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Abstract 
Stress is considered to be a normal part of our lives, especially when taken into account that 
people are constantly trying to push their limits and the limits of others around them. Whether 
at home or at their jobs, the idea that to be successful one must work harder is deeply rooted 
within society because such behavior has shown positive results in the past. Stressful events 
can work as a reactor for people to feel the necessary motivation to move on with their tasks. 
However, if uncontrolled, may lead to health-related consequences, such as cardiovascular 
diseases, sleep deprivation, and anxiety. Therefore, it is important to not only recognize that 
stress has serious negative impacts in the lives of people but also to find mechanisms to cope 
with it. 

This document presents a solution in the form of a web application capable of providing stress-
easing and health improving recommendations that adapt to the users of the application by 
considering their ratings from past recommendation, as well as their profiles. Through an 
engaging and interactive graphical user interface, users can receive personalized 
recommendations via system notifications. These notifications are composed of a 
demonstrative card and a description, as well as a collection of documents with insightful 
information regarding the recommendations being provided. 

This web application is supported by three major components, designed to operate both 
synchronously and asynchronously in a microservices-oriented architecture, promoting the 
flexibility and scalability of the solution. 

Furthermore, for the solution to provide recommendations, it was necessary to implement a 
filtering technique. Among the most common ones, the content-based filtering is the most 
advantageous, meaning that a content-based recommender system was developed as part of 
the solution. 

Lastly, it was concluded that the web application satisfactorily meets the established 
requirements. However, due to lack of user-generated data, the randomly generated data used 
to demonstrate how a proper evaluation would be conducted cannot be subject for 
interpretation. 

Keywords: Stress, Recommender system, Recommendations, Filtering techniques, Content-
based filtering 
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Resumo 
O stress é considerado parte integrante nas nossas vidas, especialmente quando consideramos 
que as pessoas estão constantemente a tentar superar os seus limites, muitas vezes delegando 
essas mesmas expectativas àqueles que as rodeiam. Tanto em casa, com os seus parceiros e 
familiares, como no seu local de trabalho, a ideia de que para se obter sucesso tem de se 
trabalhar mais está enraizada na sociedade, sendo que comportamentos semelhantes no 
passado comprovaram resultados positivos nesse sentido. Os eventos de stress podem 
funcionar como um sentimento de motivação para que as pessoas consigam desempenhar as 
suas funções diariamente. Contudo, caso não sejam controlados, poderão trazer consequências 
graves relacionadas com a saúde, tais como doenças cardiovasculares, privação do sono, e 
problemas de ansiedade. Assim, é importante não apenas reconhecer que o stress tem diversos 
impactos sérios na vida das pessoas, mas também encontrar formas de o gerir apropriadamente. 

Este documento apresenta uma solução na forma de uma aplicação web capaz de fornecer 
recomendações para redução do stress e melhoria de saúde, que se adaptam aos utilizadores 
da aplicação considerando as suas avaliações a recomendações no passado. Através de uma 
interface gráfica envolvente e interativa, os utilizadores podem receber recomendações 
personalizadas por meio de notificações do sistema. Essas notificações são compostas por um 
cartão demonstrativo e uma descrição, assim como de um conjunto de documentos com 
informações detalhadas acerca das recomendações fornecidas. 

Esta aplicação é composta por três componentes principais, desenhados para interagirem entre 
si tanto de forma síncrona como assíncrona numa arquitetura orientada a microserviços, 
promovendo a flexibilidade e escalabilidade da solução. 

Para além disso, para que a solução seja capaz de fornecer recomendações, foi preciso 
implementar uma técnica de filtragem. Entre as mais comuns, a filtragem baseada em conteúdo 
demonstrou ser a mais vantajosa, significando que foi desenvolvido um sistema de 
recomendação baseado em conteúdo como parte da solução. 

Finalmente, concluiu-se que a aplicação web vai satisfatoriamente de encontro aos requisitos 
estabelecidos. Contudo, devido à falta de dados gerados pelos utilizadores da aplicação, os 
dados gerados aleatoriamente para demonstrar de que forma uma avaliação adequada seria 
realizada, não estão sujeitos a interpretação. 

Palavras-chave: Stress, Sistema de recomendação, Recomendações, Técnicas de filtragem, 
Filtragem baseada em conteúdo 
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1 Introduction 

This chapter aims to present a theoretical framework of the project to be developed in the area 
of Recommender Systems related to stress. 

It begins by contextualizing the project, proceeding with a description on the problem and the 
objective behind its elaboration. 

Furthermore, it is presented an approach on how to address the main goal of this project and 
exposed the expected results, ending with the structure of this document.  

1.1 Context 
As modern society becomes more complex and digitalization takes over the economy, so 
increases the number of workers that suffer from mental health disorders such as stress. 

Stress is often defined as the human response to pressure, and it is usually triggered when 
under the presence of some negative experience, whether unexpected or not, especially when 
accompanied with the feeling of lack of control over the situation. 

Proper and regulated stress at work allows one to immerse in the task at hand, serving almost 
as fuel to increase productivity in the workplace, resulting in overall satisfaction. A healthy and 
motivated workforce is the key to success. However, excessive stress or long-term stress at 
work, often lead to occupational burn-out among other lasting impacts in our health. 

Mad@Work1 states that stress costs employers a great deal both directly (up to 50% of all lost 
working days are linked to stress) and indirectly (by reducing work engagement). In the 

 
1 Mental Wellbeing Management and Productivity Boosting in the Workplace (Mad@Work), POCI-01-0247-FEDER-046168, 
Sistema de Incentivos à Investigação e Desenvolvimento Tecnológico (SI&IDT), 09/2020 a 06/2023. 
https://itea3.org/project/mad-work.html accessed on 22/01/2022 
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European Union alone, 24.4% of workers experience frequent or constant stress at work. This, 
in turn, also has a monetary impact, resulting in an estimated loss of €617 billion annually. 

As companies realize the impact of a safe and balanced workplace, as well as mentally healthy 
workers, and how such environments lead to better results and overall success in the long-term, 
efforts are being made to provide a compelling working experience and ways to avoid and 
overcome intense stress related situations. 

1.2 Problem 
Stress at work has become a serious problem affecting many people of different professions, 
life situations, and age groups, and continually contributes to illness either directly, through its 
physiological effects such as cardiovascular diseases and anxiety, or indirectly, through bad 
health behaviors such as lack of sleep.  

However, sometimes people lack the self-awareness to realize that they are under an episode 
of stress and will much faster occupy their minds with tasks at hand such as a very demanding 
job, or even more mundane things like looking for something new to wear, places to visit, or 
shows to watch, rather than reflecting upon their well-being and how much of an impact it is 
suffering from their day-to-day activities. 

Stress is not palpable, and it is hard to visualize, takes many different shapes within society, is 
mostly unpredictable because it is very personal and is dependent on the context of every 
individual. Constantly being pushed to achieve more and go farther, stress mostly goes 
unnoticed until people start feeling the consequences, like the ones mentioned above. 

Mechanisms to provide awareness and aid during and after episodes of stress could serve as a 
way to mitigate its side effects. 

There have been developed solutions in the past to address similar matters through the usage 
of recommendations, however often overlooking the importance of explaining the reason 
behind such recommendations and the benefits from acting upon the described actions (Croon, 
Houdt, Htun, Stiglic, Abeele, & Verbert 2021). 

1.3 Objective 
It is important to motivate people to use appropriate stress coping strategies in order to adjust 
their behavior and lifestyle so that they achieve a better stress balance and avoid increased 
level of stress that may result in serious health problems. 

The main goal for this project is to develop a Recommender System, integrated in a web 
application, as part of an H2020 initiative, in conjunction with Escola Superior de Saúde from 
Instituto Politécnico do Porto, related to the detection of stress in the workplace in a non-
evasive way. 
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By integrating with a machine learning model capable of analyzing stress indicators, external to 
the scope of this project, this recommendation system should be based on pre-defined rules 
and be capable of suggesting to users some of the most effective and practical actions that they 
could take in order to lower the levels of stress that they may be experiencing, by considering 
their characteristics and preferences. 

1.4 Approach 
To propose a solution capable of addressing the problem described in subchapter 1.2, several 
meetings were conducted with the client, in this case being Escola Superior de Saúde. This way, 
it was possible to understand the main purpose behind the project, to define the necessary 
requirements, but also to manage expectations. 

Then, having a solid objective for the problem at hand, it was conducted a state of the art about 
recommender systems within the context of stress, including the types of filtering techniques 
that are commonly used. 

After concluding the literature analysis, the value proposition was described, where the issues 
and pains of the target audience are exposed, as well as the benefits behind the objective of 
this project and how it aims to address the problems of the target audience. Furthermore, it is 
justified the selection of the filtering technique to be used based on the definition of criteria 
and using scientific methods of selection. 

Then, considering the requirements of the client and the state of the art, the analysis and design 
on which the development of the solution would be based was carried out, detailing every 
component within it, and the implementation conducted afterwards. 

Lastly, to prove that the solution delivers positive results, it was defined a hypothesis, metrics, 
and methodologies upon which to conduct a system evaluation. Ideally, this evaluation would 
be based on real data. However, due to delivery constraints related to the involvement of other 
parties in the project, it was used randomly generated data. 

1.5 Expected Results 
This document aims to describe all the steps involved in the development of an application 
capable of providing its users with adequate and personalized recommendations related to 
stress easing actions, while also increasing awareness of the impact that stress has on their day-
to-day lives and the benefits associated with maintaining stress levels within their control. 

The application is expected to have an appealing and interactive graphical interface to the end 
users, through which they will be able to obtain and rate tailored health-related 
recommendations, as the means to promote a healthier and more conscious lifestyle. 



 

4 
 

1.6 Document Structure 
This document is structured in seven chapters.  

The first chapter presents the context of the matter, as well as the problem being addressed, 
and the necessary steps to achieve the desired goal. 

The second chapter describes the definition of a recommender system and the different types 
of filtering techniques that are often applied within one. In this chapter some existing solutions 
related to the development of a recommender system within the scope of stress are also 
presented. 

The third chapter presents both the value analysis and the proposal analysis. 

The fourth chapter presents the analysis and design of the solution, including functional and 
non-functional requirements, use cases, domain model, and an architectural proposal. 

The fifth chapter describes the implementation of the solution based on the proposal presented 
in the fourth chapter. 

The sixth chapter presents a critical analysis of the obtained results from the implementation 
of the solution, and the seventh chapter finishes with a conclusion, where achieved goals and 
future work are also mentioned. 
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2 State of the Art 

This chapter begins with a description about Recommender Systems, the motives behind their 
creation, and what they are currently used for.  

Considering that the core of a Recommender System is the underlying filtering technique, the 
ones that are mostly used are also described in this chapter along with their strengths and 
weaknesses. 

This chapter ends with an overview about how these filtering techniques are technically 
approached, followed by some of the most relevant work related to the integration of a 
Recommender System in the context of stress relieving solutions. 

2.1 Introduction 
Recommender Systems, or Recommendation Systems, are software that implement specific 
algorithms with the sole purpose of making suggestions, within the available options for a given 
context, that a user may find relevant. 

Ever since the arise of Web 2.0, that is often referred to as the era in which worldwide websites 
began to highlight user-generated content, usability, and interoperability (Hiremath, 2016), the 
information available on the internet started to grow exponentially.  

Having access to all that information a few clicks away is undoubtedly both inspiring and 
empowering. However, the pace at which the data keeps being generated brought many 
challenges, one of them being how to properly use and make the most of it. 

In a society that favors having an experience tailored to its personal and collective needs, it 
became apparent that a systematic way to filter the information that is presented to the users 
was necessary. Studies regarding consumer over choice and decision paralysis have been 
conducted over the years, concluding that when a consumer is faced with an overwhelming 
number of alternatives, sometimes fails to analyze them all and even leads to the option of not 
making a choice at all (Rosen & Boccia 2021). 

Recommender Systems are present to aid the users of an application or service in their decision-
making process on which action to engage in next and which information to consume. 

There are multiple types of Recommender Systems, as described in detail throughout the next 
subchapters, and they all differ in terms of architecture. However, a general overview of a 
Recommender System architecture can be designed as shown in Figure 1: 
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Figure 1 - General architecture of a recommender system 

2.2 Filtering Techniques 
The recommendations from Recommender Systems are made based on different filtering 
techniques, the most used ones being Collaborative filtering, Content-based filtering, and 
Knowledge-based filtering. Often, a Recommender System is classified after one type of filtering. 
However, there are cases where Recommender Systems benefit the most by applying more 
than one filtering technique, resulting in Hybrid Recommender Systems.  

2.2.1 Collaborative Filtering 

The Collaborative Filtering technique is based on the idea that users who have agreed in the 
past regarding an evaluation of certain items are likely to agree with the evaluation of other 
items again in the future, meaning that in this type of filtering is done collaboratively having 
user preferences in consideration. 

Collaborative Filtering is applied in many Recommender Systems throughout the many 
platforms and services that we have at our disposal over the internet in fields such as e-
commerce, marketing, social networks, video streaming, and customer relationship 
management (Mustafa, Ibrahim, Ahmed, & Abdullah 2017). 
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This type of filtering can generally be approached either by a memory-based method or a 
model-based method: 

• Memory-based method 

Memory-based method, also known as Neighborhood-based or Heuristic-based method, 
operates over the entire database of user-generated ratings on older data to predict the 
unknown rating of other items by users with great similarity in terms of interests. 

This method, in turn, can be approached in a User-based or Item-based way.  

The User-based approach evaluates the interest of a user in a specific item by having in 
consideration the ratings of that item from other users with similar rating patterns of the 
user. 

The Item-based approach evaluates the interest of a user in a specific item by having in 
consideration the ratings of the user for similar items. 

• Model-based method 

Instead of using ratings stored in a database to predict new ones in a User-based or Item-
based approach, this method takes the user-generated ratings to acquire knowledge and 
learn a predictive model capable of replicating the interaction between users and items 
while having in consideration some more complex aspects such as user preferences and 
item categories. This model is then used to predict the ratings of users for new items.  

Model-based methods usually rely on Clustering, Latent Semantic Analysis, Support Vector 
Machines, and Singular Value Decomposition (Shah & Salunke 2017). 

Implementing a Collaborative Filtering technique does not require domain knowledge of the 
items, the quality of the recommendations increase over time, the recommendations are 
personalized, and allows for users to discover new interests. However, the quality of the 
recommendations is highly dependent on large historical data sets, does not scale well, there is 
usually a lot of sparsity in the data since only small subsets of the items are rated by the users, 
and lacks the desired performance for cases when a new user or item is added to the database, 
often referred to as the cold-start problem. 

2.2.2 Content-based Filtering 

Content-based Filtering, also known as Cognitive Filtering (Shah & Salunke 2017), is another 
widely adopted filtering technique that selects items based on the correlation between the 
content of the items and the user preferences or items that the user liked in the past. It is based 
on the concept that items with similar attributes will be rated similarly. 

A Content-based Recommender System works with data that the user has provided, either 
explicitly or implicitly. Based on that data, a user profile is generated, and the recommendations 
are made by comparing the user profile with the content of each item in the database.  
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For this, it is necessary to assign an attribute or a vector with certain features that hold numeric 
or nominal values that represent the characteristics of each item. Only then it is possible to find 
similarities and dissimilarities between each element in the database and make an association 
with the user profile or items that the user liked in the past.  

This means that is of high importance to have a well-represented set of features for the filtering 
technique to thrive. 

As opposed to Collaborative Filtering, Content-based Filtering does not require any data 
regarding other users, since the recommendations are specific to each user, making it easier to 
scale to many users. It is also a good filtering technique in capturing specific interests of a user, 
allowing for the recommendation of niche items that most users are not interested in but that 
still hold very high interest for some. By collecting some initial inputs from users, user profiles 
begin to take shape and Content-based Filtering can make personalized recommendations early 
on, diminishing the impact of the cold-start problem that is so prevalent on the Collaborative 
Filtering technique. 

However, considering that it is necessary to assign features to every item for a Content-based 
Filtering to work properly, meaning that it requires a lot of domain knowledge, this technique 
is only as good as the features assigned. Furthermore, being a technique that relies on the user 
profile and user past interest in other items, it has a very limited ability to expand the user’s 
existing interests, leading to a lack of novelty and diversity in the recommendations provided. 
Although easily scalable for many users, the more items are added to the database, the more 
features need to be assigned, meaning that when presented with a large database of items, it 
does not scale well.  

2.2.3 Knowledge-based Filtering 

Knowledge-based Filtering differs from both Collaborative Filtering and Content-based Filtering 
in the sense that it does not require significant amounts of data from user’s past interaction 
with the system. In fact, the principal cause for the cold-start problem mentioned in 2.1.1 and 
2.2.2 is the lack of data (Bouraga, Jureta, Faulkner, & Herssens 2014), because in cases where 
the amount of information regarding users is limited, recommendations tend to be poor or lack 
full coverage over the entire spectrum of combinations for the user-item interactions, meaning 
that a knowledge-based Recommender System avoids this issue entirely. 

This type of filtering technique relies on explicit requirements from the user, providing a more 
exploratory interaction with the options that are available in the system, and allowing a greater 
control over the recommendations that are made by the system. 

The Knowledge-based filtering technique can usually be approached in two different methods: 
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• Constraint-based method 

This method is based on user specific requirements or constraints on the attributes of the 
items in the database. Domain-specific rules, that represent the knowledge the system has 
about the domain, are also used to match the constraints provided by the user. 
Furthermore, this method allows the creation of rules between the attributes of the user 
and the attributes of the items, assuming the user provides the required information, 
meaning that those rules may also be specified in the filtering process. 

In the event of a narrow list of results, the user has the possibility to update the initial 
constraints at any time in order to increase the number of results returned by the 
Recommender System. 

• Case-based method 

In the Case-based method, similarity metrics are defined and assigned to the attributes of 
the items in the database so that when the user selects an example of the desired item, the 
system can retrieve similar items to the one chosen by the user, meaning that the similarity 
metrics must be carefully defined in a domain-specific way. 

The results retrieved by the Recommender System serve as new targets for the filtering 
process, along with slight modifications provided by the user, and each iteration brings the 
user towards the final recommendation. 

Considering that this type of filtering relies on knowledge about the domain for which it is being 
implemented, it is not easily generalizable, albeit highly customized. 

Knowledge-based Recommender Systems are often more reliable than Collaborative and 
Content-based Recommender Systems regarding recommendations and do not fall victim to 
the traditional cold-start problem. However, the construction of the knowledge base is usually 
a complicated task that demands considerable knowledge and expertise on specific domains. 

2.2.4 Filtering Techniques Comparison 

Each filtering technique has their own advantages and disadvantages and knowing which one 
to apply within a Recommender System is crucial to ensure the desired outcome. In Table 1 it 
is shown a comparison between the filtering techniques mentioned in the chapter 2.2. 
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Table 1 - Advantages and disadvantages of filtering techniques 

 Advantages Disadvantages 

Collaborative Filtering 

 
- Does not require extensive 

domain knowledge. 
 

- Quality of 
recommendations increase 
over time. 

 
- Allows for some novelty. 

 
- Recommendations are 

personalized. 
 

 
- Does not scale 

very well. 
 

- There is usually a 
lot of sparsity in 
the data. 

 
- Does not handle 

new users or items 
very well. 

Content-based Filtering 

 
- Does not require 

information regarding 
users. 
 

- Easy to scale for a large 
user-base. 

 
- Captures specific interests 

of users. 
 

- Personalized 
recommendations require 
early on. 

 

 
- Requires a lot of 

domain 
knowledge. 
 

- Leads to the lack 
of novelty and 
diversity. 

 
- Does not scale 

well for a large 
item-base. 

Knowledge-based 
Filtering 

 
- Often more reliable than 

Collaborative and Content-
based Filtering. 
 

- Does not suffer from the 
Cold-Start problem. 

 
- Highly customizable. 

 

 
- Demands 

considerable 
knowledge and 
expertise in the 
domain. 

 

2.3 Related Work 
Recommender Systems would most likely not come to be what they are today if not for the 
evolution that took place around 1970s, when the area of Recommender Systems turned as an 
independent area of research (Sharma & Singh 2016). 
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Since then, many studies have been conducted with the intention of better understanding the 
complexity around such systems and how to best apply them in the continuously growing 
diversity that the society offers. 

Considering the nature of the Recommender System being developed for this dissertation, wide 
research on Recommender Systems related to Stress resulted in the selection of four articles: 

1. Health Recommender Systems: Systematic Review 
 

2. PopTherapy: Coping with Stress Through Pop-Culture 
 

3. TeenRead: An Adolescents Reading Recommendation System Towards Online 
Bibliotherapy 

 

4. mStress: A Mobile Recommender System for Just-In-Time Interventions for Stress 
 

Although many documents were found related to the adoption of Recommender Systems in 
the scope of Health-related solutions, the lack of alternatives for Stress specific ones is 
notorious. 

In fact, the first article was selected due to the wide documented review on Health 
Recommender Systems in general, and out of seventy-three published studies that were 
analyzed, only four were related to Recommender Systems in the scope of Stress. 

2.3.1 Health Recommender Systems: Systematic Review 

This article was created based on the premise that Health Recommender Systems offer the 
potential to motivate users to change their behavior by suggesting better choices and 
knowledge that users can act upon based on observed user behavior.  

The main goal of this article was to make a wide review on the state of the art regarding Health 
Recommender Systems and how they apply to non-medical people. 

The study was conducted according to the key steps required for systematic reviews according 
to PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) guidelines, 
resulting in the analysis of seventy three papers, and focused on literature related to Health 
Recommender Systems, including the type of recommendations made by the Recommender 
Systems, the recommender techniques that were utilized, how evaluations were approached, 
as well as how the recommendations were displayed to the users, and the transparency behind 
the rationale for the recommendations that were being given. 
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• Recommended Items 

There is a wide variety of domains in which Health Recommender Systems operate and, in 
this article, four categories were identified regarding the recommendations: lifestyle (24 
papers out of 73), nutrition (26 papers out of 73), general health information (23 papers 
out of 73), and specific health condition-related recommendations (9 papers out of 73). 
According to this article, a significant trend was found regarding the increase in popularity 
of nutrition-related advice. 

• Recommender Techniques 

Most of the Health Recommender Systems covered in this study rely on knowledge-based 
techniques (49 papers out of 73), either directly or within the context of a hybrid filtering 
approach, the reason being that this type of filtering is known for alleviating drawbacks of 
other filtering techniques such as cold-start and sparsity of data. Some use more 
straightforward-approaches such as if-else statements based on specific logic while others 
use more complex algorithms like particle swarm optimization, fuzzy logic, and 
reinforcement algorithms. Content-based techniques are also used (7 papers out of 73), as 
well as Collaborative (4 papers out of 73), although mostly in conjunction with other 
techniques, resulting in a hybrid approach.  

• Evaluation Approach 

This study categorizes the evaluations in two ways: offline evaluations (34 papers out of 73) 
and evaluations that rely on user interaction (39 papers out of 73). 

For offline evaluations, the following metrics were reported: precision, accuracy, 
performance, recall, mean absolute error, normalized discounted cumulative gain, F1 score, 
and root mean square error. 

For online evaluations, methods such as the use of surveys, single-session evaluations, in 
the wild, and randomized controlled tests were applied. 

• Interface 

More than half of the Health Recommender Systems covered in this study did not 
implement a graphical user interface to communicate the recommended health items to 
the user (39 papers out of 73), while the rest used either a mobile interface (18 papers out 
of 34) or web interface (14 papers out of 34) but not both. 

• Transparency 

Although this study highlights the importance of the reasoning behind the 
recommendations being made by the Health Recommender Systems, only a very small 
number (7 papers out of 73) of the covered systems do explain to the user why such 
recommendations are made. 

The authors of this article state that there is a clear trend towards Health Recommender 
Systems that provide well-being recommendations but do not directly intervene in the user’s 
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medical status. It is also concluded that the most common filtering technique used in Health 
Recommender Systems is the hybrid approach, that evaluations of these systems vary greatly, 
and that although the presence of a user interface to display the recommendations, as well as 
the reasoning behind them, is very important, more than half of the covered studies lack this 
important feature. 

2.3.2 PopTherapy: Coping with Stress Through Pop-Culture 

This article focuses on the potential of smart-phones as a conduit to provide stress-related 
therapy to the general population, considering how intrinsically present smart-phones are in 
our society. Recommendations are achieved through a mobile application and the experiment 
was conducted during four weeks for practical and monetary reasons. 

Through the utilization of machine learning techniques, the goal of this article is to propose a 
solution that fits to as many people as possible by recommending interventions related to stress 
depending on users’ personality and current needs. 

The authors of this article designed and implemented a Windows Phone application and used 
cloud-based services to support the delivery of micro-interventions, collecting user feedback 
and contextual information. 

By wanting to intersect stress management psychotherapy and popular web applications, the 
authors started by mapping the most used stress management psychotherapy approaches and 
eventually grouped them into four categories: positive psychology, cognitive behavioral, meta-
cognitive, and somatic. Because socialization is an element associated with improved 
engagement, the authors further divided the four intervention groups into interventions that 
could be performed individually or collectively, as shown in Figure 2. 



 

14 
 

 

Figure 2 - Micro-intervention design matrix2 

To match interventions to personal traits and temporal context, the authors required both input 
features and a machine learning model. 

The input features came from both user and contextual data. The user data was obtained from 
a pre-study survey, but also by implementing an Experience Sampling Method where users 
were prompted to provide a self-assessment while using the mobile application. As for the 
contextual data, the authors used the phone sensors and APIs. The range of input features can 
be seen in Figure 3 and Figure 4. 

 

Figure 3 - User data2 

 
2 Retrieved from (Paredes, Gilad-Bachrach, Czerwinski, & Roseway 2014) 
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Figure 4 - Contextual data3 

As for the machine learning model, the authors proposed modeling the problem as a contextual 
multi-armed bandit problem, meaning that they trained a model to predict the expected 
amount of stress reduced by each intervention for an individual at a given context. Based on 
the estimates, the system selects the intervention with the highest score while also exploring 
other interventions. 

The machine learning model was trained using the Random Forest algorithm and the expected 
reduction of stress derived from the interventions was measured by calculating the delta 
between the subjective stress assessment before and after the interventions. 

By using the Upper Confidence Bounds algorithms, the authors relied on optimistic predictions 
using the standard deviation computed from the deviation of the leaves of the trees that 
conform to the random forests of the average to find the intervention that is expected to reduce 
stress as much as possible and to tell which interventions to use in the future for the same 
purpose. 

In this study, the authors decided to evaluate the impact of their approach on reducing stress 
through a mobile application rather than the performance of the recommender system that 
was created based on metrics such as descriptive statistics on interventions, stress deltas, and 
drop out ratios, and concluded that there is a potential for popular web applications to provide 
a source of stress management interventions. Furthermore, machine learning algorithms can 
be used to improve engagement and local efficacy by matching the right interventions to the 
context and personal traits of the user. 

 
3 Retrieved from (Paredes, Gilad-Bachrach, Czerwinski, & Roseway 2014) 
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2.3.3 TeenRead: An Adolescents Reading Recommendation System Towards 
Online Bibliotherapy 

This article suggests online bibliotherapy as an effective way to diminish stress in adolescents 
through the recommendation of specific reading materials, avoiding the traditional burden of 
relying on someone with knowledge and expertise not only in psychology but also literature. 

To overcome the fact that nowadays teenagers are most likely to read any kind of content 
through their mobile gadgets such as their mobile phones or laptops, the authors of this article 
developed a reading recommendation system called TeenRead, that is used as one of the 
components for a web application, with the purpose of recommending reading material to 
teenagers based on their stress and literature interests.  

In this study it is stated that in bibliotherapy the content of the articles being recommended is 
very pertinent. For that reason, the authors opted for a content-based filtering technique and 
defined three guidelines which they followed to develop the recommender system: stress 
easing by reading, reading interests, and the unification of both. 

For each user, the recommender system computes and maintains a stress easing effect vector, 
responsible for recording the stress easing effects by reading different categories of articles, 
and an interest vector, that records the interests of reading different categories and sub-
categories of articles. 

The user’s stress easing effect vector is defined as follows: 

 

 
𝐸# = (𝑐1. 𝑒𝑎𝑠𝑒, 𝑐2. 𝑒𝑎𝑠𝑒,⋅	⋅	⋅	, 𝑐 ∣ 𝑆𝐶 ∣. 𝑒𝑎𝑠𝑒), 

 
where for ∀𝑖	(1	 ≤ 𝑖	 ≤	∣ 𝑆𝐶 ∣) 	∧ 	(𝑐𝑖	 ∈ 	𝑆𝐶) 	∧ 	(𝑐𝑖. 𝑒𝑎𝑠𝑒	 ∈ 	 [0, 5])	

 

(1) 

𝑆𝐶 is the set of articles’ categories (study, family, affection, inter-personnel, self-recognition, 
employment) and |𝑆𝐶| = 6. 

The user’s interest vector is defined as follows: 

 

 
𝐼 ̅ 	= (𝑐𝑠1. 𝑖𝑛𝑡, 𝑐𝑠2. 𝑖𝑛𝑡,⋅	⋅	⋅	, 𝑐𝑠 ∣ 𝐴𝐶𝑠 ∣. 𝑖𝑛𝑡), 

 
where for ∀𝑖	(1	 ≤ 	𝑖	 ≤	∣ 𝐴𝐶𝑠 ∣) 	∧ 	(𝑐𝑠𝑖	 ∈ 	𝐴𝐶𝑠) 	∧ 	(𝑐𝑠𝑖. 𝑖𝑛𝑡	 ∈ 	 [0, 1])	

 

(2) 

𝐴𝐶𝑠  is the set of all articles’ sub-categories and |𝐴𝐶𝑠| is the total number of articles’ sub-
categories. 

To measure a user’s interest in an article, the Root of Squares Sum of the interest values of the 
article’s sub-categories is calculated through the following function, where 𝐴𝐶𝑠(𝑎𝑟𝑡𝑖𝑐𝑙𝑒) 
returns the set of sub-categories that the article falls into:  

  (3) 
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𝐼𝑛𝑡𝑒𝑟𝑒𝑠𝑡(𝐼,̅ 𝑎𝑟𝑡𝑖𝑐𝑙𝑒) = 	F G 𝑐𝑠. 𝑖𝑛𝑡!
"#	∈	&'#()*+,"-.)	

 

 

In the same way, to measure an article’s easing effect, the Root of Squares Sum of the article’s 
categories’ easing effects is calculated through the following function, where 𝑆𝐶(𝑎𝑟𝑡𝑖𝑐𝑙𝑒) 
returns the set of categories that the article falls into: 

 

 

𝐸𝑎𝑠𝑒(𝐸#, 𝑎𝑟𝑡𝑖𝑐𝑙𝑒) = 	F G 𝑐. 𝑒𝑎𝑠𝑒!
"	∈	0'()*+,"-.)	

 (4) 

 

Considering the equations for Interest and Ease, the recommendation score of an article to a 
user can be defined as follows: 

 
𝑅𝑒𝑐𝑜𝑚𝑚𝑒𝑛𝑑(𝐸#, 𝐼,̅ 𝑎𝑟𝑡𝑖𝑐𝑙𝑒) = 𝜌 ∗ 𝐸𝑎𝑠𝑒(𝐸#, 𝑎𝑟𝑡𝑖𝑐𝑙𝑒) + (1 − 𝜌) ∗ 𝐼𝑛𝑡𝑒𝑟𝑒𝑠𝑡(𝐼,̅ 𝑎𝑟𝑡𝑖𝑐𝑙𝑒), 

 
where 𝜌	 ∈ [0,1] 

 

(5) 

𝜌 is a coefficient for adjusting the weights of the stress easing effect and reading interest. 

In the beginning, when 𝐸# = (0,⋅	⋅	⋅	, 0) and 𝐼 ̅ 	= (0,⋅	⋅	⋅	, 0), the recommendation scores will be 
0, meaning that the recommender system will randomly select articles to recommend. However, 
as both the stress easing effect and interest vectors get updated over time, through the usage 
of a content-based filtering, a similarity function is used to calculate similarities between sub-
categories and therefore recommend different articles to the user. 

The authors of this study state that TeenRead was in internal test at the time of writing and 
therefore was subjected only to ten volunteers. To test the efficacy of the recommender system, 
eleven reading themes were prepared from which each volunteer had to select six that they 
had the most interest for. The recommendation was updated every seven days, meaning that 
the volunteers had to switch themes every seven days. By the end of those seven days, the 
volunteers had to report about the stress easing effects and the interest on the recommended 
articles. Through study statistics that are not reported in this study, the authors state that 
TeenRead demonstrated good effectiveness by decreasing the stress level of users up to 22%. 

2.3.4 mStress: A Mobile Recommender System for Just-In-Time Interventions for 
Stress 

This article also focuses on the presence of smart-phones on our day-to-day lives, but also on 
other smart devices such as smart-watches and smart-bands, to build a mobile application 
capable of detecting levels of stress, through the integration with a smart-band, and 
recommend stress-related interventions accordingly. 
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The mobile recommender system is composed of three main modules, namely the stress 
detection module, the intervention module, and the recommendation module. 

• Stress detection module 

Considering that there are studies that show that people with high levels of work stress 
have higher heart rates during work hours and leisure time after work, the authors relied 
on the heart rate measurements from a Microsoft Band 2 to detect if the user is under 
stress. Using a device as small as a smart band, the goal is to detect stress mostly 
unobtrusively and for long periods of time.  

One hundred heart beats per minute was the threshold defined by the authors to tell if the 
user is under an episode of stress, as long as the heart beats keep going at or over that 
threshold for more than a minute, avoiding taking into consideration situations of sudden 
movement or excitement. Because the Microsoft Band 2 can recognize various types of 
motions from the user, stress levels under physical activity are disregarded by the 
recommender system. 

Assuming the user is under significant levels of stress, an intervention from the 
recommender system is sent to the user after a small delay. 

• Intervention module 

The interventions that were chosen by the authors, just like in 2.4.2, fall into four categories 
of psychotherapy approaches: positive psychology, cognitive behavioral, meta-cognitive, 
and somatic.  

A total of eighteen interventions were created and are done through separate mobile 
applications from the Google Play store. These applications had to be free and engaging for 
the user, so the authors relied on the ratings in the Google Play store when choosing them.  

We can see four examples of just-in-time interventions used by the intervention module in 
Figure 5. 
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Figure 5 - Four examples of psychotherapy approaches4 

• Recommendation module 

The recommendation module is based on a learning model for intervention delivery and 
uses a Q-learning algorithm with legibility traces to select the combination of interventions 
that relieves the user from stress while intervening the least number of times possible. For 
every state in Q-learning, there is an expected reward in the future based on every action 
that is taken. 

Figure 6 shows the algorithm upon which the construction of the recommendation module 
described in this article was based on. 

 
4 Retrieved from (Clarke, Jaimes, & Labrador 2017) 
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Figure 6 - Q-learning algorithm basis5 

The recommendation module starts by choosing interventions at random, learning how 
each intervention affects the user by receiving a reward value. To calculate the expected 
reward, or Q value, authors used the following equation: 

 𝑄(𝑠𝑡𝑎𝑡𝑒, 𝑎𝑐𝑡𝑖𝑜𝑛) = 𝑅(𝑠𝑡𝑎𝑡𝑒, 𝑎𝑐𝑡𝑖𝑜𝑛) + 𝛾 ∗ 𝑀𝑎𝑥[𝑄(𝑛𝑒𝑥𝑡	𝑠𝑡𝑎𝑡𝑒, 𝑎𝑙𝑙	𝑎𝑐𝑡𝑖𝑜𝑛𝑠)] (6) 
 

The constant 𝛾	can assume any value between 0 and 1 and the closer this constant is to 0, 
the more the system will consider the immediate reward over the Q-value when choosing 
between interventions. 

For each intervention, depending on whether stress was relieved, diminished, or remained 
the same, the reward would vary from 100, to 50, to 0, respectively, resulting in the 
implementation of the algorithm shown in Figure 7. 

 
5 Retrieved from (Clarke, Jaimes, & Labrador 2017) 
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Figure 7 - Q-learning algorithm implementation6	

For testing purposes, the authors of this article limited their evaluations to the execution of one 
thousand episodes of stress, concluding that the optimal value for 𝛾	is 0,8. Although Q-learning 
required more than six interventions to effectively relief stress in the beginning, by the time Q-
learning reached its one hundredth execution, the average number of interventions reduced to 
less than two consistently, eventually reaching its minimum average of 1,1 interventions 
necessary to relief stress by the end of the execution of all the stress episodes. 

  

 
6 Retrieved from (Clarke, Jaimes, & Labrador 2017) 
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3 Value Analysis 

In this chapter the value analysis is presented regarding the purpose of this project as a 
Recommender System. 

This chapter begins with the identification and analysis of the opportunity, followed by the 
value proposition according to the Osterwalder model, and concludes with an evaluation and 
selection of the filtering technique that should be used for the development of the 
Recommender System. 

3.1 Opportunity 
Humans are the key to any successful business venture. It is in human nature to constantly 
thrive for more and achieve the next goal, but success often comes at a great price. More than 
ever, people define their selves based on their job. This may be a whole other problem but is 
tied to the feeling of responsibility that people undergo through during their day-to-day job.  

Demanding markets, fast paced innovation, and the fear of missing out, are some of the motives 
that lead to long working hours, difficult tasks to overcome, ever-increasing backlog, and 
increased workload.  

Because workers feel responsible for the resolution of the constant challenges they regularly 
face at their job, the idea that they also must perform at their best and at a constant pace, at 
the fear of losing their job, often leads to emotional or physical distress. This can be manifested 
as stress and has a negative impact not only on workers but on the entities that employ them. 

There are ways to mitigate or even avoid the side effects of stress, but it is difficult to apply 
such techniques at a major scale and in a systematic way. Hence, the responsibility to deal with 
it is often relayed to the workers, sometimes through optional initiatives from the companies 
they work for, but mostly through professional advice. 

As technology advances, it becomes possible to bring products and services directly to people 
for different purposes. Therefore, considering the impact and consequences of occupational 
stress, companies begin to proactively seek ways to overcome its effects. 

Stress manifests differently in every individual, the causes may not be the same for everyone, 
and there is a wide range of approaches that can be taken to address it. There are people who 
specialize in the treatment and avoidance of mental health disorders such as stress, whether 
through medical advice, specific physical and mental activity, or adoption of healthy regular 
habits. 
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Considering the continuously increasing digitalization, the development of an application 
capable of detecting stress, through the capture of images, and recommending actions upon 
the levels of stress being detected, may provide a way not only for companies to control and 
eventually prevent episodes of stress of their workers during their day-to-day jobs, but also for 
workers to become more self-aware regarding the negative effects of uncontrolled stress and 
how to alleviate them. 

In Table 2, SWOT analysis is presented regarding the implementation of a solution for detection 
of stress and recommendation of stress-relieving actions. 

Table 2 - SWOT analysis 

Strengths 

 
- Stress monitoring. 
 
- Personalized recommendations. 

 
- Self-awareness. 

 
- Avoidance of stress related issues. 

 
- More stable workforce. 

 

Weaknesses 

 
- Reliance on desktop platform. 

 
- Difficult to measure short-term 

impact. 
 

Opportunities 

 
- Support stress detection through 

other means such as smart bands. 
 

- Development of better filtering 
techniques. 

 

Threats 

 
- Lack of motivation to use the 

application. 
 

- Unwillingness to provide ratings to 
recommendations. 
 

- Lack of vision regarding the impact 
that stress has. 
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3.2 Value Proposition 
The value proposition for this solution is presented according to the Osterwalder model, 
composed of two main blocks – customer profile and the value proposition of the company. In 
this case, the solution to be implemented shall be used by workers while on their day-to-day 
tasks at their jobs, hoping to grow self-awareness related to stress and how to behave according 
to the levels of stress detected, contributing for a healthier lifestyle, and preventing more 
serious health issues. 

In the representation of the Osterwalder model in Figure 7, for the customer segment it is 
shown the following: 

• Gains: The benefits desired and wished by the customer. 
• Pains: The negative experiences associated with the present goal. 
• Customer Jobs: The problems being addressed. 

 

Regarding the value proposition of the company, also in Figure 8, it is shown the following: 

• Gain Creators: How the solution being implemented adds value to the customer. 
• Pain Relievers: How the solution being implemented relieves customer pains. 
• Products and Services: Which products and services are expected to address the 

previous points. 
 

 

Figure 8 - Value proposition based on Osterwalder model 

Considering the intent of the solution being described in this document, the customer segment 
addressed consists of everyone that identifies as a worker within a company that may rely not 
only, but also on the interaction with a computer with access to the internet and a camera so 
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that images are captured, analyzed, and recommendations generated according to the levels of 
stress detected. 

3.3 Functional Analysis 
Functional Analysis and System Technique (FAST) is used to define, analyze, and understand the 
functionalities of a solution, as well as how those functionalities correlate between each other. 
It is represented through a diagram to better provide a visualization of the functionalities in a 
logical sequence. 

The diagram can be interpreted not only from left to right, beginning with the core functionality 
of the solution and further exploring the functionality to a more granular level, but also from 
right to left, indirectly explaining the reason behind each functionality. 

 

Figure 9 - FAST diagram 

  

In Figure 9 it is possible to identify the following functionalities: 

• Obtain recommendation 
• Correlate user interests and preferences 
• Create user profiles 
• Collect user answers to questionnaires 
• Collect user ratings regarding past recommendations 
• Take user input 
• Process images 
• Capture images 
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The main purpose of the solution is to provide stress-easing recommendations. However, 
recommendations should be provided at the right time, meaning that the solution must be 
capable of detecting signs of stress. This shall be achieved through the capture of images 
through the webcam of a computer, that is then sent to a trained machine learning model. 
Meanwhile, the main objective is to obtain those recommendations. Through the graphical user 
interface, users can provide their input through questionnaires and ratings of previous 
recommendations, resulting in the creation of a user-profile. Through this profile, it shall be 
possible to provide the desired recommendations using a filtering technique and a database of 
proper stress-easing actions. 

3.4 Filtering Technique Selection 
Selecting the right filtering technique for a recommender system is crucial, for filtering 
techniques are the backbone of the logic behind recommendations being made. Thus, Analytic 
Hierarchy Process (AHP) is used to analyze and aid in the selection of the filtering technique to 
be used. 

This process is composed of seven phases: 

1. Construction of the decision hierarchic tree  
2. Comparison between the elements of the hierarchy 
3. Relative priority of each criterion 
4. Evaluation of consistency between relative priorities 
5. Construction of the comparison matrix for each criterion 
6. Calculation of the composite priority for the alternatives 
7. Selection of the alternative 

 

For the alternatives, the most common filtering techniques were selected: 

- Collaborative Filtering 
- Content-based Filtering 
- Knowledge-based Filtering 

 

The alternatives are compared between themselves through the following criteria: 

- User scalability 
- Item scalability 
- Domain knowledge 

 

In Figure 10, it is possible to see the previous described elements in a decision hierarchic tree. 
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Figure 10 - Decision Hierarchic Tree 

Considering the decision hierarchic tree in Figure 10, it is necessary to define the level of 
importance of each criterion. For this, the fundamental scale of Saaty is used, represented in 
Figure 11. 

 

Figure 11 - Fundamental scale of Saaty7 

 

Mapping the fundamental scale of Saaty to the decision hierarchic tree in Figure 10, the 
following level of priorities for each criterion can be represented through Table 3. 

 
7 A methodology for improving productivity of the existing shipbuilding process using modern production concepts and the AHP 
method 2017, Stanic, V., & Fafandjel, N., https://doi.org/10.21278/brod68303  
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Table 3 - Criteria comparison matrix 

 User Scalability Item Scalability Domain Knowledge 
User Scalability 1 1/5 1/2 
Item Scalability 5 1 3 

Domain Knowledge 2 1/3 1 
 

Then, the criteria comparison matrix is normalized to obtain the relative priority of each 
criterion. For this, it is necessary to divide each value by its columns sum, allowing for the 
calculation of the relative priority, used in the priority vector, and it can be represented through 
Table 4. 

Table 4 - Normalized criteria comparison matrix 

 User Scalability Item Scalability Domain 
Knowledge Relative Priority 

User Scalability 1/8 3/23 1/9 0,12 
Item Scalability 5/8 15/23 6/9 0,65 

Domain 
Knowledge 2/8 15/69 2/9 0,23 

 

The next step consists of calculating the Consistency Ratio (CR) to measure how consistent the 
judgments have been. If the CR is greater than 0.1, it means the judgements are untrustworthy 
because they are too close to randomness and the process should be reanalyzed and repeated. 

To determine the value of CR, it is necessary to calculate the Consistency Index (CI), as well as 
the Random Index (RI). 

The Consistency Index can be calculated as such: 

 𝐶𝐼 = 	
𝜆1)2 − 	𝑛
𝑛 − 1

 (7) 

Where 𝜆1)2 corresponds to the greatest value of the comparison matrix and 𝑛 to the order of 
the matrix. 

The Random Index, however, refers to many pairwise comparisons made and was calculated 
for square matrices of order 𝑛 by the Oak Ridge National Laboratory, in the United States, 
resulting in the Table 5, where the variance of RI depends on the number of criteria. 

Table 5 - Values of RI for square matrices of order 𝑛 

𝑛 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 
RI 0.00 0.00 0.58 0.90 1.12 1.24 1.32 1.41 1.45 1.49 1.51 1.48 1.56 1.57 1.59 

 

Considering the number of criteria taken into consideration for this case, the value of RI is 0,58. 
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Therefore, it is possible to calculate the Consistency Ratio through the following formula: 

 𝐶𝑅 =
𝐶𝐼
𝑅𝐼

 (8) 

Taking the formula for the calculation of the CI, it is first necessary to determine the value of 
𝜆1)2: 

 

U
1 1/5 1/2
5 1 3
2 1/3 1

X U
0,12
0,65
0,23

X = 𝜆1)2 U
0,12
0,65
0,23

X 	⇔ 

 

⇔ U
0,37
1,94
0,69

X = 𝜆1)2 U
0,12
0,65
0,23

X 	⇔ 

 

⇔ 𝜆1)2 = U
3,08
2,98
3
X 

 

(9) 

To obtain the value corresponding to the matrix of 𝜆1)2, the average is calculated as follows: 

 𝜆1)2 =
3,08 + 2,98 + 3

3
≅ 3,02 (10) 

Then, it is possible to obtain the value of the Consistency Index as such: 

 𝐶𝐼 = 	
3,02 − 	3
3 − 1

≅ 0,01 (11) 

Considering the following CI with a value of 0,01 and the RI with a value of 0,58, CR can be 
calculated as follows: 

 𝐶𝑅 =
0,01
0,58

≅ 0,017 (12) 

Having a Consistency Ratio lesser than 0,1, it is possible to conclude that the judgements are 
consistent, which allows for this process to continue to the next step of creating the comparison 
matrices by criteria. 

The first matrix corresponds to User Scalability. The evaluation of this criterion is based on how 
well each alternative adapts to the user-base growth. 
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Table 6 - User Scalability comparison matrix 

User Scalability Collaborative 
Filtering 

Content-based 
Filtering 

Knowledge-
based Filtering 

Collaborative 
Filtering 1 1/9 1/9 

Content-based 
Filtering 9 1 1 

Knowledge-
based Filtering 9 1 1 

 

Table 7 - Normalized User Scalability comparison matrix 

User Scalability Collaborative 
Filtering 

Content-based 
Filtering 

Knowledge-
based Filtering Priority Vector 

Collaborative 
Filtering 1/19 1/19 1/19 0,052 

Content-based 
Filtering 9/19 9/19 9/19 0,474 

Knowledge-
based Filtering 9/19 9/19 9/19 0,474 

 

The second matrix corresponds to Item Scalability. The evaluation of this criterion is based on 
how well each alternative adapts to the item-base growth. 

Table 8 - Item Scalability comparison matrix 

Item Scalability Collaborative 
Filtering 

Content-based 
Filtering 

Knowledge-
based Filtering 

Collaborative 
Filtering 1 1/3 1/3 

Content-based 
Filtering 3 1 7 

Knowledge-
based Filtering 3 1/7 1 

 

Table 9 - Normalized Item Scalability comparison matrix 

Item Scalability Collaborative 
Filtering 

Content-based 
Filtering 

Knowledge-
based Filtering Priority Vector 

Collaborative 
Filtering 1/7 21/93 1/25 0,14 

Content-based 
Filtering 3/7 21/31 21/25 0,65 

Knowledge-
based Filtering 3/7 21/217 3/25 0,21 
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The third matrix corresponds to Domain Knowledge. The evaluation of this criterion is based on 
how independent a filtering technique is to the knowledge regarding the domain in order to 
provide proper recommendations. 

Table 10 - Domain Knowledge comparison matrix 

Domain 
Knowledge 

Collaborative 
Filtering 

Content-based 
Filtering 

Knowledge-
based Filtering 

Collaborative 
Filtering 1 1/3 1/3 

Content-based 
Filtering 3 1 7 

Knowledge-
based Filtering 3 1/7 1 

 

Table 11 - Normalized Domain Knowledge comparison matrix 

Domain 
Knowledge 

Collaborative 
Filtering 

Content-based 
Filtering 

Knowledge-
based Filtering Priority Vector 

Collaborative 
Filtering 1/7 21/93 1/25 0,14 

Content-based 
Filtering 3/7 21/31 21/25 0,65 

Knowledge-
based Filtering 3/7 21/217 3/25 0,21 

 

The results from both the relative priority matrix of each criterion and the matrices of the 
priority vector of each alternative can better be represented in Figure 12. 
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Figure 12 - Weighted Decision Hierarchic Tree 

Lastly, it is possible to select the alternative that is best suited by multiplying the relative priority 
matrix of each criterion with the matrix of the priority vector of each alternative, as such: 

 U
0,052 0,140 0,140
0,474 0,650 0,650
0,474 0,210 0,210

X U
0,12
0,65
0,23

X = U
0,127
0,629
0,056

X (13) 

Considering the criteria that were defined, as well as their relative significance, and according 
to these results, it is possible to conclude that the second row scored a greater value than the 
other two, having a value of 0,629, meaning that the filtering technique that should be chosen 
is the Content-based Filtering. 
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4 Analysis and Design 

This chapter describes the steps involved in the analysis and design for this project. As result 
from the several meetings with the stakeholders, both functional and non-functional 
requirements are described, as well as the domain model and use cases proposed for this 
solution. The architecture from a component perspective is presented, where each component 
present in the architecture is described in detail. Furthermore, two architectures are proposed, 
explaining the reason behind the selection of one over the other. 

4.1 Functional Requirements 
Functional requirements aim to describe the principal functionalities of a system regarding the 
business and domain for which it is proposed, and can be described as following: 

1. The system shall provide a questionnaire for the signed in user to reply to. 
2. The system shall allow users to update past answers to the questionnaire. 
3. The system shall display notifications for the latest recommendations. 
4. The system shall allow the rating of past recommendations. 
5. The system shall display the history of past recommendations. 
6. The system shall provide recommendations. 

4.2 Non-Functional Requirements 
Unlike functional requirements, instead of what the system should do, non-functional 
requirements focus on how the system should be developed and the associated constraints. 

To describe the non-functional requirements, it is utilized the FURPS+ model, for this model 
allows the classification of software quality attributes in a standard and more granular manner. 
The acronym stands for Functionality, Usability, Reliability, Performance, and Supportability. As 
this model evolved, the plus sign was added to further define constraints in design, 
implementation, interface, and hardware (Chung, Nixon, Yu, & Mylopoulos 2000). 

In the context of non-functional requirements, Functionality represents the requirements that 
are not part of the use cases but still relevant to the solution domain-wise, and can be described 
as following: 

1. The system shall be capable of generating personalized recommendations. 
2. The system shall provide an authentication and authorization mechanism. 
3. The system shall forbid access to unauthenticated and unauthorized users. 
4. The system shall save user answers related to the questionnaire. 
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5. The system shall save user ratings related to the recommendations. 
 

Usability refers to graphical interface constraints, such as accessibility, aesthetics, and 
consistency. The following requirements fall under this category: 

6. The graphical interface shall be user-friendly, interactive, and engaging. 
7. The graphical interface shall follow a pre-defined set of colors and components. 

 

Reliability refers to the integrity and interoperability of the software, focusing on failure 
frequency and severity, mean time between failures, and data recovery. No requirements were 
identified that fall into this category. 

Performance consists in the measurement of the software solution regarding response time, 
memory consumption, and processing power. The following requirement falls under this 
category: 

8. The system shall be scalable. 
 

Supportability refers to the concerns regarding maintenance, compatibility, and extensibility of 
the software. The following requirements fall under this category: 

9. The graphical interface shall be supported by multiple web browsers such as Chrome, 
Firefox, Edge, and Opera. 

10. The system shall be designed so that future developments are not compromised. 
 

Design constraints focus on the limitations of the solution regarding tools and technologies. The 
following requirement falls under this category: 

11. All data shall be stored in a relational database. 
 

Interface constraints refer to the specifications regarding external and internal interactions 
between various components that make part of the software solution. The following 
requirements fall under this category: 

12. The communication between components shall be done through REST 
(Representational State Transfer) when applicable. 

13. The communication between components shall be done through a Message Broker, for 
non-blocking executions, when applicable. 

14. Notifications from the server to the client shall not rely on RESTful communication. 
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Regarding implementation and hardware constraints, no requirements were identified that fall 
into these categories. 

4.3 Use Cases 
Considering the requirements specified in subchapter 4.2, it is possible to represent the 
interaction of a user with the system through a use cases diagram, as shown in Figure 13: 

 

Figure 13 - Use Cases Diagram 

The use cases represented in Figure 13 can be described as following: 

• View questionnaire: The user navigates to the questionnaire page and is able to read 
the displayed questions. 

• Answer to questionnaire: The user navigates to the questionnaire page and is able to 
select an answer from the list of possible answers for each question, or answer freely 
if no options are provided. 

• Update questionnaire: The user navigates to the questionnaire page and is able to 
change a past answer to any of the displayed questions. 

• View recommendations: The user receives a recommendation through interface 
notifications and is able to click on it to further expand the recommendation details. 

• Rate recommendations: The user is able to classify the satisfaction towards a 
recommendation through the interface, when further expanding the recommendation 
details, on a scale from one to five. 
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• View recommendation history: The user navigates to the recommendation history 
page and is able to interact with past recommendations. 

4.4 Domain Model 
The domain model can be described as a detailed presentation of the real-world entities and 
their relationships within the scope of a business domain of a solution. Having system 
requirements in mind, identifying domain entities and relationships provide a solid basis that 
promotes the creation of systems for maintainability and incremental development. 
Furthermore, domain modeling helps reducing redundancy and improving integrity of the 
solution (Knaster 2021). 

In Figure 14, it is shown the domain model proposed for this solution: 

 

Figure 14 - Domain Model 

The identified entities and their corresponding relationships can be described as follows: 

• user: Represents the entity that interacts with the system. 
• credential: Represents the authentication credentials belonging to the user. 
• user_role: Represents the roles the user may be assigned to. 
• question: Represents the questions in the questionnaire that the user shall reply to. 
• question_answer_options: Represents the possible answers to the many questions in 

the questionnaire. 
• answer: Represents the answers from the user to the questions in the questionnaire. 
• recommendation: Represents the information that is recommended to the user. 
• recommendation_type: Represents the type of information that is recommended to 

the user. 
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• recommendation_rating: Represents the rating that the user may assign to the 
information that is recommended. 

• recommendation_history: Represents the information that was recommended to the 
user in the past. 

• recommendation_property: Represents the properties of the information that is 
recommended to the user. 

• recommendation_recommendation_property: Represents the many-to-many 
relationship between entities recommendation and recommendation_property, for a 
recommendation may have multiple recommendation properties and the same 
recommendation property may be assigned to multiple recommendations. 

• user_recommendation_property: Represents the many-to-many relationship 
between entities user and recommendation_property, for a user may have multiple 
recommendation properties and the same recommendation property may be 
assigned to multiple users. 

• notification: Represents the messages that are sent from the system to the user. 

4.5 Architecture 
Software development varies greatly, as does the architecture on which software solutions are 
based on. There is almost always more than a single path to achieve any goal, hence two 
alternatives are presented through a components diagram, as well as which alternative was 
chosen and the reason for that decision. 

The traditional approach for the architecture of a software solution is known as the Monolithic 
Architecture. This type of architecture has brought success for many software solutions due to 
the ease of development, testing and deployment, that is associated with the fact that every 
element within the solution is under the same component.  

Some advantages of a monolithic approach are: 

• Simplicity of development 
• Simplicity of testing 
• Simplicity of deployment 
• Customizations are used only one 
• Simplicity on the onboarding of new members to a team 

  

However, the monolithic approach comes with some disadvantages, such as: 

• Lack of flexibility 
• High coupling 
• Lack of ownership within the solution 
• Scaling issues 
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In Figure 15, it is presented the architectural proposal for this project in a monolithic 
approach. 

 

Figure 15 - Monolithic oriented architecture 

In the fast-paced, fast-growing business environment, the short-comings of the monolithic 
approach became apparent, which led to the adoption of another type of architecture for 
software solutions. This type of architecture is known as the Micro-services Architecture, that 
encapsulates each business capability into individual smaller pieces of software within the 
solution. 

Some advantages of a micro-services approach are: 

• Improved fault isolation 
• Low coupling 
• Smaller and faster deployment 
• Highly scalable 
• Clear domains 
• Highly flexible 

 

The drawbacks of choosing a micro-services approach are: 

• Increased complexity in service communication 
• Additional monitoring 
• Increased complexity in solution-wide testing 
• Increased demand of resources 
• Increased complexity in deployment 

 

In Figure 16, it is presented the architectural proposal for this project in a micro-services 
approach. 
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Figure 16 - Micro-services oriented architecture 

Considering the necessities of this project and comparing the advantages and disadvantages of 
one architectural approach to another, the micro-services architecture is considered the best 
alternative, mainly due to its scalability and flexibility. 

Both approaches are composed of the same business units: 

- Graphical User Interface 
- Core Service 
- Rules Service 
- Recommender Service 
- Stress Detection Service 
- Message Broker 

 

The Graphical User Interface shall be created using a JavaScript library called React. This library 
is open-source and is maintained by Meta (formerly Facebook), as well as a community of 
individual developers and companies. It is through this interface that the users will interact with 
the solution, from signing up to receiving and rating recommendations. 

The Core Service, the Rules Service, and the Recommender Service shall be created in Java, 
using the Spring Boot framework. Java is a very mature programming language that is over 
twenty years old and has proven to be the preferred choice for many enterprise software 
solutions throughout the years. Spring Boot, on the other hand, is more recent but was 
developed to facilitate the creation of stand-alone, production-grade Spring based applications. 
Meaning that Spring Boot is an extension of Spring, a Java framework that provides 
comprehensive infrastructure support for developing Java applications. 

The purpose of the Core Service is to serve as a bridge between the Graphical User Interface 
(GUI) and the rest of the system. The Core Service shall provide an Application Programming 
Interface (API) so that the users can perform their desired actions within the scope of the 
application through the GUI, and a WebSocket connection to exchange data in real-time, 
allowing notification dispatching without intervention from the GUI. In turn, the Core Service 
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shall also communicate with the Rules Service, the Recommender Service, and the Stress 
Detection Service through their respective APIs. Furthermore, Core Service shall create the data 
structure presented in subchapter 4.4 in the open-source relational database engine 
PostgreSQL, which easily integrates with the Spring Boot framework. 

Considering the questionnaire is an important part of the solution, making it possible to begin 
creating user profiles as they join the application, it shall be as detailed and complete as possible 
while maintaining the flexibility for adaptation and changes, not only as the solution is 
developed but also afterwards. Thus, instead of programmatically defining all the rules related 
to the questions that shall be displayed to the user and their corresponding logic, a rules engine 
such as Drools shall be used. Through an API, the Core Service shall be capable of requesting 
the necessary information to the Rules Service for the questionnaire to be displayed to the user. 

The Recommender Service, as the name implies, shall be responsible for calculating the most 
adequate recommendations for a given user and providing that information to the Core Service 
so that it can be redirected to the GUI. Libraries such as MLib, from Apache Spark, or the Apache 
Mahout framework, are both reliable software tools for the development of a recommender 
system and can be integrated in the solution that shall be built in Java (Panigrahi, Lenka, & 
Stitipragyan 2016; Walunj & Sadafale 2013). 

The Stress Detection Service is an external module, out of scope of this project, that shall receive 
through its API several physiological signals extracted from images of the users of the 
application such as pupil diameter, eye blinking, heart rate variability, and facial expressions, 
collected by a video plethysmography software. Then, using a trained machine learning model, 
shall reply to the Core Service if the received data shows signs of stress-related behavior. 

Lastly, the purpose of the Message Broker is to handle an asynchronous communication 
between the Core Service and the Recommender Service. Generating recommendations is not 
linear in terms of computational complexity and relying on an HTTP communication may prove 
to be a shortcoming for it is not intended for the Core Service to block its execution during an 
HTTP request to the Recommender Service. Apache Kafka and Apache ActiveMQ are both 
suitable candidates for the inclusion of this component within the system. 
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5 Implementation 

This chapter presents and describes the process involved in the implementation of the 
components and functionalities proposed in the Design chapter, and it is divided in subchapters 
representing each component. The components that required implementation as part of the 
solution are the Graphical User Interface, the Core Service, the Rules Service, and the 
Recommender Service. Albeit not implemented in the same sense as the rest of the 
components, the Message Broker required integration with some components of the solution 
and, for that reason, is also described in this chapter. 

5.1 Graphical User Interface 
Some of the most important characteristics in a web-based application are the ease of use, but 
also how visually consistent and pleasant it is. For that reason, the design of the user interface 
resulted from the collaboration with the stakeholders, who shared their preferences and 
intentions for the application regarding its visual experience. 

To further facilitate this collaboration, it was used an interface design tool called Figma8. This 
tool is a web-based application that allows for multiple people to work together at the same 
time around the graphical design of a solution or product. Furthermore, it provides the 
Cascading Style Sheets (CSS) straight from the user interface, meaning that, most of the times, 
it was possible to obtain the right CSS for the interface components when developing the 
graphical user interface. 

Figure 17 shows a snapshot of the Figma workspace that was used throughout the development 
of the graphical user interface, and Figure 18 demonstrates how the CSS can be obtained from 
the application.  

 
8 https://www.figma.com/  
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Figure 17 - Figma workspace 

 

Figure 18 - CSS properties from Figma component 

Although it is possible to identify different user interface components in Figure 17, it does not 
represent the actual scope of the graphical user interface, meaning that not every user interface 
component present in the Figma workspace was implemented in the graphical user interface of 
the solution. 



 

45 
 

 

As mentioned in subchapter 4.5, the graphical user interface was developed in React, a 
JavaScript library. Through this library it was possible to implement the desired user interface 
along with the expected functionalities, which will be described ahead. 

The structure for this architecture component can be divided in eight parts, as shown in Figure 
19. 

 

Figure 19 - Graphical user interface structure 

The file App.js controls the core aspects of the application such as routing, role management, 
and data contextualization, enabling the rest of the application components to work seamlessly 
with each other in a way that makes sense in terms of business domain. 

For communication, more specifically with the back-end, it is possible to see in Figure 19 two 
folders called websocket and api. The first folder contains a React component that uses a library 
called SockJS to establish the WebSocket connection with the back-end, and the second folder 
contains another React component called Axios that acts as an HTTP client, enabling a RESTful 
communication also with the back-end.  

The components folder contains all the JavaScript files referring to the content of what is 
displayed in the graphical user interface. These files are composed by a mixture of JavaScript 
functions, HTML, and CSS. Considering the amount of styling necessary for the HTML to be 
presented as expected, and of images that make part of the graphical user interface, both style 
and images folders were created to aggregate their corresponding file types. 

To accommodate the need for components to share information with each other it was created 
the context folder, containing the JavaScript files responsible for holding the data regarding 
user authentication and domain-wise information. 

Furthermore, React provides a mechanism to use React features without having to create more 
components, through the usage of Hooks, allowing for components to access global states and 
functions. These Hooks were aggregated in the hooks folder. 
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Figure 20 shows the initial page upon landing on the application.  

 

Figure 20 - Sign-in page 

Through this page, users may either sign in or navigate to the sign-up page. To sign in, users 
must provide their username and password. For the users that do not yet own an account to 
sign in, it is possible for them to navigate to the sign-up page by clicking on register here! as 
highlighted in Figure 21. 

 

Figure 21 - Link to the sign-up page from sign-in page 

Furthermore, it is possible to see a list of icons on the left side of this page. Those five icons 
represent core graphical user interface modules, and through the usage of an opacity layer on 
four of them, it lets users know that in the current state of the application, the only working 
module is the Be Aware module. 

In the sign-up page, users will be prompted to insert some information such as email, username, 
contact number, and password, having to repeat the password once to make sure it is properly 
inserted, as shown in Figure 22. 
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Figure 22 - Sign-up page 

However, users that find themselves on the sign-up page can also navigate back to the sign-in 
page using the same logic previously described. In Figure 23, it is shown the link that allows 
users navigate to the sign-in page from the sign-up page, by clicking on login here!. 

 

Figure 23 - Link to the sign-in page from sign-up page 

After successfully signing in or signing up, users are redirected to a page with some information 
pointing out the importance of gathering some data related to them for the application to 
provide appropriate recommendations. As shown in Figure 24, in this page users can either 
choose to navigate to the home page or the form page. 
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Figure 24 - Preform page 

By choosing to navigate to the form page, users are asked to answer to a vast range of questions 
regarding their well-being such as eating and sleeping habits, physical activity, social interaction, 
and past health related conditions. As shown in Figure 25, users can select one of the many 
options available for each question. 

 

Figure 25 - Form page 

Every time users interact with the form by selecting one of the answers, this information is 
saved by the back-end. This way, if users choose to close the web application or their 
authentication token expires, the application can retrieve and use the information related to 
the questions users previously answered to. By clicking on the submit button, users 
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acknowledge that they have provided the answers to the questions they chose to answer to 
and are redirected to the home page. 

In the context of a web-based application focused primarily on providing tailored 
recommendations to its users, the home page for the application was defined as a list of past 
recommendations that users can interact with and learn more about them. In chapter 7, there 
are some observations regarding what could be done to create an even more engaging and rich 
home page for the application. However, in the current state of the application, Figure 26 
depicts what the home page looks like. 

 

Figure 26 - Recommendation history page 

There are three ways for users to navigate to the home page, although only two have been 
described thus far. One is by skipping the form right after singing in, and the other is by going 
through the form and submitting it. The third way for users to navigate to the home page is 
slightly more interactive, and has a role in the overall application, providing easy access to the 
home page while allowing for users to go back to the page they were at before, as shown in 
Figure 27. 
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Figure 27 - Home page transition 

By clicking on the Be Aware icon, users can navigate to the home page from anywhere within 
the application and go back to their previous page by clicking on the icon again. 

Once in the home page, users can view all the recommendations provided by the application in 
the past. As shown in Figure 26, the only information users see is a brief description of what 
was recommended and the time at which it was recommended. However, by clicking on a 
recommendation from the list, a card appears and displays further details related to the 
recommendation that was clicked on, as represented in Figure 28. 

 

Figure 28 - Recommendation card 
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By hovering with their mouse cursor on the Know more icon, users can see a list of PDF 
documents in which they can click on. Clicking on a document from said list opens a new tab on 
the browser that displays the correspondent content, as shown by Figure 29 and 30. 

These documents provide advice and refer to the benefits associated with adopting the 
proposed behaviours. 

 

Figure 29 - Know more list 

 

Figure 30 - Know more document 
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This card not only allows for a more detailed vision of the recommendation, but it also provides 
a rating system for users to interact with, by clicking on any of the stars at the bottom. A 
recommendation can be rated from one to five stars, and these ratings are taken into 
consideration for future recommendations. 

It is possible to see, in most of the Figures related to the graphical user interface, an icon that 
resembles a bell and that is often associated with notifications. It is through notifications that 
users receive recommendations from the application. When users receive notifications, a red 
dot appears on the left upper corner of the icon, and by hovering their mouse on the icon they 
can see the latest notifications sent from the back-end, as shown in Figure 31. Once users have 
seen all the notifications, the red dot disappears.  

 

Figure 31 - Notifications 

Lastly, users can opt to sign out from the application by hovering their mouse on the icon that 
resembles a person and clicking on the logout option as shown in Figure 32, which redirects 
them to the sign-in page and deletes the authentication cookies from their web browser. 

 

Figure 32 - Sign-out button 

5.2 Message Broker 
In a microservices-oriented architecture, integrations with other services sometimes lead to 
unexpected bottlenecks due to the blocking nature of synchronous requests. For this reason, 
instead of relying on just the typical HTTP connection between the services composing the 
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solution through an API, a message broker was included, allowing for an asynchronous 
communication when and where necessary. 

Both Kafka and ActiveMQ were eligible candidates to assume the place of a message broker in 
the solution. However, Kafka provides greater availability and reliability (Fu, Zhang, & Yu 2020), 
which led to its adoption. 

Kafka is a distributed system that consists of a cluster of brokers in which is possible to configure 
topics. These topics can be described as a log of events and are composed by one or more 
partitions. Each broker is responsible for managing partitions of the existing topics and many 
related configurations such as replication factor and retention time (Vohra 2016). 

To communicate through Kafka, it is necessary to define both producers and consumers. 
Producers have the responsibility of publishing messages to the Kafka topics, while consumers 
are those that subscribe to those topics, creating a stream of data. It is through this mechanism 
that an asynchronous communication is provided. 

As mentioned in subchapter 4.5, requests from Core Service to Recommender Service should 
not block the execution workflow of the solution. Considering that, Kafka was integrated in the 
solution by adding the necessary dependency to the corresponding services, as shown in Figure 
33. 

 

Figure 33 - Kafka maven dependency 

Then, a Kafka broker was launched by running executables on premises through the command 
line, and both core-service and recommender-service topics were created, as shown by Figures 
34 and 35, and Code snippets 1 and 2, respectively. 

 

Figure 34 - Start Zookeeper server 

 

Figure 35 - Start Kafka server 
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Code snippet 1 - Core Service topic creation 

 

Code snippet 2 - Recommender Service topic creation 

Lastly, consumers and producers were defined in both services, allowing the asynchronous 
exchange of data, as shown by Code snippets 3 to 6. 

 

Code snippet 3 - Core Service Kafka consumer 

 

Code snippet 4 - Core Service Kafka producer 

@Configuration 
public class KafkaConfig { 
 
    @Bean 
    public NewTopic createCoreServiceTopic() { 
        return new NewTopic("core-service-topic", 1, (short) 1); 
    } 
} 

@Configuration 
public class KafkaConfig { 
 
    @Bean 
    public NewTopic createRecommenderServiceTopic() { 
        return new NewTopic("recommender-service-topic", 1, (short) 1); 
    } 
} 

@KafkaListener(topics = "core-service-topic", groupId = "core-service-consumer-
group") 
public void listen(@Header(KafkaHeaders.RECEIVED_TOPIC) String topicName, @Payload 
String message) { 
 
    log.info("Received message in topic {}: {}", topicName, message); 
     
    … 
} 

@Slf4j 

@Service 
@RequiredArgsConstructor 

public class ProducerService { 
 
    private final KafkaTemplate<String, String> kafkaTemplate; 
 
    public void sendMessage(String message) { 
        kafkaTemplate.send("recommender-service-topic", message); 
        log.info("Sent message {} to topic recommender-service-topic", message); 
    } 
} 
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Code snippet 5 - Recommender Service Kafka consumer 

 

Code snippet 6 - Recommender Service Kafka producer 

5.3 Core Service 
In the architecture proposed in subchapter 4.5, Core Service is presented as the point of contact 
between the frontend and the backend components, meaning that every request made from 
the Graphical User Interface (GUI) is received and answered directly by the Core Service. This 
way, it was possible to serve the interaction between users and application while segregating 
the logic related to recommendations and rules. 

This service is responsible not only for supporting all the functionalities described in subchapter 
5.1, but also for creating the data structure described in subchapter 4.4, handling 
authentication and authorization, managing WebSocket sessions, and establishing an 
asynchronous connection through Kafka messaging. For this, it was necessary to add the 
dependencies shown in Figures 36 to 40. 

@KafkaListener(topics = "recommender-service-topic", groupId = "recommender-service-
consumer-group") 
public void listen(@Header(KafkaHeaders.RECEIVED_TOPIC) String topicName, @Payload 
String message) { 
 
    log.info("Received message in topic {}: {}", topicName, message); 
     
    … 
} 

@Slf4j 
@Service 
@RequiredArgsConstructor 
public class ProducerService { 
 
    private final KafkaTemplate<String, String> kafkaTemplate; 
 
    private final ObjectMapper objectMapper = new ObjectMapper(); 
 
    public void sendMessage(RecommenderServiceResponseDto 
recommenderServiceResponseDto) { 
        try { 
            String message = 
objectMapper.writeValueAsString(recommenderServiceResponseDto); 
            kafkaTemplate.send("core-service-topic", message); 
            log.info("Sent message {} to topic core-service-topic", message); 
        } catch (Exception e) { 
            log.error("Failed to send message to core-service-topic: {}", 
e.getMessage()); 
        } 
    } 
} 
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Figure 36 - Web maven dependency 

 

Figure 37 - Database maven dependencies 

 

Figure 38 - Security maven dependencies 

 

Figure 39 - WebSocket maven dependency 
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Figure 40 - Kafka maven dependency 

As for the structure, Core Service follows a controller-service-repository approach, albeit 
composed by other components, as shown by Figure 41. 

 

Figure 41 - Core service structure 

The file CoreServiceApplication.java contains the Main method, along with other Spring Boot 
annotations responsible for starting the service with all the necessary resources, and the file 
application.yml contains information regarding the application that is used by both automatic 
and manual configurations, such as which port to run the service on, database connection 
address, username, and password, as well as the addresses for the Rules Service, the 
Recommender Service, and Kafka bootstrap servers. 
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The configurations folder holds not only the REST client configuration, but also both Kafka and 
WebSocket configuration. The clients folder contains the interfaces that are used to define the 
REST client endpoints that Core Service communicates with. 

Regarding the data structure, all entities described in subchapter 4.4 are represented as Spring 
Boot entities in the entities folder. By doing so, and by defining their corresponding repositories 
in the repositories folder, Spring Boot automatically created the data structure in a PostgreSQL 
database engine instance. 

Considering that sometimes it is not desirable to return all data related to an entity, it is 
necessary to map it to another object containing only the information that is relevant. 
Therefore, both the dtos and mappers folders were created to aggregate their corresponding 
Java files. In the same way, not all Java objects that represent a data structure, or part of it, 
identify as an entity. Those that do not, belong to either the models or enums folder. 

To support the functionalities provided by the GUI, Core Service required an API. This API is 
defined within the controllers folder, and all the business logic that is not related to generating 
recommendations or processing rules is contained within the services folder, along with both 
Kafka consumer and producer. 

The Core Service API is composed by the following endpoints: 

• POST /login 

This is the endpoint responsible for allowing a user to sign in by providing a username 
and password. If the user successfully signs in, both an access token and a refresh token 
are returned by the endpoint in the form of a JSON Web Token. Otherwise, the endpoint 
returns an HTTP 403 code. 

• POST /logout 

After signing in, users have the possibility to sign out through this endpoint. By doing 
so, any authentication token in their possession is invalidated and can no longer be used. 

• POST /user 

Users must sign up prior to signing in. This endpoint allows for any user to register in 
the application by providing an e-mail, a username, a password, and a confirmation 
password, along with the optional field contact. 

• GET /refresh-token 

When users sign in, they are given an access token and a refresh token.  

The access token contains user related information that are relevant in terms of security, 
for example, such as the user role. This way, the GUI can implement a role-based access 
to the interface resources. However, for security reasons, the access token should have 
a short validity, and to avoid having users signing in every other minute, they can use 
the refresh token to request a new access token, as long as the refresh token is still valid. 
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The refresh token is saved in the users’ browser as a secure cookie and has a greater 
validity, unlike the access token. To use it, when users make a request through the GUI 
to the Core Service, there is an interceptor that checks if an access token exists and 
whether it is still valid. If condition is not true, the interceptor makes a request to this 
endpoint to get a new access token and proceeds with the initial request done by the 
user. 

• GET /recommendation-history 

This endpoint receives the access token from the user making the request and returns 
all past recommendations provided by the Recommender Service to the corresponding 
user. 

• POST /recommendation/{recommendationId}/rating 

Users can rate the recommendations provided to them, contributing to the creation 
and development of a user profile that helps the Recommender Service generating 
recommendations that are best suited for them. This endpoint receives the access 
token from the user making the request, as well as the identifier of the recommendation 
being rated, and the corresponding rating given by the user. 

• GET /questions 

This endpoint receives the access token from the user that is signed in and currently in 
the Form page, in the GUI, and returns the questions composing this page depending 
on defined business rules. For this, Core Service communicates with the Rules Service 
to deliver the right questions to users. 

• POST /answer 

For every option that users choose in the Form page, this endpoint is called by the GUI 
and receives both the access token of the users selecting the answers, as well as the 
chosen answer and the question that the answer refers to, allowing for the Core Service 
to save this information. 

• GET /notifications 

This is the endpoint responsible for getting the notifications of signed in users. Right 
after users signing in, this endpoint is called with the access token of the signed user 
and returns the collection of past notifications. 

However, not all communication with the Core Service is done through the aforementioned 
endpoints.  

Although there is an endpoint to get the notifications right after users sign in on the application, 
it was necessary to adopt a mechanism to deliver notifications in real-time without having to 
constantly make HTTP requests from the GUI to the Core Service. This was achieved by using 
WebSockets, and it is defined in the handlers folder. Once users sign in, the GUI is responsible 
for establishing a WebSocket session with the Core Service, and Core Service is responsible for 
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creating a data structure holding the identifier of the established WebSocket session, along with 
the user identifier it belongs to and a timestamp. 

This service also contains a scheduler, that can be found in the schedulers folder, responsible 
for getting all the active WebSocket sessions and, depending on if the time at which the 
scheduler is running is greater than the timestamp associated with the sessions, for sending a 
message through Kafka to the Recommender Service requesting for a recommendation for each 
user identifier associated with the sessions. As soon as the Recommender Service replies, also 
through Kafka, the message is caught by the consumer of Core Service that sends a notification 
to the corresponding users through their WebSocket sessions, containing the generated 
recommendations. 

Regarding users’ authentication and authorization, both security and filters folders aggregate 
web security configurations, as well as authentication and authorization filters, respectively. 

Web security configurations include which authentication manager and password encoder to 
be used, but also which endpoints are allowed to be called without authentication, such as: 

• POST /login 
• POST /logout 
• POST /user 
• GET /refresh-token 

 

The authentication filter is executed every time users attempt to sign in. First, the username 
and password provided by users is taken and checked against the information that exists in the 
user database. Then, if the validations pass, the authentication filter returns a secure HTTP 
cookie with a JSON Web Token called refresh token and another JSON Web Token called access 
token in the body of the response to the sign in request. 

Lastly, the authorization filter makes sure that the protected endpoints can only be accessed by 
users that own a valid access token. When users request for their recommendation-history 
through the GUI, for example, this filter intercepts the request that Core Service received and 
verifies the authenticity of the access token before letting Core Service process the request. 

5.4 Rules Service 
As mentioned in chapter 4, the solution required the inclusion of a questionnaire for users to 
reply to. This questionnaire could be implemented in a more traditional way, hard coding the 
questions and the related dependencies resulting from users answers to those questions, or in 
a more generic, configurable, and approachable way that would allow not only developers but 
also non-developers to change them. For this reason, a rules management system was used. 

Rules management systems provide mechanisms to segregate business logic from application 
logic, making it easier to scale and maintain as business logic evolves (Velzen 2018). It is possible 
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to represent the business logic as something that happens when a set of constraints is fulfilled, 
as exemplified by expression 14: 

 WHEN glass_of_water AND empty THEN refill_with_water (14) 
 

Drools 9  is not the only rules management system that could be used to power this 
configurability and approachability. However, being open-source and easily integrable with Java 
made it the perfect candidate for this solution. Figure 42 shows all the dependencies required 
to integrate Drools with a Spring Boot project. 

 

Figure 42 - Drools maven dependencies 

Being part of a group of micro-services that communicate through HTTP, this service also 
required the spring-boot-starter-web dependency, which provides the core infrastructure for a 
web service to run.  

In Figure 43, it is possible to see how the Rules Service was structured, containing two files and 
five folders. 

 
9 https://www.drools.org/  
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Figure 43 - Rules Service structure 

The file QuestionnaireServiceApplication.java holds the method responsible for starting the 
service with all the necessary resources, and the file application.yml contains the data that is 
used by both automatic and manual configurations related to the service, such as exposed port 
and location of business rules. In turn, the rules folder contains the business rules specified in 
the application.yml file. 

In the context of this application, business rules are directly related to questionnaire 
configurations. 

Keeping in mind the configurability and approachability that Drools provides, its ability to read 
and comprehend spreadsheets allowed to write the business rules in an XLS file format, as 
shown in Figure 44. 

 

Figure 44 - Business rules sample 

It is possible to see in Figure 44 that the spreadsheet follows a specific format. However, it does 
not deviate from the fact that it is simpler to understand and maintain when comparing to 
having the same logic written in code. 

In the configurations folder, it is possible to find the Spring Boot Bean that initializes the Drools 
container. It is through this configuration that the Rules Service provides Drools with the 
business rules, allowing it to build the necessary knowledge base, as displayed by Code snippet 
7. 
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Code snippet 7 - Drools container configuration 

In addition to initializing the Drools container, the Rules Service provides an API so that other 
services belonging to the architecture of the solution can make requests over HTTP. This API is 
defined within the controllers folder and boils down to just two endpoints: 

• GET /drlFile 
• POST /trigger-question-rule 

 

The first endpoint is responsible for taking the rules spreadsheet located in the rules folder and 
parsing it to a specific format that Drools is capable of processing, allowing for a more technical 
perspective on the business rules logic. Considering the business rules sample from Figure 44, 
it is possible to demonstrate the response from the first endpoint regarding those same rules, 
through Figure 45. 

 

Figure 45 - Parsed business rules sample 

@Bean 
public KieContainer getKieContainer() { 
 
    KieFileSystem kieFileSystem = kieServices.newKieFileSystem(); 
    
kieFileSystem.write(ResourceFactory.newClassPathResource(questionsRulesFilePath)); 
    
kieFileSystem.write(ResourceFactory.newClassPathResource(recommendationPropertiesRule
sFilePath)); 
 
    KieBuilder kb = kieServices.newKieBuilder(kieFileSystem); 
    kb.buildAll(); 
 
    SpreadsheetCompiler spreadsheetCompiler = new SpreadsheetCompiler(); 
    Resource resource = ResourceFactory.newClassPathResource(questionsRulesFilePath); 
    String drl = spreadsheetCompiler.compile(resource, InputType.XLS). 
            replace("\\\\n", System.lineSeparator()). 
            replace("TRUE", "true"). 
            replace("FALSE", "false"); 
    log.info("{}", drl); 
 
    KieModule kieModule = kb.getKieModule(); 
    KieContainer kieContainer = 
kieServices.newKieContainer(kieModule.getReleaseId()); 
    KieBase kieBase = kieContainer.getKieBase(); 
 
    log.info("KieBase created: {}", kieBase.getKiePackages()); 
 
    return kieContainer; 
} 
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Simplifying the rule question16_1 in Figure 45, we get the expression 15: 

 

WHEN list of questions does not contain the question “What kind of activity 
do you usually practice?” 
AND current question is equal to “Do you exercise regularly?” 
AND current question is answered with “Yes” 
THEN add question “What kind of activity do you usually practice?” to list of 
question 

(15) 

 

The second endpoint, however, relies on the files within the folders services and models to 
process and deliver a response to any request. This endpoint accepts a list of Java objects of 
type Question, initializes a Drools container session, and for each object in the list it injects said 
object as a variable in the parsed business rules and fires them all, updating the original list 
before returning it. For every rule, there is a course of action if all the conditions are met. In the 
context of this application, the course of action often results in the addition or removal of a 
question from the list of objects of type Question that users can reply to through the graphical 
user interface. Both the Question Java object and the processing of business rules can be 
represented by Code snippets 8 and 9, respectively. 

 

Code snippet 8 - Question Java object 

@Data 
@AllArgsConstructor 
@NoArgsConstructor 
@Builder 
public class Question { 
 
    private String text; 
    private String answerText; 
    private String answerType; 
    private List<String> answerOptions; 
    private Integer order; 
 
    public Question(String text) { 
        this.text = text; 
        this.answerText = null; 
        this.answerType = null; 
        this.answerOptions = null; 
        this.order = null; 
    } 
} 
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Code snippet 9 - Processing of business rules 

5.5 Recommender Service 
Recommendations have a significant impact on the solution, for its main objective is to 
recommend healthy habits to its users. 

Considering that the stakeholders involved in the development this solution are health-related 
professionals, the rationale behind which recommendations to include in the solution was 
conducted mostly by them, and posteriorly discussed in the several meetings that were held 
throughout the development period. 

As described in chapter 5.1, and as shown by Figures 29 and 30, each recommendation has an 
associated collection of documents, also provided by the stakeholders, so that users can explore 
the recommendations they receive. Both the recommendations and the collection of 
documents associated with each one of them is expected to grow over time. However, at the 
time of deliverance of this document, the recommendations included in the solution are as 
follows: 

• Physical exercise during 10 minutes 
• Physical exercise during 5 minutes 
• Stretching exercises 
• Muscle activation exercises 
• Important reading regarding time management 
• Take a break to chat with a colleague 
• Important reading regarding personal care 
• Time management tips 

public List<Question> triggerQuestionRule(List<Question> questions) { 
 
    KieSession kieSession = kieContainer.newKieSession(); 
 
    kieSession.setGlobal("questions", questions); 
    kieSession.setGlobal("recommendationProperties", new ArrayList<>()); 
    kieSession.insert(rulesHandler); 
 
    List<Question> updatedQuestions = new ArrayList<>(questions); 
 
    updatedQuestions.forEach(question -> { 
        kieSession.insert(question); 
        kieSession.fireAllRules(); 
    }); 
 
    if (CollectionUtils.isEmpty(questions)) kieSession.fireAllRules(); 
 
    kieSession.dispose(); 
 
    return questions; 
} 
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• Important reading regarding what to drink 
• Important reading regarding reducing unhealthy drinks 
• Important reading regarding stress reduction 
• Important reading regarding resilience 
• Important reading regarding sleeping habits 
• Important reading regarding work posture 
• Important reading regarding ergonomics 
• Important reading regarding stress management 
• Important reading regarding feeling very tired 

 

For this reason, and considering the architecture presented in subchapter 4.5, a micro-service 
was developed to address the business requirements related to recommendations. 

For recommendations to be provided there must be at least one filtering technique in place. 
Subchapter 3.1 explains through an analytical process which filtering technique should be used, 
given the described imposed limitations, concluding that the content-based technique is the 
most appropriate. This type of filtering technique relies on the similarities between 
recommendations and users’ interests. Therefore, to adopt a content-based filtering technique, 
it was necessary to define the following recommendation properties: 

• Social interaction 
• Nutrition 
• Health condition 
• Physical activity 
• Sleep 
• Mental health 
• Individual 

 

These properties represent characteristics of the recommendations being provided and allows 
for the calculation of similarities between recommendations and users. Table 12 represents 
how properties and recommendations associate with each other. 

Table 12 - Recommendations and properties association 

Recommendation Properties 

Physical exercise during 10 minutes Individual, Physical activity, Sleep, Health 
condition 

Physical exercise during 5 minutes Individual, Physical activity, Sleep, Health 
condition 

Stretching exercises Individual, Physical activity, Sleep, Health 
condition 
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Muscle activation exercises Individual, Physical activity, Sleep, Health 
condition 

Important reading regarding time 
management 

Social interaction, Health condition, Mental 
health 

Take a break to chat with a colleague Social interaction, Health condition, Mental 
health 

Important reading regarding personal care Social interaction, Health condition, Mental 
health 

Time management tips Social interaction, Health condition, Mental 
health 

Important reading regarding what to drink Individual, Sleep, Health condition, Nutrition 

Important reading regarding reducing 
unhealthy drinks Individual, Sleep, Health condition, Nutrition 

Important reading regarding stress 
reduction 

Social interaction, Sleep, Health condition, 
Mental health 

Important reading regarding resilience Social interaction, Physical activity, Sleep, 
Health condition, Mental health 

Important reading regarding sleeping habits Physical activity, Sleep, Health condition, 
Mental health 

Important reading regarding work posture Individual, Physical activity, Sleep, Mental 
health 

Important reading regarding ergonomics Individual, Physical activity, Sleep, Mental 
health 

Important reading regarding stress 
management 

Individual, Physical activity, Sleep, Mental 
health 

Important reading regarding feeling very 
tired 

Individual, Physical activity, Sleep, Mental 
health 

 

Users’ interests are also represented by the same properties. However, the solution does not 
know which properties are associated to each user by default. Instead, as users interact with 
the application through the Graphical User Interface, they can rate recommendations. By rating 
a recommendation positively, the application is responsible for assigning the properties of that 
recommendation to the users that rated it that way. Only then, it becomes possible to calculate 
similarities between both recommendations and those users. 
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Similarly, when users get recommendations that do not pleases them and decide to rate such 
recommendations negatively, some of the properties in common are removed from users’ 
interests to avoid similar future recommendations. 

Thus, within the context of a Spring Boot application, including the Apache Spark 10open-source 
library allowed for the implementation of a content-based recommender service through the 
APIs that Apache Spark provides. 

Like Core Service and Drools Service, to be able to serve an HTTP communication, 
Recommender Service required the spring-boot-starter-web dependency, which provides the 
core infrastructure for a web service to run. As for Apache Spark, to be able to use it was 
necessary to add the dependencies shown in Figure 46. 

 

Figure 46 - Apache Spark maven dependencies 

Recommender Service follows a similar structure to the other services composing the solution, 
as shown by Figure 47. 

 
10 https://spark.apache.org/  
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Figure 47 - Recommender Service structure 

The file RecommenderSystemApplication.java is responsible for starting the service with all 
the necessary resources, and the file application.yml contains automatic spring related 
configurations but also data used to manually configure other components within the service, 
such as data source connection and Spark session. 

The configurations folder aggregates the files responsible for providing the data source 
connection defined in application.yml, creating a Kafka topic, and starting a Spark session. 

Although the communication with the Recommender Service happens mostly through Kafka, 
the service provides an API, allowing for HTTP requests if necessary. This API is defined within 
the controllers folder and boils down to a single endpoint: 

• GET /recommendation 
 

This endpoint relies on the files within the folders services, dtos, exceptions, and utils, to 
process and deliver a response to any request. Similarly, both Kafka consumer and producer are 
defined in the services folder, allowing the Recommender Service to communicate 
asynchronously while providing the same behaviour as the endpoint by using the same Spring 
Boot components. 

To get a recommendation from the Recommender Service, either by using the API or Kafka 
messaging, it is necessary to pass a user identifier as a parameter. Only by using a user identifier 
the Recommender Service can gather all the information it needs to provide a recommendation. 
Depending on the type of communication used, this identifier can be passed as an HTTP 
parameter or within the body of a Kafka message, as shown in Code snippets 10 and 11, 
respectively. 
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Code snippet 10 – RecommendationController.java 

In Code snippet 10, more specifically in the getRecommendation method, it is possible to verify 
that it receives an HTTP request parameter called userId that represents the value of a user 
identifier. 

 

Code snippet 11 – ConsumerService.java 

Similarly, in Code snippet 11, it is possible to see that the method listen receives a parameter 
called userId which also represents the value of a user identifier. 

@Slf4j 
@RestController 
@RequiredArgsConstructor 
public class RecommendationController { 
 
    private final RecommendationService recommendationService; 
 
    @GetMapping("recommendation") 
    public ResponseEntity<?> getRecommendation(@RequestParam String userId) { 
        try { 
            String recommendationId = 
recommendationService.getRecommendation(userId); 
            return ResponseEntity.ok(new 
RecommenderServiceResponseDto(recommendationId, userId)); 
        } catch (NoRecommendationFoundException e) { 
            log.error(e.getMessage()); 
            return ResponseEntity.status(HttpStatus.NOT_FOUND).body(e.getMessage()); 
        } catch (Exception e) { 
            return 
ResponseEntity.status(HttpStatus.BAD_REQUEST).body(e.getMessage()); 
        } 
    } 
} 

@Slf4j 
@Service 
@RequiredArgsConstructor 
public class ConsumerService { 
 
    private final RecommendationService recommendationService; 
    private final ProducerService producerService; 
 
    @KafkaListener(topics = "recommender-service-topic", groupId = "recommender-
service-consumer-group") 
    public void listen(@Header(KafkaHeaders.RECEIVED_TOPIC) String topicName, 
@Payload String userId) { 
        log.info("Received userId in topic {}: {}", topicName, userId); 
 
        try { 
            String recommendationId = 
recommendationService.getRecommendation(userId); 
            RecommenderServiceResponseDto recommenderServiceResponseDto = new 
RecommenderServiceResponseDto(recommendationId, userId); 
            producerService.sendMessage(recommenderServiceResponseDto); 
        } catch (Exception e) { 
            log.error(e.getMessage()); 
        } 
    } 
} 
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By further analysing both Code snippets 10 and 11, it is evident that both 
RecommendationController and ConsumerService proceed to handle the user identifier in the 
same way, using the RecommendationService, with the objective of generating a new 
recommendation. 

RecommendationService.java is a Spring Boot component that was added to the 
Recommender Service that acts as layer between the application logic and the recommendation 
logic, while providing some exception handling, as shown by Code snippet 12. 

 

Code snippet 12 - RecommendationService.java 

This class contains three different methods: 

• getRecommendation 

@Slf4j 
@Service 
@RequiredArgsConstructor 
public class RecommendationService { 
 
    private final SparkService sparkService; 
 
    private final JdbcTemplate jdbcTemplate; 
 
    public String getRecommendation(String userId) throws Exception { 
        try { 
            return sparkService.getRecommendation(userId); 
        } catch (NoRecommendationPropertiesFoundException | 
NoUserPropertiesFoundException e) { 
            log.error(e.getMessage()); 
            log.info("Fetching random recommendation from database"); 
            String recId = getRandomUnrecommendedRecommendation(userId); 
            return StringUtils.isNotEmpty(recId) ? recId : 
getRandomRecommendationFromUserRecommendationHistory(userId); 
        } catch (LackOfNewRecommendationsException e) { 
            log.info(e.getMessage()); 
            log.info("Fetching random recommendation from recommendation_history 
table where rating is lacking or is greater than 2"); 
            return getRandomRecommendationFromUserRecommendationHistory(userId); 
        } 
    } 
 
    private String getRandomUnrecommendedRecommendation(String userId) { 
        return jdbcTemplate.queryForObject(Constants.RANDOM_UNRECOMMENDED_REC_QUERY, 
String.class, userId); 
    } 
 
    private String getRandomRecommendationFromUserRecommendationHistory(String 
userId) { 
        return 
jdbcTemplate.queryForObject(Constants.RANDOM_REC_FROM_USER_REC_HISTORY_TABLE_QUERY, 
String.class, userId, userId); 
    } 
} 
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This is the driver method. In conjunction with the next two methods, and by relying on 
SparkService, this method is capable of providing recommendations even if SparkService 
fails to do so, through the usage of checked exceptions. 

• getRandomUnrecommendedRecommendation 

When SparkService throws either a NoRecommendationPropertiesFoundException or a 
NoUserPropertiesFoundException, this method is responsible for connecting to the data 
source holding all the information related to the solution and getting a recommendation at 
random that has not yet been recommended to the user in the past. 

• getRandomRecommendationFromUserRecommendationHistory 

Similarly, when SparkService throws LackOfNewRecommendationsException, this method 
also connects to the data source holding all the information related to the solution and gets 
a recommendation at random that either was rated positively or that lacks a rating, 
meaning it might still be potentially interesting for the user receiving it. 

SparkService.java is the Spring Boot component where Apache Spark library APIs are used, 
allowing for the calculation of similarities between recommendations and users’ interests, and 
it is what powers the Recommender Service regarding its objective. 

Generating a new recommendation can be enumerated as follows: 

1. Build dataset with all identifiers and properties of recommendations not yet provided 
to the user, along with the identifier and properties of the user to whom the 
recommendation is for. 

2. Group dataset by identifiers to obtain a dataset with a group of properties per identifier. 
3. Vectorize the properties per identifier. 
4. Calculate similarities between vectors, resulting in a data structure containing a 

combination of similarities between identifiers, per identifier. 
5. Get the combination of similarities between the user identifier and all the 

recommendations identifiers. 
6. Order the combination of similarities by similarity degree in descending order. 
7. Get the first element of the combination of similarities. 

 

To build the initial dataset, SparkService runs a query in the database that gets all the identifiers 
of recommendations not yet provided to the user in the solution, and each corresponding 
property. Considering the goal is to understand which recommendation is the most similar to 
the users’ interests, this query also gets the user properties and places them, along with the 
user identifier, on the query result, as shown in Figure 48. 
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Figure 48 – Initial dataset query subset 

However, this query may not return any data. This situation can happen for multiple reasons: 

• The database does not have any recommendation. 
• All recommendations have been provided to the user in the past. 
• The database does not contain any recommendation with associated properties. 
• The user for which the recommendation is for does not have any associated properties 

in the database. 
 

If any of these situations occur, SparkService returns a checked exception back to 
RecommendationService so that the Recommender Service can return the most appropriate 
response. 

Both the dataset initialization and the exception handling can be shown in Code snippet 13, and 
Figure 49 shows what the first twenty rows of the initial dataset look like, once initialized. 



 

74 
 

 

Code snippet 13 - Dataset initialization and exception handling 

public String getRecommendation(String userId) throws Exception { 
 
    log.info("Getting recommendation for User with ID {}", userId); 
 
    // get initial dataset with recommendation ids and properties + user id and 
properties 
    Dataset<Row> recDataset = getRecommendationsDatasetFromDB(userId); 
 
    if (recDataset.isEmpty()) { 
        // check database for possible reasons why initial dataset is empty 
 
        Integer nrOfRecsInDB = 
jdbcTemplate.queryForObject(Constants.CHECK_RECS_EXIST_QUERY, Integer.class); 
        if (nrOfRecsInDB == null || nrOfRecsInDB == 0) 
            throw new NoRecommendationFoundException("No recommendations found in the 
database"); 
 
        Boolean userHasUnrecommendedItemsInDB = 
jdbcTemplate.queryForObject(Constants.CHECK_USER_STILL_HAS_UNRECOMMENDED_RECS_QUERY, 
Boolean.class, userId); 
        if (userHasUnrecommendedItemsInDB == null || !userHasUnrecommendedItemsInDB) 
{ 
            throw new LackOfNewRecommendationsException("There are no more 
recommendations in the database that have not been recommended to User with ID" + 
userId); 
        } 
 
        Integer nrOfRecPropsInDB = 
jdbcTemplate.queryForObject(Constants.CHECK_RECS_PROPS_EXIST_QUERY, Integer.class); 
        if (nrOfRecPropsInDB == null || nrOfRecPropsInDB == 0) 
            throw new NoRecommendationPropertiesFoundException("No recommendation 
properties found in the database"); 
 
        Integer nrOfUserPropsInDB = 
jdbcTemplate.queryForObject(Constants.CHECK_USER_PROPS_EXIST_QUERY, Integer.class, 
userId); 
        if (nrOfUserPropsInDB == null || nrOfUserPropsInDB == 0) 
            throw new NoUserPropertiesFoundException("No recommendation properties 
found for user with ID " + userId + " in the database"); 
    } 
 
    ... 
} 
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Figure 49 – First twenty rows of the initial dataset 

Then, assuming the dataset was initialized with data, it is necessary to group the properties by 
identifier so that they can be vectorized, as shown in Code snippet 14 and demonstrated in 
Figure 50. 

 

Code snippet 14 - Properties aggregation by identifier 

public String getRecommendation(String userId) throws Exception { 
 
    ... 
 
    // group and aggregate initial dataset so that it can be worked on 
    recDataset = recDataset.groupBy("recommendation_id").agg(new HashMap<>() {{ 
        put("recommendation_properties", "collect_list"); 
    }}).withColumnRenamed("collect_list(recommendation_properties)", 
"recommendation_properties"); 
 
    ... 
} 
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Figure 50 - Aggregated dataset 

After grouping the properties by identifier, it is used the CountVectorizerModel from the Apache 
Spark library, to create a vector from each group of properties, as shown in Code snippet 15 
and Figure 51. 

 

Code snippet 15 - Properties vectorization 

public String getRecommendation(String userId) throws Exception { 
 
    ... 
 
    // use CountVectorizer to create a vector out of recommendation properties for 
each recommendation 
    CountVectorizerModel recCountVecModel = new CountVectorizer() 
            .setInputCol("recommendation_properties") 
            .setOutputCol("feature") 
            .fit(recDataset); 
 
    Dataset<Row> recDatasetVectorized = recCountVecModel.transform(recDataset); 
 
    ... 
} 
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Figure 51 - Vectorized dataset 

After vectorizing all properties, to calculate the similarity between vectors it is used the 
columnSimilarities method, also from Apache Spark. However, because this method calculates 
similarities between columns instead of rows, it was necessary to create a matrix and transpose 
it, as shown by Code snippet 16. 

 

Code snippet 16 - Similarities calculation 

Because these operations rely on the Apache Spark library and its corresponding data structures, 
it is then created a map to facilitate getting the similarities between the user and 
recommendations. Finally, to get the ideal recommendation, the user-recommendations 
similarities are ordered by similarity degree in descending order and the recommendation with 

public String getRecommendation(String userId) throws Exception { 
 
    ... 
 
    // calculate cosine similarity between each recommendation 
    List<IndexedRow> indexedRows = new ArrayList<>(); 
    Map<Long, String> indexedRowsRecIdsMap = new HashMap<>(); 
 
    long i = 0; 
    for (Row row : recDatasetVectorized.collectAsList()) { 
        indexedRowsRecIdsMap.put(i, row.get(0).toString()); 
        Vector vector = Vectors.dense(((SparseVector) row.get(2)).toArray()); 
        indexedRows.add(new IndexedRow(i++, vector)); 
    } 
 
    Dataset<IndexedRow> indexedRowDataset = sparkSession.createDataset(indexedRows, 
Encoders.javaSerialization(IndexedRow.class)); 
    RDD<IndexedRow> indexedRowRDD = indexedRowDataset.rdd(); 
 
    IndexedRowMatrix indexedRowMatrix = new IndexedRowMatrix(indexedRowRDD); 
    BlockMatrix blockMatrix = indexedRowMatrix.toBlockMatrix().transpose(); 
    IndexedRowMatrix transposedMatrix = blockMatrix.toIndexedRowMatrix(); 
 
    RDD<MatrixEntry> matrixEntryRDD = 
transposedMatrix.columnSimilarities().entries(); 
 
    ... 
} 



 

78 
 

the highest degree in relation to the interests of the user is returned, as shown by Code snippets 
17, 18, and 19, respectively. 

 

Code snippet 17 - Similarities map 

 

Code snippet 18 - Order similarities map in descending order by similarity degree 

public String getRecommendation(String userId) throws Exception { 
 
    ... 
 
    List<MatrixEntry> matrixEntries = matrixEntryRDD.toJavaRDD().collect(); 
    Map<String, Map<String, Double>> similaritiesMap = new HashMap<>(); 
 
    for (MatrixEntry entry : matrixEntries) { 
        String recommendationIdFrom = 
indexedRowsRecIdsMap.get(entry.copy$default$1()); // get source recommendation ID 
        String recommendationIdTo = indexedRowsRecIdsMap.get(entry.copy$default$2()); 
// get destination recommendation ID 
        Double cosineSimilarity = entry.copy$default$3(); // get cosine similarity 
between source and destination recommendation ID 
 
        Map<String, Double> similaritiesToDefault$1 = 
similaritiesMap.computeIfAbsent(recommendationIdFrom, k -> new HashMap<>()); // if 
similaritiesMap.get(recommendationIdFrom) exists then gets the value, if not then it 
adds a new HashMap() as the value 
        Map<String, Double> similaritiesToDefault$2 = 
similaritiesMap.computeIfAbsent(recommendationIdTo, k -> new HashMap<>()); // if 
similaritiesMap.get(recommendationIdTo) exists then gets the value, if not then it 
adds a new HashMap() as the value 
 
        similaritiesToDefault$1.put(recommendationIdTo, cosineSimilarity); 
        similaritiesToDefault$2.put(recommendationIdFrom, cosineSimilarity); 
    } 
 
    ... 
} 

public String getRecommendation(String userId) throws Exception { 
 
    ... 
 
    // get cosine similarity matrix between user and all recommendations 
    log.info("Similarities matrix: {}", similaritiesMap); 
    Map<String, Double> userRecSimilarities = similaritiesMap.get(userId); 
    log.info("User-Recommendation similarities: {}", userRecSimilarities); 
 
    // order user cosine similarity matrix by descending order 
    LinkedHashMap<String, Double> userRecSimilaritiesSortByValueDesc = new 
LinkedHashMap<>(); 
    
userRecSimilarities.entrySet().stream().sorted(Map.Entry.comparingByValue(Comparator.
reverseOrder())) 
            .forEachOrdered(x -> userRecSimilaritiesSortByValueDesc.put(x.getKey(), 
x.getValue())); 
 
    log.info("User-Recommendation similarities in descending order: {}", 
userRecSimilaritiesSortByValueDesc); 
 
    ... 
} 
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Code snippet 19 - Get and return recommendation with highest similarity to interests of user 

Using the information shown in Figures 49 to 51 as an example, the user-recommendations 
similarities ordered by similarity in descending order, for the same data, can be represented by 
Figure 52. 

 

Figure 52 - Similarity between a user and recommendations 

Considering the description on how the recommendation logic operates, in the scenario 
represented by Figure 52, it is possible to conclude that the recommendation with identifier 
rec_id_17 is the eligible one for having one of the highest similarity metrics and being the first 
element on the data structure. 

  

public String getRecommendation(String userId) throws Exception { 
 
    ... 
 
    String recommendationId = new 
ArrayList<>(userRecSimilaritiesSortByValueDesc.entrySet()).get(0).getKey(); 
 
    return recommendationId; 
} 
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6 Evaluation and Experimentation 

In this chapter, it is presented the evaluation of the implemented solution. For this, an 
hypothesis is defined, as well as the evaluation methodology, and metrics. 

6.1 Hypotheses 
With the goal of proving the implemented solution to be of quality and capable of providing 
adequate stress-easing recommendations, the following hypothesis is defined: 

• The system provides adequate stress-easing recommendations to users. 
 

In the context of this document, an adequate stress-easing recommendation is assumed to be 
a recommendation that has been positively evaluated by the user that received it.  

6.2 Methodology 
To prove that the system can provide adequate stress-easing recommendations, it is necessary 
to collect user-generated data. This data corresponds to the ratings from the users regarding 
the recommendations that were made in the past, on a scale from one to five, and it is possible 
to obtain through the access to the database where they are stored. 

However, this solution is part of an H2020 initiative which involves other parties in the delivery 
process. For this reason, as of the date of this document, there is no user-generated data that 
can be used for the purpose of evaluation. 

To counter the lack of user-generated data, it was used randomly generated data. For that 
reason, the results are merely demonstrative and are not subject to interpretation. It is only 
intended to show how the system can be evaluated. 

Regarding the generated data, it was considered the following: 

• 10 users 
• 0 to 7 randomly generated recommendations per user 
• Randomly generated scores from 1 to 5 to the generated recommendations per user 
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6.3 Metrics 
An effective recommender system is expected to provide appropriate recommendations that 
users enjoy and at the same time avoid recommendations that users dislike. Thus, it is possible 
to assess the effectiveness of the system by measuring both error metrics and decision support 
metrics. 

By measuring error metrics, it is possible to verify how much the recommender system deviates 
from users’ interests, meaning the smaller these metrics, the better. This way, the error can be 
represented as the rating from a user r minus the rating predicted by the recommender system 
p for a given recommendation, such that: 

 𝑒𝑟𝑟𝑜𝑟 = |𝑟 − 𝑝| (16) 

By summing all the errors associated to each recommendation for a given user and dividing the 
result by the number of rated recommendations, we get the Mean Absolute Error (MAE): 

 

𝑀𝐴𝐸 =
∑ |𝑟, − 𝑝,|3
,45

𝑁
, 

 
where 𝑁 is the number of recommendations 

 

(17) 

As of the date of this document, the recommender system has no concern for a specific rating 
when providing recommendations, meaning its purpose is to generate the best suitable 
recommendation based on the information it detains, such as users’ preferences. However, it 
is possible to perform a more rigorous assessment by assuming the maximum rating of 5 for all 
the recommendations provided by the system. This way, the ratings from the users will be 
compared to the rating of 5. 

On the other hand, measuring decision support metrics consists of evaluating each 
recommendation as right or wrong, and comparing the system recommendations to users' 
decisions, it is possible to consider the following outcomes:  

True Positive (TP) – The recommendation is provided by the system and enjoyed by the user. 

False Positive (FP) – The recommendation is provided by the system, but the user disliked it. 

True Negative (TN) – The system did not provide a recommendation that the user would have 
enjoyed. 

False Negative (FN) – The system did not provide a recommendation, but the user would not 
have enjoyed it anyway. 

Recommendations are not available to users until they are provided by the system, meaning 
that users will not have access to them otherwise, which led to the exclusion of both TN and FN 
outcomes from this evaluation, as shown in Table 13. 
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Table 13 - Confusion Matrix 

  System Recommendation 

  
Proposed Not Proposed 

U
se

r 
Liked 

TP FN 

Disliked 
FP TN 

 

From this confusion matrix, it is only possible to define the precision metric to evaluate the 
recommender system, which gives the fraction of the recommendations that users liked. 
However, this not a problem since it is often considered more important to optimize precision, 
while not putting too much importance on whether users get all the possible relevant 
recommendations, which is represented by the recall metric. Precision can be calculated as 
follows: 

 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 (18) 

 

Considering that user ratings to recommendations provided by the system can vary from 1 to 
5, it is assumed that ratings from 1 to 2 are represented as FP and ratings from 3 to 5 are 
represented as TP. 

6.4 System Evaluation 
By applying the methodology described in subchapter 6.2, and considering the metrics defined 
in subchapter 6.3, it is possible to obtain the results shown in Tables 14 and 15. 

Table 14 - MAE calculation 

user numRec score1 score2 score3 score4 score5 score6 score7 MAE 
user1 4 2 4 1 5 0 0 0 2 
user2 3 2 2 4 0 0 0 0 2,33 
user3 4 1 1 5 4 0 0 0 2,25 
user4 4 5 3 2 2 0 0 0 2 
user5 6 3 2 2 2 3 1 0 2,83 
user6 3 3 3 1 0 0 0 0 2,67 
user7 4 1 1 3 1 0 0 0 3,5 
user8 3 1 2 5 0 0 0 0 2,33 
user9 6 1 1 1 3 3 1 0 3,33 

user10 6 4 4 2 1 4 5 0 1,67 
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Table 15 - Precision calculation 

user numRec score1 score2 score3 score4 score5 score6 score7 TP FP Precision 
user1 4 2 4 1 5 0 0 0 2 2 0,5 
user2 3 2 2 4 0 0 0 0 1 2 0,33 
user3 4 1 1 5 4 0 0 0 2 2 0,5 
user4 4 5 3 2 2 0 0 0 2 2 0,5 
user5 6 3 2 2 2 3 1 0 2 4 0,33 
user6 3 3 3 1 0 0 0 0 2 1 0,67 
user7 4 1 1 3 1 0 0 0 1 3 0,25 
user8 3 1 2 5 0 0 0 0 1 2 0,33 
user9 6 1 1 1 3 3 1 0 2 4 0,33 

user10 6 4 4 2 1 4 5 0 4 2 0,67 
 

These metrics permit to do an individual evaluation, specific to a user, or a global evaluation of 
the system, and can be used as a guidance for future system improvements. 
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7 Conclusion 

This document presents the study and the development of a recommender system within the 
context of an application related to stress, with the intent of aiding its users to deal with 
episodes of stress and of increasing awareness regarding the side effects involved. 

Prior to the conducted study leading to the implementation that was documented, several 
meetings took place with experts in the area to better understand the purpose of the project 
and to collect all the necessary information related to the theme, as well as how a recommender 
system could address the matter, allowing for the definition of the problem and the objective. 
It was then defined that a web application would be a good option to support the interaction 
between the target audience and the recommender system.  

Afterwards, it was conducted a state of the art about recommender systems within the context 
of stress and the types of filtering techniques that are commonly used, including their 
advantages and disadvantages. Considering that the implemented solution might have a small 
number of users throughout the first iterations, the content-based filtering technique was 
chosen as the main filtering technique for the solution, allowing for recommendations to be 
provided without the concern for sparse data. 

Furthermore, a value analysis was realized, describing the perceived value of the proposed 
solution, with the aim of exposing the advantages that would justify its development from the 
perspective of the client. 

Considering the requirements that were defined during the meetings with the client, an 
architectural proposal was created containing two alternatives, where its components are 
detailed, as well as the reason behind the selection of one over the other. 

The purpose of this project stands on the possibility of providing an engaging application for 
users to interact with, to diminish and eventually avoid the impacts of stress on the day-to-day 
basis through adequate recommendations. For this, it was necessary to define the following 
goals: 

• Build a web application that is visually appealing and interactive 

Visual appeal is subjective, and what some might perceive as eye catching, others may feel 
indifferent. However, as presented in subchapter 5.1, the graphical user interface is 
consistent between every page and component within them. The color palette blends in 
very well and transmits a soft experience due to the rounded and fading interface 
components. 

Furthermore, it highlights clickable components such as buttons and list elements, and has 
a notification animation, making it easier to spot the interactive aspects of the application.  
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• Build a recommender system capable of providing health-related recommendations 

After deciding which filtering technique to use, it was necessary to apply the logic behind 
the technique in a way such that it integrates with the overall solution. As presented and 
described in subchapter 5.5, although some data preparation was necessary, a functioning 
recommender system was achieved with the aid of Apache Spark, an open-source Java 
library known for providing machine learning algorithms and mathematical computation, 
such as vectorization and calculation of cosine similarities, both crucial for a content-based 
recommender system to work. 

• Integrate the recommender system in the web application 

With a functioning web application and a recommender system, getting both components 
to communicate was the final piece to the main goal of this solution. As of the date of this 
document there are not many recommendations in the system. However, that number is 
expected to grow in the future, meaning that the amount of time required to calculate new 
recommendations will certainly increase as well. Having adopted a microservices-oriented 
approach, to prevent a bottleneck between the web application and the recommender 
system, this communication was established by leveraging Kafka capabilities. 

To further enrich the solution, it was also integrated a rules engine in the application, 
allowing for an important aspect of it, the questionnaire, to be easily maintainable and 
customizable. 

Although all defined goals were achieved, there is opportunity for future work, such as: 

• Deploy the solution in a production environment 
• Adapt the solution for mobile usage 
• Include geolocation 
• Take geolocation into account when providing recommendations 
• Include a back-office web page for admins of the application to configure 

recommendations, properties, questions, and other relevant aspects that are currently 
setup through database queries 

• Include a dashboard web page with health-related graphs and define it as the 
homepage for the application 
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