of upper (�̄� and �̄�′) and lower (

̄
𝑧)

bounds computed at the root node of the B&B tree. The leftmost chart
aggregates instances by size 𝑛, the central one by base probabilities 𝑝,
and the rightmost one by base fees 𝑚. As mentioned above, the figure
shows that the lower bound is looser than the upper bounds, and causes
large gaps. It also shows that �̄�′ is significantly tighter than �̄�. Even if
the main issue faced by the B&B algorithm is that the lower bound
is weak, a tighter upper bound offers more chances to prune larger
parts of the tree earlier and, thus, speed up the tree exploration. This
is, indeed, reflected in the results of Table 1.

Fig. 6 also shows that the quality of the upper bounds decreases for
high probabilities and, to a lesser extent, for high fees. In case of higher
probabilities, in fact, more deliveries will be crowdsourced and the term
𝑐𝑉 in bound �̄� is a bad approximation of the routing costs. When fees are
high, optimal solutions tend to exclude the deliveries with the highest
fees from the offered set; therefore, the worst-case costs computed by
̄ and �̄�′ can be very far from the optimum. The quality of the lower
bound, on the other hand, improves for high probabilities and high fees.
As mentioned in Section 2.2, when probabilities of acceptance are 1
the PTSPC reduces to the PTP, which we use to compute

̄
𝑧. It seems

reasonable, then, that for higher probabilities the difference between
the cost of the solutions of the PTSPC and of the PTP diminishes and
the bound becomes tighter. When fees are high, both the solution to the
PTSPC and to the PTP used to compute the lower bound will tend to
visit many delivery points with the retailer’s own vehicle — in general,
those with the highest fees. This makes the two solutions look more
similar (and, thus, the bounds tighter), compared to when fees are
low.

One last remark about the B&B algorithm is that, while the final
gaps remain low for all instance sizes, there is a sharp drop in the
number of instances solved to optimality starting from size 17 (or even
16 when not using �̄�′). This drop means that the B&B algorithm still
finds very good solutions (small gaps), but not exactly the optimal ones
(low ‘‘Closed%’’). Finally, we note how the number of nodes explored
tends to increase up to instances of size 16; from size 17 on, because
the exploration of each node starts to become time consuming, the

algorithm visits fewer nodes within its time limit.

Computers and Operations Research 142 (2022) 105722A. Santini et al.
Table 1
Comparison of different approaches to solve the PTSPC: complete enumeration, the branch-and-bound algorithm presented in Algorithm 1, the four heuristic introduced in Section 4.2,
and two versions of heuristic F-step in which we estimate the objective function using the Monte Carlo and Machine Learning (Section 4.3) estimators. Rows ‘‘Time (s)’’ report the
runtime in seconds. Row ‘‘Gap%’’ lists the optimality gap computed using lower and upper bounds introduced for the B&B algorithm. Rows ‘‘OptGap%’’ report the gap between
the best solution found by the algorithm and the true optimum (the best values for each instance size are presented in bold). Rows ‘‘Closed%’’ list the fraction of instances for
which the algorithms identified the optimal solution.

Instance size 𝑛

8 9 10 11 12 13 14 15 16 17 18 19 20

Enum Time (s) 0.52 5.21 5.07 22.50 49.74 78.94 189.77 308.40 1661.55 6586.03 8888.34 12 528.09 50 481.00

B&B, no �̄�′

Time (s) 1.42 4.57 6.36 13.00 50.04 81.29 238.75 543.99 1506.32 3600.00 3600.00 3600.00 3600.00
Gap% 0.00 0.00 0.00 0.00 0.00 0.06 1.91 2.79 8.41 18.58 18.78 18.91 19.08
OptGap% 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.05 0.09 0.08 0.10 0.10
Closed% 100.00 100.00 100.00 100.00 100.00 98.58 90.34 88.14 28.41 1.70 0.00 0.00 0.00
Nodes 452.55 892.86 1761.02 3508.37 7029.26 13 435.47 17 198.99 16 080.76 22 461.92 10 590.18 5658.16 5223.32 4677.39

B&B

Time (s) 1.86 5.02 8.59 24.73 56.38 84.91 264.17 602.86 1493.77 3600.00 3600.00 3600.00 3600.00
Gap% 0.00 0.00 0.00 0.00 0.00 0.00 0.89 1.71 5.05 14.86 16.02 16.79 17.08
OptGap% 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.04 0.08 0.08 0.09 0.10
Closed% 100.00 100.00 100.00 100.00 100.00 100.00 99.72 96.59 84.94 47.16 8.24 0.00 0.00
Nodes 381.12 633.48 1429.85 2787.03 5600.15 9492.63 14 628.17 16 674.98 19 226.10 15 973.72 10 083.91 7545.08 7166.25

F-step
Time (s) 0.24 0.91 1.57 1.41 3.57 8.25 16.94 42.33 101.54 235.44 511.41 615.64 1178.77
OptGap% 0.23 0.21 0.18 0.17 0.12 0.19 0.15 0.16 0.14 0.12 0.20 0.10 0.38
Closed% 96.88 88.92 88.64 85.51 89.49 84.66 86.36 84.94 77.84 73.58 23.86 22.16 19.03

B-step
Time (s) 0.33 1.27 3.02 7.01 28.83 60.43 87.10 168.81 371.23 891.03 1775.00 2631.10 3587.52
OptGap% 0.09 0.06 0.06 0.04 0.06 0.05 0.05 0.06 0.05 0.08 0.31 0.41 1.39
Closed% 94.32 93.75 93.47 93.18 92.33 92.90 93.18 89.49 80.68 74.43 20.74 16.76 2.56

FB-bid
Time (s) 0.28 1.69 1.05 1.84 3.97 7.96 12.86 40.21 155.45 328.82 600.06 983.43 1361.84
OptGap% 0.23 0.21 0.18 0.17 0.12 0.19 0.15 0.16 0.13 0.12 0.18 0.09 0.38
Closed% 96.88 88.92 88.64 85.51 89.49 84.66 86.36 84.94 78.13 73.58 24.15 22.44 19.03

BF-bid
Time (s) 0.43 1.27 4.33 9.45 28.21 66.69 107.66 187.82 406.68 956.98 1837.41 2729.43 3592.72
OptGap% 0.09 0.06 0.06 0.04 0.06 0.05 0.04 0.06 0.05 0.08 0.18 0.40 1.28
Closed% 94.32 93.75 93.47 93.18 92.33 92.90 93.47 89.49 80.68 74.43 25.85 17.05 3.13

F-MC20
Time (s) 0.09 0.11 0.15 0.13 0.42 0.15 0.24 0.96 0.91 0.83 0.83 1.33 1.46
OptGap% 0.23 0.21 0.18 0.17 0.12 0.20 0.15 0.18 0.19 0.19 0.22 0.16 0.41
Closed% 96.88 88.92 88.64 85.51 89.49 84.09 85.23 84.09 58.81 59.38 23.01 18.75 16.19

F-ML
Time (s) 0.26 0.96 1.61 1.71 3.86 9.01 17.88 45.09 109.40 242.15 536.59 607.90 609.18
OptGap% 0.23 0.21 0.18 0.17 0.12 0.19 0.15 0.16 0.14 0.12 0.20 0.10 0.37
Closed% 96.88 88.92 88.64 85.51 89.49 84.66 86.36 84.94 77.84 73.58 23.86 22.44 19.60
Fig. 6. Percentage gaps of the upper and lower bounds, compared to the optimal (or best-known) solution, at the root node of the B&B tree.
Going back to Table 1, the next four groups of rows refer to the
heuristic algorithms introduced in Section 4.2. The F-step heuristic is
faster than the B-step algorithm, because it tends to visit smaller sets
(remember that it starts with 𝑂 = ∅). On the other hand, it tends
to have larger gaps for all instance sizes but for 19 and 20. Because
the optimal solution tends to offer more than half of the deliveries
(see Section 5.2) we could, in fact, expect that B-step gives slightly
better results. In both cases, however, it is striking how the heuristic
algorithms yield low gaps, with the vast majority lower than 1%. We
attribute this phenomenon to the shape of the objective function of our
problem which, as we observed empirically, tends to flatten once |𝑂|

reaches values close to |𝑂opt
|. Fig. 7 visualises this phenomenon. The
13
figure reports the gap between the objective value of generic sets 𝑂
and the optimal set 𝑂opt, averaged over all sets 𝑂 of sizes between
|𝑂opt

| − 5 and |𝑂opt
| + 5 and over all instances. Note that the median

gap for size difference 0, i.e., for sets 𝑂 of the same size as 𝑂opt,
lies well below 5%. Considering that the heuristics build sets which
are locally optimal, in light of Fig. 7, it is less surprising that they
manage to keep the average gaps below 1%. To summarise, it seems
important to determine how many customers should be offered for
crowdsourcing and, once this is established, one can get further savings
by carefully choosing which customers to crowdsource. This is a fact
which we can exploit to devise further heuristics, as we discuss in
Section 6.

Computers and Operations Research 142 (2022) 105722A. Santini et al.
Fig. 7. Average gap between the objective value of sets 𝑂 and the objective value
of the optimal set 𝑂opt. The figure reports such gap, computed as 100 ⋅

(

E𝐴
[

𝐶(𝑂)
]

−
E𝐴

[

𝐶(𝑂opt)
])

∕E𝐴
[

𝐶(𝑂)
]

, for all sets 𝑂 ⊆ 𝑉 which have size between −5 and +5
compared with the size of 𝑂opt. In other words, for all instances, we consider all sets
𝑂 such that |𝑂opt

| − 5 ≤ |𝑂| ≤ |𝑂opt
| + 5 and compare their cost with the cost of 𝑂opt.

For each size difference, the boxes span between the first and the third quartile, with
the central horizontal line denoting the median value. Whiskers extend to the rest of
the distribution (omitting outliers).

Table 1 also shows that there is a sharp drop in the number of
instances for which the heuristic algorithms find the optimal solution
(rows ‘‘Closed%’’), once the instance size reaches value 18.

Regarding run times, even the fastest of the two stepwise heuristics
(F-step) takes an average of roughly 20 min for the larger instances
and can be impractical to use in real-life decision support tools. Using
the bidirectional heuristics BF-bid and FB-bid increases the run times
even further, while providing little improvement in terms of solution
quality. Therefore, in the last two groups of rows, we focus on speeding
up the solution times: because the F-step heuristic is the fastest of
the four and produces high quality solutions, we use it as a base and
replace the exact evaluation of E𝐴

[

𝐶(𝑂)
]

with its estimation using
Monte Carlo (algorithm F-MC20) and Machine Learning (algorithm F-
ML) estimators. For consistency with the other results, OptGap% will
use the true value of the objective function of the set returned by the
algorithms (calculated a posteriori), even if the algorithms themselves
use its approximation.

For the F-MC20 algorithm, we use a sample size of 20 (i.e., || = 20
in the notation of Section 4.3) which allows us to speed up the run time
of the algorithm considerably (almost always under two seconds) while
maintaining a comparable solution quality. Such speed-up makes this
algorithm suitable for interactive decision support tools, in which the
decision maker can experiment and perform scenario analysis varying
instance parameters such as the fee that the planner is willing to offer.

For the F-ML algorithm we took the following approach. We allocate
the first five minutes of run time to building the training set. This means
that the algorithm computes the exact expected cost for the smaller
sets 𝑂 during this period. If the algorithm completes within the first
five minutes, then it is equivalent to F-step (the corresponding values
are in grey in Table 1). On the other hand, if after this time there are
still sets 𝑂 to explore, we train the Machine Learning model using the
data collected during the first five minutes and then use the model
to estimate the objective value of the larger sets. Because the Elastic
Net model selected in Section 4.3.2 trains in a matter of fractions of
14
a second, this approach would allow us to have constant run times of
roughly five minutes, even for instances larger than the ones considered
in this study.

The instance sizes for which F-step took longer than 5 min were 19
an 20. In this case, the F-ML algorithm has run times close to 5:10 min
and gives solution of the same quality as the F-step algorithm. Note that
for instances of size 20, the average ‘‘OptGap%’’ is even smaller for F-
ML than it is for F-step, indicating that choosing the customer to add
using the estimated objective value instead of the true E𝐴

[

𝐶(𝑂)
]

gives a
better set of offered customers, in the end. Analogously, ‘‘Closed%’’ is
smaller for both size 19 and 20. Since the run time of this heuristic
tends to be stable (and reasonably small) no matter how large the
instance size and the solutions produced are of high quality, it can
be used in a non-interactive decision support tool which runs in the
background roughly five minutes before the ‘‘end of day’’ period starts
at the supermarket.

6. Conclusions and future research

In this paper we have introduced the problem of determining a
subset of last-mile deliveries that a company should open for crowd-
sourcing at the end of the day. We placed this problem in the context
of both optimisation of the last segment of the retail supply chain, and
in that of TSP problems in which not all customers are visited.

We proposed a branch-and-bound algorithm which has the advan-
tage of being able to provide optimality gaps. Gaps are high for larger
instances even when using a time limit of one hour. However, the
quality of the solutions found by the algorithm seems to be higher than
what the gaps would suggest, due to poor lower bounds which inflate
the gaps. Therefore, in future works, we plan to devise tighter lower
bounds which can speed up the exploration of the B&B tree, provide
stronger optimality guarantees for the primal solutions and allow to
solve larger instances. We note that exact algorithms for stochastic
routing problems are still limited to solve small instances. For example,
the algorithm of Laporte et al. (1994) (which is still the state-of-the-art
exact algorithm for the PTSP) solves instances with 50 customers, but
only 5 of them are stochastic. Even recent B&B algorithms for the PTSP
were tested on instances of up to 10 customers (Mahfoudh et al., 2015),
18 customers (Amar et al., 2017), and 30 customers (Amar et al., 2018).

We also proposed four heuristic algorithms which only explore a
small portion of the solution space. Surprisingly, even simple heuristics
such as the forward stepwise F-Step consistently give solutions within
1% of the optimum. We attribute this pleasant property to the shape
of the objective cost landscape, which becomes flat once the number
of offered deliveries is fixed, for reasons similar to those exposed in
Section 4.3 for the concentration of E𝐴

[

𝐶(𝑂)
]

around its mean. Using
this information, we plan to investigate two-stage heuristics in which
we first determine a good size for the offered set and accordingly
produce a feasible solution quickly. Then, we look among offered sets
of the given size to further lower the solution cost. We also plan
to investigate the performance of our heuristics on instances with a
radically different topology; for example, instances in which customers
are strongly clustered.

Finally, we proposed two methods to approximate the objective
function of our problem. Because computing the cost of one solution
involves solving an exponential number of TSPs, such approximations
give dramatic speed-ups in run times. The Monte Carlo simulation
method runs under two seconds, and the Machine Learning method
gives an almost constant-time algorithm, whose time limit can be set
by the user (we used five minutes in our experiments). The interesting
property of such approximations is that they have little impact on
the solution quality, compared to the heuristic algorithm to which we
applied them. For example, using the F-MC20 algorithm, one could
build a real-time decision support tool which enables decision-makers
to perform extensive scenario analyses.

Computers and Operations Research 142 (2022) 105722A. Santini et al.

m

W

𝑐
s
c

𝑐

C
o
t
c
o

w
a
n
c
c

A

M
f
v
p
‘
s
i

g
t
‘
a
d
P
c

T
E
i

An analysis of synthetic instances shows that crowdsourcing de-
liveries has the potential to both achieve savings and to reduce the
total miles travelled by vehicles, contributing to a more sustainable
last-mile supply chain. Moreover, using customers as occasional drivers
can reduce the negative effects of current outsourcing policies, increase
trust and promote social engagement. In the future, we also plan to
extend our study to applications beyond LMD, e.g., in social care
problems where pharmacies ask their customers to deliver medicines
to their elderly neighbours.

CRediT authorship contribution statement

Alberto Santini: Conceptualization, Methodology, Software, For-
al Analysis, Writing. Ana Viana: Conceptualization, Formal Analy-

sis, Writing. Xenia Klimentova: Conceptualization, Formal Analysis,
riting. João Pedro Pedroso: Conceputalisation, Formal Analysis,

Writing.

Acknowledgements

Alberto Santini was partially supported by grant ‘‘RTI2018-095197-
B-I00’’ from the Spanish Ministry of Economy and Competitiveness
and has received funding from the European Union’s Horizon 2020
research and innovation programme under the Marie Skłodowska-Curie
grant agreement 945380. The other authors are partially funded by
the ERDF – European Regional Development Fund through the COM-
PETE Programme (operational programme for competitiveness) and by
National Funds through the Fundação para a Ciência e a Tecnologia
(Portuguese Foundation for Science and Technology) within project
‘‘POCI-01-0145-FEDER-028611’’.

Appendix A. Definition of 𝒄𝑿

We formalise the TSP problem, which we must solve to obtain cost
𝑋 for a given subset of vertices 𝑋 ({0} ⊆ 𝑋 ⊆ 𝑉 . Let 𝐸𝑋 ⊆ 𝐸 be the
ubset of edges with both endpoints in 𝑋. Then 𝑐𝑋 is defined as the
ost of the optimal solution to the following TSP problem:

𝑋 = min
∑

{𝑖,𝑗}∈𝐸𝑋

𝑐𝑖𝑗𝑤𝑖𝑗 (27)

s.t.
∑

{𝑖,𝑗}∈𝛿(𝑖)
𝑤𝑖𝑗 = 2 ∀𝑖 ∈ 𝑋 (28)

∑

{𝑖,𝑗}∈𝛿(𝑆)
𝑤𝑖𝑗 ≥ 2 ∀𝑆 ⊂ 𝑋 (29)

𝑤𝑖𝑗 ∈ {0, 1} ∀{𝑖, 𝑗} ∈ 𝐸𝑋 , (30)

where 𝑤𝑖𝑗 is a binary variable denoting whether edge {𝑖, 𝑗} ∈ 𝐸𝑋 is
part of the tour, 𝛿(𝑆) denotes the set of edges with one extreme in 𝑆
and one in 𝑋 ⧵ 𝑆, and 𝛿(𝑖) = 𝛿({𝑖}).

Appendix B. Definition of PTP(𝑿, 𝒀)

We formalise the Profitable Tour Problem (PTP). The PTP is defined
on a graph 𝐻 = (𝑈 ′, 𝐷) where 𝑈 ′ is the set of vertices and 𝐷 is the set
of edges. Vertex 0 ∈ 𝑈 ′ is the depot, while the other vertices form set
𝑈 = 𝑈 ′ ⧵ {0}. Each vertex 𝑖 ∈ 𝑈 has an associated reward 𝑚𝑖 ∈ R+ and
each edge {𝑖, 𝑗} ∈ 𝐷 has a corresponding travel cost 𝑐𝑖𝑗 ∈ R+. A solution
to the PTP is a simple tour starting and ending at the depot and possibly
visiting vertices in 𝑈 . The profit of a tour is the difference between the
prizes collected at vertices visited by the tour, and the travel costs of
the edges comprising the tour. The PTP asks to find the tour with the
highest profit.

We are interested in a generalisation of the PTP in which 𝑈 is
partitioned into two sets, 𝑋 and 𝑈 ⧵ 𝑋, and we require the tour to
visit all vertices of 𝑋. We can solve our version of the problem with an
15

Integer Programme (IP), introducing two sets of variables: 𝑣𝑖 ∈ {0, 1}
Table 2
Detailed results on the comparison of MARE and EB error metrics for the five considered
Machine Learning models. The corresponding distributions are depicted graphically in
Fig. 3. All values are in percentage.

Model MARE EB

Mean Median StdDev Mean Median StdDev

ElasticNet 1.80 0.90 2.26 6.99 1.35 13.90
Regression tree 1.73 0.90 2.08 7.53 1.43 15.38
M5 1.76 0.92 2.13 7.77 1.47 15.05
Random forest 2.05 1.23 2.26 7.74 1.37 16.23
AdaBoost.R2 2.09 1.30 2.29 7.91 1.79 14.74

which takes value 1 iff the tour visits vertex 𝑖 ∈ 𝑈 ′, and 𝑤𝑖𝑗 ∈ {0, 1} iff
the tour uses edge {𝑖, 𝑗} ∈ 𝐷. A model for the problem is, then:

max
∑

𝑖∈𝑈
𝑚𝑖𝑣𝑖 −

∑

{𝑖,𝑗}∈𝐷
𝑐𝑖𝑗𝑤𝑖𝑗 (31)

s.t. 𝑣𝑖 = 1 ∀𝑖 ∈ {0} ∪𝑋 (32)
∑

{𝑖,𝑗}∈𝛿(𝑖)
𝑤𝑖𝑗 = 2𝑣𝑖 ∀𝑖 ∈ 𝑈 ′ (33)

∑

{𝑖,𝑗}∈𝛿(𝑆)
𝑤𝑖𝑗 ≥ 2𝑣𝑘 ∀𝑆 ⊂ 𝑈, ∀𝑘 ∈ 𝑆 (34)

𝑣𝑖 ∈ {0, 1} ∀𝑖 ∈ 𝑈 ′ (35)

𝑤0𝑗 ∈ {0, 1, 2} ∀{0, 𝑗} ∈ 𝐷 (36)

𝑤𝑖𝑗 ∈ {0, 1} ∀{𝑖, 𝑗} ∈ 𝐷 (𝑖, 𝑗 ≠ 0). (37)

onstraints (32) force the tour to include the depot and all vertices
f 𝑋, constraints (33) ensure that the tour uses two edges incident
o each visited vertex, while constraints (34) are sub-tour elimination
onstraints. We denote with PTP(𝑋,𝑈 ⧵ 𝑋) the objective value of the
ptimal solution of (31)–(37).

We point out that one needs not solve (31)–(37) as an IP. In fact,
e use the transformation of the PTP into an Asymmetric TSP on
n extended graph proposed by Volgenant and Jonker (1987). In the
otation used in Feillet et al. (2005, Sec. 2.2), we can impose the
ondition that the tour visits delivery locations 𝑋 by skipping the
reation, in the extended graph, of vertices of type 𝑣𝑛+𝑖 for all 𝑣𝑖 ∈ 𝑋.

ppendix C. Detailed results

Table 2 provides a detail of the data relative to the comparison of
ARE (Mean Absolute Relative Error) and EB (Error on the Best set)

or the five Machine Learning models introduced in Section 4.3.2. The
alues in the table refer to the same data as Fig. 3. Column ‘‘Model’’ re-
orts the name of the Machine Learning model, while columns ‘‘Mean’’,

‘Median’’ and ‘‘StdDev’’ list, respectively, the mean, the median and the
tandard deviation of the two metrics (MARE and EB). All results are
n percentage.

Table 3 contains a detailed breakdown of the impact of instance
eneration parameter 𝑝 on the miles saved in the optimal solution of
he PTSPC. This data is also reported graphically in Fig. 5. Column
‘Base prob’’ lists the values of parameter 𝑝. Columns ‘‘Mean’’, ‘‘Median’’
nd ‘‘StdDev’’ list, respectively, the mean, the median and the standard
eviation of the percentage of miles saved when using the optimal
TSPC solution instead of the TSP solution (which corresponds to no
rowdsourcing).

Table 4 reports standard deviations for values of ‘‘OptGap%’’ from
able 1. Each column refers to one of the eight algorithms considered.
ach row refers to the results produced by that algorithm on the
nstances of the given size.

Computers and Operations Research 142 (2022) 105722A. Santini et al.
Table 3
Detailed results on the miles saved as a function of the base probability 𝑝 used during
instance generation. The corresponding distributions are depicted graphically in Fig. 5.
All values are in percentage, relative to the TSP tour length.

Base prob Mean Median StdDev

0.05 10.53 10.86 4.06
0.10 13.50 13.64 4.09
0.15 15.50 15.80 4.57
0.20 15.43 15.14 5.02
0.25 17.75 17.73 4.92
0.30 20.47 20.99 4.63
0.35 21.74 22.16 4.54
0.40 25.25 25.81 7.06
0.45 27.55 26.85 5.21
0.50 30.19 30.82 6.54
0.55 33.43 33.66 7.12
0.60 37.81 36.74 6.57

Table 4
Standard deviations for the ‘‘OptGap%’’ values of Table 1. Each column refers to one
of the eight algorithms considered. Each row refers to the results produced by that
algorithm on the instances of the given size.

Inst. size B&B, no �̄�′ B&B F-step B-step FB-bid BF-bid F-MC20 F-ML

8 0.00 0.00 3.81 3.61 3.81 3.61 3.81 3.81
9 0.00 0.00 3.79 2.72 3.79 2.72 3.79 3.79
10 0.00 0.00 3.57 2.72 3.57 2.72 3.57 3.57
11 0.00 0.00 3.00 1.99 3.00 1.99 3.00 3.00
12 0.00 0.00 3.04 2.47 3.04 2.47 3.04 3.04
13 0.00 0.00 3.14 2.20 3.14 2.20 3.11 3.14
14 0.00 0.00 2.94 2.20 2.94 2.08 2.85 2.94
15 0.00 0.00 2.89 2.02 2.89 2.02 2.98 2.89
16 0.00 1.19 2.19 1.19 2.14 1.19 1.83 2.19
17 0.00 0.71 1.79 1.41 1.79 1.41 1.84 1.79
18 0.00 0.00 1.22 1.66 1.13 1.15 1.33 1.22
19 0.00 0.00 0.48 1.91 0.26 1.89 0.95 0.48
20 0.00 0.00 1.85 3.38 1.85 3.26 1.90 1.83

References

Albareda-Sambola, Maria, Van Der Vlerk, Maarten H., Fernández, Elena, 2006. Exact
solutions to a class of stochastic generalized assignment problems. European J.
Oper. Res. 173 (2), 465–487. http://dx.doi.org/10.1016/j.ejor.2005.01.035.

Alnaggar, Aliaa, Gzara, Fatma, Bookbinder, James, 2021. Crowdsourced delivery: A
review of platforms and academic literature. Omega 98, 102–139. http://dx.doi.
org/10.1016/j.omega.2019.102139.

Amar, Mohamed Abdellahi, Khaznaji, Walid, Bellalouna, Monia, 2017. An exact
resolution for the probabilistic traveling salesman problem under the a priori
strategy. Procedia Comput. Sci. 108, 1414–1423. http://dx.doi.org/10.1016/j.procs.
2017.05.068.

Amar, Mohamed Abdellahi, Khaznaji, Walid, Bellalouna, Monia, 2018. A parallel branch
and bound algorithm for the probabilistic TSP. In: International Conference on
Algorithms and Architectures for Parallel Processing. Springer, Guangzhou, China,
pp. 437–448. http://dx.doi.org/10.1007/978-3-030-05051-1_30.

Angelelli, Enrico, Archetti, Claudia, Filippi, Carlo, Vindigni, Michele, 2017. The
probabilistic orienteering problem. Comput. Oper. Res. 81, 269–281. http://dx.doi.
org/10.1016/j.cor.2016.12.025.

Applegate, David, Bixby, Robert, Chvátal, Václav, Cook, William, 2003. Concorde TSP
solver. URL: https://www.math.uwaterloo.ca/tsp/concorde/.

Archetti, Claudia, Savelsbergh, Martin, Speranza, Maria Grazia, 2016. The vehicle
routing problem with occasional drivers. European J. Oper. Res. 254 (2), 472–480.
http://dx.doi.org/10.1016/j.ejor.2016.03.049.

Arslan, Alp, Agatz, Niels, Kroon, Leo, Zuidwijk, Rob, 2019. Crowdsourced delivery –
A dynamic pickup and delivery problem with ad hoc drivers. Transp. Sci. 53 (1),
222–235. http://dx.doi.org/10.1287/trsc.2017.0803.

Ayers, Ronald, Collinge, Robert, 2005. Microeconomics. Pearson, ISBN:
9780131489707.

Barbosa, Miguel, 2019. A Data-Driven Compensation Scheme for Last-Mile Delivery
with Crowdsourcing (MA thesis). University of Porto, URL: https://repositorio-
aberto.up.pt/bitstream/10216/124212/2/367287.pdf.

Beraldi, Patrizia, Ghiani, Gianpaolo, Laporte, Gilbert, Musmanno, Roberto, 2005.
Efficient neighborhood search for the probabilistic pickup and delivery travel-
ling salesman problem. Networks 45 (4), 195–198. http://dx.doi.org/10.1002/net.
20063.
16
Berman, Oded, Simchi-Levi, David, 1988. Finding the optimal a priori tour and location
of a traveling salesman with nonhomogeneous customers. Transp. Sci. 22 (2),
148–154. http://dx.doi.org/10.1287/trsc.22.2.148.

Bertsimas, Dimitris J., 1992. A vehicle routing problem with stochastic demand. Oper.
Res. 40 (3), 574–585. http://dx.doi.org/10.1287/opre.40.3.574.

Bertsimas, Dimitris, Howell, Louis, 1993. Further results on the probabilistic traveling
salesman problem. European J. Oper. Res. 65 (1), 68–95. http://dx.doi.org/10.
1016/0377-2217(93)90145-D.

Bowler, Neill, Fink, Thomas, Ball, Robin, 2003. Characterization of the probabilistic
traveling salesman problem. Phys. Rev. E 68 (3), http://dx.doi.org/10.1103/
PhysRevE.68.036703.

Breiman, Leo, 2001. Random forests. Mach. Learn. 45 (1), 5–32.
Breiman, Leo, Friedman, Jerome, Stone, Charles, Olshen, Richard, 1984. Classifica-

tion and Regression Trees. Taylor & Francis, p. 368. http://dx.doi.org/10.1201/
9781315139470.

Castillo, Vincent, Bell, John, Rose, William, Rodrigues, Alexandre, 2018. Crowdsourcing
last mile delivery: strategic implications and future research directions. J. Bus.
Logist. 39 (1), 7–25. http://dx.doi.org/10.1111/jbl.12173.

Dahle, Lars, Andersson, Henrik, Christiansen, Marielle, 2017. The vehicle routing
problem with dynamic occasional drivers. In: Bektaş, Tolga, Coniglio, Stefano,
Martinez-Sykora, Antonio, Voß, Stefan (Eds.), Computational Logistics. pp. 49–63.
http://dx.doi.org/10.1007/978-3-319-68496-3_4.

Dayarian, Iman, Savelsbergh, Martin, 2017. Crowdshipping and same-day deliv-
ery:Employing in-store customers to deliver online orders. Optim. Online URL:
http://www.optimization-online.org/DB_HTML/2017/07/6142.html.

Dell’Amico, Mauro, Maffioli, Francesco, Värbrand, Peter, 1995. On prize-collecting tours
and the asymmetric travelling salesman problem. Int. Trans. Oper. Res. 2 (3),
297–308. http://dx.doi.org/10.1111/j.1475-3995.1995.tb00023.x.

Devari, Aashwinikumar, Nikolaev, Alexander, He, Qing, 2017. Crowdsourcing the last
mile delivery of online orders by exploiting the social networks of retail store
customers. Transp. Res. E 105, 105–122. http://dx.doi.org/10.1016/j.tre.2017.06.
011.

Drucker, Harris, 1997. Improving regressors using boosting techniques. In: ICML ’97.
Proceedings of the Fourteenth International Conference on Machine Learning.
Nashville, USA, pp. 107–115.

Fadda, Edoardo, Mana, Dario, Perboli, Guido, Tadei, Roberto, 2017. Multi period
assignment problem for social engagement and opportunistic IoT. In: COMPSAC
’17. pp. 760–765.

Fadda, Edoardo, Perboli, Guido, Tadei, Roberto, 2018. Customized multi-period stochas-
tic assignment problem for social engagement and opportunistic IoT. Comput. Oper.
Res. 93, 41–50. http://dx.doi.org/10.1016/j.cor.2018.01.010.

Fadda, Edoardo, Perboli, Guido, Tadei, Roberto, 2019. A progressive hedging method
for the optimization of social engagement and opportunistic IoT problems.
European J. Oper. Res. 277, 643–652. http://dx.doi.org/10.1016/j.ejor.2019.02.
052.

Fadda, Edoardo, Tiotsop, Lohic Fotio, Manerba, Daniele, Tadei, Roberto, 2020. The
stochastic multipath traveling salesman problem with dependent random travel
costs. Transp. Sci. 54 (5), http://dx.doi.org/10.1287/trsc.2020.0996.

Feillet, Dominique, Dejax, Pierre, Gendreau, Michel, 2005. Traveling salesman problems
with profits. Transp. Sci. 39 (2), 188–205. http://dx.doi.org/10.1287/trsc.1030.
0079, URL: https://www.jstor.org/stable/25769242.

Fischetti, Matteo, Ljubic, Ivana, Monaci, Michele, Sinnl, Markus, 2017. A new general-
purpose algorithm for mixed-integer bilevel linear programs. Oper. Res. 65 (6),
1615–1637. http://dx.doi.org/10.1287/opre.2017.1650.

Gdowska, Katarzyna, Viana, Ana, Pedroso, João Pedro, 2018. Stochastic last-mile
delivery with crowdshipping. Transp. Res. Procedia 30, 90–100. http://dx.doi.org/
10.1016/j.trpro.2018.09.011.

Gendreau, Michel, Jabali, Ola, Rei, Walter, 2014. Stochastic vehicle routing problems.
In: Toth, Paolo, Vigo, Daniele (Eds.), Vehicle Routing: Problems, Methods, and
Applications. SIAM, pp. 213–239. http://dx.doi.org/10.1137/1.9781611973594.
ch8.

Gendreau, Michel, Laporte, Gilbert, Séguin, René, 1996. Stochastic vehicle routing.
European J. Oper. Res. 88 (1), 3–12. http://dx.doi.org/10.1016/0377-2217(95)
00050-X.

Groër, Chris, Golden, Bruce, Wasil, Edward, 2009. The consistent vehicle routing
problem. Manuf. Serv. Oper. Manage. 11 (4), 630–643. http://dx.doi.org/10.1287/
msom.1080.0243.

Halldórsson, Árni, Kovács, Gyöngyi, Edwards, Julia, McKinnon, Alan, Cullinane, Sharon,
2010. Comparative analysis of the carbon footprints of conventional and on-
line retailing. Int. J. Phys. Distrib. Logist. Manage. http://dx.doi.org/10.1108/
09600031011018055.

Held, Michael, Karp, Richard, 1962. A dynamic programming approach to sequencing
problems. J. Soc. Ind. Appl. Math. 10 (1), 196–210. http://dx.doi.org/10.1137/
0110015.

Ho, Sin C., Haugland, Dag, 2011. Local search heuristics for the probabilistic dial-a-
ride problem. OR Spectrum 33 (4), 961–988. http://dx.doi.org/10.1007/s00291-
009-0175-6.

Hocking, Ronald, 1976. The analysis and selection of variables in linear regression.
Biometrics 32 (1), 1–49. http://dx.doi.org/10.2307/2529336.

http://dx.doi.org/10.1016/j.ejor.2005.01.035
http://dx.doi.org/10.1016/j.omega.2019.102139
http://dx.doi.org/10.1016/j.omega.2019.102139
http://dx.doi.org/10.1016/j.omega.2019.102139
http://dx.doi.org/10.1016/j.procs.2017.05.068
http://dx.doi.org/10.1016/j.procs.2017.05.068
http://dx.doi.org/10.1016/j.procs.2017.05.068
http://dx.doi.org/10.1007/978-3-030-05051-1_30
http://dx.doi.org/10.1016/j.cor.2016.12.025
http://dx.doi.org/10.1016/j.cor.2016.12.025
http://dx.doi.org/10.1016/j.cor.2016.12.025
https://www.math.uwaterloo.ca/tsp/concorde/
http://dx.doi.org/10.1016/j.ejor.2016.03.049
http://dx.doi.org/10.1287/trsc.2017.0803
http://refhub.elsevier.com/S0305-0548(22)00025-9/sb9
http://refhub.elsevier.com/S0305-0548(22)00025-9/sb9
http://refhub.elsevier.com/S0305-0548(22)00025-9/sb9
https://repositorio-aberto.up.pt/bitstream/10216/124212/2/367287.pdf
https://repositorio-aberto.up.pt/bitstream/10216/124212/2/367287.pdf
https://repositorio-aberto.up.pt/bitstream/10216/124212/2/367287.pdf
http://dx.doi.org/10.1002/net.20063
http://dx.doi.org/10.1002/net.20063
http://dx.doi.org/10.1002/net.20063
http://dx.doi.org/10.1287/trsc.22.2.148
http://dx.doi.org/10.1287/opre.40.3.574
http://dx.doi.org/10.1016/0377-2217(93)90145-D
http://dx.doi.org/10.1016/0377-2217(93)90145-D
http://dx.doi.org/10.1016/0377-2217(93)90145-D
http://dx.doi.org/10.1103/PhysRevE.68.036703
http://dx.doi.org/10.1103/PhysRevE.68.036703
http://dx.doi.org/10.1103/PhysRevE.68.036703
http://refhub.elsevier.com/S0305-0548(22)00025-9/sb16
http://dx.doi.org/10.1201/9781315139470
http://dx.doi.org/10.1201/9781315139470
http://dx.doi.org/10.1201/9781315139470
http://dx.doi.org/10.1111/jbl.12173
http://dx.doi.org/10.1007/978-3-319-68496-3_4
http://www.optimization-online.org/DB_HTML/2017/07/6142.html
http://dx.doi.org/10.1111/j.1475-3995.1995.tb00023.x
http://dx.doi.org/10.1016/j.tre.2017.06.011
http://dx.doi.org/10.1016/j.tre.2017.06.011
http://dx.doi.org/10.1016/j.tre.2017.06.011
http://refhub.elsevier.com/S0305-0548(22)00025-9/sb23
http://refhub.elsevier.com/S0305-0548(22)00025-9/sb23
http://refhub.elsevier.com/S0305-0548(22)00025-9/sb23
http://refhub.elsevier.com/S0305-0548(22)00025-9/sb23
http://refhub.elsevier.com/S0305-0548(22)00025-9/sb23
http://refhub.elsevier.com/S0305-0548(22)00025-9/sb24
http://refhub.elsevier.com/S0305-0548(22)00025-9/sb24
http://refhub.elsevier.com/S0305-0548(22)00025-9/sb24
http://refhub.elsevier.com/S0305-0548(22)00025-9/sb24
http://refhub.elsevier.com/S0305-0548(22)00025-9/sb24
http://dx.doi.org/10.1016/j.cor.2018.01.010
http://dx.doi.org/10.1016/j.ejor.2019.02.052
http://dx.doi.org/10.1016/j.ejor.2019.02.052
http://dx.doi.org/10.1016/j.ejor.2019.02.052
http://dx.doi.org/10.1287/trsc.2020.0996
http://dx.doi.org/10.1287/trsc.1030.0079
http://dx.doi.org/10.1287/trsc.1030.0079
http://dx.doi.org/10.1287/trsc.1030.0079
https://www.jstor.org/stable/25769242
http://dx.doi.org/10.1287/opre.2017.1650
http://dx.doi.org/10.1016/j.trpro.2018.09.011
http://dx.doi.org/10.1016/j.trpro.2018.09.011
http://dx.doi.org/10.1016/j.trpro.2018.09.011
http://dx.doi.org/10.1137/1.9781611973594.ch8
http://dx.doi.org/10.1137/1.9781611973594.ch8
http://dx.doi.org/10.1137/1.9781611973594.ch8
http://dx.doi.org/10.1016/0377-2217(95)00050-X
http://dx.doi.org/10.1016/0377-2217(95)00050-X
http://dx.doi.org/10.1016/0377-2217(95)00050-X
http://dx.doi.org/10.1287/msom.1080.0243
http://dx.doi.org/10.1287/msom.1080.0243
http://dx.doi.org/10.1287/msom.1080.0243
http://dx.doi.org/10.1108/09600031011018055
http://dx.doi.org/10.1108/09600031011018055
http://dx.doi.org/10.1108/09600031011018055
http://dx.doi.org/10.1137/0110015
http://dx.doi.org/10.1137/0110015
http://dx.doi.org/10.1137/0110015
http://dx.doi.org/10.1007/s00291-009-0175-6
http://dx.doi.org/10.1007/s00291-009-0175-6
http://dx.doi.org/10.1007/s00291-009-0175-6
http://dx.doi.org/10.2307/2529336

Computers and Operations Research 142 (2022) 105722A. Santini et al.
Huang, Kuancheng, Ardiansyah, Muhammad Nashir, 2019. A decision model for last-
mile delivery planning with crowdsourcing integration. Comput. Ind. Eng. 135,
898–912. http://dx.doi.org/10.1016/j.cie.2019.06.059.

Jaillet, Patrick, 1985. Probabilistic Traveling Salesman Problems (Ph.D. thesis).
Massachusetts Institute of Technology.

Jaillet, Patrick, 1988. A priori solution of a traveling salesman problem in which a
random subset of the customers are visited. Oper. Res. 36 (6), 929–936. http:
//dx.doi.org/10.1287/opre.36.6.929.

Kafle, Kafle, Zou, Bo, Lin, Jane, 2017. Design and modeling of a crowdsource-
enabled system for urban parcel relay and delivery. Transp. Res. B 99, 62–82.
http://dx.doi.org/10.1016/j.trb.2016.12.022.

Laporte, Gilbert, Louveaux, Francois, Mercure, Hélène, 1992. The vehicle routing
problem with stochastic travel times. Transp. Sci. 26 (3), 161–170. http://dx.doi.
org/10.1287/trsc.26.3.161.

Laporte, Gilbert, Louveaux, Francois, Mercure, Hélene, 1994. A priori optimization
of the probabilistic traveling salesman problem. Oper. Res. 42 (3), 543–549.
http://dx.doi.org/10.1287/opre.42.3.543.

Macrina, Giusy, Di Puglia Pugliese, Luigi, Guerriero, Francesca, Laganà, Demetrio,
2017. The vehicle routing problem with occasional drivers and time windows.
In: Sforza, Antonio, Sterle, Claudio (Eds.), Optimization and Decision Science:
Methodologies and Applications. pp. 577–587. http://dx.doi.org/10.1007/978-3-
319-67308-0_58.

Macrina, Giusy, Di Puglia Pugliese, Luigi, Guerriero, Francesca, Laporte, Gilbert, 2020.
Crowd-shipping with time windows and transshipment nodes. Comput. Oper. Res.
113, http://dx.doi.org/10.1016/j.cor.2019.104806.

Mahfoudh, Soumaya Sassi, Khaznaji, Walid, Bellalouna, Monia, 2015. A branch
and bound algorithm for the porbabilistic traveling salesman problem. In: 2015
IEEE/ACIS 16th International Conference on Software Engineering, Artificial In-
telligence, Networking and Parallel/Distributed Computing (SNPD). IEEE, pp. 1–6.
http://dx.doi.org/10.1109/SNPD.2015.7176284.

Mitzenmacher, Michael, Upfal, Eli, 2017. Probability and Computing: Randomiza-
tion and Probabilistic Techniques in Algorithms and Data Analysis. Cambridge
University Press.

Monaci, Michele, Pike-Burke, Ciara, Santini, Alberto, 2021. The 0–1 time-bomb
knapsack problem. Comput. Oper. Res. (submitted).

Montemanni, Roberto, D’ignazio, Federico, Chou, Xiaochen, Gambardella, Luca Maria,
2018. Machine learning and Monte Carlo sampling for the probabilistic orienteer-
ing problem. In: 2018 Joint 10th International Conference on Soft Computing
and Intelligent Systems (SCIS) and 19th International Symposium on Advanced
Intelligent Systems (ISIS). IEEE, pp. 14–18. http://dx.doi.org/10.1109/SCIS-ISIS.
2018.00014.

Mu, Zongxu, Dubois-Lacoste, Jérémie, Hoos, Holger H., Stützle, Thomas, 2018. On
the empirical scaling of running time for finding optimal solutions to the TSP. J.
Heuristics 24 (6), 879–898. http://dx.doi.org/10.1007/s10732-018-9374-0.
17
Öncan, Temel, Altınel, Kuban, Laporte, Gilbert, 2009. A comparative analysis of several
asymmetric traveling salesman problem formulations. Comput. Oper. Res. 36 (3),
637–654. http://dx.doi.org/10.1016/j.cor.2007.11.008.

Pan, Shenle, Giannikas, Vaggelis, Han, Yufei, Grover-Silva, Etta, Qiao, Bin, 2017. Using
customer-related data to enhance e-grocery home delivery. Ind. Manage. Data Syst.
http://dx.doi.org/10.1108/IMDS-10-2016-0432.

Punakivi, Mikko, Saranen, Juha, 2001. Identifying the success factors in e-
grocery home delivery. Int. J. Retail Distrib. Manage. http://dx.doi.org/10.1108/
09590550110387953.

Quinlan, John, 1992. Learning with continuous classes. In: 5th Australian Joint
Conference on Artificial Intelligence, Vol. 92. pp. 343–348.

Rai, Heleen Buldeo, Verlinde, Sara, Macharis, Cathy, 2021. Who is interested in a
crowdsourced last mile? A segmentation of attitudinal profiles. Travel Behav. Soc.
22, 22–31. http://dx.doi.org/10.1016/j.tbs.2020.08.004.

Santini, Alberto, 2020. alberto-santini/ptspc-instances. http://dx.doi.org/10.5281/
zenodo.4031192, Version 1.0. URL: https://github.com/alberto-santini/ptspc-
instances.

Sherali, Hanif, Adams, Warren, 1999. A Reformulation–Linearization Technique for
Solving Discrete and Continuous Nonconvex Problems. Springer, http://dx.doi.org/
10.1007/978-1-4757-4388-3.

Sherali, Hanif, Sarin, Subhash, Tsai, Pei-Fang, 2006. A class of lifted path and flow-
based formulations for the asymmetric traveling salesman problem with and
without precedence constraints. Discrete Optim. 3 (1), 20–32. http://dx.doi.org/
10.1016/j.disopt.2005.10.004.

Steele, Michael, 1997. Probability Theory and Combinatorial Optimization, Vol. 69.
Siam, http://dx.doi.org/10.1137/1.9781611970029.

Tadei, Roberto, Perboli, Guido, Perfetti, Francesca, 2017. The multi-path traveling
salesman problem with stochastic travel costs. EURO J. Transp. Logist. 6 (1), 3–23.
http://dx.doi.org/10.1007/s13676-014-0056-2.

Volgenant, Ton, Jonker, Roy, 1987. On some generalizations of the travelling-salesman
problem. J. Oper. Res. Soc. 38 (11), 1073–1079. http://dx.doi.org/10.2307/
2582232.

Yildiz, Baris, Savelsbergh, Martin, 2019. Service and capacity planning in crowd-sourced
delivery. Transp. Res. C 100, 177–199. http://dx.doi.org/10.1016/j.trc.2019.01.
021.

Zhang, Mengying, Qin, Jin, Yu, Yugang, Liang, Liang, 2018. Traveling salesman
problems with profits and stochastic customers. Int. Trans. Oper. Res. 25 (4),
1297–1313. http://dx.doi.org/10.1111/itor.12310.

Zhang, Mengying, Wang, John, Liu, Hongwei, 2017. The probabilistic profitable tour
problem. Int. J. Enterp. Inf. Syst. (IJEIS) 13 (3), 51–64. http://dx.doi.org/10.4018/
IJEIS.2017070104.

Zou, Hui, Hastie, Trevor, 2005. Regularization and variable selection via the elastic
net. J. R. Stat. Soc. Ser. B Stat. Methodol. 67 (2), 301–320. http://dx.doi.org/10.
1111/j.1467-9868.2005.00503.x.

http://dx.doi.org/10.1016/j.cie.2019.06.059
http://refhub.elsevier.com/S0305-0548(22)00025-9/sb39
http://refhub.elsevier.com/S0305-0548(22)00025-9/sb39
http://refhub.elsevier.com/S0305-0548(22)00025-9/sb39
http://dx.doi.org/10.1287/opre.36.6.929
http://dx.doi.org/10.1287/opre.36.6.929
http://dx.doi.org/10.1287/opre.36.6.929
http://dx.doi.org/10.1016/j.trb.2016.12.022
http://dx.doi.org/10.1287/trsc.26.3.161
http://dx.doi.org/10.1287/trsc.26.3.161
http://dx.doi.org/10.1287/trsc.26.3.161
http://dx.doi.org/10.1287/opre.42.3.543
http://dx.doi.org/10.1007/978-3-319-67308-0_58
http://dx.doi.org/10.1007/978-3-319-67308-0_58
http://dx.doi.org/10.1007/978-3-319-67308-0_58
http://dx.doi.org/10.1016/j.cor.2019.104806
http://dx.doi.org/10.1109/SNPD.2015.7176284
http://refhub.elsevier.com/S0305-0548(22)00025-9/sb47
http://refhub.elsevier.com/S0305-0548(22)00025-9/sb47
http://refhub.elsevier.com/S0305-0548(22)00025-9/sb47
http://refhub.elsevier.com/S0305-0548(22)00025-9/sb47
http://refhub.elsevier.com/S0305-0548(22)00025-9/sb47
http://refhub.elsevier.com/S0305-0548(22)00025-9/sb48
http://refhub.elsevier.com/S0305-0548(22)00025-9/sb48
http://refhub.elsevier.com/S0305-0548(22)00025-9/sb48
http://dx.doi.org/10.1109/SCIS-ISIS.2018.00014
http://dx.doi.org/10.1109/SCIS-ISIS.2018.00014
http://dx.doi.org/10.1109/SCIS-ISIS.2018.00014
http://dx.doi.org/10.1007/s10732-018-9374-0
http://dx.doi.org/10.1016/j.cor.2007.11.008
http://dx.doi.org/10.1108/IMDS-10-2016-0432
http://dx.doi.org/10.1108/09590550110387953
http://dx.doi.org/10.1108/09590550110387953
http://dx.doi.org/10.1108/09590550110387953
http://refhub.elsevier.com/S0305-0548(22)00025-9/sb54
http://refhub.elsevier.com/S0305-0548(22)00025-9/sb54
http://refhub.elsevier.com/S0305-0548(22)00025-9/sb54
http://dx.doi.org/10.1016/j.tbs.2020.08.004
http://dx.doi.org/10.5281/zenodo.4031192
http://dx.doi.org/10.5281/zenodo.4031192
http://dx.doi.org/10.5281/zenodo.4031192
https://github.com/alberto-santini/ptspc-instances
https://github.com/alberto-santini/ptspc-instances
https://github.com/alberto-santini/ptspc-instances
http://dx.doi.org/10.1007/978-1-4757-4388-3
http://dx.doi.org/10.1007/978-1-4757-4388-3
http://dx.doi.org/10.1007/978-1-4757-4388-3
http://dx.doi.org/10.1016/j.disopt.2005.10.004
http://dx.doi.org/10.1016/j.disopt.2005.10.004
http://dx.doi.org/10.1016/j.disopt.2005.10.004
http://dx.doi.org/10.1137/1.9781611970029
http://dx.doi.org/10.1007/s13676-014-0056-2
http://dx.doi.org/10.2307/2582232
http://dx.doi.org/10.2307/2582232
http://dx.doi.org/10.2307/2582232
http://dx.doi.org/10.1016/j.trc.2019.01.021
http://dx.doi.org/10.1016/j.trc.2019.01.021
http://dx.doi.org/10.1016/j.trc.2019.01.021
http://dx.doi.org/10.1111/itor.12310
http://dx.doi.org/10.4018/IJEIS.2017070104
http://dx.doi.org/10.4018/IJEIS.2017070104
http://dx.doi.org/10.4018/IJEIS.2017070104
http://dx.doi.org/10.1111/j.1467-9868.2005.00503.x
http://dx.doi.org/10.1111/j.1467-9868.2005.00503.x
http://dx.doi.org/10.1111/j.1467-9868.2005.00503.x

	The Probabilistic Travelling Salesman Problem with Crowdsourcing
	Introduction
	Contributions

	Problem description
	Formalisation of the PTSPC
	Relation with classical TSP problems

	Literature review
	Crowdsourcing in last-mile delivery
	Probabilistic TSP with profits

	Algorithms
	A branch-and-bound algorithm
	Lower bound z
	Upper bound z
	Upper bound z'
	Overall BB algorithm
	Acceleration strategies
	Fast solution of many similar TSPs

	Heuristic algorithms
	Approximation of EA [to1.2. C(O)]to1.2.
	Monte Carlo simulation
	Machine learning

	Computational study
	Instance generation
	Analysis of the solutions
	Computational analysis

	Conclusions and future research
	CRediT authorship contribution statement
	Acknowledgements
	Appendix A. Definition of cX
	Appendix B. Definition of PTP(X,Y)
	Appendix C. Detailed results
	References

