
Sensae Console - Platforma de support para
serviços baseados em IoT

FILIPE MIGUEL NELAS DA CRUZ
outubro de 2022

Sensae Console - Enabler Platform
for IoT-based Services

Filipe Cruz

A dissertation submitted in partial fulfillment of
the requirements for the degree of Master of Science,

Specialisation Area of Software Engineering

Supervisor: Dr. Nuno Silva

Evaluation Committee:
President:
Luís Lino Ferreira, Professor, DEI/ISEP

Members:
André Restivo, Professor, DEI/FEUP

Porto, October 15, 2022

Experience is merely the name
men gave to their mistakes.

OSCAR WILDE

iii

Abstract

Today there are more smart devices than people. The number of devices worldwide is
forecast to almost triple from 8.74 billion in 2020 to more than 25.4 billion devices in 2030.

The Internet of Things (IoT) is the connection of millions of smart devices and sensors
connected to the Internet. These connected devices and sensors collect and share data for
use and analysis by many organizations. Some examples of intelligent connected sensors
are: GPS asset tracking, parking spots, refrigerator thermostats, soil condition and many
others. The limit of different objects that can become intelligent sensors is limited only by
our imagination. But these devices are mostly useless without a platform to analyze, store
and present the aggregated data into business-oriented information.

Recently, several platforms have emerged to address this need and help
companies/governments to increase efficiency, cut on operational costs and improve safety.
Sadly, most of these platforms are tailor made for the devices that the company offers.

This dissertation presents the (Sensae Console) platform that enables and promotes the
development of IoT-based business-oriented applications. This platform attempts to be
device-neutral, IoT middleware-neutral and provide flexible upstream integration and
hosting options while providing a simple and concise data streaming Application
Programming Interface (API).

Three IoT-based business-oriented applications built on top of the Sensae Console
platform are presented as Proof of Concept (PoC) of its capabilities.

Keywords: Internet of Things, System design, Interoperability, Configurability

v

Resumo

Atualmente, existem mais sensores inteligentes do que pessoas. O número de sensores em
todo o mundo deve quase triplicar de 8,74 bilhões em 2020 para mais de 25,4 bilhões em
2030.

O conceito de IoT está relacionado com a interação entre milhões de dispositivos
inteligentes através da Internet. Estes dispositivos e sensores conectados recolhem e
disponibilizam dados para uso e análise por parte de muitas organizações. Alguns exemplos
de sensores inteligentes e seus usos são: dispositivos GPS para rastreamento de ativos,
monitorização de vagas de estacionamento, termostatos em arcas frigoríficas, condição do
solo e muitos outros. O número de diferentes objetos que podem vir-se a tornar sensores
inteligentes é limitado apenas pela nossa imaginação. Mas estes dispositivos são
praticamente inúteis sem uma plataforma para analisar, armazenar e apresentar os dados
agregados em informação relevante para o negócio em questão.

Recentemente, várias plataformas surgiram para responder a essa necessidade e ajudar
empresas/governos a aumentar a sua eficiência, reduzir custos operacionais e melhorar a
segurança dos espaços e negócios. Infelizmente, a maioria dessas plataformas é feita à
medida para os dispositivos que a empresa em questão oferece.

Esta tese apresenta uma plataforma (Sensae Console) focada em que propiciar a criação
de aplicações relacionados com IoT para negócios específicos. Esta plataforma procura ser
agnóstica em relação aos dispositivos inteligentes e middleware de IoT usados por
terceiros, oferece variadas e flexíveis opções de integração e hosting como também uma
API de streaming simples e concisa.

Três aplicações relacionadas com IoT, orientadas ao seu negócio e construídas com base
na plataforma Sensae Console são apresentadas como provas de conceito das capacidades
da plataforma.

vii

Acknowledgement

The completion of this undertaking could not have been possible without the never ending
support of those close to me.

First of all, i would like to thank Professor Dr. Nuno Silva for the involvement and support
manifested during this project and my scholarship. I would like to express a deep
appreciation and indebtedness to all my close relatives and friends that helped me turn this
dream into a reality. Lastly, i would like to thank Margarida for making this journey
bearable.

Thank you

ix

Contents

List of Figures xv

List of Tables xix

List of Source Code xxi

1 Introduction 1
1.1 Context . 1
1.2 Problem . 2
1.3 Objectives . 2
1.4 Approach . 4
1.5 Achieved Results . 4
1.6 Document Structure . 5

2 State of the Art 7
2.1 IoT Architectural Context . 7

2.1.1 Infrastructure . 7
2.1.1.1 Mediator . 7
2.1.1.2 IoT Middleware . 9
2.1.1.3 Data Storage . 12
2.1.1.4 Rule Engine . 14

2.1.2 Platforms . 16
2.1.2.1 ThingsBoard . 16
2.1.2.2 DataCake . 16
2.1.2.3 TagoIO . 16

2.1.3 Solutions . 17
2.1.3.1 Indoor Fire Detection 17
2.1.3.2 Smart Irrigation . 18
2.1.3.3 Fleet Management . 18
2.1.3.4 Summary . 19

2.1.4 Reference Architectures . 19
2.1.4.1 IoT-A . 20
2.1.4.2 SAT-IoT . 22
2.1.4.3 IIRA . 22
2.1.4.4 WSO2 IRA . 24
2.1.4.5 IEEE P2413 . 26
2.1.4.6 RAMI 4.0 . 27
2.1.4.7 Azure IRA . 29
2.1.4.8 Arrowhead . 30
2.1.4.9 Overall Perspective . 31

2.1.5 Synopsis . 32

x

2.2 Business Areas . 32
2.2.1 Smart Cities . 33
2.2.2 Industry . 34
2.2.3 Healthcare . 34
2.2.4 Smart Homes . 35
2.2.5 Open Challenges . 35

2.3 Synopsis . 36

3 Requirements Elicitation 37
3.1 Functional Requirements . 38

3.1.1 Roles . 38
3.1.2 Sensae Console . 39

3.1.2.1 Manager . 39
3.1.2.2 Costumer . 40

3.1.3 Business Applications . 40
3.1.3.1 Fleet Management . 41
3.1.3.2 Indoor Fire Detention 41
3.1.3.3 Smart Irrigation . 41

3.2 Non Functional Requirements . 42
3.2.1 Functionality Requirements . 42
3.2.2 Usability Requirements . 43
3.2.3 Reliability Requirements . 43
3.2.4 Performance Requirements . 43
3.2.5 Supportability Requirements . 43
3.2.6 Design Requirements . 44
3.2.7 Implementation Requirements . 44
3.2.8 Interface Requirements . 45
3.2.9 Physical Requirements . 45

3.3 Synopsis . 45

4 Design 47
4.1 System Scopes . 47

4.1.1 Configuration Scope . 49
4.1.2 Data Flow Scope . 49
4.1.3 Business Applications Scope . 50
4.1.4 Taxonomy . 50

4.2 Sensae Console - Architectural Design . 52
4.2.1 C4 Level 1 - Context . 53

4.2.1.1 Context Level - Logical View 53
4.2.1.2 Context Level - Physical View 54
4.2.1.3 Context Level - Synopsis 54

4.2.2 C4 Level 2 - Container . 55
4.2.2.1 Container Level - Logical View 55
4.2.2.2 Container Level - Process View 61
4.2.2.3 Container Level - Implementation View 69
4.2.2.4 Container Level - Physical View 71
4.2.2.5 Container Level - Synopsis 72

4.2.3 Canonical Model . 72
4.2.3.1 Data Model . 73

xi

4.2.3.2 Message Envelop Model 78
4.2.3.3 Routing Model . 78

4.2.4 Synopsis . 83
4.3 Architectural Alternatives . 83

4.3.1 Backend Segregation . 83
4.3.2 Frontend Segregation . 85
4.3.3 Data Flow Pipeline . 85
4.3.4 Internal Communication . 86

4.3.4.1 First Option . 87
4.3.4.2 Second Option . 87
4.3.4.3 Third Option . 88
4.3.4.4 Fourth Option . 89
4.3.4.5 Fifth Option . 89

4.3.5 Synopsis . 90
4.4 Business Applications - Architectural Design 90

4.4.1 Fleet Management . 91
4.4.2 Notification Management . 93
4.4.3 Smart Irrigation . 94

4.5 Synopsis . 96

5 Implementation 97
5.1 Technical Decisions . 97

5.1.1 Backend Technologies Usage throughout the Solution 97
5.1.1.1 Programming Language Used 98
5.1.1.2 General Backend Services 98
5.1.1.3 Data Flow Scope Backend Services 98

5.1.2 Frontend Technologies Usage through the Solution 99
5.1.2.1 Programming Language and Framework Used 99
5.1.2.2 Technologies used to create a Micro Frontend Architecture 99
5.1.2.3 Technologies used to build and manage the Frontend Ser-

vices . 100
5.1.2.4 Technologies used to provide map/location base services 100

5.1.3 Backend Services Expose a GraphQL API 100
5.1.4 Usage of RabbitMQ to support Internal Communication 101
5.1.5 Usage of Protocol Buffers in Internal Communication 102
5.1.6 Database Usage throughout the Solution 102

5.1.6.1 Relational Database Usage 103
5.1.6.2 Document-based Database Usage 103
5.1.6.3 Column-based Database Usage 103
5.1.6.4 Graph-based Database Usage 104

5.1.7 Rules Script Engine . 104
5.1.8 Data Decoders Script Engine . 105
5.1.9 Usage of Github Actions for CI/CD 105

5.2 Technical Description . 108
5.2.1 Sensae Console UI . 108
5.2.2 Sensae Console Custom Maps . 110
5.2.3 Sensae Console And Business Application Backend API 110
5.2.4 Sensae Console Data Ingestion Endpoint 111
5.2.5 Sensae Console Rule Engine . 112

xii

5.2.6 Sensae Console Data Decoders 114
5.2.7 Solutions - Business Applications 115

5.2.7.1 Fleet Management Service 116
5.2.7.2 Notification Management Service 116
5.2.7.3 Smart Irrigation Service 116

5.2.8 Sensae Console Device Integration 117
5.3 Testing . 118

5.3.1 Unit Tests . 119
5.3.2 Integration Tests . 121
5.3.3 Functional Tests . 122
5.3.4 End-to-End Tests . 126
5.3.5 Architectural Tests . 127

5.4 Synopsis . 128

6 Evaluation 129
6.1 Objectives . 129
6.2 Approach . 130
6.3 Experiences . 130

6.3.1 Sensae Console Experience Scenario 132
6.3.2 Fleet Management Experience Scenario 132
6.3.3 Notification Management Experience Scenario 133
6.3.4 Smart Irrigation Experience Scenario 134

6.4 Discussion of the overall results . 134
6.4.1 Data Ingestion Endpoint Performance 135
6.4.2 Data Processor versus Data Decoder Performance 136
6.4.3 Data Flow Caching Process Performance 137
6.4.4 Business Applications Database Performance 137
6.4.5 System Bottlenecks . 138

6.5 Synopsis . 139

7 Conclusion 141
7.1 Achievements . 141
7.2 Unfulfilled Results . 142
7.3 Future Work . 143
7.4 Synopsis . 144

Bibliography 145

A Data Unit - Shared Model Schema 157

B Container Level - Logical View 159

C C4 Level 3 - Components 161
C.1 Components Level - Logical View . 161
C.2 Components Level - Process View . 165
C.3 Components Level - Implementation View 169

D Sensae Console - Components Level - Logical View 171

E Business Applications - Components Level - Logical View 173

xiii

F User Authentication/Authorization 177
F.1 Internal Authentication Server . 177
F.2 External Authentication Server . 178
F.3 External Authentication Server with Internal Authorization Server 180
F.4 External Authentication Server with Internal Oauth2 Server 182

G Sensae Console Domains 183
G.1 Data Processor . 183
G.2 Data Decoder . 185
G.3 Device Management . 186
G.4 Identity Management . 187
G.5 Rule Management . 189

H Business Applications Domains 191
H.1 Fleet Management . 191
H.2 Notification Management . 192
H.3 Smart Irrigation . 193

I Sensae Console - Additional UI Pages 197

J Business Applications - Additional UI Pages 199

K Production Deployment Details 203
K.1 Containerization of services via Docker . 203
K.2 Orchestration of services via Docker Compose 204
K.3 Usage of Nginx as a web server and reverse proxy 205
K.4 Sensae Console Containerization . 205
K.5 Sensae Console Orchestration . 207
K.6 Sensae Console Reverse Proxy Configuration 208
K.7 Sensae Console Configuration Files . 210

L Sensae Console Database Configuration 213

M Performance Tests Specification 215

N Performance Tests Analysis 217

O Fire Detection Simulation Report 219

P Requirements Report 225
P.1 Functional Requirements . 225
P.2 Non Functional Requirements . 225

P.2.1 Functionality Requirements . 225
P.2.2 Usability Requirements . 226
P.2.3 Reliability Requirements . 226
P.2.4 Performance Requirements . 226
P.2.5 Supportability Requirements . 226
P.2.6 Design Requirements . 227
P.2.7 Implementation Requirements . 227
P.2.8 Interface Requirements . 227
P.2.9 Physical Requirements . 227

xv

List of Figures

2.1 Advanced Messaging Queue Protocol (AMQP) 0.9.1 Protocol Concepts . . 8
2.2 High-Level View of a Information Flow Processing (IFP) System 15
2.3 ARM Functional View . 21
2.4 SAT-IoT Architectural Model . 22
2.5 Industrial Internet Reference Architecture (IIRA) Functional Domains . . . 23
2.6 Mapping between a three tier architecture and the IIRA function domains . 24
2.7 WSO2 Reference Architecture for IoT . 25
2.8 Example of an IoT System Architecture for Smart Cities 27
2.9 RAMI 4.0 Three-dimensional map . 28
2.10 IIRA and RAMI 4.0 Functional Mapping 29
2.11 Azure IoT Reference Architecture . 29
2.12 Arrowhead Framework Core and Application Services 30
2.13 Arrowhead Framework Core and Application Services 31
2.14 IoT market structure . 32

3.1 Design Requirements Diagram . 44

4.1 System Scopes . 48
4.2 Solution - Context Level - Logical View Diagram 53
4.3 Solution - Context Level - Physical View Diagrams 54
4.4 Sensae Console - Container Level - Logical View Diagram 57
4.5 Data Processor - Container Level - Logical View Diagram 58
4.6 Data Decoder - Container Level - Logical View Diagram 58
4.7 Device Management - Container Level - Logical View Diagram 59
4.8 Identity Management - Container Level - Logical View Diagram 60
4.9 Rule Management - Container Level - Logical View Diagram 60
4.10 System/Container Initialization - Part 1 - Container Level - Process View

Diagram . 61
4.11 System/Container Initialization - Part 2 - Container Level - Process View

Diagram . 62
4.12 Data Flow - Container Level - Diagram 63
4.13 Data Decoder Operation - Part 1 - Container Level - Process View Diagram 64
4.14 Data Decoder Operation - Part 2 - Container Level - Process View Diagram 65
4.15 Consult Data Processors - Container Level - Process View Diagram 66
4.16 Edit Device Information - Container Level - Process View Diagram 66
4.17 User Authentication - Container Level - Process View Diagram 68
4.18 User Authorization - Container Level - Process View Diagram 69
4.19 Container Level - Implementation View Diagram 70
4.20 Database Services - Container Level - Implementation View Diagram . . . 70
4.21 Frontend Services - Container Level - Implementation View Diagram 71
4.22 Rule Management - Container Level - Physical View Diagram 72

xvi

4.23 Canonical Model - Data Unit . 73
4.24 Canonical Model - Message Envelop Model 78
4.25 Canonical Model - Routing . 79
4.26 Monoliths and Microservices . 84
4.27 Internal Communication - First Option - Logical View Diagram 87
4.28 Internal Communication - Second Option - Logical View Diagram 88
4.29 Internal Communication - Third Option - Logical View Diagram 88
4.30 Internal Communication - Fourth Option - Logical View Diagram 89
4.31 Internal Communication - Fifth Option - Logical View Diagram 90
4.32 Fleet Management - Container Level - Logical View Diagram 91
4.33 Consult Device Live Location - Container Level - Process View Diagram . . 92
4.34 Notification Management - Container Level - Logical View Diagram 93
4.35 Receive Notification - Container Level - Process View Diagram 94
4.36 Smart Irrigation - Container Level - Logical View Diagram 95
4.37 Valve Activation Process - Container Level - Process View Diagram 95

5.1 Sensae Console - Home Page . 108
5.2 Sensae Console - Device Management Page 109
5.3 Business Applications - Smart Irrigation Page 109
5.4 Business Applications - Smart Irrigation Page - Custom Map 110
5.5 Helium - Custom Integration Page . 118

6.1 Notification Management Scenario - Experience C - Scatter Chart 136
6.2 Data Flow Caching Process - Scatter Chart 137
6.3 Time Taken to Ingest, Store and Supply Measures - Line Chart 138

B.1 Complete Solution - Container Level - Logical View Diagram 160

C.1 Data Decoder Frontend - Component Level - Logical View Diagram 162
C.2 Device Management Backend - Component Level - Logical View Diagram . 163
C.3 Device Ownership Backend - Component Level - Logical View Diagram . . 165
C.4 Process Data Unit in Device Management Flow Backend - Component Level

- Process View Diagram . 167
C.5 Deploy Draft Rule Scenarios - Component Level - Process View Diagram . 168
C.6 Data Decoder Frontend - Component Level - Implementation View Diagram 169
C.7 Device Management Backend - Component Level - Implementation View

Diagram . 170
C.8 Device Ownership Backend - Component Level - Implementation View Diagram170

D.1 Data Gateway - Component Level - Logical View Diagram 171
D.2 Data Store - Component Level - Logical View Diagram 172
D.3 Device Commander - Component Level - Logical View Diagram 172

E.1 Fleet Management Backend - Component Level - Logical View Diagram . . 173
E.2 Smart Irrigation Backend - Component Level - Logical View Diagram . . . 174
E.3 Notification Management Backend - Component Level - Logical View Diagram174
E.4 Notification Dispatcher Backend - Component Level - Logical View Diagram 175

F.1 User Authentication/Authorization - Internal Authentication Server Alterna-
tive - Sequence Diagram . 178

xvii

F.2 User Authentication/Authorization - External Authorization Server Alterna-
tive - Sequence Diagram . 179

F.3 User Authentication/Authorization - External Authentication Server with
Internal Authorization Server Alternative - Sequence Diagram 181

G.1 Data Processor Concern Model . 184
G.2 Data Decoder Concern Model . 185
G.3 Device Management Concern Model . 186
G.4 Identity Management Concern Model . 187
G.5 Domain Structure . 188
G.6 Rule Management Concern Model . 189

H.1 Fleet Management Model . 191
H.2 Notification Management Model . 192
H.3 Smart Irrigation Model - Irrigation Zone 193
H.4 Smart Irrigation Model - Device . 194
H.5 Smart Irrigation Model - Reading . 195

I.1 Identity Management Page . 197
I.2 Rules Management Page . 197
I.3 Data Processor Page . 198
I.4 Data Processor Page . 198

J.1 Fleet Management Page . 199
J.2 Notification Management Page . 200
J.3 Notification Management Page - Configuration 200
J.4 Smart Irrigation Page - Map . 201
J.5 Smart Irrigation Page - Device History . 201

K.1 Comparison of VM and Container-based deployments 204

xix

List of Tables

3.1 Summary of the main requirements of the requested business cases 38

4.1 Comparison of Operations in Data Flow and Configuration Scopes 50
4.2 Measure Data Types . 75
4.3 Routing Options . 81

5.1 Technologies Comparison - Angular vs React 99

6.1 Details about the experiences performed 131
6.2 Results for the Sensae Console Scenario (in seconds) 132
6.3 Results for the Fleet Management Scenario (in seconds) 133
6.4 Results for the Notification Management Scenario (in seconds) 133
6.5 Results for the Smart Irrigation Scenario (in seconds) 134
6.6 Data Ingestion Endpoint response time results (in milliseconds) 135
6.7 Metrics collected (in seconds) - Notification Management Scenario - Expe-

rience C . 136

C.1 Configuration Backend components responsibilities 164

K.1 Technologies Comparison - Reverse Proxy Web Server 205

P.1 Functionality Requirements Process Report 225
P.2 Reliability Requirements Process Report 226
P.3 Performance Requirements Process Report 226
P.4 Supportability Requirements Process Report 226
P.5 Interface Requirements Process Report 227
P.6 Physical Requirements Process Report . 227

xxi

List of Source Code

5.1 Configuration File for iot-core Continuous Delivery 105
5.2 Configuration File for Sensae Console Continuous Integration 106
5.3 Sensae Console Test Suite Script . 107
5.4 Smart Irrigation API Schema . 111
5.5 Rule Scenario Example - Part 1 . 112
5.6 Rule Scenario Example - Part 2 . 113
5.7 Rule Scenario Example - Part 3 . 113
5.8 EM300-TH Data Decoder Example . 114
5.9 Unit Test Example in iot-core package . 119
5.10 Unit Test - Data Decoder Backend Container 120
5.11 Unit Test - Device Management Frontend Model Library 120
5.12 Integration Test - Message Broker - Device Ownership Flow 121
5.13 Integration Test - Database - Notification Management Backend 122
5.14 Functional Test - Message Broker - Data Decoder Backend Setup 122
5.15 Functional Test - Foundation - Data Decoder Backend Setup 123
5.16 Functional Test - Database Interaction - Data Decoder Backend 124
5.17 Functional Test - Message Broker Interaction - Data Decoder Backend . . 124
5.18 Functional Test - Rest Client Interaction - Data Gateway 125
5.19 End-to-End Test - Custom Commands - UI Aggregator 126
5.20 End-to-End Test - Anonymous Authentication - UI Aggregator 126
5.21 End-to-End Test - Discover Available Domains - Identity Management . . . 127
5.22 Architectural Test - Onion Architecture - Device Management Backend . . 127
5.23 Architectural Test - Simplified Onion Architecture - Data Processor Flow . 128
A.1 Data Unit - Shared Model Schema . 157
G.1 Inbound Information Example . 184
K.1 Dockerfile for UI Aggregator Frontend . 205
K.2 Dockerfile for Fleet Management Backend 206
K.3 Dockerfile for Device Commander . 206
K.4 Docker Compose Configuration File for Production 207
K.5 Configuration File for Production Environment 209
K.6 Configuration File for Production Environment 210
K.7 Configuration Propagation Script . 211
L.1 Initialization Script Segment for Data Processor Database 213
L.2 Bootstrap function for Identity Management Database 214
M.1 Smart Irrigation Performance Test Scenario Description 215
N.1 Analysis Script . 217

1

Chapter 1

Introduction

This chapter provides a short introduction to this dissertation. It describes this work’s
context, the problem it addresses, the objectives to be fulfilled, the approach taken and
finally the results achieved. The chapter closes with the document’s structure.

1.1 Context

The Internet of Things (IoT) is a fast-growing technological concept, which aims to
integrate various physical and virtual objects into a global network to enable interaction
and communication between those objects (Atzori, Iera, and Morabito 2010). According to
Nieti, oli, et al. 2020 the main goal of IoT technologies is to simplify processes in different
fields, to ensure a better efficiency of systems (technologies or specific processes) and
finally to improve life quality. Currently many large-scale enterprises use custom-made IoT
technologies to aid their decision making. For example:

• Ericsson has created a platform, Ericsson Maritime ICT, designed to collect and
present data regarding cargo ships. Sensors capture information regarding the speed
and location of the ship as well as the temperature and condition of the reefer
containers. This information is updated in real time and presented to the various
parties in the supply chain (Ericson 2020);

• John Deere has created the JDLink platform, designed to give farmers live
information about their fleet’s location as well as diagnostic and usage data for each
machine. Sensors that measure soil and crop conditions in real time help farmers to
decide the best time to start harvesting (Deere 2020);

• Verizon has created a platform, Verizon Connect, designed to help reduce fuel
consumption, monitor vehicle diagnostics & vehicle maintenance needs, prevent
unauthorized out of area use and much more. Sensors installed by Verizon in cars,
trucks and machines give insights in real-time about the fleet (Verizon 2022).

Like these, many other large companies are building platforms to aid decision making based
on sensor data harvesting. In a pursuit for sustainability, companies are looking to IoT as
an approach to increase efficiency and decrease waste. According to Bibri 2018 the IoT
and related big data applications can play a key role in catalyzing and improving the
process of environmentally sustainable development.

Some of the benefits that IoT, and these platforms, bring to companies are: more
operational efficiency, increased security conditions, and cost reduction (T-Mobile 2021).

2 Chapter 1. Introduction

1.2 Problem

Despite the promised benefits, the initial investment this technology requires to be
employed is very high for small and medium companies. As such, its adoption is often
postponed or discarded.

In addition to the high costs, these platforms are often associated with a company and its
products or businesses, for example, according to S. Chen et al. 2014 in China most IoT
applications are domain-specific or application-specific solutions. Another study by Noura,
Atiquzzaman, and Gaedke 2019 determine that vendor lock-in is a real concern in IoT,
quoting: “each solution provides its own IoT infrastructure, devices, APIs, and data
formats leading to interoperability issues”. This is often a problem. As an example, for
small farmers it is economically unthinkable to change machines and fleet just to be able to
benefit from these services.

A service that acts upon IoT data is composed of many pieces and processes, such as (i)
managing device network connectivity and ownership, (ii) capturing data via sensors, (iii)
routing data through the network, (iv) aggregating and storing data, (v) transforming data
into concise information, (vi) analyzing the information captured, (vii) triggering alarms
based on this analysis, (viii) providing the gathered information visually or
programmatically. It’s a complex and constantly evolving system.

In order to deal with these needs there are platforms on the market that facilitate the
creation of these services by taking care of device connection and management, such as
AWS IoT Core, Azure IoT, Google Cloud IoT and others. Their main purpose is to act as
a middleware between costumer-facing application and physical things deployed
somewhere, such as sensors, actuators or hybrid devices. Each service provides a set of
additional functionalities such as data visualization, transformation, storage and analysis.

However these platforms don’t provide pre-made specialized solutions to aid the decision
making process of end customers and small businesses, such as fleet management, smart
irrigation, tracking of deliveries and goods, indoor fire detection, and others. This is often
a problem to companies that have little to no background in IoT and in software
development. As an example, for a small transportation company it’s unthinkable to resort
to this middleware services in order to create a fleet management system and perceive the
benefits IoT can provide.

Due to this obstacles the adoption of IoT technologies by small companies and individuals
is lingered. According to Cisco 2017, 60% of IoT projects stall at the Proof of Concept
(PoC) stage.

1.3 Objectives

This work idealizes the creation of a platform responsible for further facilitating the
creation of IoT based services. It must focus on:

• Agnostically interacting with different IoT middlewares (receiving sensor measures
and dispatching commands to actuators through these platforms);

• Homogenizing and sanitizing the device information, commands available and
measures received in a single concise form and semantic;

1.3. Objectives 3

• Providing various means to interact with the platform and the information handled
by it, depending on the costumer needs, such as: (i) full-fledged access via User
Interface (UI), (ii) high-level Application Programming Interface (API) focused on its
core functionalities, (iii) low-level and generic API to consume device measures and
alerts.

To answer these high-level objectives, the platform should encompass essential
functionalities such as:

• Data Aggregation: responsible for providing a simple entry-point to the system for
any IoT middleware;

• Data Filtering: responsible for discarding erroneous device measures;

• Data Retention: responsible for storing the device measures received;

• Data Transformation: responsible for processing unsanitized data and extracting
relevant information from it;

• Data Presentation: responsible for swiftly presenting information to the user;

• Trigger Warning System: responsible for dispatching alerts based on rules applied to
the data in motion;

• User Authentication/Authorization: responsible for allowing/denying access to the
various platform’s components and data depending on the user authentication and
authorization level.

Finally, this project envisages the creation of PoCs that answer specific business cases and
utilize the developed platform. These PoCs can follow distinct approaches for user
interactions: from a full-fledged UI, a simple and business case focused API, or a basic
service that dispatches emails/SMS based on alerts captured.

Some of the business cases to address, and their main requirements, are:

• Fleet Management: fleet location feed, fleet location history, calculation of distance
traveled by the fleet;

• Smart Irrigation: storage and presentation of environmental conditions captured by
sensors and automatic activation of the irrigation system via commands sent to
actuators;

• Indoor Fire Outbreak Surveillance: room conditions, alarm trigger system based on
abnormal conditions;

• Smart Parking: ongoing information regarding free and occupied parking slots.

As such, this project’s tangible objectives can be tracked and measured according to two
conceptual axis. An axis is related to the platform and its core functionalities (that any
service, specific to a business case, relies on) and requirements (being agnostic to IoT
middlewares, defining a semantically sound and homogeneous data model, offering
different user-faced means of interaction). The other axis is related to the PoCs focused
on specific business cases.

4 Chapter 1. Introduction

1.4 Approach

This work is a greenfield project with the intent of designing and implementing a platform
that simplifies the creation of applications based on IoT captured and analysed data and
interactions with actuators. Some PoCs that answer the needs of various business cases
must be developed. Each business case is considered a concern and should be addressed in
an independent PoC. In the end of the project, the envisaged platform will support the
intended PoCs.

The pursued approach envisions the project divided in four phases:

• Phase I: Design and implement PoCs that support each business case;

• Phase II: Identify commonality and variability between all designed prototypes;

• Phase III: Design and implement a platform that simplifies the development of this
PoCs by aggregating common needs and concepts;

• Phase IV: Refactor the PoCs so that they rely on the platform’s functionalities.

During the first phase it is extremely important that the design and implementation of each
PoC takes into account the goals of phase II. Even though these services are independent
they all shared core responsibilities, functionalities and procedures that can be reused.

During the second phase, the various PoCs will be evaluated so that most common
components can be moved to the platform and later reused by them.

During the third phase, a platform that comprises shared functionalities of all PoCs’
business cases must be designed and implemented. This platform must offer an agnostic,
homogeneous and concise access to sensors and actuators regardless of the IoT platform
used to connect to them.

In the final phase, the developed PoCs must be integrated with the API provided by the
platform.

The project management will adopt the Scrum methodology described by Schwaber 1997,
with monthly sprints that end in presentations of the software to the company and weekly
meetings focusing on reviewing the progress, discussing issues that rose and future ideas to
add to the backlog.

1.5 Achieved Results

This work gave birth to a platform, Sensae Console, capable of handling the desired
requirements and functionalities. Some of its main features are: (i) powerful data
classification and categorization, (ii) custom data manipulation via scripting, (iii) virtual
device registry and ownership, (iv) integrated rule engine to dispatch alerts, (v) strict user
authentication and authorization, (vi) rich set of GraphQL API for management, (vii)
designed to scale, (viii) designed to incorporate third-party services as plugins, (ix) flexible
hosting options: multi-tenant or dedicated.

This platform proved itself capable of integrating with the researched IoT middlewares
while offering to consumers a semantically rich and homogeneous data model. The
concepts tackled by this data model were materialized in a Software Development Kit

1.6. Document Structure 5

(SDK), iot-core, that was created to ease the development of services integrated with this
platform via the low-level, generic and event-based API.

Three PoCs were designed and implemented during this project time span: (i) fleet
management, (ii) smart irrigation and (iii) notification management.

The platform and PoCs were later evaluated according to the performance requirements
envisioned for them as a dedicated hosted solution.

1.6 Document Structure

This document is divided into 7 more chapters that explore this work.

• State of the Art: where literature related to this work is explored;

• Requirements Elicitation: where this project’s requirements are listed;

• Design: where the architectural design of the solution is presented;

• Implementation: where the implementation of the solution is addressed;

• Evaluation: where the evaluation of the solution is presented and results discussed;

• Conclusion: where a final overview of the project is presented, wrapping up the
achievements and future work of this project and solution.

7

Chapter 2

State of the Art

This chapter introduces a modest introduction to the IoT landscape, focusing first on
technologies, solutions and the architectural context surrounding them and later the
various business areas where IoT is used. The intent of this chapter is to introduce the
reader to the subjects related to this work.

The core objective of this project is the development of an IoT platform. Therefore this
chapter will not focus on the physical side of the business (installation, deployment,
onboarding and management of devices and IoT gateways).

2.1 IoT Architectural Context

This section focus on the landscape of services, solutions, tools, terms and technologies
that are related to IoT. It starts by dividing them in three distinct categories:

• Infrastructure: concepts that don’t answer any specific business case but are
common or even a requirement for most IoT related projects;

• Platforms: tools that support and ease the creation of IoT projects but are not a
necessity;

• Solutions: solutions that answer specific business cases.

After these categories are explored, some Reference Architectures are presented.

2.1.1 Infrastructure

Here some technologies and services that are almost a requirement to build IoT Solutions
are presented. This section is divided in the following themes: Mediator, IoT Middleware,
Rule Engine and Data Storage.

These specific themes are mentioned since they are relevant for the project.

2.1.1.1 Mediator

This section refers to technologies that enable the system-wide use of the
publish/subscribe pattern by mediating messages or events between entities of the system
in a asynchronous manner.

According to Dias, Restivo, and Ferreira 2022, “broker-mediator architectures are highly
used [in IoT Solutions]” and, the publish/subscribe “communication pattern is also
common in many IoT and Web applications” (Lazidis, Tsakos, and Petrakis 2022).

8 Chapter 2. State of the Art

The publish/subscribe pattern can be summarized by the following description:
“Subscribers have the ability to express their interest in an event, or a pattern of events,
and are subsequently notified of any event, generated by a publisher, which matches their
registered interest” (Eugster et al. 2003).

In this section two open-source mediators, RabbitMQ and Apache Kafka, will be
introduced.

According to Lazidis, Tsakos, and Petrakis 2022, RabbitMQ offers better latency than
Kafka but has a significant lower throughput of messages per second.

2.1.1.1.1 RabbitMQ

RabbitMQ is a message broker with support for various protocols (some via extensions)
such as: (i) Advanced Messaging Queue Protocol (AMQP) 0.9.1, (ii) STOMP, (iii)
Message Queuing Telemetry Transport (MQTT), (iv) AMQP 1.0, (v) HTTP and
WebSockets and (vi) RabbitMQ Streams. This section will focus on AMQP 0.9.1 and
MQTT.

As discussed in the article, AMQP 0-9-1 Model Explained, the AMQP 0.9.1 protocol
defines four main concepts: (i) publisher, (ii) exchange, (iii) queue, (iv) consumer. The
following diagram, Figure 2.1 explains how this concepts interact.

Figure 2.1: AMQP 0.9.1 Protocol Concepts by VMWare 2022a

As discussed in AMQP 0-9-1 Model Explained, there are four types of exchanges:

• Direct Exchange: ideal for the unicast routing of messages;

• Fanout Exchange: ideal for the broadcast routing of messages;

• Topic Exchange: ideal for the multicast routing of messages, queues subscribe to
specific routing keys;

• Header Exchange: ideal for more flexible unicast routing of messages, queues
subscribe to specific message headers.

This is the "core" protocol supported by the system.

2.1. IoT Architectural Context 9

The MQTT protocol is a “binary protocol emphasizing lightweight publish / subscribe
messaging, targeted towards clients in constrained devices” (VMWare 2022b). According
to MQTT 2022, this is the standard protocol for IoT Messaging.

Craggs 2022 mentions that “MQTT has just one routing mechanism - topic subscriptions”,
when compared with AMQP. It can be seen as simpler version of AMQP tailored for IoT
low powered devices. It has a lower message overhead, and instead of using ’.’ as the level
separator it uses a ’/’, for wildcards it uses ’+’ instead of ’*’.

Both protocols have various robust client libraries written for various programing languages
(VMWare 2022b).

According to Dobbelaere and Esmaili 2017 the unique features of RabbitMQ are: (i)
Standardized Protocol, (ii) Multi-protocol, (iii) Distributed Topology Modes, (iv)
Comprehensive Management and Monitoring Tools, (v) Multi-tenancy and Isolation, (vi)
Consumer Tracking, (vii) Disk-less Use, (viii) Publisher Flow Control, (ix) Queue Size
Limits and (x) Message time to live.

2.1.1.1.2 Kafka

Apache Kafka is a distributed event streaming platform that can be seen as an
append-only-log. Its main concepts are: (i) events, (ii) producers, (iii) consumers and (iv)
topics.

Events are sent by producers to specific topics that are partitioned by several Kafka
brokers. Events are persisted, something that the AMQP protocol doesn’t do, and
consumers can pull events from their subscribed topics. Since events are stored, a
consumer can deliberately rewind back to an old offset and re-consume data (Kafka 2022).
This enables consumers to easily follow the Event sourcing Pattern 2022b and reconstruct
an entity’s current state by replaying the events.

“The Kafka ecosystem offers libraries and tools that provide additional functionality on top
of Kafka” (Dobbelaere and Esmaili 2017), such as Kafka Connect and Kafka Streams.

According to Confluent 2022a, “Kafka Connect works as a centralized data hub for simple
data integration between databases, key-value stores, search indexes, and file systems”.

Kafka Streams “is a client library for building applications and microservices, where the
input and output data are stored in an Apache Kafka cluster. It combines the simplicity of
writing and deploying standard Java and Scala applications on the client side with the
benefits of Kafka’s server-side cluster technology” (Confluent 2022b).

According to Dobbelaere and Esmaili 2017 the unique features of Kafka are: (i) Long term
message storage, (ii) message replay, (iii) kafka connect and (iv) log compaction.

2.1.1.2 IoT Middleware

The term IoT Middleware in this work referes to services/solutions that offer or focus on
three main features:

• Device Management: device onboarding, maintenance, updates and monitoring;

• Data Transmission: device data collection and provision in real-time;

• Device Control: offer an API to send commands to devices.

10 Chapter 2. State of the Art

These solutions handle the lower-layers communication protocols such as: (i) RFID, (ii)
Bluetooth/BLE, (iii) LoRa and LoRaWAN, (iv) SigFox, (v) ZigBee, (vi) Thread, (vii)
EnOcean, (viii) ANT, (ix) GPRS/2G/3G/4G/5G cellular, (x) Wi-Fi (Dias, Restivo, and
Ferreira 2022).

The article “Designing and constructing internet-of-Things systems: An overview of the
ecosystem” 2022 argues that due to a lack of standards a designer can’t objectively choose
from one or another protocol when developing IoT Systems. These solutions have the
benefit of abstracting these lower-layers communication details and provide APIs that
provision all data gathered with high-layer communication protocols like (i) HTTP, (ii)
MQTT, (iii) AMQP, (iv) CoAP, (v) XMPP, (vi) LwM2M, (vii) LLAP, (viii) UPnP (Dias,
Restivo, and Ferreira 2022).

The services that will be briefly mentioned are:

• The Things Stack;

• Azure IoT Hub;

• Helium Console.

This project focus mostly on Helium Console since it controls the lower-layers
communication with the company’s installed devices.

2.1.1.2.1 The Things Stack

The Things Industries 2021a is behind the creation of a platform that focus on interacting
with devices via LoRa and LoRaWAN.

Apart from the common features referred above, their cloud platform provides integrations
with AWS IoT, Azure IoT Hub and other platforms such as Cumulocity, ThingsBoard, and
LoRa Cloud. It also provides agnostic APIs based on MQTT, webhooks and PubSubs to
connect with other systems and publish the gathered device measures.

The company maintains an open-source version of their platform. According to The
Things Stack Github Page 2021b, this platform supports: almost all the LoRaWAN
protocols specifications, device classes, regional parameters and onboarding options; device
payload conversion for well-known formats or via custom Javascript functions; user and
entity management; and GRPC and HTTP management APIs.

2.1.1.2.2 Azure IoT Hub

Azure IoT Hub 2022b is a platform provided by Microsoft “that acts as a central message
hub for communication between an IoT application and its attached devices” (Microsoft
2022b). A helper service, Azure IoT Hub Device Provisioning Service, handles the
registration and provisioning of devices.

According to Microsoft 2022b data can also be routed to different services for further
processing, it is possible to route data to: azure storage containers, event hubs, service bus
queues and services bus topics. According to Microsoft 2022c, it is also possible to
subscribe to an AMQP endpoint to receive the device measures sent to IoT Hub. Azure
IoT Hub also integrates with Azure Event Grid that allows one to register an HTTP
endpoint for Azure Event Grid to dispatch events to, in this case, device measures.

2.1. IoT Architectural Context 11

According to Magic Quadrant for Industrial IoT Platforms 2022, Azure is a leading IoT
Platform.

2.1.1.2.3 Helium Console

Helium Console 2022 is a new IoT Platform. This platform’s business model is fairly
different from the ones mentioned before. Besides the platform itself, the company also
maintains an open-source blockchain designed to power IoT devices with wireless
connectivity. Helium technology enables communication between devices and the internet
by promoting the expansion of a new network operated by common people.

According to Helium 2018a, “ Powering the Helium network is a blockchain with a native
protocol token incentivizing a two-sided marketplace between coverage providers and
coverage consumers”. Coverage providers install in their homes an IoT gateway, Hotspot,
that provides wide-area LoRaWAN coverage to the area surrounding it. Coverage
consumers, e.g. IoT devices, connect to this LoRaWAN network and send the gathered
measures to the Hotspot. The Hotspot then routes the measures to the cloud in exchange
for a transport fee, paid by the owner of the IoT device. The fee corresponds to a token
that can be traded for dollars, bitcoin or any other available commodity on online
exchanges.

In theory, this creates a self sustained economy that can provide to everyone a cheap and
open communication layer for IoT devices that is backed by open standards, and, provide a
consistent income to those who want to support the network. The Helium Explorer Page1

documents the number and location of each Hotspot, current there are almost a million of
IoT gateways installed throughout the world. Europe, USA and China are the regions with
better network coverage.

This network, as an example, gives local farmers in remote locations the possibility to
install a smart irrigation system without paying excruciating fees to an Internet Service
Provider (ISP) for satellite or 4G coverage.

The company’s business idea is to utilize this low-cost network to offer IoT-based services
to small-to-medium size organizations. Therefore, the solution to develop in this project
will, at least in the near future, focus on the IoT Middleware solution provided by Helium.

Helium Console enables devices to connect to pre-configured, cloud-based applications or
send data directly over HTTP or MQTT via Integrations. It currently supports two core
integrations, HTTP and MQTT, and multiple community integrations such as: (i) Helium
Cargo, (ii) myDevices Cayenne, (iii) AWS IoT Core, (iv) Azure IoT Hub, (v) Azure IoT
Central, (vi) Adafruit IO, (vii) Akenza, (viii) Datacake, (ix) Google Sheets, (x) Microshare,
(xi) TagoIO, (xii) Ubidots (Helium 2018b).

2.1.1.2.4 Summary

This section mentioned three IoT middlewares, each with their distinctive characteristics:

• The Things Stack: an open-source solution;

• Azure IoT Hub: a widely used cloud service;

• Helium: the solution that this project is required to adopt first.
1link to Helium Explorer Page

12 Chapter 2. State of the Art

Next, various Data Storage solutions will be discussed.

2.1.1.3 Data Storage

This section refers to how information is stored and managed across systems.

A Database Management System (DBMS) is a general-purpose software system that
facilitates the processes of defining, constructing, manipulating, and sharing data -
Fundamentals of Database Systems. DBMSs can be categorized according to several
criteria, such as the data model, number of users or distribution. This section focus on the
data model.

These are the most common data models, as per Elmasri et al. 2000:

• The relational data model represents a database as a collection of tables, where
each table can be stored as a separate file;

• The document-based data model is based on JSON (Java Script Object Notation)
and stores the data as documents, which somewhat resemble complex objects;

• The column-based data model stores the columns of rows clustered on disk pages
for fast access and allow multiple versions of the data;

• The graph-based data model stores objects as graph nodes and relationships
among objects as directed graph edges;

• The key-value data model associates a unique key with each value (which can be a
record or object) and provides very fast access to a value given its key.

The following sections briefly discuss these data models.

2.1.1.3.1 Relational Data Model

This data model has a wide variety of usage in the industry. It relies on a “schema to
define exactly and unambiguously all the relationships of interest to the users” (Zaniolo
and Meklanoff 1981). Therefore, it excels to represent concrete concepts within a business
domain. According to Jatana et al. 2012 almost all relational databases use Structured
Query Language (SQL) to access and modify the data stored in the database. “SQL
consists of a set of facilities for defining, accessing and otherwise managing data” (Date
1989).

The reliability of a database model is checked with the help of ACID properties: Atomicity,
Consistency, Isolation, Durability.

Some of the technologies that follow this data model are: (i) MySQL, (ii) PostgresSQL
and (iii) Oracle database. These are all ACID compliant and follow the SQL standard.

This data model is intended for strictly structured data with well defined interrelations.

2.1.1.3.2 Document-based Data Model

This data model rose from the increasing need to store and analyze unstructured data as
stated by Miloslavskaya and Tolstoy 2016. Citing Elmasri et al. 2000, a “major difference
between document-based systems versus object and object-relational systems (relational
database systems) is that there is no requirement to specify a schema”.

2.1. IoT Architectural Context 13

This data model, and all other mentioned below have some key differences when compared
with the Relational Data Model. Databases with this data model usually don’t adhere to
the SQL standard since there is no define notion of the data structure. And, they follow
the BASE acronym: Basically Available, Soft State and Eventually Consistent, instead of
the ACID properties.

Some of the technologies that follow this data model are: MongoDB and Firestore.

MongoDB is open source and has a “flexible document data model along with support for
ad-hoc queries, secondary indexing, and real-time aggregations to provide powerful ways to
access and analyze data” (MongoDB 2022).

Contrary to MongoDB, Firestore is a close source service developed by Google to offer a
simple to use database service that can be accessed via a SDK for Android and IOS.

2.1.1.3.3 Column-based Data Model

This data model is used in applications that require large amounts of data storage, and is
commonly named data warehouses. According to Dehdouh et al. 2015, a data warehouse
is “designed according to a dimensional modelling which has for objective to observe facts
through measures, also called indicators, according to the dimensions that represent the
analysis axes”. Citing J. Han et al. 2011, these databases “can maintain high-performance
of data analysis and business intelligence processing”.

Some of the technologies related to this concept are: (i) HBase, (ii) CassandraDB, (iii)
InfluxDB, (iv) QuestDB.

According to George 2011 HBase is a “distributed, persistent, strictly consistent storage
system with near-optimal write and excellent read performance”. This database uses
Hadoop Distributed File System (HDFS) as its file system, and so, it is built on top of
Hadoop. HBase does not support a structured query language like SQL, “even though it’s
comprised of a set of standard tables with rows and columns, much like a traditional
database” (IBM 2020c).

CassandraDB is a distributed storage system for managing very large amounts of
structured data spread out across many commodity servers, while providing highly available
service with no single point of failure (Lakshman and Malik 2010). It was developed
internally by Facebook and then later open-sourced to the Apache Foundation. It doesn’t
support SQL.

According to Naqvi, Yfantidou, and Zimányi 2017, InfluxDB is an “open-source schemaless
Time Series Database (TSDB) with optional closed-sourced components developed by
InfluxData. It is written in Go programming language and it is optimized to handle time
series data.” It provides an SQL-like query language and also defines a new protocol for
fast data ingestion (InfluxDB 2022b).

QuestDB is a relational column-oriented database designed for time series and event data
and entitles it self as the “fastest open source time series database” (questdb.io 2022).
According to benchmarks (Ilyushchenko 2021) preformed using the Time Series
Benchmark Suite (TSBS), Winslow 2021, QuestDB ranks as the fastest option in the
market. It has out-of-the-box support for SQL Postgres wire protocol, (thus integrating
with PostgresSQL client libraries), can be easily deployed using a single Docker Image, and
also supports the InfluxDB Line Protocol (ILP).

14 Chapter 2. State of the Art

2.1.1.3.4 Graph-based Data Model

According to Angles and Gutierrez 2008, the databases that follow this data model can be
characterized by the following principles:

• “Data and/or the schema are represented by graphs, or by data structures
generalizing the notion of graph (hypergraphs or hypernodes)”;

• “Data manipulation is expressed by graph transformations, or by operations whose
main primitives are on graph features like paths, neighborhoods, subgraphs, graph
patterns, connectivity, and graph statistics”;

• “Integrity constraints enforce data consistency. These constraints can be grouped in
schema-instance consistency, identity and referential integrity, and functional and
inclusion dependencies”.

These databases flourish when the importance of the information relies on the relations
more or equal than on the entities, e.g. biology, Web mining, semantic Web, social
networking and recommendation engines (Angles 2012; Miller 2013).

Some of the technologies related to this concept are: (i) Neo4j, (ii) Dgraph.

2.1.1.3.5 Key-Value Data Model

Databases that follow this data model have their data represented as simple key and value
relations. Citing Pokorny 2011, “A key uniquely identifies a value (typically string, but also
a pointer, where the value is stored) and this value can be structured or completely
unstructured (typically BLOB). The approach key-value reminds simple abstractions as file
systems or hash tables (DHT), which enables efficient lookups”.

Some of the technologies related to this concept are: (i) DynamoDB, (ii) Redis.

According to DeCandia et al. 2007 “ Dynamo has a simple key/value interface, is highly
available with a clearly defined consistency window, is efficient in its resource usage, and
has a simple scale out scheme to address growth in data set size or request rates”.

When compared with DynamoDB, Redis has a must more compelling feature, its license.
Redis is an “open source, in-memory data store used by millions of developers as a
database, cache, streaming engine, and message broker” (Redis 2022).

2.1.1.3.6 Summary

This section tackled most types of databases available. It became clear that the
Column-based Data Model is tailored for IoT, due to the large amounts of data it can
ingest in short amount of time. The focus on time series analysis by some solutions is also
deemed important since sensor data is always interconnected to the time it was collected.

In the next section, the concept of Rule Engines, and their benefits for IoT, will be
introduced.

2.1.1.4 Rule Engine

Chisholm 2004 defines a rule engine as a “program that uses rules to reach conclusions
from facts (premises)”. These systems help to externalize business logic from the
application code. In this area they are intended to provide the means to react based on the

2.1. IoT Architectural Context 15

measures gathered. Rule Engines have a wide use in IoT Systems according to Luo et al.
2021; Milenkovic 2020; Pierleoni et al. 2020.

According to Waylay 2020, most of the IoT platforms on the market today have a rules
engine based on forward chaining algorithms, such as Redhat Drools, Cumulocity, Eclipse
Smart Home (discontinued), AWS rule engine, Thingsboard and others.

Rule Engines are often also categorized as Information Flow Processing (IFP) Systems, as
per Cugola and Margara 2012. The following diagram, Figure 2.2, represents them.

Data Source 1

Data Source 2

Data Source ..n

Information Flow

Processing (IFP) System

Rule Manager

Data Sink 1

Data Sink 2

Data Sink ..n

publish input

data

delivers output

data

submits

rules

Figure 2.2: High-Level View of a IFP System

Some Rule Engine can support a Flow-based programing, a term coined by J. P. Morrison
1994. Flow-based programing refers to the use of a visualization technique that allows
users without coding experience to understand, create and alter programs by manipulating
graphical blocks that represent program components or functionalities (J. Morrison 2010).
A fine example of this is Node-RED 2022b. This tool is widely used in IoT (M. Silva et al.
2020).

As for the other tool mentioned:

Cumulocity is an IoT platform that allows users to define business operations for immediate
processing of incoming data from devices or other data sources. As per Cumulocity 2022,
the operation logic is implemented in Apama’s Event Processing Language (EPL).

Drools is a “business-rule management system with a forward-chaining and
backward-chaining inference-based rules engine, allowing fast and reliable evaluation of
business rules and complex event processing”. The operation logic is implemented in the
Drools Rule Language.

AWS Rule Engine service is coupled with AWS IoT Core, the operation logic is
implemented according to a json-schema where one can define what triggers an action, via
an SQL statement processed against an MQTT topic, and define a set of actions, e.g.
send a message to Apache Kafka, store data in DynamoDB, send a POST request to and
endpoint, and others (Services 2022).

16 Chapter 2. State of the Art

Thingsboard offers a rule engine based on Node-RED, according to their documentation in
Rule Engine Overview 2022a.

Stream Processing rule engines such as Apache Storm 2022, Apache Spark 2022 and
Apache Flink 2022 can also fit in this category but were not investigated.

2.1.2 Platforms

The platforms described here provide a Mashup-based development environment.
According to Dias, Restivo, and Ferreira 2022, “mashup tools are solutions that allow
developers to construct application and systems in a component-based fashion (e.g.
Widgets) or Web service composition (e.g. REST APIs)”.

ThingsBoard, DataCake and TagoIO are some examples of these platforms.

2.1.2.1 ThingsBoard

ThingsBoard is “an open-source IoT platform for data collection, processing, visualization,
and device management” (ThingsBoard 2022b). Some of its features are: (i) devices,
assets and customers provisioning with the possibility to define relations between them, (ii)
device and assets data collection and visualization, (iii) rule engine to trigger alarms, (iv)
device control via remote procedure calls, (v) enables the design dynamic and responsive
dashboards and present device or asset telemetry and insights to customers, (vi) use-case
specific features using customizable rule chains and (vii) device data can be pushed to
other systems.

This platform provides several pre-made solutions like: (i) Smart Energy, (ii) Smart
Farming, (iii) Fleet Tracking, (iv) Smart Metering, (v) Environment Monitoring, (vi) Smart
Office, (vii) Water Metering, and (viii) Smart Retail.

2.1.2.2 DataCake

DataCake is a “multi-purpose, low-code IoT platform that requires no programming skills
and minimal time to create custom IoT applications that can be brought into a white label
IoT solution at the push of a button” (Cake 2021).

This platform provides several pre-made solutions like: (i) Welding Fume Monitoring, (ii)
Urban Air Quality, (iii) Industrial Gas Supply, (iv) Air Quality Monitoring, (v) Climate
Monitoring, (vi) Cryogenics Monitoring, (vii) CO2 Monitoring, (viii) Water Level and Flood
Monitoring and (ix) Industrial IoT.

2.1.2.3 TagoIO

TagoIO “offers the tools for a business to manage devices, store data, run analytics, and
integrate services. It combines everything with an easy-to-use application and user
management system” (TagoIO 2022). Its features are: (i) possibility to connect to any
device, (ii) enables the design of custom dashboards, (iii) easy data management, (iv) can
run custom analysis written in Javascript, (v) custom defined dispatch of SMS,
notifications and e-mails and (vi) possibility to tailor the UI to the company’s desire (e.g.
logo and color).

2.1. IoT Architectural Context 17

Contrary to the other mentioned platforms, the author thinks that the pre-made solutions
are much more lackluster and device-centered instead of business-case centered and
therefore weren’t mentioned.

2.1.2.3.1 Summary

This section indicated some of the platforms built to ease the creation of business case
focused applications that rely on IoT data via a Mashup-based development. These
platforms enable someone with close to no programing knowledge to design dashboards
that present data in various manners, however “these approaches commonly have
limitations and unaddressed challenges, such as not capturing the full software
development life-cycle, having large-scale limitations and suffering from leaky abstractions”
(Dias, Restivo, and Ferreira 2022).

The intent behind this section is to provide some context to what the market as to offer
for those who want to build IoT applications with ease.

Next, some solutions focused on specific business cases will be presented.

2.1.3 Solutions

This section focus on several solutions devoted to specific business cases. The objective of
this section is to simply introduce the major features of the solutions, how they work and
what is the business model behind their company, when applicable.

The business cases addressed here are the ones this project attempts to answer.

2.1.3.1 Indoor Fire Detection

This section mentions some Indoor Fire Detention systems discussed in academia. The
benefits of this business case are: (i) increased security against fire outbreaks, (ii) reduced
fire detection times and (iii) automated alert dispatch to relevant authorities.

Listyorini and Rahim 2018 introduces a prototype that relies on IoT and fuzzy logic to
detect fires. In the experiment, a device that captures temperature and the light source
wavelength, closely monitors a specific place (maximum distance of 60cm from the fire)
where the fire simulation takes place. The device sends the measures collected to the
cloud to be analyzed by an algorithm that relies on fuzzy logic to reduce false positives.
The prototype was able to detect "real fires" and ignore small fire sources such as
cigarettes, lighters, and matches.

Saeed et al. 2018 proposes the use of a wireless sensor network to support fire detention
sensor in smart homes. The experiment used smoke sensors, gas detectors and heat
sensors to detect changes in the home. It considered that each division would have 3
sensors installed. In order to detect a fire, two measures would have to surpass the
thresholds defined for their division. The proposal was able to detect all fires.

Wu, L. Chen, and Hao 2021 proposes a multi-sensor data fusion method based on a back
propagation neural network. The study used temperature, smoke and CO measures to
detect a fire. The study indicates that the method used can reduce the fire detection time
by 32%.

18 Chapter 2. State of the Art

Mohammed et al. 2021 proposes the use of computer vision technology for fire-detection.
A Closed-circuit television (CCT) camera monitors the house and streams the data
collected to a server. The server then processes the images received, three algorithms were
explored: color detection, moving object detection and flicker detection.

As presented here, this business case is being tackled from various angles with no clear and
definitive answer to the problem. Qureshi et al. 2015 argues that conventional methods are
not as robust and dynamic as video-based image processing methods.

2.1.3.2 Smart Irrigation

This section mentions some Smart Irrigation Solutions discussed by Obaideen et al. 2022.

According to Elijah et al. 2018 a Smart Irrigation System offers the following benefits: (i)
Community Farming, (ii) Safety Control and Fraud Prevention, (iii) Competitive
Advantages, (iv) Wealth Creation and Distributions, (v) Cost Reduction and Wastage, (vi)
Operational Efficiency, (vii) Awareness and (ix) Asset Management.

WaterBit provides a “secured wireless connectivity to its autonomous irrigation solution,
allowing management and control of local irrigation” (Obaideen et al. 2022). WaterBit
gathers soil moisture levels measured every few minutes and presents theses measures via a
mobile-friendly application where farmers can control the irrigation system.

Ipswich city council “depicted that using an automated soil-moisture monitoring system as
a driver of irrigation leads to significantly conserve water along with saving costs”
(Obaideen et al. 2022). The system’s method to control the irrigation system was
considered highly efficient when compared with a rainfall-based allocation method.

Maejo University in Thailand built a system to control the environment where mushrooms
were cultivated. The system measured light, air temperature, air humidity and air flow to
determine when to activate the irrigation system (Obaideen et al. 2022). The system was
powered by solar energy.

AgirSens is a dynamic irrigation scheduling system based on IoT for efficient water
management of irrigated crop fields. According to Roy et al. 2021 “AgriSens has a
farmer-friendly user interface, which provides field information to the farmers in a
multimodal manner - visual display, cell phone, and Web portal”.

2.1.3.3 Fleet Management

This section focus on some Fleet Management and Asset Tracking solutions. No relevant
papers were found regarding the use of IoT in Fleet Management or Asset Tracking
solutions, therefore the solutions here presented were gathered by the author based on the
quality of information available regarding their company’s business model, iot devices used
and features offered.

Verizon Connect is a Fleet Management solution that provides it’s own sensors/devices,
platform and application under a subscription (Verizon 2022). A team from Verizon installs
the devices in the fleet according to the specification and access to the platform is given.
This is an Hassle-free solution but the costs associated with it can be high. Since Verizon
is a telecommunications conglomerate the protocols used to transport measures from
devices to their platform is GPRS/2G/3G/4G/5G cellular.

2.1. IoT Architectural Context 19

SmartDrive is a Fleet Management solution that also provides it’s own hardware, SR4,
platform and application under a subscription. The SR4 is composed by a controller
(solid-state storage, multiple communication protocols, advanced driver assistance system
functions, computer-vision aided processing requirements), cameras, sensor bar (GPS,
accelerometers, microphone and driver-support LEDs), keypad (for manual event recording
and privacy mode initiation) and Wireless Key Fob (initiate a manual recording event, both
inside and outside the vehicle) (SmartDrive 2018a). With all the data gathered, their
platform, Transportation Intelligence Platform, is capable of “delivering breakthrough
driving performance insights and analytic intelligence”, and “helping fleets improve fleet
safety and efficiency, and manage an entirely new set of business challenges arising in the
future” (SmartDrive 2018b).

LocaTrack is a platform for Asset Tracking built by Safecube (Safecube 2021), this service
provides the following Key Features:

• Geolocation: Distance, traveled road and availability;

• Asset use rate analysis: better visibility on the use of assets;

• Optimization: detailed analysis to optimize the use of assets;

• Real-time alert: real-time alerts on movements, geofencing, sleeping assets and
others;

• Prediction: Maintenance, Servicing and Asset location;

• Condition monitoring: IoT trackers can detect changes in temperature, humidity or
shocks and others.

According to Rogerson 2021, LocaTrack uses SigFox for lower-level communication and
Azure IoT Hub to collect the location of tracked assets.

Finally, TrackPac is a service for asset tracking (TracPac 2022). This service offers an
application that presents real-time location data, battery data and geofence alerts of the
managed assets. By using LoRaWAN (provided by Helium, the same network used in this
project) for lower-level communication it promises a service ten times cheaper than the
ones that require 4G. This service works with LoRaWAN class A trackers and does not
enforce the use of any proprietary, close-source devices even though it recommends the use
of Browan Tabs Object Locator, Digital Matter Oyster3 or Abeeway Micro.

2.1.3.4 Summary

This section referenced some solutions found in academia and the market. Their
descriptions alluded to how narrow-scoped IoT solutions tend to be, commonly requiring
specific devices and cloud platforms to operate.

Next, some reference architectures for IoT will be introduced. These, among many things,
intend to address the interoperability problems described above by introducing a common
interpretation and vocabulary to the IoT landscape.

2.1.4 Reference Architectures

As the IoT domain covers such a wide spectrum of application fields with very little in
common, the development cycles, technologies and architectures used can be completely

20 Chapter 2. State of the Art

different. The vast array of choices given to those involved in a greenfield project of this
area, coupled with the lack of standards with a broad usage (Dias, Restivo, and Ferreira
2022; Weyrich and Ebert 2015), can linger the design, development and interoperability of
IoT systems.

Reference Architectures for the IoT aim to help developers tackle some of these problems
(Weyrich and Ebert 2015).

According to Muller 2008, a Reference Architecture “captures the essence of the
architecture of a collection of systems. The purpose of a Reference Architecture is to
provide guidance for the development of architectures for new versions of the system or
extended systems and product families”.

This section sheds a light on some of the Reference Architectures of this field, what their
focus is and the relevancy they have for this project.

The Reference Architectures discussed are: (i) IoT-A, (ii) SAT-IoT, (iii) IIRA, (iv) WSO2
IRA, (v) IEEE P2413, (vi) RAMI 4.0, (vii) Azure IRA, (viii) Arrowhead.

This section was based on the papers written by Lynn et al. 2020 and Dias, Restivo, and
Ferreira 2022.

Intel System Architecture Specifications (Intel SAS) will not be discussed since no relevant
information was found about it. The IoT-A Section also mentions the IoT Architectural
Reference Model (ARM).

2.1.4.1 IoT-A

The IoT Architecture goals are to create “an architectural reference model for the
interoperability of Internet-of-Things systems, outlining principles and guidelines for the
technical design of its protocols, interfaces, and algorithms” that shall “lead to
corresponding mechanism for its efficient integration into the service layer of the Future
Internet”. (European Lighthouse Integrated Project 2013a). This project’s final version is
dated back to July 2013.

It defines a collection of Unified Requirements that support and validate concrete
architectures created according to the IoT ARM. Some of these requirements were also
applied to this project.

According to Kro, Pokri, and Carrez 2014, this project motto is “to offer IoT architects a
common technical grounding in order to optimize interoperability. In that case, IoT
applications would not be any longer built as stand-alone silo applications, but as
inter-operable vertical applications still having a common "horizontal" grounding - the
ARM (compliant components, protocol suites, etc.)”.

This project originated the IoT ARM that can be divided into three interconnected parts
(Kro, Pokri, and Carrez 2014):

• The IoT Reference Model;

• The IoT Reference Architecture;

• A set of Guidance (also called best practice).

2.1. IoT Architectural Context 21

The reference model defines several models that help to describe certain aspects of the
IoT architecture, some of this models are described by Haller et al. 2013. It defines five
core concepts:

• Augmented Entity: a combination of a Physical Entity (real world object) and its
Virtual Entity (digital representation);

• User: Those who interact with the system, human beings, devices, services and
others;

• Device: Hardware to monitor or interact with real world objects;

• Resource: Computational element that gives access to information or control over a
real-world object;

• Service: Entities that expose resources via a common interface, making then
available for consumption by other services.

Each concept is them explored in detail. These concepts are them used to create the
reference architecture.

According to Introduction to the Architectural Reference Model for the Internet of Things
2013b, “the Reference Architecture can be visualized as the "Matrix" that eventually gives
birth ideally to all concrete architectures”. “Guidance in form of best practices can be
associated to a reference architecture in order to derive use-case-specific architectures
from the reference architecture”.

The IoT Reference Architecture provides a functional view, presented in the Figure 2.3.

Figure 2.3: ARM Functional View, European Lighthouse Integrated Project
2013c

This functional view divides the architecture of a system in various functional components
with well defined concerns.

22 Chapter 2. State of the Art

2.1.4.2 SAT-IoT

López Peña and Muñoz Fernández 2019 present an architectural model definition that lead
to the development of “a new advanced IoT platform referred as SAT-IoT”. This model
attempts to integrate concepts such as: “the paradigm of edge/cloud computing
transparency, the IoT computing topology management, and the automation and
integration of IoT visualization systems”. This project’s final version is dated back to 2019,
it apeares that the envisioned platform was not implemented since no other reference to it
was found.

The diagram in Figure 2.4 defines the concepts, services and relations of this model.

Figure 2.4: SAT-IoT Architectural Model, López Peña and Muñoz Fernández
2019

This model focus on a distributed system with a tree-like structure, where data can be
dynamically processed in different node levels (edge, mid or cloud) in order to optimize
response latency, bandwidth consumption, storage and other metrics. Components such as
"IoT Topology Management Entity", "IoT Data Flow Dynamic Routing Entity" and "IoT
Visualization Entity" focus on optimally distributing the workload across all nodes of the
system.

The architecture also enables one to host "Embedded IoT Applications" that have full
access to the system internals, leading to strongly integrated applications.

2.1.4.3 IIRA

The Industrial Internet Reference Architecture (IIRA) “addresses the need for a common
architecture framework to develop interoperable IIoT systems for diverse applications

2.1. IoT Architectural Context 23

across a broad spectrum of industrial verticals in the public and private sectors to achieve
the true promise of IIoT” (Industry IoT Consortium 2019). This project’s final version is
dated back to June 2019.

It decomposes a typical Industrial IoT system in five distinct functional domains:

• Control Domain: this domain focus on functions that are performed by industrial
control and automation systems. It is deployed in proximity to the physical systems
and therefore geographically distributed;

• Operations Domain: this domain focus on the management and operation of the
control domain. It should be able to configure, register, track and control assets. It
is also responsible for providing real-time prognostics, monitoring and diagnostics of
the managed assets;

• Information Domain: this domain is responsible for managing and processing data,
it should transform, persist, and model or analyze data to acquire high-level
intelligence about the overall system;

• Application Domain: this domain is responsible for applying business focused rules
and logic to the gathered information;

• Business Domain: this domain is responsible for implementing business processes,
such as Enterprise Resource Planning, Costumer Relationship Management,
Manufacturing Execution System, Billing and Payment, Work Planning and
Scheduling Systems.

These domains interact according to Figure 2.5.

Figure 2.5: IIRA Functional Domains, Industry IoT Consortium 2019

24 Chapter 2. State of the Art

As information flows from the control domain to the business domain it is enriched,
cleaned, filtered and combined leading to a broader and richer notion of the complete
environment. New information can be derived, and new intelligence may emerge from this
broader information.

When applied to the common three tier architecture for IoT systems, these domains are
organized according to Figure 2.6.

Figure 2.6: Mapping between a three tier architecture and the IIRA function
domains, Industry IoT Consortium 2019

2.1.4.4 WSO2 IRA

The WSO2 reference architecture aims to “provide an architecture that supports
integration between systems and devices” (WSO2 2015). This project’s final version is
dated back to October 2015.

It groups the IoT related requirements in the following key categories: (i) Connectivity and
communications, (ii) Device management, (iii) Data collection, analysis, and actuation, (iv)
Scalability, (v) Security, (vi) high-availability, (vii) Predictive analysis and (viii) Integration.

These categories gave birth to the following reference architecture, Figure 2.7.

2.1. IoT Architectural Context 25

Figure 2.7: Reference Architecture for IoT, WSO2 2015

This reference architecture envisions two cross-cutting and five horizontal layers:

• Device Layer (in grey): related to the physical IoT devices;

• Communications Layer (without any representative color): related to the
connectivity of devices;

• Aggregation/bus Layer (in light blue): related to the aggregation and supply of
data upstream, bridging between the protocols used in upstream layers and
downstream layers;

• Event processing and Analytics Layer (in purple): related to data processing,
analysis and storage;

• Client/external Communications Layer (in green): related to web-based frontends
and portals that interact with the Event processing and Analytics layer, dashboards
that offer views into analytics and event processing, and APIs for machine to
machine communication;

• Device Management Layer (in dark blue): related to the management, onboarding
and remote control of devices;

• Identity Access Management (in orange): related to the authentication and
authorization of users and systems that interact with the system.

In the Event processing and analytics Layer it’s recommended the use of “a highly scalable,
column-based data storage for storing events”, “map-reduce for long-running
batch-oriented processing of data”, “complex event processing for fast in-memory
processing and real-time reaction and autonomic actions based on the data an activity of
devices and other systems” and “traditional application processing platforms”
(custom-made applications for data processing).

26 Chapter 2. State of the Art

2.1.4.5 IEEE P2413

The IEEE Standard for an Architectural Framework for the IoT “defines an architecture
framework description for IoT”. The architecture framework defined in the standard “will
promote cross-domain interaction, aid system interoperability and functional compatibility,
and further fuel the growth of the IoT market” (IEEE 2020). This project’s final version is
dated back to June 2020.

Its architecture framework covers the definition of basic architectural building blocks and
their ability to be integrated into multi-tiered systems. It describes different detailed
viewpoints of the framework (IEEE 2020):

• Conceptual Viewpoint: concerned with defining a common vocabulary and
semantics regarding a IoT System to ease the communication across teams and
encourage the reuse of concepts;

• Compatibility Viewpoint: concerned with the compatibility between systems and
devices to lower the cost of integration. This viewpoint urges for the creation of new
standards and compliance with those standards. It defines six levels of compatibility
focused specially on physical devices: (i) incompatible, (ii) coexistent, (iii) inter
connectable, (iv) inter workable, (v) interoperable and (vi) exchangeable;

• Lifecycle Viewpoint: concerned with a system’s assurance, performance,
maintainability and evolvability across its lifecycle: design, development, production,
support, upgrade and retirement;

• Communication Viewpoint: concerned with how devices can exchange information
with each other and IoT systems in a accurate, precise and effective manner;

• Information Viewpoint: concerned with how information is semantically defined,
structured, stored, shared, manipulated, managed, and distributed across the IoT
system. This viewpoint should focus on documenting system-level information, e.g.,
information exchanged between the various subsystems;

• Function Viewpoint: concerned with how devices can function according to their
intended purpose or characteristic action, such as actuation, sensing, analysis, or
control of entities of interest;

• Thread model Viewpoint: concerned with identifying potential threats that could
exploit vulnerabilities in the device, network or subsystems that encapsulate the IoT
system;

• Security and safety monitoring Viewpoint: concerned with monitoring the events
occurring in an IoT system and analyzing them for signs of possible incidents, which
are violations or imminent threats of violation of security, safety, or acceptable use
policies, or standard security practices;

• Access control Viewpoint: concerned with permitted activities of legitimate users,
mediating every attempt by a user to access a resource in the IoT system. It is
composed by three security functions: identification, authentication and
authorization;

• Privacy and trust Viewpoint: concerned with the privacy of individuals or groups
and trust in systems or organizations. In a complex IoT system, arbitrary device data
can be grouped and analyzed to determine the users activities;

2.1. IoT Architectural Context 27

• Collaboration Viewpoint: concerned with the collaboration of systems that belong
to different application domains;

• Computing resource Viewpoint: concerned with the computing resources needed
to support the IoT system as a whole, such as gateways, data centers,
Programmable Logic Controller (PLC)s and Distributed Control System (DCS)
controllers, microcontrollers embedded in sensors and actuators or others.

The idealized IoT System should be examined according to these viewpoints in order to
better define its architecture.

IEEE 2020 then procedes to define the Standard for a Reference Architecture for Smart
Cities in P2413.1, the major focus of this project’s business cases.

One of the architectures proposed in the standard and derived from the architecture
framework is presented in Figure 2.8.

Figure 2.8: Example of an IoT System Architecture for Smart Cities, IEEE
2020

This architecture, derived from the common three tier architecture for IoT Systems,
proposes a new tier entitled Smart City Platform, in it “Northbound APIs support diverse
vertical applications development and southbound APIs connect to different IoT
Platforms” (IEEE 2020).

2.1.4.6 RAMI 4.0

The Reference Architectural Model Industry 4.0 “ensures that all participants involved
share a common perspective and develop a common understanding” and is represented by a
“three-dimensional map showing the most important aspects of Industrie 4.0” (Hankel and
Rexroth 2015). It represents a service-oriented architecture according to the manufactures
association that defined it. This project’s final version is dated back to August 2018 and
has clear focus on the IoT business area related to the Industry, e.g. smart factories.

28 Chapter 2. State of the Art

The three-dimensional map is depicted in Figure 2.9.

Figure 2.9: RAMI 4.0 Three-dimensional map, German Electrical and Elec-
tronic Manufacturers’ Association 2017a

According to Kaviraju 2021 it is comprised of six architecture layers stretched across the
hierarchy and life cycle axes:

• Business Layer: concerned with Organization and Business processes;

• Functional Layer: concerned with the Functions of assets;

• Information Layer: concerned with the processing of the necessary data;

• Communication Layer: concerned with how to gain access to the information
needed;

• Integration Layer: concerned with the transition from things to the digital world;

• Asset Layer: concerned with the physical things in the real world.

This reference architecture mentions an administration shell that sits in between the asset
(machine, sensor, unit or plant) and the network. This administration shell is the interface
connecting the IoT platform to the asset, storing all data and information about the asset
and standardizing the network’s communication. According to German Electrical and
Electronic Manufacturers’ Association 2017b, “each physical thing has its own
administration shell” and “several assets can form a thematic unit with a common
administration shell”. This administration shell allows for distributed data analysis and
control over assets.

According to Lin et al. 2017, this reference architecture is aligned with IIRA. The following
picture, Figure 2.10 describes how RAMI 4.0 concepts can be represented according to
IIRA.

2.1. IoT Architectural Context 29

Figure 2.10: IRRA and RAMI 4.0 Functional Mapping, Lin et al. 2017

The need to map the concepts of both reference architectures derives from the fact that
these two are the most actively references used in the industry (Dias, Restivo, and Ferreira
2022). Therefore, the document by Lin et al. 2017 provides guidelines on how to achieve
better interoperability between systems built according to different reference architecture.

2.1.4.7 Azure IRA

The Microsoft Azure IoT Reference Architecture 2018 proposes the architecture
envisioned in Figure 2.11, this architecture relies heavily on the Azure platform services.
According to Microsoft 2018, the recommended architecture is “cloud native, microservice,
and serverless-based”. This project’s final version is dated back to April 2021.

Figure 2.11: Azure IoT Reference Architecture, Microsoft 2018

Microsoft 2018 recommends that “subsystems should be built as discrete services that are
independently deployable, and able to scale independently”, to “enable greater scale, more
flexibility in updating individual subsystems, and provide the flexibility to choose
appropriate technology on a per-subsystem basis”.

30 Chapter 2. State of the Art

This reference architecture is based on the lambda architecture. According to Kiran et al.
2015, the lambda architecture “combines both batch and stream processing capabilities for
online processing and handling of massive data volumes in a uniform manner, reducing
costs in the process.” It is comprised of three layers (or patches), a Batch or Slow layer for
extensive and prolonged analysis, a Speed or Fast layer for real-time evident information,
and a Serving layer responsible for providing the results gathered by the other two layers.

As we can see in Figure 2.11 the Insights section is divided into two patches, the Fast
Patch for real-time processing, and the Slow Patch for batch processing. Results are then
provided in the Action section.

2.1.4.8 Arrowhead

According to Varga et al. 2017, “the objective of the Arrowhead Framework is to efficiently
support the development, deployment and operation of interconnected, cooperative
systems. It is based on the Service Oriented Architecture (SOA) philosophy”. It has a big
focus on Interoperability between systems and services already in production.

“The Arrowhead project targets five business domains; Production (process and
manufacturing), Smart Buildings and infrastructures, Electro mobility, Energy production
and Virtual Markets of Energy” (Blomstedt et al. 2014).

The Arrowhead challenge is to enable interoperability between these systems, therefore, it
starts by defining how one should document his/her solutions. Three hierarchical levels of
solutions are proposed: (i) service, (ii) system, (iii) system of systems (Figure 2.12).

Figure 2.12: Arrowhead Framework Core and Application Services, Blomstedt
et al. 2014

The lower level, service, can be something that, for example, indicates the current
measured humidity level by sensor X (pull-typed service) or that opens/closes valve Y
(push-typed service). A system is composed by several services. A System of Systems is
composed by several systems that work in harmony in a Arrowhead local cloud. A
Arrowhead local cloud is composed by at least three mandatory core systems: (i)
ServiceRegistry system, (ii) Authorization system and (iii) Orchestration system presented
in Figure 2.13.

2.1. IoT Architectural Context 31

Figure 2.13: Arrowhead Framework Core and Application Services, Blomstedt
et al. 2014

These core systems handle essential features for a local cloud such as: service discovery,
service registration, service advertisement, authentication of consuming services, data
exchange between systems and service coordination according to Marcu et al. 2020. A
local cloud can expose its systems to other local clouds and consume other local clouds
systems. Since each service and system is well documented and arrowhead compliant it’s
possible to ensure interoperability between local clouds.

2.1.4.9 Overall Perspective

To close this section, some of the author sentiment and ideas surrounding these reference
architecture models, and how they may shape this project’s solution, are presented:

• IoT-A: The Unified Requirements detailed by this initiative gave the author an idea
of the basic features for an IoT system and enriched the requirements proposed by
the company;

• SAT-IoT: The extendability notion behind the "Embedded IoT Application"
component was interesting to author from a business point of view. This idea would
give customers the possibility to integrate custom-made solutions in the platform;

• IIRA: The author argues that the clear division between the Application, Information
and Business domains provide a common abstraction that can be applied to any IoT
System to ease the cognitive burden taken to understand it;

• WSO2 IRA: The author finds the clear division between the responsibilities of
gathering measures, processing and analyzing them, and providing them in a business
focused manner very aligned with this project’s goals;

• IEEE P2413: The concept of "Smart City Platform", and how it interacts with
various systems is highly related with the overall requirements of this project;

• RAMI 4.0: This reference architecture provided no relevant insight for the author,
mostly due to the discrepancy between the IoT domains each project was devoted to
(Smart Cities vs Industry 4.0);

32 Chapter 2. State of the Art

• Azure IRA: This reference architecture presented the author with a conceivable
architecture for the future of the current solution. It introduced the notion of a
Batch layer to better handle complex and prolonged analysis and provide Key
Performance Indicators (KPI) reports;

• Arrowhead: This reference architecture appeared to be out-of-scope for the project
since it focus on a more fine-grained access and control of devices (without the need
for a IoT Midlleware that handle device management and propagation of measures).

2.1.5 Synopsis

This section introduced the reader to the technological landscape of IoT. The next section
discusses some of its business areas or domains.

2.2 Business Areas

Even though there’s no concise structure, it is obvious that the IoT technologies can be
used in a broad range of areas/sectors. As per Nieti, Djilali, et al. 2019, the most valuable
areas are: Smart Cities, Industrial IoT, Connected Health and Smart Homes. The general
market division of IoT technologies is presented in Figure 2.14.

Figure 2.14: General market structure of IoT technologies, Nieti, Djilali, et
al. 2019

From another point of view, and according to Gazis et al. 2015, the sectors IoT is related
to are: Energy, Smart City, Transportation, Smart Home, Environment, Supply Chain, and
Health Care.

According to S. Chen et al. 2014 these are the main application fields for IoT in China:
industry, smart agriculture, smart logistics, intelligent transportation, smart grids, smart
environmental protection, smart safety, smart medical and smart home.

Even though this work focus mostly on Smart Cities other areas are also be described.
Each of this areas incorporate several interconnected use cases that are briefly described in
the following segments.

2.2. Business Areas 33

2.2.1 Smart Cities

The Smart Cities sector includes numerous use cases related to public safety, the
environment, mobility, energy, infrastructure and many other municipal concerns.
According to Wegner 2020 this are the use cases being prioritized.

• Connected Public Transport: real-time monitoring of public transportation vehicles’
locations, stops and itineraries, and the possibility to be notified when a public
transportation vehicle is arriving at a stop;

• Traffic Monitoring and Management: real-time monitoring and management of
traffic flows in a efficient manner;

• Water level / Flood Monitoring: real-time monitoring of level of water in public
water basins such as rivers, channels, or even lakes and seas to warn and predict fast
water level shifts;

• Video Surveillance & Analytics: real-time monitoring using CCT cameras and
analytics to detect specific situations, e.g. accidents, crimes, potential threats, or
recognize specific features (face recognition, demographics, etc.);

• Connected Streetlights: real-time monitoring and management of streetlights’ health
status and energy consumption to decrease costs and become more sustainable;

• Weather Monitoring: real-time monitoring of weather conditions such as
temperature, humidity, rainfall, wind speed and direction to predict the weather and
future natural disasters;

• Air Quality / Pollution Monitoring: real-time monitoring of air quality to warn the
community about hazardous conditions;

• Smart Metering - Water: remote real-time monitoring of water usage in homes to
address the world’s water demand and scarcity issues and faster localize sewage leaks;

• Fire / Smoke Detention: real-time monitoring of possible indoor fires and CO2 levels
to prevent injuries, fatalities and building degradation;

• Water Quality Monitoring: real-time monitoring of water conditions such as pH
levels, percentage of salts and other elements that can threaten the public health.

Apart from these use cases, others are arising, such as smart parking (Goap et al. 2018),
smart irrigation (Khanna and Anand 2016) and waste management (Shyam, Manvi, and
Bharti 2017).

• Smart parking provides a simple method to the community of knowing the available
parking spots, which, alone, lowers the carbon footprint and traffic congestions in
cities.

• Smart irrigation tackles the need to save water by irrigating the soil only when
needed and not when it is already moist, it’s raining or it is expected to rain in the
following hours.

• Waste management can eliminate the cost of unnecessary waste collections and
therefore reduce the carbon footprint. Data gathered can then help to identifying
cost-effective itineraries to collect waste and eventually lower overall transportation
and staff costs.

34 Chapter 2. State of the Art

All this use cases refine the efficiency of the municipal workforce and help the town council
to reduce costs and improve the environment sustainability in the long term.

2.2.2 Industry

According to Gilchrist 2016, “the Industrial IoT provides a way to get better visibility and
insight into the company’s operations and assets", therefore this leads to “operational
efficiency gains and accelerated productivity, which results in reduced unplanned downtime
and optimized efficiency, and thereby profits”. It is comprised of several use cases (Tracy
2017) such as:

• Predictive Maintenance: real-time monitoring of equipment conditions and applied
data analytics can help a company to significantly decrease operational expenditures.
“Other potential advantages include increased equipment lifetime, increased plant
safety and fewer accidents with negative environmental impact” (Tracy 2017);

• Smart metering: real-time monitoring of energy, water or natural gas consumption of
a building can reduce operating expenses by managing manual operations remotely,
reduce energy theft and improve forecasting and streamline power-consumption
(SierraWireless 2017);

• Asset tracking: real-time monitoring of resources helps "to easily locate and monitor
key assets, along the supply chain (e.g. raw materials, final products and containers)
to optimize logistics, maintain inventory levels, prevent quality issues and detect
theft" (Tracy 2017).

• Connected vehicles: computer-enhanced vehicles that automate many normal driving
tasks can lower crash rates, and help decreasing the number of vehicles a company
needs to function.

• Fleet management: real-time monitoring of vehicles location and conditions can help
“improving efficiency and productivity while reducing overall transportation and staff
costs” (Tracy 2017).

As we can see from the list above, the Industrial IoT sector is focused on business
efficiency and staff safety, which, as a side effect, brings environmental benefits.

2.2.3 Healthcare

According to Firouzi et al. 2018 new opportunities are now arising as a result of fast-paced
expansion in the areas of the IoT and Big Data for healthcare industries. People across the
globe have begun to adopt wearable biosensors, whose data is feed into the new emerging
individualized health applications. This sector incorporates numerous use cases (Kumar
and Chatterjee 2020) such as:

• Remote Healthcare Monitoring: real-time monitoring of a patient conditions such as
pulse rate and heartbeat can prevent unwanted deaths;

• Drug management: medicine monitoring and reminder system can help the elderly to
take medicine on time;

• Employee health management: real-time monitoring of employee’s state can predict
burnouts and increase a workforce productivity;

2.2. Business Areas 35

The benefits these use cases provide are a more convenient lifestyle, improvement of one
life’s quality, reduction in costs and increased survival rates of patients (Kumar and
Chatterjee 2020).

2.2.4 Smart Homes

Visions of smart homes have long caught the attention of researchers and considerable
effort has been put toward enabling home automation. However, these technologies have
not been widely adopted despite being available for over three decades (Brush et al. 2011).
Based on Alaa et al. 2017 most home automation services offer the following use cases:

• Smart Lighting: remote and automated control of lights inside a house can help to
decrease energy wasted;

• Smart Air Conditioning: remote and automated control of air conditioners can keep
the house comfortable while minimizing the energy wasted;

• Remote health monitoring: when dealing with the elderly, complex smart systems
can anticipate their needs without direct human intervention;

• Device Automation: smart systems can turn the lights off when no one is home,
open the door when an identified person arrives and must more, improving the overall
comfort of the residents.

A smart home delivers various benefits such as reducing energy waste, comfort, allowing
remote control of the house, monitoring of elderly patients and easy communication with
health institutions (Alaa et al. 2017).

2.2.5 Open Challenges

Even though it seems IoT is the obvious next step for the industry, healthcare, everyone’s
home, public spaces/services and everything else there are some obstacles to overcome.

One of the big challenges ahead of everyone is related with antiquated ideas, tools and
processes still in use today. Each of the use cases above mentioned require a big shift in
how a company works since it demands a modernization of the organization infrastructure.
Tapscott and Williams 2006, explained that “In an age where mass collaboration can
reshape an industry overnight, the old hierarchical ways of organizing work and innovation
do not afford the level of agility, creativity, and connectivity that companies require to
remain competitive in today’s environment”.

According to Gazis et al. 2015 this are the most important challenges regarding IoT
applications:

• Technological Interoperability: achieving a seamless interaction between devices and
people with devices (according to Al-Qaseemi et al. 2016 there’s a lack of
standardization in IoT devices and technologies);

• Semantic Interoperability: guaranty that the devices interpret the shared information
correctly and act accordingly (improvements have to be made regarding distributed
ontologies, semantic web, or semantic device discovery);

• Security and Privacy: improving data integrity, unique device identification,
encryption and implement proper data/device ownership for legal/liability issues;

36 Chapter 2. State of the Art

• Smart Things: ultra low power circuits and devices capable of tolerating harsh
environments have to be developed;

• Resilience and Reliability: in industrial environments or in emergency use cases
temporary outages cannot be accepted.

According to the author this challenges substantially lingered the growth of IoT, an area
that was expected to have a much bigger impact in day-to-day life of everyone. According
to Dave Evans 2011 there would be 50 billion of devices connected to the Internet by 2020
but Statista 2021 reported only 8.74 billion of connected devices.

Noura, Atiquzzaman, and Gaedke 2019 introduced more issues in IoT related to
interoperability from different perspectives:

• Device interoperability: concerned with the exchange of information between
heterogeneous devices and the ability to integrate new devices into any IoT platform;

• Network interoperability: concerned with information addressing, routing, security,
resource optimization, Quality of Service (QoS) and mobility support;

• Syntactical interoperability: concerned with the format and structure of the
information exchanged between heterogeneous systems;

• Semantic interoperability: concerned with the meaning behind the information
exchanged, heterogeneous devices can, for example, work with diverse unit
measurements;

• Platform interoperability: concerned with heterogeneous platforms that use diverse
programming languages, Operating System (OS) and software architectures (also
mentioned by Dias, Restivo, and Ferreira 2022; Koo and Kim 2022; Ray 2016;
B. N. Silva, Khan, and K. Han 2018).

For IoT Technologies to deliver on the promises made by companies like Cisco or Gartner,
these barriers must be surpassed.

2.3 Synopsis

This chapter presented the big theme surrounding this work: IoT. Major business areas
and relevant solutions/technologies for this work were introduced.

In the following chapter, Requirements Elicitation, some of the business cases and
challenges discussed here will be tackled.

37

Chapter 3

Requirements Elicitation

In this chapter the functional and non-functional requirements will be presented.

“A software requirement is a capability needed by the user to solve a problem or to achieve
an objective. In other words, requirement is a software capability that must be met or
possessed by a system or system component to satisfy a contract, standard, specification,
or other formally imposed documentation. Ultimately, what we want to achieve is to
develop quality software that meets customers’ real needs on time and within budget.”
(Paradigm 2020).

The project high-level goal was well defined since the start:

Develop an IoT Platform with focus on extensibility to decrease the delivery time of new
business cases and allow others to implement their business on top of the platform.

The definitive business cases to develop changed various times during the project lifespan
due to intricate contract promises with third parties that never ended up seeing the light of
day. The business cases, ordered by the first time they were requested, and grouped by
organization, can be summarized in Table 3.1.

These business cases can be vaguely characterized according to the following
organization’s needs:

• Deployment Environment: Should the solution be deployed on-premise or in the
cloud;

• Multi-Tenancy: Should the organization share an instance of the solution with
others or not (according Gillis 2020);

• Data Shareability: Does the organization wants to provide their data to the public
(according to Yoon et al. 2017);

• Information Access and Visualization: Where and how to present and serve
information. Present information visually in the costumer organization platform,
directly in this solution or via other means such as a simple API, SMS, or email.

38 Chapter 3. Requirements Elicitation

Table 3.1: Summary of the main requirements of the requested business
cases

Org Business Case
Deployment
Environment

Multi-
Tenancy

Data
Shareability

Information
Access and
Visualization

A

Fleet Management On-Premise Single-Tenant Private Sensae Console

Smart Irrigation On-Premise Single-Tenant Private Sensae Console

Smart Parking On-Premise Single-Tenant Private Sensae Console

Indoor Fire Detention On-Premise Single-Tenant Private SMS and Email

Public Health Surveillance On-Premise Single-Tenant Public Sensae Console

B Fleet Management Cloud Single-Tenant Private Org B Platform

C
Smart Irrigation Cloud Multi-Tenant Private Sensae Console

Indoor Fire Detention Cloud Multi-Tenant Private SMS and Email

Chicken Farm Monitoring Cloud Multi-Tenant Private Sensae Console

D Smart Irrigation Cloud Multi-Tenant Private Sensae Console

The requirements detailed in the following sections were founded on top of the requested
business cases mentioned in Table 3.1. These requirements were constantly tailored
according to the latest talks with the third parties involved. Even though many requested
business cases weren’t implemented, they guided the author to the design and
development of the final solution, Sensae Console and PoCs.

At the time of writing, the PoCs developed answer three business cases: (i) Fleet
Management, (ii) Smart Irrigation and (iii) Indoor Fire Detention. The other business
cases were either abandoned or requested too close to the writing of this dissertation and
therefore will not be detailed.

3.1 Functional Requirements

Functional Requirements define the user-faced functionalities/operations that the solution
to develop must support in the future.

According to Van Lamsweerde 2009, “Functional requirements define the functional effects
that the software-to-be is required to have on its environment. The effects characterized
by such requirements result from operations to be automated by the software. Functional
requirements may also refer to environmental conditions under which operations should be
applied.”

The following sections describe the requirements associated with each role inside Sensae
Console, the solution that this project aims to deliver, and the PoCs developed, refereed
as Business Applications.

3.1.1 Roles

The meetings that took place during this project’s time span lead to the definition of three
main roles:

3.1. Functional Requirements 39

• Manager: a role with full control over the Sensae Console and all its data. He/She
has also full control of all Business Applications;

• Costumer: a role with restricted control over Sensae Console, controlling only the
devices, employees and departments registered under his/her own organization.
He/She has access to the requested Business Applications;

• Anonymous User: a role with no account in the system. He/She has access to the
publicly available Business Applications and data feed from ’public’ devices in the
system.

Apart from the basic costumer requirements inside Sensae Console, each Business
Application has specific use cases that will be detailed in the section 3.1.2.2.

Essentially, the difference between these roles boils down to what permissions each has and
the extent of data each one can visualize. The Section G.4 details how this is handled by
the solution.

The following sections will be divided in:

• Sensae Console: presenting the functional requirements associated with each role;

• Business Applications: presenting the functional requirements associated with each
business case supported.

3.1.2 Sensae Console

The idea behind Sensae Console functional requirements boils down to the core
functionalities it should provide so that creating and maintaining business applications is
simplified.

The Anonymous User role is disregarded here since his/her goal is to simply benefit from
curated and publicly available information provided by the business applications.

3.1.2.1 Manager

The purpose of the Manager is to supervise an instance of Sensae Console and its
costumers. This role is an extension of the Costumer role and can do and see everything a
Costumer can. A Manager is assign to an instance of Sensae Console at creation time
and belongs to the highest domain, the Root Organization as described in Section G.4.

The following list documents the functional requirements related to this actor regarding
the Sensae Console administration:

1. The Manager must be able to create, view, update and delete device payload
decoders;

2. The Manager must be able to create, view, update and delete device payload
processors (or mappers);

3. The Manager must be able to create, view, update and delete rules that trigger
alerts;

4. The Manager must be able to define, view, update and remove device specific
information;

40 Chapter 3. Requirements Elicitation

5. The Manager must be able to define the permissions of any organization;

6. The Manager must be able to assign new devices to a specific organization;

7. The Manager must be able to assign new authenticated users to a specific
organization.

As described in Sections G.1 and G.2, the decoders and processors referenced in the first
and second items are meant to translate unsanitized device data. This is highly required
since “the nonexistence of interoperability standards is one of IoT’s most pressing issues,
(...) designing a system using the latest available standard proposal does not ensure its
adoption or that the standard will be deprecated before the system reaches the market” -
Dias, Restivo, and Ferreira 2022.

The rules referenced in the third item can be used to program how the system answers to
certain abnormal occurrences, more context is given in Section G.5.

The device information mentioned in item four is detailed in Section G.3.

Even though the first four groups of operations belong to the Manager role, they can be
assigned to normal Costumers on special occasions. As an example, the Organization A
and B referenced in Table 3.1, had employees capable of fully managing the solution and
wanted an instance of Sensae Console exclusively for them. This meant that, when given
access to these operations, there was a lower risk for them to misconfigure the platform
due to a lack of knowledge and no risk to interfere with other Organizations’ data pipeline,
since they were the only ones in that instance.

3.1.2.2 Costumer

The purpose of a Costumer is to manage his/her own organizations. The following list
documents the universal functional requirements related to this role:

1. A Costumer must be able to create and remove a department under his/her
organization;

2. A Costumer must be able to define the permissions for all other Costumers in a
department under his/her organization;

3. A Costumer must be able to assign and move another Costumer from/to a
department under his/her organization;

4. A Costumer must be able to move a sensor from one department to another
department under his/hers organization.

3.1.3 Business Applications

This section describes the functional requirements associated with each business
application needs from the point of view of a costumer.

The Anonymous User role was created to answer organization A concerns regarding the
Public Health Surveillance business case. The business application should be available for
the public to consult the current and past Air Quality Index (AQI) levels measured in the
city without needing to create an account. Even though this business case was abandoned,
the Anonymous User role was integrated in the solution.

3.1. Functional Requirements 41

Each supported business application has specific use cases defined below.

3.1.3.1 Fleet Management

Within a simple Fleet Management business case the major utilities a Costumer can
benefit from are: (i) real-time tracking of his vehicles and (ii) visualizing past data
regarding the whereabouts of his fleet. A more advanced Fleet Management would for
example provide KPI reports about the fleet or alerts when a vehicle would enter or leave a
geofence. This advanced topics were mentioned by organization A close to the day when
they withdrawn the contract and therefore were never implemented.

The following list documents the key functional requirements of this business case as
prescribed by the third parties:

1. A Costumer must be able to track in real-time a vehicle location and motion status;

2. A Costumer must be able to see the itineraries of a vehicle in defined time span;

3. A Costumer must be able to see where, when and for how long a vehicle was parked;

4. A Costumer must be able to see the traveled distance of a vehicle, in a defined time
span.

This business case’ concepts are discussed with more detail in Section H.1.

3.1.3.2 Indoor Fire Detention

An Indoor Fire Detention system usual main objective is to trigger an alarm when
precarious conditions are meet. As a first milestone, both companies, A and C, requested a
simple alarm system with no other features. Features such as data retention, data
visualization and continuous camera vigilance were later requested. As such, the only
requirement related to this business case is:

1. A Costumer must be able to receive alerts regarding critical conditions that may
indicate a fire outbreak, either via SMS or email.

3.1.3.3 Smart Irrigation

Within a Smart Irrigation business case the major utilities a Costumer can benefit from
are: (i) tracking of a garden/greenhouse conditions, (ii) archiving conditions for later
use/consulting and (iii) activate/deactivate the irrigation system remotely.

The following list documents the key functional requirements related to this business case
as prescribed by the third parties:

1. A Costumer must be able to manage his/her garden’s information;

2. A Costumer must be able to track a gardens’ conditions;

3. A Costumer must be able to see past conditions of a garden;

4. A Costumer must be able to activate and deactivate the irrigation system remotely.

The concepts surrounding this business case are discussed with more detail in Section H.3.

42 Chapter 3. Requirements Elicitation

3.2 Non Functional Requirements

Non-functional requirements define constraints on software development, maintenance,
and allocation. According to Van Lamsweerde 2009, Non-functional requirements define
constraints on the way the software-to-be should satisfy its functional requirements or on
the way it should be developed.

This analysis used the FURPS+ model (Eeles 2005), which distributes the non-functional
requirements into the following categories: functionality, usability, reliability, performance,
supportability, design requirements, implementation requirements, interface requirements
and physical requirements. Some of the requirements here presented were extrapolated
from the ones mentioned by European Lighthouse Integrated Project 2013a and therefore
reference their UNI ID.

Each category’s requirements are presented in the following sections.

3.2.1 Functionality Requirements

Regarding the Functionality category, the following requirements were identified:

1. User Authentication: Apart from the Anonymous Users, everyone else must be
authenticated to use the system;

2. User Authorization: Everyone only has access to what his/her permissions cover, the
system shall provide different access permissions to information (UNI.067);

3. Data Exposure Control: Users have control how their data is exposed to
(Single-Tenant with) other users (UNI.002);

4. Communication: The system shall support event-based, periodic, and/or
autonomous communication (UNI.005);

5. Autonomicity: The system shall enable autonomous goal-driven (task-driven)
collaboration between devices or services (UNI.010);

6. Data parameterization: The system shall provide a resolution infrastructure for
naming, addressing and assignment of virtual entities and services (UNI.030);

7. Data Storage: The system shall provide historical information about the IoT device
(physical entity) (UNI.041);

8. Security in Communication: The use of secure protocols between clients and the
system is mandatory, e.g.: https instead of http;

9. Security in User-provided code: All user-provided code must run in sandbox’s to
prevent permission escalation, data theft and other related concerns;

10. Data Analysis: The system shall support the integration with a Complex Event
Processing (CEP) component (UNI.232);

11. Data Filtering: The system shall be able to filter erroneous sensor data (e.g. GPS
location coordinates of a land vehicle appearing in the middle of the ocean;

12. Alerts: The system must swiftly notify the interested clients of any alarm triggered
by custom rules;

3.2. Non Functional Requirements 43

13. Information Updates: Any change to the system must be swiftly notified to the client
without resorting to techniques like automatic/manual polling. This includes new
sensor data, changes to virtual devices, alarms/rules definitions, decoders and
anything else deemed important.

3.2.2 Usability Requirements

Since this project is a greenfield and is still in the early stages of conception, the Usability
category is not a major concern. No requirements were proposed.

3.2.3 Reliability Requirements

The Reliability category has the following requirements:

1. The system must validate all user inputs, denying code injection according to
OWASP 2021;

2. The system must be able to recover from a failure state such as a crash in the
system or any system component;

3. The system shall provide availability through resilience (UNI.064);

4. The system must identify or protect itself against compatibility errors due to versions
mismatches between the system and third-party scripts or components, e.g. a valid
rule in the system version 1 may not be compatible with the system version 2; if that
is the case the system should inform the Costumer and not use the rule.

3.2.4 Performance Requirements

Even though this work is in its early stages of development, the performance of the system
is a priority. For single-tenant instances, the requirements specified for this category are:

1. When a new and valid device data is received, the system should make this
information available to any user within 2 seconds in 90% of the cases. The time for
the information to be presented should never exceed 5 seconds unless the network
connection is broken (in which case the user should be notified);

2. When an alarm is triggered, the system should dispatch the alarm within 10 seconds
in 90% of the cases;

3. Concurrent Utilization: The system must be able to be used by various users at the
same time;

4. High Data Ingestion: The system must be able to successfully process, evaluate and
store device data with a throughput of at least 5000 data units per minute.

3.2.5 Supportability Requirements

In the Supportability category the following requirements were identified:

1. The system must be highly configurable so that support for any type of device,
specially payload decoding, can be added without the need for restarting/rebuilding it;

44 Chapter 3. Requirements Elicitation

2. The system must be agnostic to cloud computing platforms and be independent of
any service provided by cloud computing platforms. This ensures that it can be
deployed on-site or on a single cloud computing platform;

3. The system must provide simple methods to integrate business applications that
answer new business cases without the need to rebuilding it;

4. The system shall be extensible for future technologies (UNI.093);

5. The system must attempt to be agnostic to IoT middleware platforms, being able to
exchange data with most of them without the need to restarting/rebuilding it. At
least Helium Console has to be supported.

3.2.6 Design Requirements

The Design Requirements identified are related to how Sensae Console must interact with
External Systems, namely IoT middlewares and Identity Providers. This requirements also
describe what API should be served to Costumers, Organizations and Business
Applications. Figure 3.1 presents the envisioned architecture for the platform.

«System»
Sensae Console

Sensae UI Sensae Management
API

Sensae API for
Business Applications

IoT Middleware
Downlink
Rest API

Sensae Console
Uplink
Rest API

Identity Provider
OpenID Connect
API

Figure 3.1: Design Requirements Diagram

Most Identity Providers adhere to the OpenID Connect Standard, therefore it’s possible to
develop a single solution that can exchange information with various Identity Providers in a
agnostic manner. The ’IoT Middleware Downlink Rest API’ in Figure 3.1 may require a
different implementation for each IoT Middleware since there is no Standard that these
platforms can follow, according to Koo and Kim 2022.

3.2.7 Implementation Requirements

In the Implementation category, the system’s shall provide Single Page Application (SPA)
for end users to interact with.

3.3. Synopsis 45

3.2.8 Interface Requirements

In the Interface category, the following requirements for Sensae Console were identified:

1. The system shall require user authentication via OpenID Connect Protocol offered by
any Identity Provider;

2. The system shall support the dispatch of downlinks to devices using, at least, the
Helium Console;

3. The system shall support the ingestion of uplinks from devices using, at least, the
Helium Console.

As for the Business Applications:

1. The Indoor Fire Retention related Business Application shall support the dispatch of
emails using Simple Mail Transfer Protocol (SMTP);

2. The Indoor Fire Retention related Business Application shall support the dispatch of
messages using Short Message Service (SMS).

3.2.9 Physical Requirements

In the Physical category, the following requirements were identified:

1. The multi-tenant, cloud deployed instance must be publicly available under a single
Fully Qualified Domain Name (FQDN);

2. The system shall be deployed in machines running a Linux kernel;

3. The various system components shall be containerized using docker;

4. The various system components shall be orchestrated using docker-compose or
kubernetes.

3.3 Synopsis

This chapter mentioned the functional requirements of the project defined during its
lifespan. This requirements addressed the needs of the various shareholders, divided in
three major roles: (i) manager, (ii) costumer and (iii) anonymous user. While the focus of
the project lays in supporting common functionalities of IoT related services within Sensae
Console, this chapter also mentioned the Business Applications requested by
third-parties, and their specific requirements.

Although more vague, the non-functional requirements of the project were also presented
using the FURPS+ model.

These requirements lead to the solution’s design, presented in the next chapter.

47

Chapter 4

Design

This chapter’s goal is to describe the overall system design to the reader.

The contents here presented corresponds to the final phase of the project, referenced as
Phase IV in Section 1.4. The conclusions and necessities gathered in each phase of the
project lead to this outcome.

First, the system scopes will be introduced to present the reader a high-level picture of the
system. After this, the system’s architectural design will be presented and major
decisions/alternatives are discussed. Then, the Business Applications are discussed with
regards to their architectural design.

According to Dias, Restivo, and Ferreira 2022, IoT solutions, on a high-level, are
commonly composed by three tiers:

• Cloud Tier: Servers, Applications and Data Centers;

• Fog Tier: Routes and Gateways;

• Edge Tier: Embedded Systems, sensors and actuators (things).

This chapter focus only on the Cloud Tier, the other tiers are out of scope since the
author had no relevant involvement in their development.

To ease the interpretation of the solution’s architectural design, it was divided according to
two subjects, scopes and concerns. Scopes are derived from the major system
responsibilities of the solution as a whole, concerns are derived from the major
functionalities or business cases that the project has to answer.

4.1 System Scopes

The solution designed can be divided in three main scopes as disclosed in Figure 4.1.

The Sensae Console is composed by two scopes, Configuration Scope and Data Flow
Scope. These scopes are static and always available in any installation. They answer
core/common functionalities of any IoT-based platform. Sensae Console is similar to the
"Smart City Platform" in the proposed architecture for Smart Cities (IEEE P2413) or the
"Event Processing and Analytics Layer" of WSO2 IRA.

The Business Applications Scope is where actual business cases concerns are tackled.
This scope is dynamic, meaning that an installation can have different types of business
applications depending on the costumer needs. The requested PoCs belong to this scope.

48 Chapter 4. Design

This scope is analogous to the "Embedded IoT Applications" in SAT-IoT or the
"Application Layer" in the proposed architecture for Smart Cities (IEEE P2413).

«System»
Sensae Console

Configuration
Scope

Data Flow
Scope

Manager
Costumer or
Anonymous User

IoT Middlewares

Business Applications
Scope

feeds device uplinks

feeds device downlinks

defines the
behaviour of

informs about
notable

occurrences

feeds sanitized data
and alerts

dispatches
commands

configures
the ETL

interacts with the
sevices available

Figure 4.1: System Scopes

The Configuration Scope in Figure 4.1 refers to the configuration and visualization of
internal processes/concerns, such as: (i) data decoders, (ii) data mappers (iii) device
inventory, (iv) warning rule scenarios definition and (v) device ownership - related to the
Data Flow Scope. It is also possible to manage users’ access and permissions in the
Configuration Scope.

The Data Flow Scope in Figure 4.1 acts as a pipeline where raw data - device uplink -
goes through various stages till it is sanitized and ready to be supplied to the Business
Applications Scope. The Data Flow Scope is where internal processes occur, such as:
(i) data transformation, (ii) data enrichment, (iii) data validation, (iv) data ownership
clarification and (v) alert dispatching. It behaves according to what is defined in the
Configuration Scope.

The Business Applications Scope in Figure 4.1 is comprised of services that present and
act according to the sanitized data and alerts that were supplied to them. These services
applicability range from (i) smart irrigation, (ii) fleet management, (iii) fire detection, (iv)
physical security access monitoring, (v) air quality monitoring and anything else deemed
interesting. The services currently developed are smart irrigation, fleet management and
notification management. These will be addressed throughout this and the Implementation
chapter.

To promote a better understanding of this chapter, the most important terms are
described later in the Taxonomy Section.

4.1. System Scopes 49

4.1.1 Configuration Scope

The Configuration Scope is responsible for managing the following concerns:

• Data Processor: manages simple data mappers;

• Data Decoder: manages scripts to transform data;

• Device Management: manages device information such as name, metadata, static
data and other notions;

• Identity Management: manages device ownership and users permissions;

• Rule Management: manages scripts that consume device data and produce alerts.

These concerns can be directly linked to the functional requirements described in the
Section related to the 3.1.2.1 role.

Each concern can be managed by an authorized user, e.g. the data processor concern
focus on the creation, deletion and renovation of data mappers.

These operations require various verifications, alter the system internal state and are
therefore prolonged.

4.1.2 Data Flow Scope

The Data Flow Scope is responsible for processing incoming data according to what is
defined in the Configuration Scope. Both scopes share the same concerns.

This scope also contains four independent units, that aren’t controlled by the
Configuration Scope:

• Data Relayer: responsible for providing a bridge between the IoT middlewares and
the Sensae Console;

• Data Gateway: responsible for starting the flow of data in this scope by publishing
device uplinks in it;

• Data Validator: responsible for filtering device measures based on static rules, e.g.
battery percentage reported has to be in between 0 and 100.

• Data Store: responsible for persisting data captured in a previously defined state.

This scope applies changes to the device measures that flow through the system. These
changes are stateless and don’t change the overall state of the internal system.

This scope was decoupled from the Configuration Scope even though they both work
with the same concerns. The decision was taken based on the pretext that despite the
similarities in concerns the operation/business responsibilities of these two scopes were
conflicting.

The Configuration Scope requires scarce but heavy computations that alter the internal
system state, while the Data Flow Scope requires plentiful but light computations that
don’t alter the internal system state as summarized in the Table 4.1.

50 Chapter 4. Design

Table 4.1: Comparison of Operations in Data Flow and Configuration Scopes

Comparison of Operations Configuration Scope Data Flow Scope

Alter internal system state yes no
Alter device measures no yes
Required computation power/time high low
Frequency of usage low high

Due to this discrepancy it’s expected for each scope to have different requirements
regarding horizontal scaling. With the addition of more devices to the platform, and
subsequently higher ingress volume, Data Flow Scope will need to scale. Since the
Configuration Scope is intended mostly for the manager of the platform, a small user
pool, the need to scale is smaller.

4.1.3 Business Applications Scope

The Business Applications Scope is responsible for presenting IoT business cases to end
users. This scope is detached from the Sensae Console due to its dynamic nature. The
services that belong to this scope are analogous to plugins.

The scope is comprised of services that consume data and publish commands to Data
Flow Scope. Currently, as a Minimum Value Product (MVP) the implemented business
cases are:

• Fleet Management: basic service to monitor a fleet of cars regarding their location;

• Smart Irrigation: service to automate and monitor the irrigation of zones based on
sensor readings;

• Notification Management: service to view and manage the delivery of triggered
alerts.

Each service is bounded to what type of data receives and sends back to the Data Flow
Scope as later detailed in the Solutions - Business Applications Section. The type of data
each service handles is enforces by the concepts discussed in Sections 4.1.4 and 4.2.3.
Section 4.4 describes these applications architecture with more detail.

Just like plugins, services in this scope are validated and attached to the final deployment
by the entity that manages that specific instance. When working in a multi-tenant instance,
custom business applications can’t be properly verified and therefore their usage is denied.

4.1.4 Taxonomy

In order for the reader to better understand how the system operates, some concepts need
to be better classified and explained:

• Device: A device is a "Thing" that can collect data and submit it to Sensae
Console via an external system though Uplinks (commonly refereed as a sensor). A
device can also receive Downlinks and act base on what was received (commonly
refereed as an actuator);

4.1. System Scopes 51

• Controller: A controller is a Device that controls and aggregates data from various
sub Devices;

• Records/Metadata: Records, or Metadata are labels associated to a Device that
help an organization to classify and add some information to the owned Devices;

• Downlink: A downlink is a term commonly used in radio communications to denote
the transmission from the network to the end user. In this case the network is the
Sensae Console and the end user is a Device;

• Uplink: An uplink is the opposite of a Downlink, it’s the transmission from a
Device to the Sensae Console;

• Data Unit: A data unit represents the collected measures that are atomically
submitted via an Uplink to the Sensae Console. This data should be, at least,
enriched with an unique identifier of the Uplink and Device that sent it. The data
unit can contain measures captured by various devices, in that case the device is
identified as a Controller;

• Device Command: A device command is an abstraction on top of a Downlink,
intended to instruct a Device to execute a specific action. This devices are
commonly identified as actuators. As an example, one could send a command to
open or close a valve that is incorporated into a Device;

• Decoder: A decoder is a function that translates a Data Unit into something that
Sensae Console understands;

• Domain: A domain represents a department in a organization. An organization is
composed of several domains structured in a tree like format;

• Tenant: A tenant is a user that belongs to one or more Domains and represents any
of the roles discussed in Section 3.1;

• Alert: A report about a detected condition based on the gather Data Unit;

• Topic: A Topic is a subcategory of the type of contents that are traded between the
various entities of Sensae Console and the Business Applications.

Currently the Topics that flow in the system are:

• Data: This topic references the Data Unit concept and is intended to be processed
by the Data Flow Scope and consumed by the Business Applications;

• Command: This topic references the Device Command concept and is intended to
be used mainly by the Business Applications;

• Alert: This topic references the Alert concept and is intended to be consumed
mainly by the Business Applications;

• Internal: This topic references the internal state maintained in the Configuration
Scope and Data Flow Scope.

These concepts are referenced across the document.

52 Chapter 4. Design

4.2 Sensae Console - Architectural Design

In order to describe the system in detail at the architectural level, an approach based on
the combination of two models, C4 (Brown 2018) and 4+1 (By and Jiang 1995) will be
followed.

The 4+1 View Model, proposes the description of the system through complementary
views, thus allowing to separately analyze the requirements of various software
stakeholders, such as users, system administrators, project managers, architects, and
programmers.

The five views are thus defined as follows:

• Logical view: relative to the aspects of the software aimed at responding to
business challenges;

• Process view: relative to the process flow or interactions within the system;

• Implementation View: relative to the organization of the software in its
development environment;

• Physical view: relative to the mapping of the various components of the software in
hardware, i.e. where the software is executed;

• Scenario view: related to the association of business processes with actors capable
of triggering them.

The C4 Model advocates for the description of software through four levels of abstraction:
(i) context, (ii) container, (iii) component, (iv) code. Each level adopts a finer granularity
than the level that precedes it, thus giving access to more details of a smaller portion of
the system. These levels can be linked to maps, e.g. the context view corresponds to the
globe, the container corresponds to the map of each continent, the component view
corresponds to the map of each country, and the code view to the map of roads and
neighborhoods in each city.

Different levels tell different stories to different audiences.

The levels are defined as follows:

• Level 1: Description (context) of the system as a whole;

• Level 2: Description of system containers;

• Level 3: Description of components of the containers;

• Level 4: Description of the code or smaller parts of the components.

These two models can be said to expand along distinct axes, with the C4 Model presenting
the system with different levels of detail and the 4+1 View Model presenting the system
from different perspectives. By combining the two models it becomes possible to represent
the system from several perspectives, each with various levels of detail. To visually
model/represent the ideas designed and alternatives considered, the Unified Modeling
Language (UML) was used.

In the following sections only combinations of perspectives and levels deemed relevant for
the design of the solution are presented.

4.2. Sensae Console - Architectural Design 53

To better explain the internal communication of Sensae Console, and how the API for
Business Applications works, the Section 4.2.3 introduces the Canonical Model built to
define the protocol for information exchange inside the system. This section does not
represent any C4 Level

The C4 level 4, code, will not be exhibited.

4.2.1 C4 Level 1 - Context

The context level aims at introducing the system as a whole. The external systems and
users that communicate/interact with the system, Sensae Console, and solutions,
Business Applications are demonstrated. Business Applications are briefly introduced
here to better explain the reasons behind the architectural decisions taken, they are later
discussed in Section 4.4. Throughout this section the relevant C4 views of level 1 (context
level) are presented.

4.2.1.1 Context Level - Logical View

The logical view of the system is introduced here, complete but not detailed, in order to
answer the use cases and requirements discussed in Chapter 3. This takes into account the
interactions of Sensae Console and Business Applications with foreign systems and their
interactions with the various actors of the system (Figure 4.2) as required by Section 3.2.6.

«System»
Sensae Console

«System»
Business Application [i]

Sensae UI Sensae Management
API

Sensae API for
Business Application

IoT Middleware
Downlink
Rest API

Sensae Console
Uplink
Rest API

Identity Provider
OpenID Connect
API

Business Application UI Business Application
API

SMS Dispatching
Service API

Email Dispatching
Service API

ManagerCostumer Anonymous User

Figure 4.2: Solution - Context Level - Logical View Diagram

The Business Applications in Figure 4.2 are represented as an independent collection of
systems that consume the Sensae Console API. This API is responsible for streaming
information such as device measures, device commands, alerts and internal state
asynchronously. These concept’s semantics and structure are enforced by a library,
iot-core, also developed and discussed in Section 4.2.3.

54 Chapter 4. Design

All systems provide an API for automated management/control and a UI for ease of use
and data visualization.

As mentioned before in Section 3.1.3.2 there is a need to integrate the final product with
an Email and SMS dispatch service.

The reason that lead to the use of external authentication/identity services, as required in
Section 3.2.8, is further discussed in Appendix F.

4.2.1.2 Context Level - Physical View

Next is the physical view (Figure 4.3), intended to familiarize the reader with the
environment where the solution runs.

«Device»
Cloud Linux VM Instance

«System»
Sensae Console

«System»
«Business Application»
Fleet Management

«System»
«Business Application»
Smart Irrigation

«System»
«Business Application»
Notificaiton Management

«protocol»
amqp

«protocol»
amqp

«protocol»
amqp

(a) Multi-Tenant
Instance

«Device»
On-Permise / Cloud Linux VM Instance

«Device»
On-Permise / Cloud
Linux VM Instance

«System»
Sensae Console

«System»
«Business Application»
Waste Management

«System»
«Business Application»
Fleet Management

«System»
«Business Application»
Smart Parking

«protocol»
amqp

«protocol»
amqp

«protocol»
amqp

(b) Single-Tenant
Instance

Figure 4.3: Solution - Context Level - Physical View Diagrams

There are two major options when deploying a new Sensae Console: (i) cloud and (ii)
on-premise deployment. Each deployment can be a:

• Multi-Tenant Instance (Figure 4.3a): This deployment serves various costumers and
therefore, all business applications are developed and validated by the company to
avoid interacting with services that may abuse the system in nefarious ways.
Currently, for this type of instance, the Sensae Console and the Business Applications
run in a single instance. The business applications correspond to the developed PoCs.

• Single-Tenant Instance (Figure 4.3b): This deployment serves a single costumer,
therefore he/she can connect custom business applications that aren’t validated or
developed by the company. The two custom business applications serve as an
example of the freedom given to the costumer to interact with the system.

The connections to external systems and interactions with users were hidden for brevity
reasons. The reason for these distinct deployment options derive from the discussion in
Chapter 3.

4.2.1.3 Context Level - Synopsis

The context level introduces the reader to the bigger picture of the whole solution, but it
contains little to no information about how the system functions internally.

4.2. Sensae Console - Architectural Design 55

The process view was not represented since at this level the interactions between the
system, actors and external systems, are too abstract to be relevant for the reader. The
implementation view was also not represented since the Sensae Console and Business
Applications were developed as a single project.

The Section C4 Level 2 - Container will dive into the internals of the Sensae Console.
The solutions developed are later discussed in Section 4.4.

4.2.2 C4 Level 2 - Container

This section will explore the internals of Sensae Console from an architectural point of
view. It mainly discusses the C4 container level. The C4 Level 3 - Component is discussed
in Appendix C.

The C4 level 2 presents the various containers that compose the platform. In this section
all relevant views will be presented according to the alternative in use or idealized for the
system. In the Section 4.3 other alternatives are discussed.

The description of this level of abstraction begins with the logical view.

4.2.2.1 Container Level - Logical View

In order to support the functional requirements identified (Section 3.1), and knowing that
Sensae Console will serve multiple users with different levels of access to the managed
information, the various business concepts were segregated from the user interaction. The
configuration management also had to be separated from the data pipeline, knowing that
Sensae Console will process a high volume of device measures.

Considering the need to persist and provide the information collected, the system integrates
databases, which are not developed, but only configured and operated - using a DBMS.

The system also uses one (or more) message brokers, IBM 2020b, that will be configured
but not developed.

In order to ease the analysis of the platform, the following diagram (Figure 4.4) presents a
complete view of Sensae Console where each concern represents a group of containers.
These groups are then explored in detail.

As seen in the diagram:

• Each concern exposes a UI and an API, these are aggregated in the UI Aggregator
container that then exposes everything as a single UI and API for management;

• The Device Management concern consumes the IoT Middleware API since it is
responsible for sending downlinks to devices;

• The Message Broker exposes an API, this is the API that the Business Applications
consume to access the information that flow in Sensae Console;

• The Identity Management concern consumes the Identity Provider’s OpenID
Connect API to handle User Authentication;

• The Message Broker is responsible for routing messages through the system and
ensuring that the various containers communicate;

56 Chapter 4. Design

• The Data Store Backend and Data Store Database are responsible for storing data in
a specific format, defined at startup via configuration;

• The Data Relayer and Data Gateway are responsible for exposing an API for data
ingestion and publish the ingested data in the system through the Message Broker;

• The Data Validator applies simple filters to incoming data, for example, measures
that report a soil moisture of 120% are marked as incorrect.

Each concern in Figure 4.4 is composed by containers that belong to the Configuration
and Data Flow Scopes (represented in yellow in the following diagrams). The
Configuration Scope of each concern is composed by a three layers architecture, as per
IBM 2020a:

• Presentation Layer: the user interface and communication layer of the application
where the user interacts with the system;

• Application Layer: the business layer of the application where information from the
Presentation Layer is processed and sent to the Data Layer;

• Data Layer: the infrastructure layer of the application where data is stored and
requested as needed.

The Data Flow Scope is usually composed by a single container that only consumes the
Message Broker API.

As a brief description of some of the similar characteristics of all concerns:

• The frontend container corresponds to the Presentation Layer and exposes an UI;

• The backend container corresponds to the Application Layer and communicates
with the Data Flow container(s) exclusively through the Message Broker. The
Backend publishes issues related to the concern’s configuration that the Data Flow
Container consumes. The Data Flow container publishes metrics related to what
resources are being used that are then consumed by the Backend;

• The communication exchanged between Backend and Data Flow containers is
parameterized according to the Section 4.2.3.3 and is preformed in the Internal
Topic;

• The backend container exposes an API that is consumed by the frontend and
optionally by properly authenticated external systems;

• The database container corresponds to the Data Layer.

The Data Processor concern group is presented in Figure 4.5.

4.2. Sensae Console - Architectural Design 57

«S
ys

te
m

»
Se

ns
ae

C
on

so
le

«C
on

ta
in

er
»

U
I
A

gg
re

ga
to

r

«C
on

ce
rn

»
D

ev
ic

e
M

an
ag

em
en

t
«C

on
ce

rn
»

R
ul

e
M

an
ag

em
en

t
«C

on
ce

rn
»

D
ec

od
er

M
an

ag
em

en
t

«C
on

ce
rn

»
P
ro

ce
ss

or
M

an
ag

em
en

t
«C

on
ce

rn
»

Id
en

ti
ty

M
an

ag
em

en
t

«C
on

ta
in

er
»

M
es

sa
ge

B
ro

ke
r

M
es

sa
ge

B
ro

ke
r

A
P
I

«C
on

ta
in

er
»

D
at

a
G

at
ew

ay
D

at
a

G
at

ew
ay

A
P
I

«C
on

ta
in

er
»

D
at

a
R

el
ay

er

«C
on

ta
in

er
»

D
at

a
V
al

id
at

or
B

ac
ke

nd

«C
on

ta
in

er
»

D
at

a
St

or
e

B
ac

ke
nd

«C
on

ta
in

er
»

D
at

a
St

or
e

D
at

ab
as

e

D
at

a
St

or
e

D
at

ab
as

e
A

P
I

D
ev

ic
e

M
an

ag
em

en
t

A
P
ID

ev
ic

e
M

an
ag

em
en

t
U

I

R
ul

e
M

an
ag

em
en

t
A

P
I

R
ul

e
M

an
ag

em
en

t
U

I

Id
en

ti
ty

M
an

ag
em

en
t

A
P
I

Id
en

ti
ty

M
an

ag
em

en
t

U
I

D
at

a
D

ec
od

er
A

P
I

D
at

a
D

ec
od

er
U

I

D
at

a
P
ro

ce
ss

or
A

P
I

D
at

a
P
ro

ce
ss

or
U

I

Se
ns

ae
C

on
so

le
U

pl
in

k
R

es
t

A
P
I

O
pe

nI
D

C
on

ne
ct

A
P
I

Se
ns

ae
A

P
I
fo

r
B

us
in

es
s

A
pp

lic
at

io
ns

Io
T

M
id

dl
ew

ar
e

D
ow

nl
in

k
R

es
t

A
P
I

Se
ns

ae
C

on
so

le
M

an
ag

em
en

t
A

P
I

Se
ns

ae
C

on
so

le
U

I

F
ig

ur
e

4.
4:

Se
ns

ae
C

on
so

le
-

C
on

ta
in

er
Le

ve
l-

Lo
gi

ca
lV

ie
w

D
ia

gr
am

58 Chapter 4. Design

«Concern»
Data Processor

«Container»
Data Processor
Backend

«Container»
Data Processor
Frontend

«Container»
Data Processor
Database

Data Processor
Database API

«Container»
Data Processor
Data Flow

Data Processor UI Data Processor
Backend API

«Container»
Message Broker

Message
Broker API

Figure 4.5: Data Processor - Container Level - Logical View Diagram

The concern represented in Figure 4.5 is responsible for transforming the data received in a
format and semantic that can be understood by the system, it is explored in detail in
Section G.1. The Data Processor Data Flow publishes metrics to the Message Broker
regarding the time each Data Processor was used so that the Backend can then report this
usages.

The Data Decoder concern group is presented in Figure 4.6.

«Concern»
Data Decoder

«Container»
Data Decoder
Backend

«Container»
Data Decoder
Frontend

«Container»
Data Decoder
Database

Data Decoder
Database API

«Container»
Data Decoder
Data Flow

Data Decoder UI Data Decoder
Backend API

«Container»
Message Broker

Message
Broker API

Figure 4.6: Data Decoder - Container Level - Logical View Diagram

The concern represented in Figure 4.6 is also responsible for transforming the data
received in a format and semantic that can be understood by the system. In contrast with
the Data Processor, it provides a more flexible but complex way of manipulating data, it is
explored in detail in Section G.2. The Data Decoder Data Flow publishes metrics to the
Message Broker regarding the time each Data Decoder was used so that the Backend can
then report this usages.

4.2. Sensae Console - Architectural Design 59

The Device Management concern group is presented in Figure 4.7.

«Concern»
Device Management

«Container»
Device Management
Backend

«Container»
Device Management
Frontend

«Container»
Device Management
Database Device Management

Database API

«Container»
Device Management
Data Flow

«Container»
Device Commander

Device Management UI Device Management
Backend API

«Container»
Message Broker

Message
Broker API

IoT Middleware
Downlink
Rest API

Figure 4.7: Device Management - Container Level - Logical View Diagram

The concern represented in Figure 4.7 is responsible for maintaining a registry of the
devices in use by the platform.

The Device Management Data Flow enriches the measures collected with more
information regarding the device that sent them. The Device Commander consumes an
IoT Middleware REST API to dispatch downlinks to devices. This downlinks contain
commands that control the behavior of the implied actuator. This concern is explored in
Section G.3. The Data Flow containers publishes metrics to the Message Broker regarding
the time each device was used so that the Backend can then report this usages.

The Identity Management concern group is presented in Figure 4.8.

60 Chapter 4. Design

«Concern»
Identity Management

«Container»
Identity Management
Backend

«Container»
Identity Management
Frontend

«Container»
Identity Management
Database

Identity
Management
Database API

«Container»
Device Ownership
Backend

Identity
Management UI

Identity Management
Backend API

OpenID Connect
API

«Container»
Message Broker

Message
Broker API

Figure 4.8: Identity Management - Container Level - Logical View Diagram

The concern represented in Figure 4.8 is responsible for managing devices ownership, user
identity and organization’s details. The backend and frontend containers communicate
with an identity provider via OpenID Connect to verify the user identity. The Device
Ownership Backend enriches the data measures and alerts with information regarding the
organizations that own the device responsible for sending the measures or that lead to the
dispatch of an alert. This concern is explored in Section G.4. This data flow container
publishes metrics to the Message Broker regarding the time each organization information
was used.

The Rule Management concern group is presented in Figure 4.9.

«Concern»
Rule Management

«Container»
Rule Management
Backend

«Container»
Rule Management
Frontend

«Container»
Rule Management
Database

Rule
Management
Database API

«Container»
Alert Dispatcher
Backend

Rule Management UI Rule Management
Backend API

«Container»
Message Broker

Message
Broker API

Figure 4.9: Rule Management - Container Level - Logical View Diagram

The concern represented in Figure 4.9 is responsible for managing rule scenarios that
produce alerts based on the captured device measures.

The Alert Dispatcher is responsible for publishing alerts based on the rule scenarios
published by the Rule Management Backend. The Rule Management Backend ensures that
the rules submitted are valid. This concern is explored in Section G.5. This data flow

4.2. Sensae Console - Architectural Design 61

container does not publishes any metrics, its interactions are better described with the help
of sequence diagrams available in Figures 4.10 and C.5.

As the diagrams above presented, all communication between backend containers of both
scopes is guaranteed by the Message Broker. This Message Broker exposes its API so that
Business Applications can consume all information and act according to it. The
Section 4.4 explores the solutions developed.

In the following section the internal communication of the system is clarified.

4.2.2.2 Container Level - Process View

In this section, several use cases (according to some functional requirements identified in
Section 3.1) are presented through sequence diagrams, in order to introduce the reader to
the interactions that occur between the various containers of the Sensae Console.

The routing keys used for communication between backend containers can be extrapolated
from the model described in the Section 4.2.3.3.

This section is composed by five sets of important functionalities to discuss at this level of
abstraction: (i) system/container initialization (ii) data pipeline operation, (iii) data
pipeline configuration, (iv) user authentication/authorization, (v) service usage.

The system/container initialization, presented in Figure 4.10, refers to the interval of time
since a container is launched till it is ready to process requests or events.

«Container»
Device Commander

Backend

«Container»
Device Management

Flow Backend

«Container»
Device Management

Backend

«Container»
Data Decoder
Flow Backend

«Container»
Data
Store

«Container»
Message
Broker

subscribe to new
data unit @ DATA topic

subscribe to new
encoded data unit @ DATA topic

subscribe to new informations
in decoders @ INTERNAL topic

subscribe to unknown devices
found in device management @ INTERNAL topic

subscribe to known devices
found in device management @ INTERNAL topic

subscribe to new
processed and owned data unit @ DATA topic

subscribe to new informations
in device management @ INTERNAL topic

other containers subscribe to the information they need

subscribe to any command @ COMMAND topic

subscribe to new informations
in device management @ INTERNAL topic

Figure 4.10: System/Container Initialization - Part 1 - Container Level -
Process View Diagram

Not all containers are displayed in the diagram - Figure 4.10 - for brevity reasons. The
system relies heavily in the Pub/Sub (Reselman 2021) pattern to communicate internally
via a message broker. In this scenario the first step in a container life cycle is to subscribe
to the information that it needs as presented in the diagram above.

62 Chapter 4. Design

Certain containers need the entire state related to their concern to function. So, after
subscribing to the needed information, they notify the system that they have entered an
init state for a specific concern. This triggers the creation of new events to help that
container to reach a ready state. An example of this interaction is presented in the
following diagram, Figure 4.11.

«Container»
Alert Dispatcher

Backend

«Container»
Message
Broker

«Container»
Rule Management

Backend

«Container»
Rule Management

Database

1.1 publishes a "initialized rule
management concern" message

2.1 notifies about the message

2.2 requests all active rules

2.3 returns all rules

2.4 computes the current
rule management state

2.5 publishes a "sync rule
management concern" message

3.1 notifies about the message

3.2
stores the
rule management
state internally

3.3 unsubscribes from
"sync rule management concern"

Figure 4.11: System/Container Initialization - Part 2 - Container Level -
Process View Diagram

Apart from the Alert Dispatcher Backend, all containers in the Data Flow Scope function
with just a portion of a single concern state or no state at all as seen in Figure 4.11.

To dive into this, some common data pipeline operations, related to the Data Flow Scope,
are presented next. This operations are intended to behave in a reactive manner
(Jonas Bonér and Thompson 2014) and are therefore non-blocking. The idea behind the
Data Flow Scope is analog to a data pipeline. This scope operates mostly with Data Units,
transforming, filtering and enriching this data.

The following diagram in Figure 4.12 presents a high level view of the flow that a Data
Unit takes through the system in the Data topic. This diagram does not account for what
happens to invalid Data Units and the interactions with the message broker are hidden for
brevity reasons even though it is used by all containers to publish and receive messages.

4.2. Sensae Console - Architectural Design 63

Data Gateway

Data is wraped in a
Message Envelop with
specific routing keys

Data Processor Flow

Data Unit is transformed according
to the defined mapper for the
type of device that sent the data

Data Store

Data Unit is stored

Data Decoder Flow

Data Unit is transformed according
to the defined script for the
type of device that sent the data

Device Ownership

Device ownership details are
added to the Data Unit

Data Validator

Data Unit is examined
to determine if
it is valid or not

Device Management Flow

Device information details
are added to the Data Unit
and sub device measures are
extracted to be reprocessed

Alert Dispatcher

Data Unit is analised and
alerts are produced
based on rules

decoded encoded

any

each sub device
Data Unit is processed

if data is valid

Figure 4.12: Data Flow - Container Level - Diagram

Most of the containers represented in Figure 4.12 have just a portion of their concern’s
state and may be unable to preform the needed operation on some Data Units. The
following diagrams, Figure 4.13 and Figure 4.14, addresses how state is managed in Data
Decoder Flow Backend and most Data Flow Scope containers.

As we can see, in Figure 4.13, the Data Decoder Flow Backend, upon receiving a Data
Unit, can preform two operations, depending on whether or not the script is available:
decode the Data Unit and notify that the script was used or store the Data Unit and notify
that a script for an unknown device type is needed.

The diagram in Figure 4.14 describes what happens when a message with a decoder is
published (using the OperationType Info mentioned in Section 4.2.3.3).

64 Chapter 4. Design

«Container»
Data Decoder
Flow Backend

«Container»
Message
Broker

«Container»
Data Decoder

Backend

«Container»
Data Decoder

Database

1.1 published encoded data
unit message @ Data Topic

2.1 notifies the message
@ Data Topic

2.2
searches for the script of
the device type mentioned
in the data unit

alt [indentified device type]
2.3 decodes the data unit

2.4 publishes processed data
unit @ Data Topic

2.5

publishes a "ping
data decoder" message
for the device type
@ Internal Topic

3.1 notifies the message
@ Data Topic

4.1 notifies the message
@ Internal Topic

4.2 processes "ping
data decoder"

4.3 updates the last time that
the decoder was used

4.4 success

[unidentified device type]
2.3 stores the data unit

2.4

publishes a "unkown
data decoder" message
for the device type
@ Internal Topic

3.1 notifies the message
@ Internal Topic

3.2 processes "unkown
data decoder"

3.3 updates the last time that
the decoder was used

3.4 success

3.5 searches for the decoder

3.6 success

alt [decoder exists]

3.7

publishes a "info data
decoder" message for
the device type
@ Internal Topic

Figure 4.13: Data Decoder Operation - Part 1 - Container Level - Process
View Diagram

4.2. Sensae Console - Architectural Design 65

«Container»
Data Decoder Flow Backend

«Container»
Message Broker

1.1 publishes a message containing a
decoder details @ Internal Topic

2.1 notifies the message @ Internal Topic

2.2 stores the data decoder of that device
type for a defined amount of hours

2.3 retrieves stored data units of that
device type

loop [for each data unit found]
2.4 decodes the data unit

2.5 publishes the processed data unit
@ Data Topic

3.1 notifies the message
@ Data Topic

2.6
publishes a "ping data decoder"
message of the device type @ Internal
Topic

4.1 notifies the message
@ Internal Topic

Figure 4.14: Data Decoder Operation - Part 2 - Container Level - Process
View Diagram

As we can see, in Figure 4.14, Data Decoder Flow Backend, upon receiving an info
regarding a data decoder, searches for unhandled Data Units and processes them. To
minimize the memory in use, a data decoder has to be continually used in order for it to
remain in cache. As seen in step 2.2, if X hours pass since the last time a decoder was
used it is evicted from the container internal state.

The operations described here for the Data Decoder Flow Backend are replicated in the
following concerns/containers:

• Data Processor Context: Data Processor Flow Backend;

• Device Management Context: Device Management Flow Backend and Device
Commander Backend;

• Identity Management Context: Device Ownership.

As described before, containers that belong to the Data Flow Scope operate according to
what the Configuration Scope defined.

The next diagrams, in Figure 4.15 and Figure 4.16 present some of the common
operations that happen in that scope.

The diagram presented in Figure 4.15 represents a simple consult of data mappers, as we
can see, only the Data Processor Context in the Configuration Scope is invoked. When a
change to the state is made in any Context of the Configuration Scope, events are
published. The next diagram, Figure 4.16 displays an example of this occurrence.

66 Chapter 4. Design

«Container»
Data Processor Frontend

«Container»
Data Processor Backend

«Container»
Data Processor Database

1.1 request data mappers

1.2 verifies if the
token is valid

1.3
verifies if the
user has the
needed permissions

1.4 query data mappers

1.5 data mappers

1.6 data mappers

Figure 4.15: Consult Data Processors - Container Level - Process View Di-
agram

«Container»
Device Management

Frontend

«Container»
Device Management

Backend

«Container»
Device Management

Database

«Container»
Message
Broker

1.1 device
information update

1.2 verifies if the
token is valid

1.3
verifies if the
user has the
needed permissions

1.4 verify if user
owns the device

1.5 store changes made to
device information

1.6 updated
device information

1.7 publish that the device was updated
@ Internal Topic

1.8 updated
device information

Figure 4.16: Edit Device Information - Container Level - Process View Dia-
gram

4.2. Sensae Console - Architectural Design 67

In this use case - Figure 4.16 - a device information is changed. Since this operation
changes the internal state of the device management concern, an event is published in the
Internal Topic.

According to the Section 4.2.3.3, this specific event uses the following Routing Keys:

• Protocol Version: the version of iot-core currently in use by Device Management
Backend;

• Container Type: Device Management Backend;

• Topic Type: Internal;

• Operation Type: Info;

• Context Type: Device Management.

There are three containers that subscribe to this specific type of event:

• Device Management Flow Backend: so that the Data Units of the device changed
are enriched with the latest information;

• Device Command Backend: so that commands for this device are treated
according to the latest information;

• Identity Management Backend: so that information related to the device changed
is presented according to the latest update. This container maintains local copies of
all devices names to present to the user without needing to request Device
Management for that information every time.

The step 1.3 in the last two diagrams (Figure 4.15 and 4.16) references user permissions
but there is no mention of how this permissions are associated to the user. In the next
diagrams - Figure 4.17 and Figure 4.18 - authentication and authorization in the Sensae
Console are addressed, other approaches are discussed in Appendix F.

The system verifies the identity of a user based on the authentication performed by an
external Customer Identity and Access Management (CIAM) solution using OpenID
Connect 1.0, OpenID 2014, an identity layer on top of the OAuth 2.0 protocol. According
to D. Hardt 2012 OAuth2.0 “enables a third-party application to obtain limited access to
an HTTP service”. In this situation the Frontend of Sensae Console is the third-party
application and the HTTP service is any of the Sensae Console backend services.

The diagram in Figure 4.17 illustrates how a user can authenticate against Sensae
Console. The user identity and credentials validation are assured by an external identity
platform such as Google Identity Platform or Azure Active Directory (Azure AD). Once an
id token is provided to Sensae Console it can use it to verify the user identity against the
local registry. To ensure that the id token is valid, Identity Management Backend checks if
it was signed by the platform that supposedly issued it (step 3.3 and 3.5). After validating
the id token it searches for the needed information to create an access token and then
provides it. The access token can then be used for a limited time to access any protected
HTTP resource of Sensae Console as demonstrated in Figure 4.18.

68 Chapter 4. Design

«System»
Sensae Console

User

«Container»
Ui Aggregator

«Container»
Identity Management

Backend

«Container»
Identity Management

Database
«System»

Identity Platform

1.1 accesses the website

1.2 presents a login section

1.3 picks the login option

1.4 redirects to
external auth service

2.1 accesses external auth service

2.2 presents sign in/sign up page

2.3 performs sign in/sign up

2.4
authenticates

user via OpenID
Connect Protocol

2.5 redirect to registered callback in Sensae Console with id token

2.6
accesses

registered callback

3.1 stores the id token

3.2 requests an access token
for the id token

3.3 requests public keys used to sign JWT tokens

3.4 returns public keys

3.5 verifies id token authenticity
against the public keys

3.6 queries user details

3.7 returns user details

3.8 queries user domains details

3.9 returns domain details

3.10 computes user permissions

3.11
generates an
access token

3.12 provides the access token

3.13 stores the
access token

3.14
notifies that
a new access

token is present

3.15 authentication successful

Figure 4.17: User Authentication - Container Level - Process View Diagram

4.2. Sensae Console - Architectural Design 69

User

«Container»
Ui Aggregator

«Container»
X Context
Frontend

«Container»
X Context
Backend

1.1 authentication successful

1.2
checks what frontends

the access token
gives access to

1.3 presents X frontend

1.4 accessses the X frontend window

1.5 presents X interaction with the service

1.6 picks X interaction

1.7 requests the
access token

1.8
verifies if the
access token
is still valid

1.9 provides the
access token

1.10 verifies if the user has
the needed permissions

1.11 requests infromation
with access token

1.12 verifies if the
token is valid

1.13
verifies if the
user has the

needed permissions

1.14 provides the
information

1.15 provides the information

Figure 4.18: User Authorization - Container Level - Process View Diagram

In this diagram, Figure 4.18, the expected behavior for any pair of frontend and backend
containers in Configuration Scope (and Business Applications, when served from the UI
Aggregator) is presented. Each frontend displays only the actions and information that
the user permissions allow. The user permissions are once again verified in the backend to
secure the system against malicious accesses. Other alternatives related to authentication
and authorization are presented in Appendix F.

4.2.2.3 Container Level - Implementation View

Each container mentioned in the Section 4.2.2.1 is developed inside the same package,
sensae-console. The following diagrams presents how containers are mapped to packages.

The following diagrams are divided into:

• Backend Containers: Figure 4.19;

• Database Containers: Figure 4.20;

• Frontend Containers: Figure 4.21.

Backend services are organized according to the diagram in Figure 4.19.

Each backend service container is mapped to its own individual package. The Data Relayer
Container was the only one configured, all others were developed.

70 Chapter 4. Design

sensae-console

project

backend-services

alert-dispatcher-backenddata-decoder-backenddata-decoder-flow-backend

data-gateway-backenddata-processor-backenddata-processor-flow-backend

data-relayerdata-store-backenddata-validator-backend

device-commander-backenddevice-management-backenddevice-management-flow-backend

device-ownership-backendidentity-management-backend rule-management-backend

Figure 4.19: Backend Services - Container Level - Implementation View Di-
agram

Database services are organized according to the diagram in Figure 4.20.

No database service has been developed, only configured. The Message Broker also has no
package in the project since it didn’t need any configuration and wasn’t developed.

sensae-console

project

databases

data-decoder-database data-processor-database device-management-database

identity-management-database rule-management-database

Figure 4.20: Database Services - Container Level - Implementation View
Diagram

Frontend services are organized according to the diagram in Figure 4.21.

4.2. Sensae Console - Architectural Design 71

Each frontend service is divided between the apps package and libs package. Each app
depends on the corresponding lib. Every lib depend on the core and auth packages. The UI
Aggregator depends only on the auth package.

sensae-console

project

frontend-services

apps

libs

data-decoder-frontend

data-processor-frontend

device-management-frontend

identity-management-frontend

rule-management-frontend

ui-aggregator

data-decoder

data-processor

device-management

identity-management

rule-management auth

core

Figure 4.21: Frontend Services - Container Level - Implementation View
Diagram

4.2.2.4 Container Level - Physical View

Next is the physical view, intended to familiarize the reader with the idealized production
environment. Each container that composes the system is containerized via Docker so
that orchestration software like Docker Compose, Docker Swarm, Kubernetes and
OpenShift can be used to ease the operation phase.

The production environment is orchestrated using Docker Compose running in a single
node/server. This decision was taken after acknowledging that currently there is no need
to scale the solution, a single node has been capable of handling all throughput. The
Appendix K details how this was implemented.

72 Chapter 4. Design

Each Container represented in Section 4.2.2.1 is mapped to a container in this view.
Following the Database per service Pattern, each logical database also corresponds to a
physical database.

As an example, the physical view of the Rule Management Concern is presented in
Figure 4.22. The complete Sensae Console solution is not presented for brevity reasons.

«Device»
:localhost

«Execution Environment»
Web Browser

«Device»
Ubuntu Server

«Execution Environment»
Docker Environment

«Execution Environment»
:docker postgres

«Execution Environment»
:docker java

«Execution Environment»
:docker linux«Execution Environment»

:docker rabbitmq

«Execution Environment»
:docker nginx«Execution Environment»

:docker nginx

«Artifact»
Rule Management
Frontend

«Artifact»
UI Aggregator

«Container»
Rule Management
Database

«Container»
Rule Management
Backend

«Container»
Alert Dispatcher
Backend

«Container»
Message Broker

«Container»
Nginx WebServer/
Proxy

«Artifact»
Rule Management
Frontend

«Container»
Nginx WebServer/
Proxy

«Artifact»
UI Aggregator

«protocol»
postgres

«protocol»
AMQP

«protocol»
AMQP

«protocol»
HTTP

«protocol»
HTTP

«protocol»
HTTP/s

Figure 4.22: Rule Management - Container Level - Physical View Diagram

The two Devices presented correspond to a user’s machine (localhost) and the server
where Sensae Console is deployed (Ubuntu Server). The UI Aggregator and Rule
Management Frontend are served by their corresponding Nginx WebServer, and all
user-centered communications with Sensae Console are secured and conducted by the UI
Aggregator Nginx WebServer.

In the future, if the need arises, Sensae Console should be orchestrated with Kubernetes
or OpenShift. This would allow the solution to auto-scale, multiplying the containers under
excessive load.

4.2.2.5 Container Level - Synopsis

This section presented the Sensae Console’s C4 Level 2. Some concepts regarding how
internal communication is achieved were introduced. The next section details these
concepts.

4.2.3 Canonical Model

The idea behind this section is to introduce core communication concepts of Sensae
Console to the reader. To represent these ideas the UML notation is used. This section is
presented here, after the C4 Level 2 - Container Section to support some terms introduced
there but not fully explained. It does not correspond to any C4 Model Level.

The canonical model is comprised of concepts that transverse the entire Sensae Console
business model, and by extension any Business Application. Therefore, it is built as a
library, iot-core, that can be used by entities that rely on the exchange of information
with/inside Sensae Console. It can be seen as a domain that focus on defining the
protocol of exchange of information between the various entities of the system.

The intent behind this model is to alleviate one of the issues related to distributed systems
- heterogeneity in data formats (Nadiminti, De Assunçao, and Buyya 2006) - and to

4.2. Sensae Console - Architectural Design 73

provide a simple SDK for third-parties to develop new business applications that interact
with Sensae Console. It can be seen as an explicit schema. According to Bellemare 2020,
“any implementation of event-based communication between a producer and consumer
that lacks an explicit predefined schema will inevitably end up relying on an implicit
schema. Implicit data contracts are brittle and susceptible to uncontrolled change, which
can cause much undue hardship to downstream consumers.”

According to Byars 2021, “while we have historically drawn up our project plans and costs
around the boxes the digital products we are introducing the lines are the hidden and often
primary driver of organizational tech debt. They are the reason that things just take longer
now than they used to.” The ’lines’ in this solution are a first class citizen and, instead of
just linking the system together, they act as the pillars that shape the entire ecosystem.

It is comprised of three big components: (i) data model, (ii) message envelop model, and
(iii) routing model.

The various domains inside Sensae Console and Business Applications are discussed in
Appendix G and H, respectively.

4.2.3.1 Data Model

The data model represents the Data Unit that Sensae Console is currently capable of
understanding. The following diagram, Figure 4.23, is a high level specification.

C DataUnit

dataId: UUID

reportedAt: Long

C Device

id: UUID

name: String

downlink: String

C Record

label: String

content: String

C Domain

id: UUID

C SubDeviceCommands

reference: Number

C Command

id: UUID

name: String

payload: String

port: Number

C SubDeviceMeasures

reference: Number

C Measures

device1 1

records

1

0..*

domains

1

0..*

sub devices commands

1

0..*

commands

1

0..*

sub device measures

1

0..

measure

1

1

Figure 4.23: Canonical Model - Data Unit

As a brief description of Figure 4.23:

• Data Unit is the entry point to the shared model;

74 Chapter 4. Design

• The reportedAt attribute represents an absolute timestamp of when the Data Unit
was captured, in milliseconds;

• The Device concept represents the Device that sent the Data Unit;

• The Record concept represents an entry of Records/Metadata;

• The Domain concept references the Domain that owns the Device;

• The SubDeviceMeasures referes to the collected measures. When the device is a
Controller there’s a need to map each sub device’s measures with it and not with the
Controller that sent the uplink. The reference attribute indicates what sub device
collected the measure, the reference zero referes to the device that sent the uplink;

• The SubDeviceCommands referes to the available commands to control the device.
When the device is a Controller there’s a need to map each sub device commands
with it and not with the Controller that sent the uplink. The reference attribute
indicates the sub device that is controlled by the commands mentioned, the
reference zero referes to the device that sent the uplink;

• The Measures concept contains various common data types related to IoT.

As explained, Measures contains various data types. Currently the supported types are
presented in the Table 4.2. The team involved in this project decided what data types were
needed to support based on the requested PoCs and the purchased sensors. In the future
more data types are expected to be included in the model.

The full json-like model schema can be found in Appendix A.

4.2. Sensae Console - Architectural Design 75

T
ab

le
4.

2:
M

ea
su

re
D

at
a

T
yp

es

D
at

a
T
yp

e
D

es
cr

ip
ti
on

U
ni

t
P
ro

pe
rt

y
Su

b
P
ro

pe
rt

y

T
rig

ge
r

T
yp

e
re

la
te

d
to

so
m

et
hi

ng
w

it
h

an
on

/
off

or
op

en
/

cl
os

e
st

at
e

tr
ig

ge
r

va
lu

e
V
al

ue
ca

n
be

tr
ue

or
fa

ls
e

bo
ol

ea
n

M
ot

io
n

St
at

us
re

la
te

d
to

th
e

m
ot

io
n

of
a

de
vi

ce
m

ot
io

n
va

lu
e

V
al

ue
ca

n
be

"A
C

T
IV

E
",

"I
N

A
C

T
IV

E
"

or
"U

N
K

N
O

W
N

"
n.

a.

V
el

oc
ity

H
ow

fa
st

a
de

vi
ce

is
m

ov
in

g
ve

lo
ci

ty
ki

lo
m

et
er

P
er

H
ou

r
V
al

ue
m

ea
su

re
d

in
km

/h

T
em

pe
ra

tu
re

T
em

pe
ra

tu
re

m
ea

su
re

d
by

a
de

vi
ce

te
m

pe
ra

tu
re

ce
ls
iu

s
V
al

ue
m

ea
su

re
d

in
ce

ls
iu

s

A
Q

I
A

ir
Q

ua
lit

y
In

de
x

ac
co

rd
in

g
to

th
e

U
.S

.
A
Q

I
aq

i
va

lu
e

V
al

ue
m

ea
su

re
d

in
A
Q

I

A
ir

P
re

ss
ur

e
P
re

ss
ur

e
w

it
hi

n
th

e
at

m
os

ph
er

e
of

E
ar

th
ai

rP
re

ss
ur

e
he

ct
oP

as
ca

l
V
al

ue
m

ea
su

re
d

in
hP

a

D
is
ta

nc
e

D
is
ta

nc
e

m
ea

su
re

d
fr

om
th

e
de

vi
ce

to
a

su
rf

ac
e

di
st

an
ce

m
ill

im
et

er
s

V
al

ue
m

ea
su

re
d

in
m

m
m

ax
M

ill
im

et
er

s
M

ax
im

um
di

st
an

ce
th

e
se

ns
or

ca
n

be
to

a
gi

ve
n

su
rf

ac
e

m
m

m
in

M
ill

im
et

er
s

M
in

im
um

di
st

an
ce

th
e

se
ns

or
ca

n
be

to
a

gi
ve

n
su

rf
ac

e
m

m

So
il

M
oi

st
ur

e
A

m
ou

nt
of

w
at

er
,
in

cl
ud

in
g

w
at

er
va

po
r,

in
an

un
sa

tu
ra

te
d

so
il

so
ilM

oi
st

ur
e

re
la

ti
ve

P
er

ce
nt

ag
e

V
al

ue
m

ea
su

re
d

in
%

W
at

er
P

re
ss

ur
e

W
at

er
P
re

ss
ur

e
m

ea
su

re
d

in
pi

pe
s

by
a

de
vi

ce
w
at

er
P
re

ss
ur

e
ba

r
V
al

ue
m

ea
su

re
d

in
ba

r

76 Chapter 4. Design
T
ab

le
4.

2
co

nt
in

ue
d

fr
om

pr
ev

io
us

pa
ge

D
at

a
T
yp

e
D

es
cr

ip
ti
on

U
ni

t
P
ro

pe
rt

y
Su

b
P
ro

pe
rt

y

Ill
um

in
an

ce
Ill

um
in

an
ce

le
ve

l-
lu

m
in

ou
s

flu
x

pe
r

un
it

ar
ea

ill
um

in
an

ce
lu

x
V
al

ue
m

ea
su

re
d

in
lu

x

C
O

2
A
tm

os
ph

er
ic

C
ar

bo
n

D
io

xi
de

co
nc

en
tr

at
io

n
co

2
pp

m
V
al

ue
m

ea
su

re
d

in
pp

m

C
O

A
tm

os
ph

er
ic

C
ar

bo
n

O
xi

de
co

nc
en

tr
at

io
n

co
pp

m
V
al

ue
m

ea
su

re
d

in
pp

m

V
O

C
V
ol

at
ile

O
rg

an
ic

C
om

po
un

ds
co

nc
en

tr
at

io
n

m
ea

su
re

d
by

a
de

vi
ce

vo
c

pp
m

V
al

ue
m

ea
su

re
d

in
pp

m

N
H

3
A
tm

os
ph

er
ic

A
m

m
on

ia
co

nc
en

tr
at

io
n

nh
3

pp
m

V
al

ue
m

ea
su

re
d

in
pp

m

O
3

A
tm

os
ph

er
ic

O
zo

ne
co

nc
en

tr
at

io
n

m
ea

su
re

d
by

a
de

vi
ce

o3
pp

m
V
al

ue
m

ea
su

re
d

in
pp

m

N
O

2
A
tm

os
ph

er
ic

N
it
ro

ge
n

di
ox

id
e

co
nc

en
tr

at
io

n
no

2
pp

m
V
al

ue
m

ea
su

re
d

in
pp

m

P
M

2.
5

P
ar

ti
cu

la
te

M
at

te
r

in
th

e
ai

r
(s

iz
e

up
to

2.
5

m
ic

ro
m

et
er

s)
pm

2_
5

m
ic

ro
G

ra
m

sP
er

C
ub

ic
M

et
er

V
al

ue
m

ea
su

re
d

in
µ
g/

m
3

P
M

10
P
ar

ti
cu

la
te

M
at

te
r

in
th

e
ai

r
(s

iz
e

up
to

10
m

ic
ro

m
et

er
s)

pm
10

m
ic

ro
G

ra
m

sP
er

C
ub

ic
M

et
er

V
al

ue
m

ea
su

re
d

in
µ
g/

m
3

pH
Sc

al
e

us
ed

to
sp

ec
ify

ho
w

ac
id

ic
or

ba
si
c

a
w
at

er
-b

as
ed

so
lu

ti
on

is
ph

va
lu

e
V
al

ue
be

tw
ee

n
0

an
d

14
m

ea
su

re
d

in
pH

4.2. Sensae Console - Architectural Design 77

T
ab

le
4.

2
co

nt
in

ue
d

fr
om

pr
ev

io
us

pa
ge

D
at

a
T
yp

e
D

es
cr

ip
ti
on

U
ni

t
P
ro

pe
rt

y
Su

b
P
ro

pe
rt

y

O
cc

up
at

io
n

O
cc

up
at

io
n

pe
rc

en
ta

ge
m

ea
su

re
d

in
si
de

a
ve

ss
el

oc
cu

pa
ti
on

pe
rc

en
ta

ge
V
al

ue
m

ea
su

re
d

in
%

So
il

C
on

du
ct

iv
ity

Su
bs

ta
nc

es
ab

ili
ty

to
co

nd
uc

t
an

el
ec

tr
ic

al
cu

rr
en

t
in

th
e

so
il

so
ilC

on
du

ct
iv

ity
m

ic
ro

Si
em

en
sP

er
C

en
ti
m

et
er

V
al

ue
m

ea
su

re
d

in
µ
S/

cm

A
ir

H
um

id
ity

C
on

ce
nt

ra
ti
on

of
w
at

er
va

po
ur

pr
es

en
t

in
th

e
ai

r

ai
rH

um
id

ity
gr

am
sP

er
C

ub
ic

M
et

er
V
al

ue
m

ea
su

re
d

in
g/

m
3

re
la

ti
ve

P
er

ce
nt

ag
e

V
al

ue
m

ea
su

re
d

in
%

G
P

S
P
oi

nt
re

fe
re

nc
e

in
th

e
G

eo
gr

ap
hi

c
C

oo
rd

in
at

e
Sy

st
em

gp
s

la
ti
tu

de
V
al

ue
be

tw
ee

n
-9

0
an

d
90

m
ea

su
re

d
in

de
gr

ee
s

lo
ng

it
ud

e
V
al

ue
be

tw
ee

n
-1

80
an

d
18

0
m

ea
su

re
d

in
de

gr
ee

s
al

ti
tu

de
V
al

ue
de

te
rm

in
ed

ac
co

rd
in

g
to

th
e

m
ea

n
se

a
le

ve
l

m
et

er
s

B
at

te
ry

B
at

te
ry

of
th

e
de

vi
ce

ba
tt

er
y

vo
lt
s

V
al

ue
m

ea
su

re
d

in
vo

lt
s

pe
rc

en
ta

ge
V
al

ue
m

ea
su

re
d

in
%

m
ax

V
ol

ts
M

in
im

um
vo

lt
s

th
e

ba
tt

er
y

ne
ed

s
fo

r
th

e
de

vi
ce

to
w
or

k
vo

lt
s

m
in

V
ol

ts
M

ax
im

um
vo

lt
s

th
e

ba
tt

er
y

ca
n

ho
ld

vo
lt
s

78 Chapter 4. Design

4.2.3.2 Message Envelop Model

The message envelop model refers to how, coupled with the routing model in
Section 4.2.3.3, information can reliably transverse the system.

The diagram present in Figure 4.24 details this model.

A MessageEnvelop

oid : UUID
hops : Number

C MessageConsumed

toSupplied(updateDataFunction, updateRoutingKeysFunction) : Optional<MessageSupplied>

C MessageSupplied

create(data, routingKeys) : MessageSupplied
from(messageConsumed, data, routingKeys) : Optional<MessageSupplied>

I RoutingKeysI Information
routingKeys1 1information1 1

Figure 4.24: Canonical Model - Message Envelop Model

As a brief description of Figure 4.24:

• A MessageSupplied is created in a issuer system and supplied to start the flow of
information in the system;

• A MessageConsumed is consumed by a consumer system and can then be
transformed into a MessageSupplied to be supplied;

• Information represents the content of the message;

• RoutingKeys represents the model referenced in Section 4.2.3.3;

This concept is mainly used to ensure that information flowing in the system is not
reprocessed, by verifying the unique id - oid, and is eliminated if it enters a routing loop by
verifying that the hops have not reached a maximum value.

4.2.3.3 Routing Model

The routing model refers to how information can be routed through the system based on
various parameters. The current idea is based on the pub/sub pattern, as discussed by
Urquhart 2021. Containers subscribe to information in a Topic with specific RoutingKeys
and publish information with RoutingKeys.

The diagram presented in Figure 4.25 details this model.

4.2. Sensae Console - Architectural Design 79

I RoutingKey

details()
key()

I RoutingKeys

details()
keys()

C AlertRoutingKeysC InternalRoutingKeysC CommandRoutingKeys C DataRoutingKeys

C ChannelOptions

value: String

E NH3DataOptions

UNIDENTIFIED_NH3_DATA
WITH_NH3_DATA
WITHOUT_NH3_DATA

E ContainerTypeOptions

DATA_GATEWAY
DATA_DECODER
DATA_STORE
SMART_IRRIGATION
...

OTHER

E RoutingKeysBuilderOptions

SUPPLIER
CONSUMER

C ProtocolVersionOptions

majorVersion: Number
minorVersion: Number
patchVersion: Number

I RoutingKeysBuilder

build() : Optional<? extends RoutingKeys>
C AlertRoutingKeysBuilder

C InternalRoutingKeysBuilder

C CommandRoutingKeysBuilder

C DataRoutingKeysBuilder

C RoutingKeyOption
K extends RoutingKey

isAny : Boolean
routingKey : K

details()
key()
of(routingKey) : RoutingKeyOption
any() : RoutingKeyOption

1

*

1

*

1

*

each one has different
types of RoutingKeyOption

1

*

creates

creates

creates

creates

protocolVersion

1

1

containerType

1

1

builderType

1

1

Figure 4.25: Canonical Model - Routing

As a brief description of Figure 4.25:

• RoutingKeys is the concept referenced in Figure 4.24 and represents a collection of
different RoutingKeyOptions;

• There are 4 types of RoutingKeys, one for each Topic (according to Taxonomy);

• To ensure that the various containers in Sensae Console understand each other, a
ProtocolVersionOptions is provided. This concept follows the Semantic Versioning
Specification 2.0 (Preston-Werner 2011) an is assembled according to the version of
iot-core imported by the container;

• There are multiple RoutingKey types not displayed in the diagram for brevity;

• A RoutingKeyOption can have the value any, if the RoutingKeysBuilderOptions has
the value CONSUMER. This provides a ’relaxed’ mode, for containers that
consume/subscribe to messages and a ’strict’ mode, where all RoutingKey must be
specified, for containers that supply/publish messages;

80 Chapter 4. Design

• The RoutingKeysBuilder implements the Builder pattern and its single responsibility
is to validate and create RoutingKeys;

• NH3DataOptions and ChannelOptions are two examples of RoutingKey, both used
in the Data Topic.

Table 4.3 presents all currently used RoutingKeys.

The routing key OperationType from the Internal topic can have the following values:

• Sync: message contains the current state of the related ContextType, used to
populate a container’s state;

• Info: message contains information about an entry of the related ContextType, e.g.
entry X in context Y was removed;

• Unknown: message contains entry of the related ContextType that the container
that published the message can’t identify;

• Init: message to notify that a container has initiated and needs the current state of
the related ContextType to be ready;

• Ping: message to notify that an entry of the related ContextType was used, e.g.
entry X in context Y was just used.

The ContextTypein Table 4.3, used to identity what piece of the state is referenced, can
currently have the following values: (i) Data Processor, (ii) Data Decoder, (iii) Device
Information, (iv) Device Identity, (v) Tenant Identity, and (vi) Rule Management.

Routing keys help to strengthen the boundaries that a container is expected to have. As
an example, a business application related to Waste Management would subscribe to the
Data Topic with the following Routing Keys:

• Info Type Options: PROCESSED;

• Channel Options: ’wasteManagement’;

• Data Legitimacy Options: CORRECT;

• GPS Data Options: WITH;

• Occupation Data Options: WITH;

• Records Options: WITH;

• Ownership Options: WITH.

And would, for example, subscribe to the Alert Topic with the following Routing Keys:

• Alert Category Options: ’wasteManagement’;

• Alert SubCategory Options: ’garbageFull’;

• Ownership Options: WITH.

As expected, the structure and semantics of the information subscribed to are known
upfront with the help of the package iot-core. The services developed and their pre-defined
boundaries regarding data types consumed are detailed in Section 5.2.7.

4.2. Sensae Console - Architectural Design 81

T
ab

le
4.

3:
R

ou
ti
ng

O
pt

io
ns

T
op

ic
D

es
cr

ip
ti
on

R
ou

ti
ng

K
ey

C
om

m
on

R
ou

ti
ng

K
ey

s
th

at
be

lo
ng

to
ev

er
y

T
op

ic
P
ro

to
co

lV
er

si
on

O
pt

io
ns

V
er

si
on

of
th

e
us

ed
io

t-
co

re
pa

ck
ag

e
C

on
ta

in
er

T
yp

e
O

pt
io

ns
T
yp

e
of

th
e

C
on

ta
in

er
th

at
pu

bl
is
he

d
th

e
m

es
sa

ge
O

w
ne

rs
hi

p
O

pt
io

ns
D

oe
s

th
e

m
es

sa
ge

co
nt

ai
ns

th
e

D
om

ai
ns

th
at

ow
n

it
1

T
op

ic
T
yp

e
O

pt
io

ns
T
op

ic
us

ed
to

pu
bl

is
h

th
e

m
es

sa
ge

In
te

rn
al

R
ou

ti
ng

K
ey

s
th

at
be

lo
ng

to
th

e
In

te
rn

al
T
op

ic
O

pe
ra

ti
on

T
yp

e
O

pt
io

ns
In

te
nt

of
th

e
m

es
sa

ge
,
e.

g.
un

kn
ow

n
co

nt
ex

t
fo

un
d

C
on

te
xt

T
yp

e
O

pt
io

ns
T
yp

e
of

co
nt

en
t

in
th

e
m

es
sa

ge
,
e.

g.
de

vi
ce

in
fo

rm
at

io
n

D
at

a
R

ou
ti
ng

K
ey

s
th

at
be

lo
ng

to
th

e
D

at
a

T
op

ic
In

fo
T
yp

e
O

pt
io

ns
H

ow
da

ta
is

sh
ap

ed
:

(i
)

E
N

C
O

D
E
D

,
(i
i)

D
E
C

O
D

E
D

an
d

(i
ii)

P
R

O
C

E
SS

E
D

D
ev

ic
e

T
yp

e
O

pt
io

ns
T
yp

e
of

de
vi

ce
,
e.

g.
LG

T
-9

2
or

E
M

30
0-

T
H

C
ha

nn
el

O
pt

io
ns

N
am

e
of

ch
an

ne
lw

he
re

da
ta

flo
w

s,
e.

g.
sm

ar
tI
rr

ig
at

io
n

or
de

fa
ul

t
D

at
a

Le
gi

ti
m

ac
y

O
pt

io
ns

Is
th

e
da

ta
le

gi
ti
m

at
e:

(i
)

U
N

K
N

O
W

N
,
(i
i)

C
O

R
R

E
C

T
,
(i
ii)

IN
C

O
R

R
E
C

T
an

d
(i
v)

U
N

D
E
T

E
R

M
IN

E
D

R
ec

or
ds

O
pt

io
ns

D
oe

s
th

e
da

ta
co

nt
ai

ns
R

ec
or

ds
/M

et
ad

at
a1

A
ir

H
um

id
ity

D
at

a
O

pt
io

ns
D

oe
s

th
e

da
ta

co
nt

ai
ns

in
fo

rm
at

io
n

ab
ou

t
A

ir
H

um
id

ity
1
2

A
ir

P
re

ss
ur

e
D

at
a

O
pt

io
ns

D
oe

s
th

e
da

ta
co

nt
ai

ns
in

fo
rm

at
io

n
ab

ou
t

A
ir

P
re

ss
ur

e1
2

A
ir

Q
ua

lit
y

D
at

a
O

pt
io

ns
D

oe
s

th
e

da
ta

co
nt

ai
ns

in
fo

rm
at

io
n

ab
ou

t
A

ir
Q

ua
lit

y1
2

B
at

te
ry

D
at

a
O

pt
io

ns
D

oe
s

th
e

da
ta

co
nt

ai
ns

in
fo

rm
at

io
n

ab
ou

t
th

e
de

vi
ce

B
at

te
ry

1
2

C
O

2
D

at
a

O
pt

io
ns

D
oe

s
th

e
da

ta
co

nt
ai

ns
in

fo
rm

at
io

n
ab

ou
t

C
O

2
le

ve
ls

1
2

C
O

D
at

a
O

pt
io

ns
D

oe
s

th
e

da
ta

co
nt

ai
ns

in
fo

rm
at

io
n

ab
ou

t
C

O
le

ve
ls

1
2

D
is
ta

nc
e

D
at

a
O

pt
io

ns
D

oe
s

th
e

da
ta

co
nt

ai
ns

in
fo

rm
at

io
n

ab
ou

t
di

st
an

ce
s

to
a

su
rf

ac
e1

2

G
P
S

D
at

a
O

pt
io

ns
D

oe
s

th
e

da
ta

co
nt

ai
ns

in
fo

rm
at

io
n

ab
ou

t
th

e
de

vi
ce

G
P
S

co
or

di
na

te
s1

2

Ill
um

in
an

ce
D

at
a

O
pt

io
ns

D
oe

s
th

e
da

ta
co

nt
ai

ns
in

fo
rm

at
io

n
ab

ou
t

ill
um

in
an

ce
in

th
e

en
vi

ro
nm

en
t1

2

M
ot

io
n

D
at

a
O

pt
io

ns
D

oe
s

th
e

da
ta

co
nt

ai
ns

in
fo

rm
at

io
n

ab
ou

t
th

e
de

vi
ce

m
ot

io
n1

2

N
H

3
D

at
a

O
pt

io
ns

D
oe

s
th

e
da

ta
co

nt
ai

ns
in

fo
rm

at
io

n
ab

ou
t

N
H

3
le

ve
ls

1
2

N
O

2
D

at
a

O
pt

io
ns

D
oe

s
th

e
da

ta
co

nt
ai

ns
in

fo
rm

at
io

n
ab

ou
t

N
O

2
le

ve
ls

1
2

O
3

D
at

a
O

pt
io

ns
D

oe
s

th
e

da
ta

co
nt

ai
ns

in
fo

rm
at

io
n

ab
ou

t
O

3
le

ve
ls

1
2

82 Chapter 4. Design
T
ab

le
4.

3
co

nt
in

ue
d

fr
om

pr
ev

io
us

pa
ge

T
op

ic
D

es
cr

ip
ti
on

R
ou

ti
ng

K
ey

O
cc

up
at

io
n

D
at

a
O

pt
io

ns
D

oe
s

th
e

da
ta

co
nt

ai
ns

in
fo

rm
at

io
n

ab
ou

t
oc

cu
pa

ti
on

le
ve

ls
1
2

pH
D

at
a

O
pt

io
ns

D
oe

s
th

e
da

ta
co

nt
ai

ns
in

fo
rm

at
io

n
ab

ou
t

ph
le

ve
l1

2

P
M

2.
5

D
at

a
O

pt
io

ns
D

oe
s

th
e

da
ta

co
nt

ai
ns

in
fo

rm
at

io
n

ab
ou

t
pm

2.
5

co
nc

en
tr

at
io

n1
2

P
M

10
D

at
a

O
pt

io
ns

D
oe

s
th

e
da

ta
co

nt
ai

ns
in

fo
rm

at
io

n
ab

ou
t

pm
10

co
nc

en
tr

at
io

n1
2

So
il

C
on

du
ct

iv
ity

D
at

a
O

pt
io

ns
D

oe
s

th
e

da
ta

co
nt

ai
ns

in
fo

rm
at

io
n

ab
ou

t
th

e
so

il
co

nd
uc

ti
vi

ty
1
2

So
il

M
oi

st
ur

e
D

at
a

O
pt

io
ns

D
oe

s
th

e
da

ta
co

nt
ai

ns
in

fo
rm

at
io

n
ab

ou
t

th
e

so
il

m
oi

st
ur

e1
2

T
em

pe
ra

tu
re

D
at

a
O

pt
io

ns
D

oe
s

th
e

da
ta

co
nt

ai
ns

in
fo

rm
at

io
n

ab
ou

t
th

e
te

m
pe

ra
tu

re
1
2

T
rig

ge
r

D
at

a
O

pt
io

ns
D

oe
s

th
e

da
ta

co
nt

ai
ns

in
fo

rm
at

io
n

ab
ou

t
so

m
et

hi
ng

th
at

w
or

ks
as

a
sw

it
ch

1
2

V
el

oc
ity

D
at

a
O

pt
io

ns
D

oe
s

th
e

da
ta

co
nt

ai
ns

in
fo

rm
at

io
n

ab
ou

t
th

e
de

vi
ce

ve
lo

ci
ty

1
2

V
O

C
D

at
a

O
pt

io
ns

D
oe

s
th

e
da

ta
co

nt
ai

ns
in

fo
rm

at
io

n
ab

ou
t

V
O

C
co

nc
en

tr
at

io
n1

2

W
at

er
P
re

ss
ur

e
D

at
a

O
pt

io
ns

D
oe

s
th

e
da

ta
co

nt
ai

ns
in

fo
rm

at
io

n
ab

ou
t

w
at

er
pr

es
su

re
1
2

C
om

m
an

d
R

ou
ti
ng

K
ey

s
th

at
be

lo
ng

to
th

e
C

om
m

an
d

T
op

ic
C

om
m

an
d

T
yp

e
O

pt
io

ns
T
yp

e
of

co
m

m
an

d,
e.

g.
O

pe
n

V
al

ve
A

le
rt

R
ou

ti
ng

K
ey

s
th

at
be

lo
ng

to
th

e
A

le
rt

T
op

ic
A

le
rt

C
at

eg
or

y
O

pt
io

ns
C

at
eg

or
y

of
th

e
al

er
t

pu
bl

is
he

d,
e.

g.
F
ire

D
et

en
ti
on

A
le

rt
Su

bc
at

eg
or

y
O

pt
io

ns
C

at
eg

or
y

of
th

e
al

er
t

pu
bl

is
he

d,
e.

g.
H

um
id

ity
W

it
h

H
ig

h
R

at
e

O
f
C

ha
ng

e
A

le
rt

Se
ve

rit
y

O
pt

io
ns

Se
ve

rit
y

of
th

e
al

er
t

pu
bl

is
he

d,
fr

om
In

fo
rm

at
io

n
le

ve
lt

o
C

rit
ic

al
le

ve
l

1
ha

s
th

re
e

po
ss

ib
le

va
lu

es
:

(i
)

U
N

D
E
T

E
R

M
IN

E
D

,
(i
i)

W
IT

H
,
(i
ii)

W
IT

H
O

U
T

2
re

la
te

d
to

th
e

ex
pl

or
ed

D
at

a
T
yp

es

4.3. Architectural Alternatives 83

4.2.4 Synopsis

This section discussed the architecture used in the platform. It presented how some
internal processes are handled by the system as a whole with the help of the Canonical
Model. In the following section, alternatives to what was designed and developed across
the system are discussed.

4.3 Architectural Alternatives

This section tackles important alternatives that were proposed and discussed during the
design and development of the system but were discarded in detriment for the approaches
presented in the Sensae Console - Architectural Design.

More alternatives are discussed in the appendixes, namely User Authentication, in
Appendix F.

4.3.1 Backend Segregation

There are three main architectural approaches to this topic: Monolithic Backend -
Richardson 2021b -, SOA - IBM 2021c - or Microservices - Fowler and J. Lewis 2014. The
first question regarding what to choose is whether to split the system in multiple units of
work: Monolith vs the other two approaches.

If the decision is to split the system, then an important question must be asked: how
should one split the system? The system architecture depends on the answer given: a SOA
emphasizes the reuse of the system functionalities, IBM 2021c, while Micro Services
emphasis the decoupling of the various system components - Richardson 2021a - and can
therefore introduce some functionality duplication as opposed to SOA - Powell 2021.

But, to pick one of this architectures, the most important question to ask is: Why do i
need architecture X? To answer this, a set of the concerns deemed more important, with
regards to this solution requirements, are discussed:

• Time To Market: a MVP should be available and ready to use as soon as possible;

• Extensibility of the solution: it should be easy to extend the solution with new
Business Applications;

• Operation Cost: the solution has to be efficient to lower the infrastructure costs,
tied to the system performance;

• System performance: the solution has to be capable of processing high volumes of
data efficiently, tied to the system performance.

The first concern, Time to Market, weights heavily in favor of the Monolith approach when
developing a MVP, Harris n.d. This approach is simpler to develop, deploy and has less
cognitive overhead when compared to the other two approaches.

Regarding the extensibility of the solution, a Monolith is inherently rigid and hard to extend
as the business evolves. This problem is inflated by the fact that the business model
envisioned relies heavily on the creation of several Business Applications. On the order
hand the SOA and Microservices architecture are preferred since, due to their inherently
decoupled nature, they are easier to extend using the interfaces they expose - Jacobs and
Casey 2022.

84 Chapter 4. Design

The last two concerns are related to the scalability of the solution. A Monolithic Backend
can only be scaled up by increasing the resources - RAM, CPU, GPU and Dick Capacity -
of the physical server where the solution is deployed, this is commonly referred as Vertical
Scaling. A SOA or Micro Service Backend Architecture, apart from the Vertical Scaling
option, can also be scaled up by increasing the number of physical servers where the
solution is deployed, this is commonly referred as Horizontal Scaling.

Another option, that can be used with any architecture, is to deploy various independent
instances of the same solution. Each instance would be assign to a set of costumers. This
option is crucial and always possible once the business grows and starts to assist various
customers.

The following picture, Figure 4.26, summarizes how each architect scales, the SOA
behaves similarly to the microservices architecture presented.

Figure 4.26: Monoliths and Microservices by Fowler and J. Lewis 2014

The final decision was to follow an architecture based on Microservices, even tho this
decision had several oversights:

• Development Team size: microservices are commonly adopted by big companies
where each team of developers is responsible for a subset of microservices. This
lowers the friction between teams when developing and deploying the solution and is
seen as a big reason to move to a microservice architecture. For this solution, a
single developer is responsible for everything;

• Time to Market: microservices need to interact with each other though the network.
This added demand takes time to design and develop when compared to a monolith
solution where communication is done via code;

• A solution shouldn’t start with a microservice architecture: a solution should migrate
to microservices when it becomes too complex and hard to maintain, IBM 2021a.

4.3. Architectural Alternatives 85

The decision made was based on the following assumptions, perceptions and findings:

• There are well defined boundaries between the various business processes that the
project needs to support;

• There is a perception that the solution will need to scale early on the road due to
high volumes of IoT data to process and store;

• There are a high number of completely independent business applications to develop
and deploy;

• There are different types of costumers with diverse requirements regarding the
deployment and development of the solution;

• Each costumer is interested in their specific business case or cases and therefore
requires different combinations of business applications.

SOA was discarded since: “Although the concept of a share-as-much-as-possible
architecture solves issues associated with the duplication of business functionality, it also
tends to lead to tightly coupled components and increases the overall risk associated with
change”. (Richards 2015). Microservices are more easily extended when/if needed
compared with SOA since the focus is on loose coupling services and not highly reusable
services.

Despite this, the solution adopted some architecture decisions that are usually associated
with SOA, as an example a canonical data model (Section 4.2.3) was created to ease the
communication between services. This is something common in projects that follow SOA
according to Cerny, Donahoo, and Pechanec 2017.

4.3.2 Frontend Segregation

This section tackles the need for segregating the frontend into various independent
frontends - Microfrontends, Geers 2017 - or to develop a single Frontend to answer the
identified requirements.

The non-functional requirements discussed in Section 3.2 enhance the need to develop a
product that can be fully extensible and yet close for modifications, following the idea
behind the Open/Close Principle (OCP) (introduced by Martin 2003). This need arises so
that costumer entities can easily create new business applications without the need to alter
any close source code that is produced internally.

The Microfrontends Architecture when applied to this project has the same oversights,
assumptions and perceptions that lead to the decision taken in the Backend Segregation
Section. As such, the decision was to drop the design and development of a single
frontend in favor of a Microfrontends Architecture.

Ultimately this decision, coupled with the Backend Segregation decision made, enforces a
business model that follows OCP and simplifies the adoption of this solution by third
parties.

4.3.3 Data Flow Pipeline

This section debates how the various Data Flow Containers should communicate with each
other.

86 Chapter 4. Design

Synchronous communication, such as HTTP requests, was promptly discarded since there
is no need for each Container to acknowledge the outcome of the Data Unit that it sent
and this type of communication would linger the performance of the Data Flow Scope by
creating chained requests, an anti pattern when using a Microservice Architecture
(Nish Anil and Veloso 2022b).

According to Nish Anil and Veloso 2022a, there are two kinds of asynchronous messaging
communication: single receiver message-based communication, and multiple receivers
message-based communication. It is common to use both of this types in the same
solution depending on the requirements. This type of communication is usually composed
by the following participants:

• Broker: responsible for establishing a communication channel between Receivers and
Publishers;

• Publishers: responsible for sending messages;

• Receivers: responsible for consuming messages.

Looking at the Figure 4.12 it appears that a simple single receiver message-based
communication would be sufficient but this approach isn’t as flexible as other options. By
following a multiple receivers message-based communication, additional receivers can be
added in the future without the need to modify the sender service. As an example, the
Data Store container can be configured to consume any type of Data Unit without
changing the containers that produce them.

The final issue to discuss is whether Receivers should pull messages from the Broker (via
pulling) or the Broker should push messages to Receivers. This topic is discussed in Kafka
Design: The Consumer, mentioned as Push vs Pull. Pushing messages to Receivers can
overwhelm a receiver when its rate of consumption falls below the rate of production. The
Pull approach offers Receivers the option to consume messages at the rate that they are
capable of but can be wasteful in systems where messages are not abundant (Klishin
2022). The operations preformed in each Data Flow container are meant to be fast and
simple, and as such, overwhelming a receiver was not taken into consideration. The Push
approach was preferred since it theoretically enables faster reactions to new message
compared to the Push approach.

As such, it was decided that the Data Flow Pipeline would work based on the
publish/subscribe pattern on top of asynchronous messaging communication. Messages
would be published to a broker and then routed to consumers.

4.3.4 Internal Communication

This section tackles how the Data Flow Scope should be kept up to date on the
configurations made in the Configuration Scope. Five alternatives have been discussed:

1. Data Flow Containers directly access the Database related to their concern;

2. Data Flow Containers request information to their concern’s Configuration Scope
Container via synchronous calls;

3. Data Flow Containers are feed updates to their concern configurations via
asynchronous calls and store this information;

4.3. Architectural Alternatives 87

4. A shared, in memory, database is kept, Configuration Scope writes to it and Data
Flow Scope queries information from it;

5. An append-only log is used to store configuration logs, the Configuration Scope
writes to it and the Data Flow Scope can always read from it.

The third option was the approach taken.

4.3.4.1 First Option

This option ensures that the Data Flow Containers are kept updated by giving them direct
access to the source of truth, the database. The logical view diagram in Figure 4.27
describes how this option functions.

X Concern Frontend

X Concern Backend

X Concern Database

Message Broker

X Concern Flow

Message
Broker API

X Concern
Database API

X Concern
Backend API

X Concern UI

Figure 4.27: Internal Communication - First Option - Logical View Diagram

The approach in Figure 4.27 ensures that the Message Broker is only used to transport
Data Units, Alerts and Commands, alleviating it from an heavy responsibility. That
responsibility is assigned to the X Concern Flow Container and the X Concern Database
Container. This approach has several drawbacks such as:

• The X Concern Flow Container has full access to superfluous configuration details
related to that context configuration;

• The same database access has to be developed and maintained in two separated
containers;

• All database accesses are blocking calls by nature that would slow down the process;

• Data Flow containers can’t reliably cache information collected since there is no way
to know when the corresponding information was updated. Meaning that every time
a new message arrives the database has to be queried.

Due to this drawbacks this option was eventually dropped.

4.3.4.2 Second Option

This option ensures that the Data Flow Containers are kept updated querying information
from a Representational State Transfer (REST) API provided by the Configuration
Containers. The logical view diagram in Figure 4.28 describes how this option functions.

88 Chapter 4. Design

X Concern Frontend

X Concern Backend

X Concern Database

Message Broker

X Concern Flow

Message
Broker API

X Concern
Database API

X Concern
Backend API

X Concern Internal
Backend API

X Concern UI

Figure 4.28: Internal Communication - Second Option - Logical View Dia-
gram

The approach in Figure 4.28 doesn’t suffer from all drawbacks stated for the first option
but still requires a blocking call to the X Concern Backend Container every time a new
message arrives to the X Concern Flow Container.

It’s an improvement of the first option but still has some serious drawbacks and therefore
it was also abandoned.

4.3.4.3 Third Option

This option ensures that the Data Flow Containers are kept updated by allowing them to
subscribe to changes made in their concern’s configuration. The logical view diagram in
Figure 4.29 describes how this option functions.

X Concern Frontend

X Concern Backend

X Concern Database

Message Broker

X Concern Flow

Message
Broker API

X Concern
Database API

X Concern
Backend API

X Concern UI

Figure 4.29: Internal Communication - Third Option - Logical View Diagram

The major improvement of the approach in Figure 4.29 when compared with the options
above is that, since X Concern Flow Container subscribes to configuration updates, it can
reliably keep a cache with just the needed information (and not the entire concern
configuration). This works since X Concern Flow Containers can discard updates related
to information that they currently don’t use. Once the container needs that information, it
can send an event requesting what it needs and that information arrives later as a normal
update to the configuration. All X Concern Flow external interactions also rely on
asynchronous communication, ensuring a more robust performance.

4.3. Architectural Alternatives 89

The main drawback to this option is that the Message Broker becomes responsible for yet
another communication topic inside the environment.

Despite this drawback this is the option currently in use. The following options purpose
alternatives to tackle this drawback.

4.3.4.4 Fourth Option

This option ensures that the Data Flow Containers are kept updated by allowing them to
query information from an Internal State Database. This approach differs from the first
option since the Internal State Database is supposed to be a fast in memory database with
only the needed information for Data Flow Containers to process Data Units, Alerts and
Commands. The logical view diagram in Figure 4.30 describes how this option functions.

X Concern Frontend

X Concern Backend

X Concern Database

Message Broker

X Concern Flow

Internal State
Database

Message
Broker API

X Concern
Database API

X Concern
Backend API

X Concern UI

Internal State
Database API

Figure 4.30: Internal Communication - Fourth Option - Logical View Diagram

The approach in Figure 4.30 would remove the responsibly from the Message Broker to
maintaining the internal state updated in the Data Flow Scope. The Internal State
Database would in turn store information that X Content Flow could query.

The main drawbacks of this approach are the same stated in the second option, even tho
they can be mitigated by leveraging technologies that tackle distributed caching problems.

4.3.4.5 Fifth Option

This option ensures that the Data Flow Containers are kept updated by allowing them to
subscribe to changes made in their concern’s configuration. This option diverges from the
third option since the event store would persist all updates to concerns configurations. The
logical view diagram in Figure 4.31 describes how this option functions.

90 Chapter 4. Design

X Concern Frontend

X Concern Backend

X Concern Database

Message Broker

X Concern Flow

Event Store

Message
Broker API

X Concern
Database API

X Concern
Backend API

X Concern UI

Event Store API

Figure 4.31: Internal Communication - Fifth Option - Logical View Diagram

The X Concern Flow Container would use event sourcing to reach the current state of its
concern configuration on start up and then cache this state internally. New events would
then be sent automatically via subscription to keep the state up-to-date.

The main drawback of the approach in Figure 4.31 is that the container can’t keep just the
needed portion of configurations without recreating the entire state though event sourcing.

4.3.5 Synopsis

This section presented the most important architectural decisions that lead to this
project’s solution, Sensae Console. The next section presents the architectural design of
the developed Business Applications.

4.4 Business Applications - Architectural Design

This section will explore the details of each Business Application developed as a PoC from
an architectural point of view. The description will follow the same methodology of the
Sensae Console - Architectural Design Section. Most concepts regarding the C4 Level 1 -
Context were already described in Section 4.2.1, therefore this section focus on the C4
Level 2 - Container. Some of the similarities shared between the architecture of all services
are:

• All include a backend that exposes an API;

• All include a frontend that exposes a UI;

• All include at least a database that exposes an API consumed solely by the service’s
backend;

• Any communication with Sensae Console is preformed by consuming the Message
Broker’s API;

• All follow the idea behind the separation of responsibilities seen in a three layer
architecture.

Even though it isn’t required, the UI Aggregator can be configured to consume the UI
and API belonging to each Business Application. By doing so, the complete solution, UI
and API can be presented under a single FQDN. This view can be seen in Appendix B.

4.4. Business Applications - Architectural Design 91

For brevity reasons the C4 level 3 of the solutions will not be discussed, the architecture of
most containers follows what was discussed in Appendix C Section. The frontend
containers behave exactly as the ones designed for the platform and most backend
containers follow the same ideas behind the Configuration Backend Architecture for
containers in the platform. The architectures that diverge a bit can be consulted in
Appendix E.

4.4.1 Fleet Management

The logical view of the Fleet Management service is presented in Figure 4.32.

This service is composed by a simple three layers architecture. The details related to this
service are discussed in Section H.1.

«System»
Fleet Management

«Container»
Fleet Management
Backend

«Container»
Fleet Management
Frontend

«Container»
Fleet Management
Database Fleet Management

Database JDBC API
Fleet Management
Database ILP API

Fleet Management UI Fleet Management
Backend API

«System»
Sensae Console

Sensae API for
Business Applications

Figure 4.32: Fleet Management - Container Level - Logical View Diagram

Next, to better understand the internal processes of this service, Figure 4.33 presents how
a user can see the current location of a device. Authentication details are omitted for
brevity reasons.

In order to provide live information to the user, the Fleet Management service (and all
other Business Applications) relies on WebSockets. As seen in Figure 4.33 a bidirectional
channel is created between the frontend and backend so that data can be sent directly
from the backend to the frontend as we can see in the step 2.5. Fist the frontend must
subscribe to new information with a valid access token - steps 1.2 to 1.6 - then this
channel is maintained till the user leaves the page. Once the user leaves the page the
subscription is closed in the frontend and subsequently in the backend - steps 3.2 to 3.5.

92 Chapter 4. Design

«System»
Fleet Management

User

«Container»
Fleet Management

Frontend

«Container»
Fleet Management

Backend

«Container»
Fleet Management

Database
«System»

Sensae Console

1.1 accesses page

1.2 susbcribe to new
device readings

1.3
extracts user

domains from token

1.4 open subscription for
new device readings

1.5 subscription

1.6 stores subscription

1.7 fetch latest device readings

1.8
extracts user

domains from token

1.9 fetch latest device readings
related to user domains

1.10 latest devices readings

1.11 latest devices readings

1.12 presents latest
devices readings

after some time

2.1 notifies about new device readings

2.2 store device readings

2.3 success

2.4
search for active

subscriptions that can see
the new device readings

2.5 new device readings

2.6 replace latest device
readings with new one

2.7 show new
device readings

after some time

3.1 leaves the page

3.2 unsubscribe from
subscription

3.3 close subscription

3.4 subscription closed

3.5 remove subscription

Figure 4.33: Consult Device Live Location - Container Level - Process View
Diagram

4.4. Business Applications - Architectural Design 93

4.4.2 Notification Management

The logical view of Notification Management service is presented in Figure 4.34.

«System»
Notification Management

«Container»
Notification Management
Backend

«Container»
Notification Management
Frontend

«Container»
Notification Management
Database

Notification
Management
Database API

«Container»
Notification Dispatcher
Backend

Notification Management UI Notification Management Backend API

«System»
Sensae Console

Sensae API for
Business Applications

SMS Dispatcher API Email Dispatcher API

Figure 4.34: Notification Management - Container Level - Logical View Di-
agram

This service is composed by a simple three layers architecture and has a separated
container responsible for dispatching SMS and emails, the Notification Dispatcher Backend
container. Information regarding the type of alerts each user is interested in are exchanged
between the Backend and Dispatcher containers through the Message Broker. The details
related to this service are discussed in Section H.2.

The next diagram in Figure 4.35 describes how a user receives notifications via several
different delivery channels. For brevity reasons the subscription process is omitted.

As a brief description the diagram in Figure 4.35 describes what happens when an alert is
dispatched inside Sensae Console. An alert is created in Alert Dispatcher Backend, flows
though Device Ownership Backend to be enriched with the domains that own it and is
then collected by, at least, the Notification Management Service. Notification
Management Backend deliveries alerts in the form of UI notifications - step 2.5 and 2.6 -
and stores this alert as a notification for later use - step 2.3. Notification Dispatcher
Backend deliveries alerts in the form of Emails - step 3.4 - and SMS - step 3.7.

94 Chapter 4. Design

«System»
Notification Management

User

«Container»
Notification
Management

Frontend

«Container»
Notification
Management

Backend

«Container»
Notification Dispatcher

Backend

«Container»
Notification
Management

Database

«System»
SMS

Dispatcher

«System»
Email

Dispatcher

«System»
Sensae
Console

1.1 access page

after some time

2.1 notifies about the new "X" alert

2.2 transform alert
into notification

2.3 store notification

2.4 success

2.5
search for active

subscriptions to the
content type of the alert

2.6 notification

2.7
present

notification

3.1 notifies about the new "X" alert

3.2
search for addresses

subscribed to the content
type of the alert via email

loop [for each addressee]

3.3 collect addresse
emails

3.4 request notification delivery via email

3.5
search for addresses

subscribed to the content
type of the alert via sms

loop [for each addressee]

3.6 collect addresse
phone number

3.7 request notification delivery via sms

Figure 4.35: Receive Notification - Container Level - Process View Diagram

4.4.3 Smart Irrigation

The logical view of the Smart Irrigation service is presented in Figure 4.36.

This service is composed by a three layers architecture, the Data Layer is divided in two
databases, one responsible for storing device measures and another responsible for storing
information regarding the Irrigation Zones and device information. The details related to
this service are discussed in Section H.3.

Certain types of alerts are also collected by Smart Irrigation Backend to automatically
control conditions inside an irrigation zone. The diagram in Figure 4.37 presents this
process.

4.4. Business Applications - Architectural Design 95

«System»
Smart Irrigation

«Container»
Smart Irrigation
Backend

«Container»
Smart Irrigation
Frontend

«Container»
Smart Irrigation
Business Database

«Container»
Smart Irrigation
Data Database

Smart Irrigation
Business
Database API

Smart Irrigation Data
Database JDBC API

Smart Irrigation Data
Database ILP API

Smart Irrigation UI Smart Irrigation
Backend API

«System»
Sensae Console

Sensae API for
Business Applications

Figure 4.36: Smart Irrigation - Container Level - Logical View Diagram

«System»
Smart Irrigation

«System»
Sensae Console

«Container»
Smart Irrigation

Backend

«Container»
Smart Irrigation

Business Database
«System»

IoT Middleware

«Container»
Message
Broker

«Container»
Device Commander

Backend

1.1 publish
alert

1.2 notify about new alert

1.3 extract related
device from alert

1.4 query device
information

1.5 device information

alt [device is not a valve]

1.6 extract location
from device

1.7 fetch device’s
irrigation zone

1.8 irrigation zone

1.9 fetch irrigation zone devices

1.10 devices information

1.11 search for irrigation
zone’s valve

1.12 create command
for device

1.13 publish command

2.1 notify about
new command

2.2 search for device
command details

2.3 send http downlink

Figure 4.37: Valve Activation - Container Level - Process View Diagram

96 Chapter 4. Design

The alerts created in Sensae Console are captured by Business Applications’s containers
so that they can immediately act based on those alerts (Figure 4.37).

The Smart Irrigation Backend subscribes to three types of Sub Category alerts, all with
the same Category - Smart Irrigation:

• Damped Environment: a valve needs to be closed;

• Dry Environment: a valve needs to be open;

• Valve Open For Lengthy Period: a valve needs to be close.

4.5 Synopsis

This chapter presented the design of the platform, Sensae Console, and the solutions,
Business Applications. Topics such as the domain, the architectural design and
alternatives have been discussed here. To complement the description of the system, the
next chapter introduces how, following the design proposed, this whole solution was
implemented.

97

Chapter 5

Implementation

This chapter addresses the implementation of the design detailed before. First, the
technical decisions will be presented, followed by a technical view of the software
developed. The next section explains how the software was tested by displaying some code
examples. Finally, a brief synopsis closes this chapter.

5.1 Technical Decisions

This section describes and justifies the decisions taken while developing Sensae Console.
As a greenfield project, Sensae Console lacks constraints imposed by prior work. As such,
all decisions have been taken during the thesis time span.

The following list unveils the most relevant technical decisions for Sensae Console:

• Backend Technologies Usage throughout the Solution;

• Frontend Technologies Usage through the Solution;

• Backend Services Expose a GraphQL API;

• Usage of RabbitMQ to support Internal Communication;

• Usage of Protocol Buffers in Internal Communication

• Database Usage throughout the Solution;

• Rules Script Engine;

• Data Decoders Script Engine;

• Usage of Github Actions for CI/CD.

The Containerization and Orchestration of services via Docker and Docker Compose,
along the usage of Nginx to serve the UI and API, are discussed in Appendix K.

5.1.1 Backend Technologies Usage throughout the Solution

The backend development is divided into three main areas:

• iot-core package;

• Data Flow Scope backend containers;

• Configuration and Business Applications Scope backend containers (named
General Backend Services).

98 Chapter 5. Implementation

In the following sub sections a brief description and justification of the technologies used is
presented.

5.1.1.1 Programming Language Used

A package named iot-core, an idealized SDK for Sensae Console, was developed to define
the information that flows inside the system and is served to Business Applications. The
iot-core package was developed in Java.

In the future, more programming languages may be supported though new SDKs. The
Rust programming language is the next candidate due to its low memory footprint, fast
startup times and expressive syntax.

The reasons that lead to the development of it in Java are:

• It’s the programming language that the author is most familiarized with;

• It is widely used in industry for backend service development;

• Vast and robust support for virtually any technology used for backend development:
database access, synchronous and asynchronous communication protocols, streaming
platforms, embedded caches, rule engines and script engines.

The development of iot-core in Java lead to the development of all backend services also
in Java.

5.1.1.2 General Backend Services

The services that this section encompasses can be seen as more robust and heavy due to
their associated requirements.

As such, the framework used to develop them was Spring Boot, due to its vast
documentation and big community. This framework comes with several modules that help
to easily create stand-alone, production-grade applications. The author also had previously
worked with this framework.

The main drawbacks of this framework are the slow start up time and high memory
consumption, since these are not ideal for the microservices/cloud world (Spring 2022).

5.1.1.3 Data Flow Scope Backend Services

As discussed in Section 4.1.2, the services that this section encompasses can be seen as
more lightweight than the ones described above due to their associated requirements.

Since these containers process inbound device data, they have a bigger need to
automatically scale. Since they need to react faster to throughput changes, their start up
times must be small.

As such, the framework used to develop them was Quarkus. This framework has first-class
support for GraalVM and a reactive execution model that allow for higher concurrency,
smaller memory footprint, and improved deployment density (redhat 2021) .

According to Oracle 2022b, GraalVM is a “high-performance JDK designed to accelerate
the execution of applications written in Java and other JVM languages while also providing
runtimes for JavaScript, Python, and a number of other popular languages. GraalVM

5.1. Technical Decisions 99

offers two ways to run Java applications: on the HotSpot JVM with Graal just-in-time
(JIT) compiler or as an ahead-of-time (AOT) compiled native executable. GraalVM’s
polyglot capabilities make it possible to mix multiple programming languages in a single
application while eliminating foreign language call costs.”

This features, coupled with the fact that the Quarkus architecture follows the The
Reactive Manifesto, are appealing when compared with Spring Boot that only has
experimental support for GraalVM, via Spring Native.

5.1.2 Frontend Technologies Usage through the Solution

Even though a micro frontend architecture empowers the selection of different
technologies depending on the requirements of the solution and team affinity with the
stack, the Frontend Containers were developed using the same technological stack. At the
time of writing there was only one developer involved, this diminished the cognitive load
needed to work on the solution while still allowing future collaborators to use different
frontend frameworks.

5.1.2.1 Programming Language and Framework Used

The author had previous contact with the following frameworks: (i) Angular, (ii) React,
and therefore no other tool was discussed when choosing the one to use in the solution.

The programming language used was Typescript since it is a strongly typed language and
therefore leads to more robust and predictable code. Static typing helps to avoid various
bugs that arise when using Javascript. Before transpiling Typescript code to Javascript, it
is analyzed to detect bugs related to type errors.

As for the framework/library used, the following table, Table 5.1, describes the reason that
lead the author to choose Angular over React.

Table 5.1: Technologies Comparison - Angular vs React

Framework/Library Angular React

Separation of User Interface
and Business Logic

enforced flexible

Language Requirements typescript javascript or typescript

Familiarity with the tool high medium

UI Component Libraries with wide
community support

material
ant design, material ui,
react bootstrap, semantic ui react

Both tools presented in Table 5.1 have a wide support from the community and excellent
documentation. For the author, Angular outclasses React in this project since it enforces
the use of good design principles via the first and second entry described in Table 5.1.

5.1.2.2 Technologies used to create a Micro Frontend Architecture

Module Federation was the tool used to seemly connect the various frontends. No other
tool was considered or researched since Angular already relies on Webpack 5 to bundle the

100 Chapter 5. Implementation

application and therefore it’s effortless to use this tool. Module Federation allows
programs to reference other programs parts that are not known at compile time. In
addition, the micro frontends can share libraries with each other, so that the individual
bundles do not contain any duplicates.

5.1.2.3 Technologies used to build and manage the Frontend Services

This section describes how the various frontends are built and share common pieces of
code. Angular comes with a tool to build and manage project but it was deemed too
minimal for this project. Instead, the tool used was Nx. Nx describes it self as a “Smart,
Fast and Extensible Build System”, the “Next generation build system with first class
monorepo support and powerful integrations”.

This tool provides features needed to manage multiple frontends in a single repository,
without dealing with libraries versions mismatch.

This tool has two main concepts that are widely used in the solution’s frontend: apps and
libraries. Apps focus on the UI and libraries on everything else, such as the domain or the
interactions with backend services. The diagram presented at Figure C.6 resembles these
two concepts.

5.1.2.4 Technologies used to provide map/location base services

This section briefly describes the library used to render and work with maps.

The two options in regards to this requirement were: (i) Google Maps and (ii) Mapbox GL
JS.

The author picked Mapbox GL JS due to better documentation, a more stable API, and a
much suitable pricing plan for small businesses, when compared to Google Maps.

This library can render custom maps and is bundled with powerful data visualization tools
with a simple to use API, two features deemed important for the solution.

5.1.3 Backend Services Expose a GraphQL API

The API discussed in this section refers to the interfaces exposed to the outside world by
backend containers of the Configuration and Business Applications Scopes and isn’t related
to the internal communication or device data ingestion interface exposed by the Data
Relayer Container.

The two approaches considered were: (i) Rest API and (ii) GraphQL.

According to Facebook 2022b, “GraphQL provides a complete and understandable
description of the data in your API, gives clients the power to ask for exactly what they
need and nothing more, makes it easier to evolve APIs over time, and enables powerful
developer tools.”

According to IBM 2021b, “REST APIs provide a flexible, lightweight way to integrate
applications, and have emerged as the most common method for connecting components
in microservices architectures.”

These two approaches have vast differences but they both try to answer the same
question: How should one expose internal data to the outside world?

5.1. Technical Decisions 101

Eizinger 2017, compares these two approaches under seven criteria: (i) operation
reusability, (ii) discoverability, (iii) component responsibility, (iv) simplicity, (v)
performance, (vi) interaction visibility and (vii) customizability.

GraphQL was the chosen approach mainly due to better operation reusability: “The
flexibility in the definition of the exactly returned data allows clients to tailor it for their
specific needs, thereby achieving highly reusable data retrieval operations.” and interaction
visibility: “With GraphQL featuring a declarative language, intermediaries capable of
understanding the GraphQL grammar can at least partly reason about the communication
between a client and a GraphQL server.”

Eizinger 2017, when discussing the complexity of each approaches also highlights that
“GraphQL makes fetching data in various ways really simple for the client.”

The idea behind the highly decoupled architecture of this solution derives from the need to
provide knowledgeable customers with the tools to easily design and incorporate their
solutions in Sensae Console. The usage of GraphQL further complements this idea by
providing an API that is simple to understand and consume.

5.1.4 Usage of RabbitMQ to support Internal Communication

As discussed in Sections 4.3.3 and 4.3.4, the technology needed for this solution had to
act as a message broker. It should enable the system to follow a push approach and ease
the complex routing model envisioned.

The technology chosen for internal communication was RabbitMQ. This message broker
was chosen in detriment of others since the author had previously worked with the
technology and, according to Dobbelaere and Esmaili 2017 “RabbitMQ would be a good
choice for realtime processing, based on the complex filtering the broker could provide”.

Dobbelaere and Esmaili 2017 also mentions that RabbitMQ would be best-suited to be the
Underlying Layer for IoT Applications Platform.

Under the AMQP 0.9.1 protocol, the exchange that better fits the defined requirements is
the Topic Exchange, due to the possibility to subscribe to specific messages depending on
their routing keys (as mentioned in Section 2.1.1.1.1).

When working with this protocol and type of exchange, some drawbacks were found:

When dealing with Topic Exchanges a Consumer can only subscribe to one specific routing
key or all at once - via the ’*’ keyword - this makes it complex to create routing keys with
dynamic values. As an example, lets look at the Channel routing key defined in Table 4.3
of Section 4.2.3.3. This key defines the single destination of a data unit. For a data unit
to have various dynamic service destinations there would be a need to either:

• Ensure that every single service subscribes to all relevant combinations of channels
possible, deemed impractical;

• Duplicate data units, where each copy would be assigned a different channel, deemed
inefficient.

To tackle this issue, another Message Broker, such as Pulsar, with its own protocol, can be
used in the future. This Message Broker answers the drawback describe above by allowing
Consumers to subscribe to multiple topics (equivalent to RabbitMQ’ routing keys) on the
basis of a regular expression (regex) (Pulsar - Multi-topic subscriptions).

102 Chapter 5. Implementation

The other drawback found is that, according to the Advanced Message Queuing Protocol
Specification, Version 0-9-1 the routing keys have a max size of 255 bytes. As described in
Table 4.3 of Section 4.2.3.3, the system currently supports various keys and more keys are
expected to be added in the future, meaning that this cap may one day be reached. This
limitation was tackled by mapping each routing key to a single character when possible. As
an example, the routing key Info Type Options in Table 4.3 has three possible values:
Encoded, Decoded and Processed, theses values are respectively represented in the system
as e, d and p.

5.1.5 Usage of Protocol Buffers in Internal Communication

This section refers to how messages that flow in the system (via Message Broker) are
serialized and deserialized. The common formats used to send structured data across
systems are JavaScript Object Notation (JSON) and Extensible Markup Language (XML).
This formats sacrifice size and de/serialization performance for human readability as stated
by Sumaray and Makki 2012.

As mentioned before, Sensae Console aims to provide a good developer experience for
external costumers that want to expand the solution according to their needs. Due to this,
the final decision weighted heavily on formats that were self-documented, e.g. defined by a
strict data schema, such as Protocol Buffers and “Thrift”.

These two technologies, Protocol Buffers and “Thrift”, have similar goals and approaches
to the problem they try to solve. They both rely on code generation based on a schema of
the data structure. The tools related to this formats officially support various languages
such as Java, C++, C#, Python, Go and others.

By leveraging these features, creating a basic SDK in a new programming language is
trivial since serialization, deserialization and data structure is already taken care by the
code generation tool.

Protocol Buffers are a “language-neutral, platform-neutral, extensible mechanism for
serializing structured data” (Google 2022f).

Thrift’s “primary goal is to enable efficient and reliable communication across programming
languages by abstracting the portions of each language that tend to require the most
customization into a common library that is implemented in each language” (Slee,
Agarwal, and Kwiatkowski 2007).

Protocol Buffers were chosen due to better documentation and community support.

5.1.6 Database Usage throughout the Solution

This section refers to how information is stored across the system and follows the terms
mentioned in Section 2.1.1.3.

The requirements gathered unveil the need to use three different database data models
throughout the system: (i) relational, (ii) document-based and (iii) column-based data
models. The following sections answer why these data models were needed and what
technologies were chosen for each of them. A final section unveils an optional solution
that was considered but ultimately not pursued.

Appendix L presents details related to how these databases are configured.

5.1. Technical Decisions 103

5.1.6.1 Relational Database Usage

This type of data, strict and with well-defined relations, can be found on most Bounded
Concerns described in Appendixes G (related to Section 4.2.2) and H (related to
Section 4.4).

As such, this data model was adopted for the Device Management Database, Data
Decoder Database, Data Processor Database, Rule Management Database, Identity
Management Database, Smart Irrigation Business Database and Notification
Management Database containers. The decision was based on the discussion in
Section 2.1.1.3.1.

The decision to use PostgresSQL was taken based on the fact that, contrary to the other
options, PostgresSQL supports a vast number of Data Types such as JSON, Arrays,
Universally unique identifier (UUID), and Ranges. PostgresSQL’s data model is an
extension of the relation data model, named object-relational data model - Elmasri et al.
2000. This data model supports various concepts such as objects, classes and inheritance
and therefore can lead to entity models more expressive and close to the business ideas.

5.1.6.2 Document-based Database Usage

The type of features of this data model resembles the requirements and data stored by the
Data Store container described in Section 4.1.2 and Figure 4.12. This container, intended
to mimic a Data Lake1, stores any type of data for future use.

As such, this data model was adopted for the Data Store Database container. The
decision was based on the discussion in Section 2.1.1.3.2.

The only technology considered, and therefore adopted, was MongoDB due to its vast
community, excellent documentation, open-source license and large number of libraries that
ease the database management operations. MongoDB also supports replication and
sharding. According to Elmasri et al. 2000, these features are useful once a single node
isn’t capable of withstanding all data collected while providing fast access to it.

5.1.6.3 Column-based Database Usage

The features mentioned in Section 2.1.1.3.3 fit the requirements related to storing and
reading vast amounts of device measures. As such, this database type was adopted for the
Fleet Management Database and Smart Irrigation Data Database containers.

The type of business this solution tackles revolves around the capture and analysis of
device readings. So the notion of time has to be treated as a first class citizen. The
measurements that constitute a time series are ordered on a timeline, which reveals
information about underlying patterns.

As stated by Naqvi, Yfantidou, and Zimányi 2017, TSDB “can be used to efficiently store
sensors and devices’ data” since, “such technologies are generating large amount of data
which is usually time-stamped”.

1Massively scalable storage repository that holds a vast amount of raw data in its native format (ńas isż)
until it is needed, by Miloslavskaya and Tolstoy 2016

104 Chapter 5. Implementation

With this requirements in hand, a column-based data model isn’t enough. The technology
adopted should also natively support time series to ease data analysis. As such, the HBase
and CassandraDB options were discarded.

Between the two missing options, the author picked QuestDB due to better support for
SQL though Java Database Connectivity (JDBC). During the research of this two
technologies no major downside was found for QuestDB when compared to InfluxDB.

The author had no previous contact with this type of data model.

5.1.6.4 Graph-based Database Usage

Even thought this data model was ultimately not used, the author deemed relevant to
analyze it.

As stated in the bounded concern’s section of Identity Management (Appendix G), the
domains follow a hierarchical structure that can resemble a graph. This concern in
particular would benefit from a graph-based database, but this option was not pursued
since the author had no previous contact with this family of technologies. Instead
PostgresSQL was used.

PostgresSQL can represent logical hierarchical structures and concepts using the array
data type as the path from the root domain to the current domain.

Queries that revolve around graph concepts such as: select parent node, select child nodes,
move nodes to a new parent and others, can be preformed efficiently using array operators
such as &&, || and @>2.

5.1.7 Rules Script Engine

This section refers to the bounded concern’s section of Rule Management (Appendix G).
As mentioned before, the purpose of this concern is to provide a high-level language that
can analyze a stream of Data Units and output alerts base on them. The technology
adopted was Drools.

Drools is a rule engine widely used in the industry (RedHat n.d.). The features that stud
out from other rule engines mentioned in 2.1.1.4 were:

• Open-source license;

• Support for sliding windows of time;

• It is also a CEP System;

• Integrates with the iot-core package since it is also written in Java;

• Can be used as a standalone application or an embedded component of another
application;

• Has an expressive, yet complex, syntax to write rules;

• Can dynamically load rules at runtime.

The Section 5.2.5 details how one can write rule scenarios.
2taken from PostgresSQL Documentation: Array Functions and Operators & Array Functions and Oper-

ators

5.1. Technical Decisions 105

5.1.8 Data Decoders Script Engine

This section refers to the bounded concern of Data Decoder. As mentioned in
Section G.2, the purpose of this concern is to translate inbound Data Units into a format
and semantics that the system can understand. The technology adopted was Javascript.

Javascript is a high level language with an enormous community and is widely used in the
industry. Another big reason behind this decision is that a lot of companies producing IoT
devices provide open-source decoders written in Javascript, such as Milesight 3,
SensationalSystems 4 and Helium, 5. This makes it easy and straightforward to integrate
new decoders in Sensae Console.

The Section 5.2.6 details how one can write decoders.

5.1.9 Usage of Github Actions for CI/CD

Since the code is hosted in Github, it was decided to leverage the CI/CD features of the
platform. Github Actions purpose is to automate software workflows via CI/CD.

According to RedHat 2022, the term CI/CD represents a method to delivering applications
to clients by introducing automation into the development states. It is divided into three
concepts:

• Continuous Integration: new versions of the project are regularly submitted, tested
and merged into the current project;

• Continuous Delivery: new versions of the project are automatically archived in a
repository where they can then be deployed to a production environment;

• Continuous Deployment: new versions of the project are automatically deployed to
a production environment.

The iot-core package is archived in a repository so that it can then be integrated in the
backend containers of Sensae Console, and possibly in other projects. To do so, the team
uses Github Actions. This tool’s behavior is defined in a YAML file, presented in the Code
Sample 5.1.

1 name : IoT Core − Cont i nuous D e l i v e r y to maven c e n t r a l
2 on :
3 push :
4 t a g s :
5 − ’ ∗∗ ’
6 − ’ ∗ ’
7 j o b s :
8 b u i l d :
9 runs −on : ubuntu − l a t e s t

10 s t e p s :
11 − u s e s : a c t i o n s / checkout@v2
12 − name : Set up Maven C e n t r a l R e p o s i t o r y
13 u s e s : a c t i o n s / setup − j a va@v1
14 w i t h :
15 j a v a − v e r s i o n : 17
16 s e r v e r − i d : o s s r h

3github.com/Milesight-IoT/SensorDecoders
4github.com/SensationalSystems
5github.com/helium/console-decoders

106 Chapter 5. Implementation

17 s e r v e r −username : MAVEN_USERNAME
18 s e r v e r −password : MAVEN_PASSWORD
19 gpg− p r i v a t e −key : ${{ s e c r e t s .MAVEN_GPG_PRIVATE_KEY }}
20 gpg−p a s s p h r a s e : MAVEN_GPG_PASSPHRASE
21 − name : Dep loy w i t h Maven
22 run : mvn −B c l e a n d e p l o y −Pci −cd
23 env :
24 MAVEN_USERNAME: ${{ s e c r e t s .OSSRH_USERNAME }}
25 MAVEN_PASSWORD: ${{ s e c r e t s .OSSRH_TOKEN }}
26 MAVEN_GPG_PASSPHRASE: ${{ s e c r e t s .MAVEN_GPG_PASSPHRASE }}

Listing 5.1: Configuration File for iot-core Continuous Delivery

Looking at Listing 5.1, in lines 2 to 6, one can see that action is triggered every time a
new git tag is pushed to the repository. This action then proceeds to download and setup
java and maven - lines 12 to 20. Finally it runs a maven command to deploy the new
version to the artifact repository - lines 21 to 26.

The Sensae Console has an action to deal with Continuous Integration - Code
Sample 5.2, where changes made to the software are tested.

1 name : Sensae Conso l e − Cont i nuous I n t e g r a t i o n − Test changes
2 on :
3 push :
4 b r an ch e s :
5 − maste r
6 − dev
7 j o b s :
8 t e s t :
9 runs −on : ubuntu − l a t e s t

10 s t e p s :
11 − u s e s : a c t i o n s / checkout@v3
12 − name : Set up JDK 17
13 u s e s : a c t i o n s / setup − j a va@v3
14 w i t h :
15 j a v a − v e r s i o n : "17"
16 d i s t r i b u t i o n : " adopt "
17 − name : Set up Node 16
18 u s e s : a c t i o n s / setup −node@v3
19 w i t h :
20 node− v e r s i o n : 16
21 − name : Test S u i t e
22 run : |
23 . / p r o j e c t / s c r i p t s / run − t e s t s . sh "${{ s e c r e t s . mapbox_token }}" "

↪→ ${{ s e c r e t s . m i c r o s o f t_aud i e n c e }}" "${{ s e c r e t s . goog l e_aud i ence
↪→ }}" "${{ s e c r e t s . admin_emai l }}"

Listing 5.2: Configuration File for Sensae Console Continuous Integration

Looking at Listing 5.2, in lines 2 to 6, one can see that the action is triggered every time a
new commit is push to the dev and master branches. This action then proceeds to
download and setup java and maven - lines 10 to 16, and then node and npm - lines 17 to
20. Finally it runs a script that tests the solution - line 23. The script requires the
displayed secrets to run some tests that will be discussed in the Testing Section.

The mentioned script, Code Sample 5.3, was developed in Bash and has the following
structure.

5.1. Technical Decisions 107

1 #!/ b i n / bash
2 s e t −eo p i p e f a i l
3

4 ROOT_DIR=$ (g i t rev −p a r s e −−show− t o p l e v e l)
5

6 cd "$ROOT_DIR"/ p r o j e c t | | e x i t
7

8 . / s c r i p t s / gene r a t e − t e s t − c o n f i g . sh "$@"
9

10 docker −compose − f docker −compose . b u i l d . yml b u i l d
11

12 rm −− f −− r e p o r t s / backend − t e s t −pa s s . l o g
13 rm −− f −− r e p o r t s / backend − t e s t − f a i l . l o g
14

15 cd backend − s e r v i c e s | | e x i t
16

17 l s − I data − r e l a y e r | x a r g s − I % sh −c ’ cd % && mvn t e s t && \
18 echo % >> . . / . . / r e p o r t s / backend − t e s t −pa s s . l o g | | \
19 echo % >> . . / . . / r e p o r t s / backend − t e s t − f a i l . l o g ’
20

21 t e s t ! − f . . / r e p o r t s / backend − t e s t − f a i l . l o g
22

23 cd . . / f r o n t e nd − s e r v i c e s | | e x i t
24

25 npm i n s t a l l
26 npm run t e s t − a l l
27

28 . / . . / s c r i p t s / b u i l d − images . sh
29

30 docker −compose − f . . / docker −compose . t e s t . yml up −d −− b u i l d
31

32 s l e e p 60
33

34 npm run e2e − a l l
35

36 docker −compose − f . . / docker −compose . t e s t . yml down

Listing 5.3: Sensae Console Test Suite Script

The script in Listing 5.3 first intent is to defined a basic environment where tests can be
run. The flag set -eo pipefail ensures that if any command fails the script will terminate
and exit with an error. It runs the following steps:

• Generate configurations - line 8 - to run every test according to the secrets provided
by the github action presented at Listing 5.2,

• Build the database containers - line 10. The file docker-compose.build.yml references
all the solution’s databases that need a custom build due to their predefined schema;

• Run the command mvn test for all backend containers and store the results of each
container’s test in a file - lines 17 to 19;

• Checks if any container didn’t pass the tests - line 15;

• Run tests related to the frontend at lines 23 to 26. The script mentioned as test-all
is: nx run-many –all –target=test. This script runs all unit tests of both frontend
libraries and apps using Nx, as mentioned in 5.1.2.3 Section;

108 Chapter 5. Implementation

• Build and start an environment similar to the production one - lines 28 to 32;

• Preform end to end tests against the test environment - 34. The script mentioned
as e2e-all is: nx run-many –all –target=e2e –parallel=1. This script runs all
end-to-end tests of the frontend apps using Nx, as mentioned in 5.1.2.3 Section;

• Shutdown the test environment.

5.2 Technical Description

This section guides the reader through Sensae Console and Business Applications with a
technical description of the various elements that are exposed to costumers and managers.
It describes the following topics:

• Sensae Console UI;

• Sensae Console Custom Maps;

• Sensae Console And Business Application Backend API;

• Sensae Console Data Ingestion Endpoint;

• Sensae Console Rule Engine;

• Sensae Console Data Decoders;

• Solutions - Business Applications;

• Sensae Console Device Integration.

5.2.1 Sensae Console UI

In this subsection the UI is presented.

The Figure 5.1 represents the main layout for any user. It is comprised of a toolbar with a
section for Service Pages, another for Configuration Pages and a final one for
authentication purposes.

Figure 5.1: Sensae Console Home Page

5.2. Technical Description 109

From the page displayed in Figure 5.1, if the user has sufficient permissions, he/she can
access configuration pages, as an example the Device Management Page is displayed in
Figure 5.2.

Figure 5.2: Sensae Console Device Management Page

From the page displayed in Figure 5.2 the user can see when was the last time a device
interacted with the platform, create/delete devices and edit the details of each device
according to the model presented in Section Device Management of Appendix G.

From the home page (Figure 5.1), if the UI Aggregator was configured to fetch business
applications, one can access those applications’ pages too, as an example the Smart
Irrigation Page is displayed in Figure 5.3. This page presents a map where the user can
see, search and create irrigation zones. Device measures are swiftly updated via
Websockets. The user can also see the irrigation zone details after clicking on it. From
there it’s possible to open/close valves an see the history of measures of each device.

Figure 5.3: Business Applications - Smart Irrigation Page

110 Chapter 5. Implementation

Other relevant pages are presented in the Appendix I, for Sensae Console, and Appendix J,
for the Business Applications developed.

5.2.2 Sensae Console Custom Maps

This section describes how custom maps where built to fit the solution needs. Some
costumers facilities were not present in the satellite view of Google Maps or Mapbox GL
JS. A custom map, with the missing facilities, was built using satellite images taken with a
drone. The images where processed with ArcGIS and transformed in .tiff files that could
be incorporated in the underlying satellite layer of Mapbox GL JS using the Mapbox Studio
tool.

The following image, Figure 5.4, presents the new map with one of the costumer’s
facilities in a greener tone than the rest of the map. This map was used to display three
greenhouses and a chicken farm that belong to a costumer.

This map is currently in use by the Smart Irrigation Business Application.

Figure 5.4: Business Applications - Smart Irrigation Page - Custom Map

The road trajectory mismatch visible in the map (Figure 5.4) can be reduced by taking
pictures from more angles. The ArcGIS tool would then be able to create a better model
since it can work with a wider pool of information.

5.2.3 Sensae Console And Business Application Backend API

The Sensae Console and Business Applications APIs are all served as a GraphQL API,
one for each configuration concern and business case. These APIs are described with a
GraphQL schema.

As an example the Smart Irrigation Business Application API schema is presented in the
Code Sample 5.4.

5.2. Technical Description 111

1 t ype S u b s c r i p t i o n {
2 data (f i l t e r s : L i v e D a t a F i l t e r , A u t h o r i z a t i o n : S t r i n g) : SensorData
3 }
4

5 t ype Query {
6 h i s t o r y (f i l t e r s : H i s t o r y Q u e r y F i l t e r s) : [S e n s o rDa t aH i s t o r y]
7 f e t c h I r r i g a t i o n Z o n e s : [I r r i g a t i o n Z o n e]
8 f e t c hL a t e s tDa t a (f i l t e r s : L a t e s t D a t a Q u e r y F i l t e r s) : [SensorData]
9 }

10

11 t ype Mutat ion {
12 c r e a t e I r r i g a t i o n Z o n e (i n s t r u c t i o n s : C r ea t e I r r i g a t i onZoneCommand) :

I r r i g a t i o n Z o n e
13 u p d a t e I r r i g a t i o n Z o n e (i n s t r u c t i o n s : Update I r r i ga t i onZoneCommand) :

I r r i g a t i o n Z o n e
14 d e l e t e I r r i g a t i o n Z o n e (i n s t r u c t i o n s : De l e t e I r r i g a t i onZoneCommand) :

I r r i g a t i o n Z o n e
15 sw i t c hV a l v e (i n s t r u c t i o n s : Va l v e sToSw i t ch) : Boo lean
16 }

Listing 5.4: Smart Irrigation API Schema

From the observation of Listing 5.4 one can see that:

• The data function serves new SensorData in real-time according to the filters
provided in the filters parameter;

• The data function uses Websocket to operate as a full duplex communication
channel. This spec, contrary to the HTTP spec does not account for HTTP
Headers, as such the JSON Web Token (JWT) that provides the user authentication
details has to be sent as a normal parameter and not as an Authorization HTTP
Header;

• There are three query type functions. One to fetch the history regarding Irrigation
Zones or Devices over a time span. One to fetch the Irrigation Zones. And the last
one to fetch the latest data of each device;

• There are four mutations, each corresponding to the use cases referenced in
Section 3.1.3.3.

5.2.4 Sensae Console Data Ingestion Endpoint

The Data Ingestion Endpoint refers to how device data is sent to Sensae Console.

The endpoint corresponds to an HTTP POST verb with the following Uniform Resource
Locator (URL) schema:

https://<ip>:<port>/sensor-data/{channel}/{infoType}/{deviceType}

The endpoint collects the request body and then forwards it with the appropriate routing
keys.

The routing keys are created according to Table 4.3. The infoType can have two values:
ENCODED or DECODED. Depending on this value the message is routed to Data
Decoder Flow or Data Processor Flow as described in Figure 4.12.

112 Chapter 5. Implementation

The channel parameter indicates the final service that it is destine to: fleet for Fleet
Management Service or irrigation for Smart Irrigation Service.

Finally, to ensure that the requests to this endpoint are trustworthy, a secret has to be sent
in the Authorization HTTP Header. This secret is defined as a configuration of the
Sensae Console, discussed in Section K.7.

5.2.5 Sensae Console Rule Engine

The rule engine can be accessed from the Rule Management Page of the UI and, as
stated in Rule Management Bounded Concern (Appendix G), it provides a high-level
language that can be used to detect anomalies in Data Units and turn them into Alerts.

Valid Data Units are captured by Alert dispatcher Backend and then inserted in the Rule
Engine.

As stated in Rules Script Engine, the rule engine used was Drools. To write rules for
Sensae Console one must follow several guidelines.

A Drools rule is composed by conditions, actions and facts.

Facts are inserted in the rule engine. If a fact or group of facts match a condition (when
section), an action is triggered (then section).

The rule engine, is tailored to managers or developers and not for final clients since it can
be hard to create meaningfully rules without side effects.

To clarify the guidelines the following Code Samples 5.5, 5.6 and 5.7 are presented.

The first Code Sample (Listing 5.5) presents the beginning of the rule scenario, where
imports and new Facts are created.

1 package r u l e s . p r o j e c t . two ;
2 // impo r t s (h i d d en f o r b r e v i t y)
3 g l o b a l pt . s h a r e s p o t . i o t . c o r e . a l e r t . model . A l e r t D i s p a t c h e r S e r v i c e

↪→ d i s p a t c h e r ;
4

5 d e c l a r e S toveSen so r
6 @ro l e (e v en t)
7 d e v i c e I d : UUID
8 end
9 d e c l a r e StoveSenso rData

10 @ro l e (e v en t)
11 d e v i c e I d : UUID
12 d a t a I d : UUID
13 t empe r a t u r e : F l o a t
14 hum i d i t y : F l o a t
15 end

Listing 5.5: Rule Scenario Example - Part 1

As we can seein Listing 5.5, at line 3 the interface that defines how an alert can be sent is
imported for later use. From line 5 to 15 two facts are declared, this can later be used as
simple Java POJOs. A fact defined with the event role means that it occurred at a
specific time (upon creation) and can be used for CEP.

The following code sample (Listing 5.6) presents a simple rule to store StoveSensorData
facts in the working memory of Drools.

5.2. Technical Description 113

1 r u l e " C o l l e c t s t o v e s e n s o r data t h a t b e l o n g s to P r o j e c t #002"
2 when
3 $d : DataUnitDTO (ge tSenso rData ()
4 . h a sP r o p e r t y (PropertyName .AIR_HUMIDITY_RELATIVE_PERCENTAGE) ,
5 ge tSenso rData () . h a sP r o p e r t y (PropertyName .TEMPERATURE)
6)
7 e x i s t s DeviceRecordEntryDTO (
8 l a b e l == " P r o j e c t " && con t en t == "#002"
9) from $d . d e v i c e . r e c o r d s

10 not (StoveSenso rData (d a t a I d == $d . d a t a I d))
11 then
12 StoveSenso rData r e a d i n g = new StoveSenso rData () ;
13 r e a d i n g . s e t D e v i c e I d ($d . d e v i c e . i d) ;
14 r e a d i n g . s e tDa t a I d ($d . d a t a I d) ;
15 r e a d i n g . s e tTempe ra tu r e ($d . ge tSenso rData () . t empe r a t u r e . c e l s i u s) ;
16 r e a d i n g . s e tHum i d i t y ($d . ge tSenso rData () . a i r H u m i d i t y

↪→ . r e l a t i v e P e r c e n t a g e) ;
17 i n s e r t (r e a d i n g)
18 end

Listing 5.6: Rule Scenario Example - Part 2

As we can see the rule inListing 5.6 is composed by two sections, the when and then
sections. In the when the following conditions are defined:

• The captured DataUnitDTO has AIR HUMIDITY RELATIVE PERCENTAGE and
TEMPERATURE measures - lines 3 to 6;

• The capture DataUnitDTO has a record with a "Project" label and "#002" content
- lines 7 to 9;

• The DataUnitDTO is not a duplicate fact in the working memory - line 10.

Once these conditions are meet a StoveSensorData is created with all the needed
information and then inserted into the working memory - lines 12 to 17.

The code sample in Listing 5.7 presents a rule that dispatches an Alert.

1 r u l e " D i s pa t ch Stove Alarm − Dry S o i l S c e n a r i o − P r o j e c t #002"
2 when
3 $s : S toveSenso rData (t empe r a t u r e > 26 , h um i d i t y < 50)
4 not (StoveSenso rData (t h i s != $s ,
5 t empe r a t u r e < 26 , h um i d i t y > 50 ,
6 t h i s a f t e r [0 s , 11m] $s)
7)
8 then
9 d i s p a t c h e r . p u b l i s h (A l e r t B u i l d e r . c r e a t e ()

10 . s e tCa t e g o r y (" i r r i g a t i o n ")
11 . s e tSubCa t ego r y (" d r y S o i l D e t e c t e d ")
12 . s e t D e s c r i p t i o n (" P r o j e c t #002 − Dev i c e "+

↪→ $s . d e v i c e I d +" d e t e c t e d low hum i d i t y / h i g h t empe r a t u r e ")
13 . s e t L e v e l (A l e r t L e v e l . ADVISORY)
14 . s e tCon t e x t (C o r r e l a t i o n D a t a B u i l d e r . c r e a t e ()
15 . s e t D e v i c e I d s ($s . d e v i c e I d) . b u i l d ())
16 . b u i l d ()) ;
17 end

Listing 5.7: Rule Scenario Example - Part 3

114 Chapter 5. Implementation

As we can see the rule in Listing 5.7 matches when the same device reports measures of
air humidity higher than 50% and temperature lower than 26 Celsius degrees for more than
11 minutes.

Once the rule is matched, an Alert is dispatched using the referenced dispatcher in Code
Sample 5.5. The alert can be created using the builder pattern.

An Alert closely resembles a Notification from the Notification Management Concern
(Appendix H). It also has a category (line 10), a sub category (line 11), a severity level
(line 13), and a description (line 12).

For an Alert to be sent at least the category and sub category parameters have to be set.
By default the INFORMATION severity level is used.

In order for services to act upon a received Alert, it has to be associated with a DeviceId
(this association helps services like Smart Irrigation to know what Valve must be turned
on or off), a DataId or Other.

An Alert is later transformed and store as a Notification, the DeviceIds associated to it are
used to determine what domains will have access to the Notification. If no DeviceIds are
associated only the root domain will have access to it.

5.2.6 Sensae Console Data Decoders

As mentioned in the Data Decoder Concern Section (Appendix G), Data decoder’s
purpose is to provide a flexible option to transform inbound data units into something that
the system understands.

This happens when a Data Unit has a routing key with the ENCODED info type.

There are certain guidelines to follow in order to create a decoder:

• Has to be written in vanilla javascript;

• Has to have an entry function with the following signature function
convert(dataUnit);

• Can’t import any node function, npm package or reference other scripts.

As an example, the Code Sample 5.8 presents the decoder for the device type EM500-TH6.

1 con s t decodePay l oad = (pay l oad , p o r t) =>
2 ({ "0" : d e code r (base64ToHex (p a y l o a d) , p o r t) }) ;
3

4 con s t base64ToHex = (() => {
5 // hidden for bevity
6 }) () ;
7

8 f u n c t i o n decode r (by te s , p o r t) {
9 l e t decoded = {} , t empe r a t u r e = {} , a i r H u m i d i t y = {} , b a t t e r y = {} ;

10 f o r (l e t i = 0 ; i < b y t e s . l e n g t h ;) {
11 l e t channe l_ i d = b y t e s [i ++] ;
12 l e t channe l_type = b y t e s [i ++] ;
13 i f (c hanne l_ i d === 0x01 && channe l_type === 0x75) {
14 decoded . b a t t e r y = b a t t e r y ;
15 b a t t e r y . p e r c e n t a g e = b y t e s [i] ;

6Milesight EM300-TH Decoder

5.2. Technical Description 115

16 i += 1 ;
17 } e l s e i f (channe l_ i d === 0x03 && channe l_type === 0x67) {
18 decoded . t empe r a t u r e = t empe r a t u r e ;
19 t empe r a t u r e . c e l s i u s = r ead I n t 16LE (b y t e s . s l i c e (i , i +2)) /10 ;
20 i += 2 ;
21 } e l s e i f (channe l_ i d === 0x04 && channe l_type === 0x68) {
22 decoded . a i r H u m i d i t y = a i r H u m i d i t y ;
23 a i r H u m i d i t y . r e l a t i v e P e r c e n t a g e = b y t e s [i] / 2 ;
24 i += 1 ;
25 } e l s e {
26 b r eak ;
27 }
28 }
29 r e t u r n decoded ;
30 }
31 con s t readUInt16LE = b y t e s => (b y t e s [1] << 8) + b y t e s [0] & 0 x f f f f ;
32

33 f u n c t i o n r e ad I n t 16LE (b y t e s) {
34 l e t r e f = readUInt16LE (b y t e s) ;
35 r e t u r n r e f > 0 x 7 f f f ? r e f − 0 x10000 : r e f ;
36 }
37 con s t c o n v e r t = da t aUn i t => ({
38 d a t a I d : d a t aUn i t . uu id ,
39 r e p o r t e dA t : d a t aUn i t . r epo r ted_at ,
40 d e v i c e : {
41 i d : d a t aUn i t . i d ,
42 name : d a t aUn i t . name ,
43 down l i n k : d a t aUn i t . down l i n k_u r l ,
44 } ,
45 measures : decodePay load (d a t aUn i t . pay l oad , d a t aUn i t . p o r t) ,
46 }) ;

Listing 5.8: EM300-TH Data Decoder Example

As we can see, the code sample in Listing 5.8 decodes an EM300-TH Data Unit. The
function convert is the one mentioned in the guidelines, it assigns values such as id, name,
reported_at, downlink_url, uuid to its correct place and calls the function decodePayload
to gather the device measures. The decodePayload stores every measure in the controller
key - value 0. The function base64ToHex is the function that reads a Base 64 string and
transforms it into a Hex Array - to reduce bandwidth the device normally encodes and
sends data as a base 64 string. The function decoder, readInt16LE and readUInt16LE
were adapted from the TTN decoder7 of this device.

5.2.7 Solutions - Business Applications

This section discusses how business applications interact with the Sensae API, this was
briefly mentioned in Section 4.2.3.3.

In order to provide an easy to understand integration with the platform, the routing keys
concept was introduced. The idea, from the point of view of someone developing a service,
is to start by defining what type of information that service should capture.

The two types of information a service usually needs are: (i) Data Units and (ii) Alerts.
Each of this information are defined by their routing keys as described in Table 4.3.

7Milesight EM300-TH Decoder

116 Chapter 5. Implementation

A service can also publish Commands to interact with actuators.

The following sub sections will detail each service information needs.

5.2.7.1 Fleet Management Service

The focus of this service was to simply collect the location of the costumers’ fleet since
the company was given no permission to access the vehicles’ On-board diagnostics (OBD)
System. Access to the OBD System would provide a deeper knowledge regarding the
vehicles’ conditions.

Therefore, this service captures information of a single type (and doesn’t publish any
Command):

Data Topic: ’processed’, ’correct’, with ’defined ownership’ and ’device information’ data
unit with ’gps’ readings in the channel ’fleet’.

At a high-level view, this service only requires Global Positioning System (GPS) data sent
to the ’fleet’ channel.

5.2.7.2 Notification Management Service

The focus of this service was to simply showcase and dispatch the alerts sent by Sensae
Console. A simple rule scenario for Indoor Fire Detention was then created based on tests
performed on a costumer’s facilities (Appendix O). The rule scenario was based on the
following metrics: CO2 Particle per Million (PPM), Air humidity and Air Temperature.

This service captures information of a single type (and doesn’t publish any Command):

Alert Topic: alerts with ’defined ownership’.

At a high-level view, this service requires all alerts that already have a ’defined ownership’.

It is divided in two backend containers (as described in Figure 4.34) that subscribe to the
same information but handle it differently.

5.2.7.3 Smart Irrigation Service

The focus of this service was on the two most common types of agriculture mentioned in
literature, outdoor and greenhouse, according to Garca et al. 2020.

The Greenhouse agriculture type collects two measures: (i) Air Temperature and (ii) Air
Humidity, the Outdoor agriculture also collects two measures: (i) Luminosity and (ii) Soil
Moisture. Both rely on a irrigation system that can be activated and deactivated remotely,
like a simple switch, to regulate the monitured environment.

The measures to capture were chosen according to costumers’ sugestions and Garca et al.
2020 that states that the Soil moisture, Air Temperature, Air Humidity and Luminosity
parameters are the most common monitured parameters in papers that propose an
irrigation system.

This service captures information of the given types:

• Data Topic: ’processed’, ’correct’, with ’defined ownership’ and ’device information’
data unit with ’gps’ and ’trigger’ readings in the channel ’irrigation’ (for valves);

5.2. Technical Description 117

• Data Topic: ’processed’, ’correct’, with ’defined ownership’ and ’device information’
data unit with ’gps’, ’temperature’ and ’air humidity’ readings in the channel
’irrigation’ (for green house sensors);

• Data Topic: ’processed’, ’correct’, with ’defined ownership’ and ’device information’
data unit with ’gps’, ’illuminance’ and ’soil moisture’ readings in the channel
’irrigation’ (for park sensors);

• Alert Topic: alerts with the category ’smartIrrigation’ and sub category ’drySoil’ (to
open all valves in a garden);

• Alert Topic: alerts with ’defined ownership’, the category ’smartIrrigation’ and sub
category ’moistSoil’ (to close all valves in a garden);

• Alert Topic: alerts with ’defined ownership’, the category ’smartIrrigation’ and sub
category ’valveOpenForLengthyPeriod’ (to close that specific valve).

It then publishes Commands to close or open valves. The service can only issue a
command if the Data Unit sent by the valve refers two commands, one to open and
another to close the valve. This commands, usually defined in the Device Management
Page, and mentioned in the Device Management Concern (Appendix G), need to have the
CommandId value as ’openValve’ or ’closeValve’.

At a high-level view, this service requires data from Park sensors, Green Houses and Valves
that flow in the ’irrigation’ channel. It captures Alerts to decide when to open or close
Valves by sending specific Commands.

5.2.8 Sensae Console Device Integration

This section describes how devices can be connected to Sensae Console. As stated in
Section 3.2, the service that must be used to communicate with devices is Helium
Console. This solution works with other platforms, such as Azure IoT Hub, since it
provides an agnostic data ingestion endpoint as stated in Section 5.2.4.

Virtually any device can be integrated, via Helium Console, with Sensae Console. To do
so, one needs to register new devices in Helium Console, for example via Over the Air
Authentication (OTAA). Then create a Custom HTTP Integration, following the
Section 5.2.4 instructions.

The Figure 5.5 presents an example of the custom integration for the EM300-TH Device.

Finally, in the Helium Console flows page, connect the registered device to the custom
integration.

This method will require the user to register the endpoint with the encoded type and write
a Data Decoder in Sensae Console to translate the payload sent by the device through
Helium Console.

If the user intends to use the Data Processor, he/she needs to:

• Register the endpoint with the decoded type;

• Define a Data Processor in Sensae Console to map the payload sent by Helium
Console;

• Write the decoder in Helium Console - in the Function page;

118 Chapter 5. Implementation

Figure 5.5: Helium - Custom Integration Page

• Link the device to the Function in Helium Console;

• Link the Function to the custom integration;

5.3 Testing

According to W. E. Lewis 2008: “Software testing is the activity of running a series of
dynamic executions of software programs after the software source code has been
developed.” Tests have a fundamental role in the development of software, they validate
the work done, prevent production bugs, regressions and improve code quality, according to
Hughes 2017 and IBM 2022a.

According to Pittet 2022 there are seven categories of tests:

• Unit Testing: Capture the need to verify and validate the individual behavior of
small pieces of the solution.

• Integration Testing: Capture the need to verify that different modules/components
of the system work collectively as expected;

• Functional Testing: Capture the need to verify that business requirements are meet
by the system;

• End-to-End Testing: Capture the need to verify that user interaction against
common workflows works as expected in the system;

• Acceptance Testing: Capture the need to ensure that functional and non-functional
requirements are accomplished;

• Performance Testing: Capture the need to verify how the environment behaves
under heavy load. Their objective is to evaluate the stability, availability and
reliability of the system;

5.3. Testing 119

• Smoke Testing: Capture the need to verify the overall state of the system before
running heavier and extensive tests.

These categories complement each other to ensure the correct behavior of the system.
Nevertheless, the Smoke and Acceptance Testing categories were not pursuit.

The smoke tests were replaced by common unit tests. The acceptance tests weren’t
required since, at the time of writing, the project had no clear and concise functional
requirements that the platform could be tested against.

Architectural tests were added to the test suite to ensure that the C4 component level
design discussed in AppendixC would always be respected.

The performance tests will be discussed in depth in the Evaluation Chapter.

In the following sections examples for each test category will be presented.

5.3.1 Unit Tests

This section focus on unit tests preformed throughout the solution.

The test presented in Listing 5.9 verifies that a value referenced via the path ’path[0].prop’
can be found and transferred to the path defined in the mentioned Property: DEVICE_ID.
It uses the JUnit5 Testing Framework.

1 @Test
2 v o i d e n s u r eT r an s f e rWo r k sW i t hVa l i dA r r a yPa t h () th rows

↪→ J s o nP r o c e s s i n gE x c e p t i o n {
3 v a r j sonNode = mapper . r eadTree ("""
4 {
5 " path " : [
6 {" prop " : " v i v a "}
7]
8 }
9 """) ;

10 v a r ob j e c tNode = mapper . c r e a t eOb j e c tNode () ;
11

12 new KnownPrope r t yTrans fo rmat i on (
13 " path [0] . p rop " , PropertyName . DEVICE_ID , 2)
14 . t r a n s f e r (j sonNode , ob j e c tNode) ;
15

16 A s s e r t i o n s . a s s e r t E q u a l s (" v i v a " ,
17 ob j ec tNode . ge t (" d e v i c e ") . ge t (" i d ") . asText ()) ;
18 }

Listing 5.9: Unit Test Example in iot-core package

The test presented in Listing 5.10 verifies that a user with the appropriate permissions can
fetch a decoder and the last time it was used. This test relies on database access to fetch
decoders and access to an RSA file to verify the authenticity of the user’s access token.
Since this is a unit test and its responsibility is not to verify the solution integration, it
mocks the classes that access the mentioned resources using the Mockito Testing
Framework.

This test only verifies the isolated behavior of the service DataDecoderCollectorService -
line 14. Other classes - lines 2, 5, 8 and 11 - needed by the service, are mocked and then
injected in it with the annotation @InjectMocks.

120 Chapter 5. Implementation

1 @Mock
2 Dat aDecod e rCo l l e c t o r c o l l e c t o r ;
3

4 @Mock
5 DataDecoderMapper mapper ;
6

7 @Mock
8 TokenEx t r a c to r tokenEx t ;
9

10 @Mock
11 Las tT imeSeenDecode rRepos i t o r y r e p o s i t o r y ;
12

13 @In j e c tMocks
14 Da t aDe c o d e rC o l l e c t o r S e r v i c e s e r v i c e ;
15

16 @Test
17 v o i d ensu reSe rv i ceWorksWhenUse rHasPermi s s i onsAndDecode rWasNeve rUsed () {
18 v a r decode r = CommonObjectsFactory . dataDecode r () ;
19

20 Mock ito . when (tokenEx t . e x t r a c t (Mock i to . any (AccessTokenDTO . c l a s s)))
21 . t h enRe tu rn (CommonObjectsFactory . v a l i d T e n a n t I n f o ()) ;
22 Mock ito . when (c o l l e c t o r . c o l l e c t ()) . t h enRe tu rn (Stream . o f (decode r)) ;
23

24 v a r l i s t = s e r v i c e . c o l l e c t A l l (new FakeAccessTokenDTO ()) . t o L i s t () ;
25

26 Mock ito . v e r i f y (tokenExt , Mock i to . t ime s (1))
27 . e x t r a c t (Mock i to . any (AccessTokenDTO . c l a s s)) ;
28 Mock ito . v e r i f y (c o l l e c t o r , Mock i to . t ime s (1)) . c o l l e c t () ;
29 Mock ito . v e r i f y (mapper , Mock i to . t ime s (1)) . domainToDto (decoder , 0L) ;
30

31 A s s e r t i o n s . a s s e r t E q u a l s (l i s t . s i z e () , 1) ;
32 }

Listing 5.10: Unit Test - Data Decoder Backend Container

The Listing 5.11 presents some tests that verify the behavior of DeviceCommand. This
test relies in the Jest Testing Framework.

1 d e s c r i b e (’Device Command Unit Test ’ , () => {
2 i t (’should deep clone every single parameter ’ , () => {
3 con s t deviceCommand =
4 new DeviceCommand (’openValve ’ , ’openValve ’ , ’ldcn ’ , 0 , 70) ;
5 con s t c l o n e = deviceCommand . c l o n e () ;
6 e xp e c t (c l o n e . i d) . toBe (deviceCommand . i d) ;
7 e xp e c t (c l o n e . name) . toBe (deviceCommand . name) ;
8 e xp e c t (c l o n e . r e f) . toBe (deviceCommand . r e f) ;
9 e xp e c t (c l o n e . p a y l o a d) . toBe (deviceCommand . p a y l o a d) ;

10 e xp e c t (c l o n e . p o r t) . toBe (deviceCommand . p o r t) ;
11 }) ;
12 i t (’should be invalid when it has no id ’ , () => {
13 con s t deviceCommand =
14 new DeviceCommand (’’ , ’openValve ’ , ’ldcn ’ , 0 , 70) ;
15 e xp e c t (deviceCommand . i s V a l i d ()) . t oBeFa l s y () ;
16 }) ;
17 }) ;

Listing 5.11: Unit Test - Device Management Frontend Model Library

5.3. Testing 121

5.3.2 Integration Tests

This section, as an example, describes the integration tests preformed in the Device
Ownership Flow Container and then moves on to Notification Management Backend.

The tool used to ease the formulation of integration tests was Test Containers. This tool
uses docker to fabricate the needed environment where integration tests can run. It is
responsible for automatically starting and shuting down the containers needed to
performed this tests.

The code in Listing 5.12 verifies that the message broker can be reached by Device
Ownership Flow.

1 @QuarkusTest
2 c l a s s D e v i c e I n f o rma t i o nEm i t t e rT e s t {
3

4 @ I n j e c t
5 De v i c e I n f o rm a t i o n Em i t t e r e m i t t e r ;
6

7 @ I n j e c t
8 Rou t i n gKe y sP r o v i d e r p r o v i d e r ;
9

10 @ I n j e c t
11 @Any
12 InMemoryConnector c onne c t o r ;
13

14 @Test
15 v o i d tes tEmit te rCanReachRabb i tMQ () {
16 v a r unknown = p r o v i d e r
17 . g e t I n t e r n a l T o p i c B u i l d e r (Rou t i n gKe y sBu i l d e rOp t i o n s . SUPPLIER)
18 . w i t hCon t a i n e rType (Con ta i n e rTypeOpt i on s . IDENTITY_MANAGEMENT)
19 . w i thContex tType (Contex tTypeOpt ions . DEVICE_IDENTITY)
20 . w i t hOpe ra t i onType (Ope ra t i onTypeOpt i on s .UNKNOWN)
21 . b u i l d ()
22 . o rE l s eThrow () ;
23

24 v a r d e v i c e I d = De v i c e I d . o f (UUID . randomUUID ()) ;
25

26 e m i t t e r . n e x t (new Dev i ceTop icMessage (d e v i c e I d , unknown)) ;
27

28 v a r p a y l o a d = conne c t o r . s i n k (" eg r e s s −de v i c e −owne r s h i p ")
29 . r e c e i v e d () . ge t (0) . g e tPay l o ad () ;
30

31 A s s e r t i o n s . a s s e r t N o t N u l l (p a y l o a d) ;
32 }
33 }

Listing 5.12: Integration Test - Message Broker - Device Ownership Flow

In Listing 5.12, a RabbitMQ instance, the only system that this container depends on, is
started by the Test Containers library before running the tests and shuted down once they
end.

The class tested is DeviceInformationEmitter, line 5. As we can see, a message is sent in
line 26 and, as expected it is received in line 28.

The code in Listing 5.13 verifies that the database can be reached by the Notification
Management Backend.

122 Chapter 5. Implementation

1 p u b l i c c l a s s N o t i f i c a t i o n R e p o s i t o r y I m p l T e s t e x t e n d s I n t e g r a t i o n T e s t {
2

3 @Autowi red
4 N o t i f i c a t i o n R e p o s i t o r y I m p l r e p o s i t o r y ;
5

6 @Test
7 p u b l i c v o i d ensureDatabaseCanBeReached () {
8 v a r s i n g l e = Domains . s i n g l e (DomainId . o f (UUID . randomUUID ())) ;
9 v a r t ype = ContentType . o f ("a" , "a" , N o t i f i c a t i o n L e v e l . CRITICAL) ;

10 v a r que r y = N o t i f i c a t i o n B a s i c Q u e r y . o f (s i n g l e , L i s t . o f (t ype)) ;
11 A s s e r t i o n s . asse r tDoesNotThrow (() −> r e p o s i t o r y . f i n d (que r y)) ;
12 }
13 }

Listing 5.13: Integration Test - Database - Notification Management
Backend

This test (Listing 5.12) verifies that the NotificationRepositoryImpl can reach the
database by ensuring that no exception is thrown when executing a query to it. This class
extends IntegrationTest, the behavior of it is similar to the IntegrationTest class discussed
in the next section.

5.3.3 Functional Tests

This section, as an example, starts to focus on functional tests performed in the Data
Decoder Backend. Other service and configuration scope backend containers rely on
similar tests.

The tool used to ease the formulation of functional tests was, once again, Test
Containers. Contrary to Quarkus, Spring Boot doesn’t provide a ready to use environment
according to the application needs, for that reason, the following Listings 5.14 and 5.15
present the needed setup to run functional tests using Test Containers and Spring Boot.

1 p u b l i c c l a s s Da taba s eCon t a i n e rTe s t e x t e n d s
↪→ Postg reSQLConta ine r <Databa seConta i n e rTes t > {

2

3 p r i v a t e s t a t i c f i n a l S t r i n g IMAGE_VERSION = "data −decoder −da t aba s e " ;
4 p r i v a t e s t a t i c Da t aba s eCon t a i n e rTe s t c o n t a i n e r ;
5

6 p r i v a t e Da taba s eCon t a i n e rTe s t () {
7 s u p e r (DockerImageName . p a r s e (IMAGE_VERSION)
8 . a s C ompa t i b l e S u b s t i t u t e F o r (" p o s t g r e s : 1 4 . 5 ")) ;
9 }

10

11 p u b l i c s t a t i c Da taba s eCon t a i n e rTe s t g e t I n s t a n c e () {
12 i f (c o n t a i n e r == n u l l)
13 c o n t a i n e r = new Databa s eCon t a i n e rTe s t () . w i thPas sword (" sa ")
14 . w i thUsername (" u s e r ")
15 . w i thEnv ("POSTGRESQL_USER" , " u s e r ")
16 . w i thEnv ("POSTGRESQL_PASSWORD" , " sa ")
17 . w i t hExpo s edPo r t s (Pos tg reSQLConta i ne r .POSTGRESQL_PORT) ;
18 r e t u r n c o n t a i n e r ;
19 }
20 }

Listing 5.14: Functional Test - Message Broker - Data Decoder Backend
Setup

5.3. Testing 123

The DatabaseContainerTest in Listing 5.14 follows the Singleton Pattern to ensure that
all tests use the same instance. In line 8 we can see that the base image is PostgresSQL,
but the image actually used is data-decoder-database. This image is PostgresSQL with the
data decoder schema and built in line 11 of the script referenced in Listing 5.3. The same
notion is applied for the Message Broker Container. Theses two containers are the ones
that Data Decoder Backend depends on.

The Listing 5.15 presents the foundation of functional and integration tests.

1 @Spr ingBootTest
2 @Te s t c o n t a i n e r s
3 @Con t e x tCon f i g u r a t i o n (i n i t i a l i z e r s =

↪→ { I n t e g r a t i o n T e s t . I n i t i a l i z e r . c l a s s })
4 @ A c t i v e P r o f i l e s (p r o f i l e s = " t e s t ")
5 p u b l i c a b s t r a c t c l a s s I n t e g r a t i o n T e s t {
6 s t a t i c c l a s s I n i t i a l i z e r imp l ement s
7 A p p l i c a t i o n C o n t e x t I n i t i a l i z e r <C o n f i g u r a b l e A p p l i c a t i o n C o n t e x t > {
8 p u b l i c v o i d i n i t i a l i z e (C o n f i g u r a b l e A p p l i c a t i o n C o n t e x t c o n t e x t) {
9 db . withDatabaseName (" decode r ") ;

10 Te s tP r o p e r t yVa l u e s . o f (
11 " s p r i n g . d a t a s o u r c e . u r l =" + db . g e t J d b cU r l () ,
12 " s p r i n g . d a t a s o u r c e . username=" + db . getUsername () ,
13 " s p r i n g . d a t a s o u r c e . pas sword=" + db . ge tPassword () ,
14 " s p r i n g . r abb i tmq . ho s t=" + mb . ge tHos t () ,
15 " s p r i n g . r abb i tmq . p o r t=" + mb . getAmqpPort () ,
16 " s p r i n g . r abb i tmq . username=" + mb . getAdminUsername () ,
17 " s p r i n g . r abb i tmq . pas sword=" + mb . getAdminPassword ()
18) . app lyTo (c on t e x t . g e tEnv i r onmen t ()) ;
19 }
20 }
21

22 @Conta i ne r
23 p u b l i c s t a t i c Postg reSQLConta ine r <?> db =
24 Databa s eCon t a i n e rTe s t . g e t I n s t a n c e () ;
25

26 @Conta i ne r
27 p u b l i c s t a t i c Rabb i tMQConta iner mb =
28 MessageBroke rCon ta i n e rTe s t . g e t I n s t a n c e () ;
29

30 p r o t e c t e d R e s u l t S e t pe r fo rmQuery (S t r i n g s q l) th rows SQLExcept ion {
31 DataSource ds = getDataSource (po s t g r e sSQLCon ta i n e r) ;
32 Statement s t a t emen t = ds . g e tConne c t i o n () . c r e a t eS t a t emen t () ;
33 s t a t emen t . e x e c u t e (s q l) ;
34 Re s u l t S e t r e s u l t S e t = s t a t emen t . g e tR e s u l t S e t () ;
35

36 i f (r e s u l t S e t != n u l l) r e s u l t S e t . n e x t () ;
37

38 r e t u r n r e s u l t S e t ;
39 }
40 }

Listing 5.15: Functional Test - Foundation - Data Decoder Backend Setup

As presented in Listing 5.15, the application environment properties are loaded in line 10
to 18 according to the containers used. The @SpringBootTest annotation indicates that
the full application has to be started, the @TestContainers and @Container annotations
indicate that docker containers are to be used, and the @ActiveProfiles annotation
changes the profile in use so that specific beans are not loaded.

124 Chapter 5. Implementation

The following sample, Listing 5.16, presents a functional test related to the database.

1 p u b l i c c l a s s Da t aDecode r sRepo s i t o r y Imp lTe s t e x t e n d s I n t e g r a t i o n T e s t {
2

3 @Autowi red
4 DataDecod e r sRepo s i t o r y Imp l r e p o s i t o r y ;
5

6 @AfterEach
7 p u b l i c v o i d c l eanUp () th rows SQLExcept ion {
8 pe r fo rmQuery ("TRUNCATE decode r ") ;
9 }

10

11 @Test
12 p u b l i c v o i d ensureSavedDecoderCanBeFound () th rows SQLExcept ion {
13 v a r que r y = "INSERT INTO decode r (dev i ce_type , s c r i p t) "
14 + "VALUES (’ l g t 9 2 ’ , ’ ascma ’) " ;
15 pe r fo rmQuery (que r y) . c l o s e () ;
16

17 v a r found = r e p o s i t o r y . f i n d B y I d (Sen so rType I d . o f (" l g t 9 2 "))
18 . o rE l s eThrow () ;
19

20 A s s e r t i o n s . a s s e r t E q u a l s (" l g t 9 2 " , found . i d () . v a l u e ()) ;
21 A s s e r t i o n s . a s s e r t E q u a l s ("ascma" , found . s c r i p t () . v a l u e ()) ;
22 }
23 }

Listing 5.16: Functional Test - Database Interaction - Data Decoder Backend

As we can see in Listing 5.16, the test extends the foundation described before. In line 4
the service to be tested, DataDecodersRepositoryImpl, is loaded. In the test presented a
new Data Decoder is stored directly in the database and then the repository service
attempts to fetch it. A database clean up is preformed after each test as described in lines
6 to 9.

The test presented in Listing 5.17, verifies the correct interaction with the message broker
container.

1 p u b l i c c l a s s Da t aDecode r I n f oEm i t t e rTe s t e x t e n d s I n t e g r a t i o n T e s t {
2

3 @Autowi red
4 DataDecode rHand l e r S e r v i c e p u b l i s h e r ;
5

6 @Autowi red
7 Rabb i tAdmin r abb i tAdm in ;
8

9 @Autowi red
10 Rabb i tTemp la te amqpTemplate ;
11

12 @Autowi red
13 Rou t i n gKe y sP r o v i d e r p r o v i d e r ;
14

15 @BeforeEach
16 p u b l i c v o i d i n i t () {
17 i f (r a bb i tAdm in . g e tQueue I n f o (" i n f o ") == n u l l) {
18 v a r s u p p l i e r B u i l d e r = Rou t i n gKe y sBu i l d e rOp t i o n s . SUPPLIER ;
19 v a r k e y s = p r o v i d e r
20 . g e t I n t e r n a l T o p i c B u i l d e r (s u p p l i e r B u i l d e r)
21 . w i thContex tType (Contex tTypeOpt ions .DATA_DECODER)
22 . w i t hCon t a i n e rType (Con ta i n e rTypeOpt i on s .DATA_DECODER)

5.3. Testing 125

23 . w i t hOpe ra t i onType (Ope ra t i onTypeOpt i on s . INFO)
24 . b u i l d () . o rE l seThrow () ;
25 v a r queue = QueueBu i l d e r . d u r a b l e (" i n f o ") . b u i l d () ;
26 r a bb i tAdm in . d e c l a r eQueue (queue) ;
27 r a bb i tAdm in . d e c l a r e B i n d i n g (B i n d i n g B u i l d e r . b i n d (queue)
28 . to (new Top icExchange (IoTCoreTop ic . INTERNAL_EXCHANGE))
29 . w i t h (k e y s . t o S t r i n g ())) ;
30 }
31 }
32

33 @Test
34 p u b l i c v o i d en su r eNewDecode r I sSen tAsExpec t ed () {
35 p u b l i s h e r . p u b l i s hUpd a t e (new DataDecoder (
36 Senso rType I d . o f (" l g t 9 2 ") , S e n s o rTyp eSc r i p t . o f ("asmc"))) ;
37

38 v a r dto = (DataDecode rNot i f i c a t i onDTOImp l)
39 amqpTemplate . r e c e i v eAndCon v e r t (" i n f o ") ;
40

41 v a r t ype = DataDecode rNot i f i ca t i onTypeDTOImp l .UPDATE;
42

43 A s s e r t i o n s . a s s e r t E q u a l s (type , dto . t ype) ;
44 A s s e r t i o n s . a s s e r t E q u a l s (" l g t 9 2 " , dto . s en so rType) ;
45 A s s e r t i o n s . a s s e r t E q u a l s ("asmc" , dto . i n f o r m a t i o n . s c r i p t) ;
46 }
47 }

Listing 5.17: Functional Test - Message Broker Interaction - Data Decoder
Backend

In this test (Listing 5.17) the class to verify is the DataDecoderHandlerService. Once
again this test extends the IntegrationTest class. Using RabbitAdmin, its created a queue
that subscribes to the expected type of routing keys in lines 18 to 29 and then binded to
the expected topic - INTERNAL_TOPIC. An update is published in line 35 using the
DataDecoderHandlerService and then captured with RabbitTemplate in line 38.

The Data Gateway Container was tested against different POST requests to its data
retention endpoint, an example of this tests is described in Listing 5.18.

1 @QuarkusTest
2 c l a s s Da t aCon t r o l l e rT e s t {
3

4 @Test
5 p u b l i c v o i d t e s t I n f oT y p eD e t e c t i o n () {
6 v a r e r r o rTyp e = " I n f o Type must be o f v a l u e encoded o r decoded " ;
7 g i v e n () . when ()
8 . a c c ep t (ContentType . JSON)
9 . contentType (ContentType . JSON)

10 . h e ade r (" A u t h o r i z a t i o n " , " pa s s ")
11 . po s t ("/ s en so r −data / f l e e t /wrong/ l g t 9 2 ")
12 . then ()
13 . s t a t u sCode (400)
14 . body (" e r r o r " , c o n t a i n s S t r i n g (e r r o rTyp e)) ;
15 }
16 }

Listing 5.18: Functional Test - Rest Client Interaction - Data Gateway

The test in Listing 5.18 simply attempts to send an HTTP POST request to an invalid
resource - line 11.

126 Chapter 5. Implementation

5.3.4 End-to-End Tests

This section presents some of the end-to-end tests of Sensae Console. This tests
evaluate how the system responds to various user actions.

All end-to-end tests rely on Cypress, an end-to-end testing framework. To improve tests
readability new cypress commands were created. The methods anonymous, logout and
goToIdentityPage are some examples of this commands - Listing 5.19.

1 d e c l a r e namespace Cyp r e s s {
2 i n t e r f a c e Cha i nab l e <Sub j e c t > {
3 anonymous () : v o i d ;
4 l o g o u t () : v o i d ;
5 goTo I d en t i t yPage () : v o i d ;
6 }
7 }
8

9 Cyp r e s s . Commands . add (’anonymous ’ , () => {
10 c o n s o l e . l o g (’Custom command : Anonymous Login ’) ;
11 cy . c o n t a i n s (’Login ’) . c l i c k () ;
12 cy . c o n t a i n s (’Anonymous ’) . c l i c k () ;
13 }) ;
14

15 Cyp r e s s . Commands . add (’logout ’ , () => {
16 c o n s o l e . l o g (’Custom command : Logout ’) ;
17 cy . ge t (’# account ’) . c l i c k () ;
18 cy . c o n t a i n s (’Logout ’) . c l i c k () ;
19 }) ;
20

21 Cyp r e s s . Commands . add (’goToIdentityPage ’ , () => {
22 c o n s o l e . l o g (’Custom command : go to Identity Page ’) ;
23 cy . ge t (’# tools ’) . c l i c k () ;
24 cy . c o n t a i n s (’Identity Management ’) . c l i c k () ;
25 }) ;

Listing 5.19: End-to-End Test - Custom Commands - UI Aggregator

As an example, the anonymous command in Listing 5.19 searches for something with the
text Login, and clicks on it.

The Listing 5.20 presents a test that ensures anyone can enter the system as an
anonymous user.

1 d e s c r i b e (’ui - aggregator ’ , () => {
2 be f o r eEach (() => cy . v i s i t (’/’)) ;
3 i t (’should display welcome message for anonymous user ’ , () => {
4 cy . anonymous () ;
5 cy . c o n t a i n s (" Valid Credentials ") ;
6 cy . l o g o u t () ;
7 }) ;
8 }) ;

Listing 5.20: End-to-End Test - Anonymous Authentication - UI Aggregator

The test in Listing 5.20 verifies that a successful login notification is received in line 5.
Both of the commands previously described are used in this test.

The Listing 5.21 presents a test that walks though the Identity Management Page
verifying that an authenticated manager can see every available domain.

5.3. Testing 127

1 d e s c r i b e (’ui - aggregator ’ , () => {
2 be f o r eEach (() => cy . v i s i t (’/’)) ;
3 i t (’should present various default domains ’ , () => {
4 cy . managerLog in () ;
5 cy . goTo I d en t i t yPage () ;
6 cy . c o n t a i n s (" root ") ;
7 cy . ge t (". toggle ") . c l i c k () ;
8 cy . c o n t a i n s (" public ") ;
9 cy . c o n t a i n s (" unallocated ") ;

10 }) ;
11 }) ;

Listing 5.21: End-to-End Test - Discover Available Domains - Identity
Management

The test in Listing 5.21 verifies that a manager can see all domains in the Identity
Management Page, as described in Identity Management Concern Section (Appendix G).

5.3.5 Architectural Tests

This section presents some of the architectural tests of Sensae Console’s Containers.
These tests are only performed in the backend containers. As an example it will be
displayed one test for the Configuration / Business Applications Scope and another for
the Data Flow Scope.

The tool used was ArchUnit, according to Richards and Ford 2020, it “provides a variety of
predefined governance rules codified as unit tests and allows architects to write specific
tests that address modularity”.

The Listing 5.22 presents an example of the tests made for Configuration / Business
Applications Scope backend containers.

1 @Ana l y z eC l a s s e s (package s = " pt . s e n s a e . s e r v i c e s ")
2 p u b l i c c l a s s A p p l i c a t i o n A r c h i t e c t u r e T e s t {
3 @ArchTest
4 s t a t i c f i n a l ArchRu l e a r c h i t e c t u r e = A r c h i t e c t u r e s
5 . o n i o n A r c h i t e c t u r e () . domainMode ls (" . . domain . . ")
6 . d oma i nS e r v i c e s (" . . d o ma i n s e r v i c e s . . ")
7 . a p p l i c a t i o n S e r v i c e s (" . . a p p l i c a t i o n . . ")
8 . a d a p t e r ("amqp conne c t o r " , " . . amqp . . ")
9 . a d a p t e r (" i n memory p e r s i s t e n c e " , " . . memory . . ")

10 . a d a p t e r (" p o s t g r e s p e r s i s t e n c e " , " . . p o s t g r e s . . ")
11 . a d a p t e r (" g r a p h q l e n d po i n t " , " . . g r a p h q l . . ")
12 . i g no r eDependency (r e s i d e I nAPa c k a g e (" . . boot . . ") , a lway sTrue ()) ;
13 @ArchTest
14 s t a t i c f i n a l ArchRu l e domainMustNotDependOnFrameworks =
15 A r c h R u l e D e f i n i t i o n . n oC l a s s e s () . t h a t ()
16 . r e s i d e I nAn yPa c k a g e (" . . domain . . ")
17 . s h o u l d () . dependOnClassesThat ()
18 . haveNameMatching (" org . s p r i n g f r amewo r k . ")
19 . o rShou l d () . dependOnClassesThat ()
20 . haveNameMatching (" j a v a x . p e r s i s t e n c e . ")
21 . b ecau se ("Domain s h o u l d be f r e e from dep e n d e n c i e s ") ;
22 }

Listing 5.22: Architectural Test - Onion Architecture - Device Management
Backend

128 Chapter 5. Implementation

The test architecture in Listing 5.22, at lines 3 to 12 ensures that the onion architecture is
followed. The test domainMustNotDependOnFrameworks at lines 13 to 22 ensures that
the domain and domain services components are free of dependencies.

The Listing 5.23 presents an example of the tests made for Data Flow Scope.

1 @Ana l y z eC l a s s e s (package s = " pt . s e n s a e . s e r v i c e s ")
2 p u b l i c c l a s s A r c h i t e c t u r a l T e s t {
3

4 @ArchTest
5 s t a t i c f i n a l ArchRu l e a r c h i t e c t u r e = A r c h i t e c t u r e s
6 . o n i o n A r c h i t e c t u r e ()
7 . domainMode ls (" . . domain . . ")
8 . a p p l i c a t i o n S e r v i c e s (" . . a p p l i c a t i o n . . ")
9 . a d a p t e r ("amqp i n t e r n a l t o p i c c onne c t o r " , " . . i n t e r n a l . . ")

10 . a d a p t e r ("amqp i n g r e s s data t o p i c c onne c t o r " , " . . i n g r e s s . . ")
11 . a d a p t e r ("amqp e g r e s s data t o p i c c onne c t o r " , " . . e g r e s s . . ")
12 . a d a p t e r (" i n memory p e r s i s t e n c e " , " . . memory . . ")
13 . i g no r eDependency (r e s i d e I nAPa c k a g e (" . . boot . . ") , a lway sTrue ())
14 . a l l owEmptyShou ld (t r u e) ;
15

16 @ArchTest
17 s t a t i c f i n a l ArchRu l e domainMustNotDependOnFrameworks =
18 A r c h R u l e D e f i n i t i o n . n oC l a s s e s () . t h a t ()
19 . r e s i d e I nAn yPa c k a g e (" . . domain . . ")
20 . s h o u l d () . dependOnClassesThat ()
21 . haveNameMatching (" org . e c l i p s e . ")
22 . o rShou l d () . dependOnClassesThat ()
23 . haveNameMatching ("com . f a s t e r x m l . ")
24 . o rShou l d () . dependOnClassesThat ()
25 . haveNameMatching ("com . goog l e . ")
26 . o rShou l d () . dependOnClassesThat ()
27 . haveNameMatching (" j a v a x . ")
28 . b ecau se ("Domain s h o u l d be f r e e from Frameworks ") ;
29 }

Listing 5.23: Architectural Test - Simplified Onion Architecture - Data
Processor Flow

The test architecture in Listing 5.23, at lines 4 to 14 ensures that, such as the previous
tests (Listing 5.22), the onion architecture is followed. The difference between the two is
that this one allows empty components - line 14, since the Data Flow Scope containers
have no domain services. The test domainMustNotDependOnFrameworks at lines 16 to
28 ensures that the domain component are free of dependencies.

5.4 Synopsis

This chapter introduced the most important technical decisions taken during the solution’s
implementation. These decisions were followed with a technical description of Sensae
Console tailored for those who manage and develop the platform. Lastly some of the tests
that ensure the proper operation of the solution were presented.

In the next chapter, Evaluation, the performance of the platform will be extensively
discussed.

129

Chapter 6

Evaluation

This chapter’s intent is to describe the evaluations preformed against the solution. For
that, the following sections will tackle:

• Objectives and execution environment of this evaluation;

• Approach applied to evaluate the developed software;

• Drafted experiences and collected results;

• Analysis of the collected results;

• Observations taken from the conducted analysis.

The expected behavior of the system according to functional requirements can be attested
with deterministic tests presented in Section 5.3. On the other hand, some non-functional
requirements, such as performance and usability requirements, can’t be deterministically
attested with simple tests.

Since the company and this project’s solution were both in the early stages of conception,
no strick usability requirements were defined. The experiences here documented focus on
the performance of the solution according to the requirements defined in Section 3.2.

6.1 Objectives

The objective of this evaluation is to determine the throughput limits of the entire solution
(Sensae Console and Business Applications) regarding data ingestion, within the
requirements detailed in Section 3.2.

Since the solution was designed to scale infinitely and handle high-levels of throughput, the
performance of it in a multi-tenant instance is undermined. The evaluation should instead
focus on environments where resources are more constrained.

Therefore, the performance of the solution will be tested against above-average usage
conditions of small to medium organizations that require a single-tenant instance, either
on-site or in the cloud.

This type of organizations encompass entities such as:

• Public Institutes: town councils, public transportation organizations, waste
management departments and others;

• Private owned business: chicken farms, greenhouse farms, goods transportation
agencies, industrial warehouses, agriculture cooperatives and others.

130 Chapter 6. Evaluation

The objective is to determine the platform limits of data ingestion, processing, storage and
supply within the desired requirements.

This evaluation also helps to understand what components are the first to degrade the
performance of the system.

6.2 Approach

The approach taken to evaluate the solution was to send increasingly higher volumes of
HTTP requests to the Sensae Console Data Ingestion Endpoint in order to determine the
platform limits of healthy operation.

Given the type of organizations that require this deployment mode, it is expected that the
number of devices installed doesn’t go beyond 5001.

The evaluation encompasses 4 test scenarios, one for the platform and one for each
business application: (i) Sensae Console, (ii) Fleet Management, (iii) Smart Irrigation, (iv)
Notification Management.

The performance tests use the K6 tool. This tool allows one to design performance tests
entirely in Javascript. An example of the scripts developed is presented in Appendix M.
The K6 tool produces various metrics that are then analyzed using R. An example of the
analysis scripts developed is presented in Appendix N.

For simplicity, the solution was deployed in a Virtual Machine (VM) Instance of the Google
Cloud Platform, type ’e2-standard-4’, with the following specs:

• Memory: 16 GB;

• Number of vCPU Cores: 4;

• Disk Type: Balanced Persistence Disk.

As of September, 2022, the cost associated with this VM rounds the 100€per month.

These tests were executed through the author’ machine which may undermine the
communication with the VM Instance, e.g. number of HTTP requests and stability of the
Websocket connection.

The approach taken isn’t an attempt to mimic normal usage patterns but simply to
envision the platform throughput limits. Even though an approach closer to the reality
would present results easier to interpreter, it would take to much time to design,
implement and run these realistic tests. Therefore, metrics such as the interval between
two consecutive Uplinks of the same device, were severely narrowed.

6.3 Experiences

As described before, 4 scenarios that emulate a variable number of devices sending uplinks
to Sensae Console were tested:

1. Sensae Console;
1500 devices in use by a single entity is expected to be a huge amount of devices for the realistic business

needs of small/medium organizations

6.3. Experiences 131

2. Fleet Management;

3. Notification Management;

4. Smart Irrigation;

Each scenario examines the time it takes to notify a user about a measure or notification
since the system collected the correspondent data unit.

The tests preformed against the system ensured that no Device Information, Device
Ownership, Data Decoders or Data Processors were cached in the Data Flow Scope to
create even harsher conditions.

In order to focus on the raw performance of the system, the following conjectures were
applied:

• A single type of Data Decoder is used to decode Data Units;

• A single type of Data Processor is used to process Data Units;

• The Data Units sent will evenly require a Data Decoder or a Data Processor;

• The Data Decoder and Data Processor operations are identical, meaning that, given
the same input, both must provide the same output;

• A single Anonymous user is notified about new measures or notifications;

• Each scenario focus on a single business case, or none at all (first scenario);

• All devices belong to the Public Domain (this eases the process of authentication);

• No erroneous data will be sent, e.g. data units with unknown data
decoders/processors/devices, incorrect measures or invalid structure;

• The default configuration regarding database connection pools, cache size, cache
eviction policies and others is used;

• Ten iterations of requests are sent in each experience, each iteration sends one Data
Unit per Device.

The Table 6.1 summarizes the performed experiences.

Table 6.1: Details about the experiences performed

Experience
Number of
Devices

Interval between
device uplinks

Average number of
uplinks per second

Total number
of Uplinks

A 100 10 seconds 9 1000

B 200 10 seconds 18 2000

C 500 10 seconds 45 5000

D 1000 10 seconds 90 10000

E 100 3 seconds 25 1000

F 200 3 seconds 50 2000

G 500 3 seconds 125 5000

H 1000 3 seconds 250 10000

132 Chapter 6. Evaluation

The results of each scenario will be presented in the next sections. The results will be
displayed in a table with the following metrics: (i) average, (ii) minimum, (iii) median, (iv)
maximum, (v) 90th Percentile and (vi) 95 Percentile.

6.3.1 Sensae Console Experience Scenario

This scenario focus on the platform developed. It mimics an hosting option that separates
the Business Applications from the Sensae Console. The Table 6.2 presents the results
related to the time it takes for a Data Unit to be processed and supplied to a potential
business application.

Table 6.2: Results for the Sensae Console Scenario (in seconds)

Experience Average Min Median Max 90% Percentile 95% Percentile

A 0.199 0.181 0.188 0.859 0.193 0.197

B 0.200 0.179 0.189 0.854 0.197 0.199

C 0.206 0.183 0.194 0.865 0.206 0.213

D 0.285 0.181 0.197 2.298 0.425 0.895

E 0.201 0.181 0.189 0.847 0.198 0.207

F 0.204 0.181 0.191 0.864 0.206 0.214

G 0.285 0.183 0.248 0.958 0.398 0.454

H 20.91 0.201 22.08 28.96 28.21 28.47

The results at Table 6.2 show that, a system focused only on processing and delivering
Data Units to Business Applications, can successfully handle 125 Data Units per second
while answering the defined requirements.

The experience H had the measures supplied with a delay of 20 seconds on average. These
results are far from the optimal response time defined in the requirements.

6.3.2 Fleet Management Experience Scenario

This scenario focus on the Fleet Management Service. The Table 6.3 presents the results
related to the time it takes for a Data Unit to be processed and supplied as a measure to
the user.

6.3. Experiences 133

Table 6.3: Results for the Fleet Management Scenario (in seconds)

Experience Average Min Median Max 90% Percentile 95% Percentile

A 0.206 0.182 0.193 0.765 0.205 0.215

B 0.207 0.182 0.193 0.770 0.211 0.220

C 0.225 0.184 0.209 0.921 0.241 0.257

D 2.871 0.189 0.674 16.69 10.14 13.31

E 0.213 0.185 0.200 0.780 0.214 0.220

F 0.214 0.180 0.200 0.789 0.224 0.235

G 0.921 0.183 0.754 2.992 2.015 2.326

H 38.43 0.218 35.39 83.37 71.52 77.08

The results at Table 6.3 show that, a system focused on the Fleet Management business
case, can successfully handle 125 Data Units per second while answering the defined
requirements.

The experience H had the measures supplied with a delay of 40 seconds on average, These
results are far from the optimal response time defined in the requirements.

Currently, the devices used in production for this business case send, at best, measures
every minute, this means that the maximum number of devices concurrently
communicating with the solution is much higher than the one determined by these tests.

6.3.3 Notification Management Experience Scenario

This scenario focus on the Notification Management Service. The Table 6.4 presents the
results related to the time it takes for a Data Unit to be processed and trigger a new alert
that is supplied to the user as a notification.

In this experience it was simulated that an average of 10% of the data units would produce
an alert.

Table 6.4: Results for the Notification Management Scenario (in seconds)

Experience Average Min Median Max 90% Percentile 95% Percentile

A 0.268 0.208 0.226 1.697 0.265 0.308

B 0.263 0.196 0.223 1.735 0.245 0.266

C 0.434 0.199 0.235 4.029 0.287 2.364

D 1.678 0.195 0.241 11.95 6.885 9.728

E 0.334 0.207 0.230 3.947 0.323 0.372

F 0.856 0.200 0.241 5.629 2.379 4.875

G 10.02 1.188 11.09 19.08 14.01 15.03

H 27.51 13.48 27.77 35.50 29.68 31.14

134 Chapter 6. Evaluation

The results at Table 6.4 captured in this experiences allow inferring that this system can
comfortably withstand a throughput of around 500 devices (each sending measures every
10 seconds) without undermining its overall behavior. This means that the platform can
only process a maximum of 50 notification per second.

6.3.4 Smart Irrigation Experience Scenario

This scenario focus on the Smart Irrigation Service. The Table 6.5 presents the results
related to the time it takes for a Data Unit to be processed, stored and supplied as a
measure to the user.

Table 6.5: Results for the Smart Irrigation Scenario (in seconds)

Experience Average Min Median Max 90% Percentile 95% Percentile

A 0.204 0.181 0.190 0.761 0.202 0.210

B 0.211 0.182 0.199 0.772 0.220 0.233

C 0.389 0.183 0.299 1.290 0.760 0.978

D 20.72 0.205 21.85 44.16 36.98 41.02

E 0.221 0.182 0.205 0.767 0.242 0.254

F 4.358 0.187 2.925 15.69 10.46 13.10

G 12.95 0.255 13.71 20.00 14.60 15.34

H 70.06 0.260 70.98 122.3 109.8 115.4

The results at Table 6.5 show that, a system focused on the Smart Irrigation business case,
can successfully handle 45 Data Units per second while answering the defined requirements.
The experiences D, F, G, H shed a light on the possible limits for this Service.

The results captured in this experiences infer that this system can comfortably withstand a
throughput of around 500 devices, each sending their measures every 10 seconds without
undermining its overall behavior.

Currently, the devices used in production for this business case send measures every 10
minutes. This means that the maximum number of devices concurrently communicating
with the solution is much higher than the one determined by these tests.

6.4 Discussion of the overall results

As seen by the experiences preformed the system was capable of answering the defined
requirements in Section 3.2.4.

Apart from the results gathered it’s important to mention the following findings:

• The system answered all HTTP requests within an average of 0.2 seconds;

• There was no visible performance discrepancy between the use of Data Decoders
versus Data Processors;

6.4. Discussion of the overall results 135

• The bootstrapping of Data Flow Caches is noticeable in most experiences, specially
the lighter ones. The first iteration usually takes the longer to be processed when the
system is not overwhelmed;

• The system was always capable of storing all the measures and alerts;

• The VM’s RAM didn’t surpassed 8GB of usage in any test but the CPU reported
usages of 100% under severe load (experiences D, G, H).

The experiences performed helped to determine the platform throughput limits but didn’t
indicated what components were underperforming and degrading the results.

In the following sections some components are individually evaluated so that the
bottlenecks of the system can be found.

Looking at the architecture the five logical bottlenecks are:

• The Sensae Console Data Ingestion Endpoint that collects requests (in the Data
Relayer Container);

• The process of filling the Data Flow Scope Caches with the information managed
by the various containers in the Configuration Scope;

• The Message Broker that routes data units through the system;

• The databases in the Business Applications that store measures or notifications;

• The Websocket implementation used by GraphQL to supply measures and
notifications in the Backends of the Business Applications.

6.4.1 Data Ingestion Endpoint Performance

In order to evaluate this piece of the system first the H experiences of each scenario are
presented since they represent the higher throughput of all experiences preformed.

These experiences yielded the following results:

Table 6.6: Data Ingestion Endpoint response time results (in milliseconds)

Scenario Average Min Median Max 90% Percentile 95% Percentile

1 186.76 169.22 176.54 463.7 197.02 213.38

2 193.24 170.02 182.12 581.6 219.16 249.24

3 227.48 169.19 200.17 727.1 319.77 376.98

4 179.83 167.09 178.99 2632 186.36 189.27

The results at Table 6.6 present a stable performance even under a high number of
requests, apart from the maximum value obtained in scenario 4, a clear outlier, all requests
were answered within a second.

In order to find the amount of requests that would leave the system unresponsive more
tests were performed, this tests only focused on the Data Ingestion Endpoint responses.
The system was capable of ingesting around 600 requests per second before starting to
drop requests.

136 Chapter 6. Evaluation

6.4.2 Data Processor versus Data Decoder Performance

The experiences preformed also helped to understand if the Data Decoder underperformed
when compared to the Data Processor. This was the expected result since the Data
Decoder uses an embedded Javascript engine to process data units, and the Data
Processor relies only on Java to process messages.

As an example, the following chart presented in Figure 6.1 helps to debunk this belief.

0

2

4

6

0 30 60 90
time data unit was sent (seconds)

ti
m

e
ta

ke
n

to
pr

oc
es

s
da

ta
un

it
(s

ec
on

ds
)

info type
decoded

encoded

Figure 6.1: Notification Management Scenario - Experience C - Scatter Chart

In Figure 6.1, the X axis represents time in seconds since the first request with a data unit
was sent, the Y axis represents the time it took for the client to receive the corresponding
notification. Each dot represents a data unit.

The data units with the ’decoded’ info type, in red, were sent to the Data Processor
Concern and the ones with the ’encoded’ info type, in blue, were sent to the Data Decoder
Concern.

In conjunction with the chart, the Table 6.7 presents some analysis preformed against the
results of Experience C in the Notification Management Scenario.

Table 6.7: Metrics collected (in seconds) - Notification Management Scenario
- Experience C

Info Type Average Min Median Max 90% Percentile 95% Percentile

decoded 0.558 0.209 0.252 5.863 0.286 3.923

encoded 0.528 0.212 0.253 6.519 0.288 3.479

As we can see in Table 6.7, the time taken to process or decode a data unit is very similar,
this is possible due to GraalVM.

6.4. Discussion of the overall results 137

6.4.3 Data Flow Caching Process Performance

The experiences preformed clearly display the process mentioned during the Design
Chapter in Figure 4.14, about how the Data Flow state is maintained.

In the following charts, Figure 6.2, it’s possible to envision the various caches in the Data
Flow Scope being filled during the first iteration.

0.2

0.4

0.6

0.8

0 30 60 90
time data unit was sent (seconds)

ti
m

e
ta

ke
n

to
pr

oc
es

s
da

ta
un

it
(s

ec
on

ds
)

iteration
0

1

2

3

4

5

6

7

8

9

(a) Smart Irrigation
Scenario - Experience

B

0

5

10

15

0 30 60 90
time data unit was sent (seconds)

ti
m

e
ta

ke
n

to
pr

oc
es

s
da

ta
un

it
(s

ec
on

ds
)

iteration
0

1

2

3

4

5

6

7

8

9

(b) Fleet Management
Scenario - Experience

D

Figure 6.2: Caching Process - Scatter Chart

In both charts of Figure 6.2 the X axis represents time in seconds since the first request
with a data unit was sent, the Y axis represents the time it took for the client to receive
the corresponding measure. Each dot represents a data unit. Each color represents the
test iteration responsible for sending the data unit.

The chart in Figure 6.2b also shows that the system started to underperform around the
65 seconds mark. The Data Flow caches were already stable and therefore, under these
experiences, it is plausible to say that this process doesn’t cause the performance
degradation seen in higher throughput experiences.

6.4.4 Business Applications Database Performance

Another important question is whether the observed performance degradation is due to
database access or not.

The experiences performed were able to determine that this was in fact the case with the
Notification Management Database, and, to an extent the Smart Irrigation Business
Database. As explained in Section 5.1.6, the database used for those containers is
PostgresSQL. This database, contrary to the one used in Fleet Management Data
Database and Smart Irrigation Data Database, is not focused on high-throughput
ingestion.

The following chart, Figure 6.3, shows the discrepancy between storing and serving GPS
locations with the Fleet Management Backend. The experiment was performed by
mimicking 1500 devices, each sending 10 data units with an interval of around 10 seconds.

The chart at figure 6.3 represents the number of data units/measures ingested, stored and
supplied (Y axis) over time (X axis).

138 Chapter 6. Evaluation

0

5000

10000

15000

0 100 200
time (seconds)

nu
m

be
r

of
m

ea
su

re
s/

da
ta

un
it
s

operation
consumption

ingestion

storage

Figure 6.3: Time Taken to Ingest, Store and Supply Measures - Line Chart

The chart (Figure 6.3) displays three distinct lines:

• Consumption (in red): Measures received by a websocket client connected to the
Fleet Management Backend;

• Ingestion (in blue): Data Units ingested by the Data Relayer;

• Storage (in green): Measures stored in the Fleet Management Data Database.

The data is stored in QuestDB via ILP and therefore is only committed after a while. The
time taken for data to be committed is derived from various parameters and conditions as
explained in the Commit Strategy Page2 of QuestDB.

The chart in Figure 6.3 shows that data is stored long before it is consumed by the
websocket client. It also shows that the time between storage and ingestion is relatively
small, and once the Data Flow caches stabilize this gap starts to decrease. Implying that
the Message Broker does not fall behind the ingestion throughput enforced by the test
(136 request per second).

6.4.5 System Bottlenecks

This section briefly discusses the bottlenecks discovered during the performance tests and
analysis preformed.

The components that degraded the test results the most were the GraphQL Subscriptions
as envisioned in Figure 6.3.

The next bottleneck of the solution appears to be the PostgresSQL Databases, this
assessment is based on the result’s discrepancy between the three Scenarios.

The experiences H of each scenario, and specially the one related to the platform, foresee
that the Message Broker is the next logical bottleneck of the system.

2link to QuestDB Commit Strategy Page

6.5. Synopsis 139

The Sensae Console Data Ingestion Endpoint only becomes a bottleneck with an enormous
amount of devices for a small/medium organization.

If the Data Flow cache sizes are configured correctly, the process of filling them will hardly
become a bottleneck, specially since it will be very rare to receive a high number of data
units from devices, decoders or processors that are not already cached.

6.5 Synopsis

This evaluation determined that, for the requirements defined in Section 3.2.4, a type
’e2-standard-4’ VM instance in Google Cloud Platform is sufficient. The conducted
analysis also helped to identify the most important bottlenecks to tackle in the future: (i)
GraphQL Subscriptions, (ii) PostgresSQL Databases, (iii) Message Broker.

The performance tests helped the company to understand the platform limits and how far
the production environments are from reaching those limits.

Based on this evaluation, the work described before and the knowledge gathered during the
project, the following chapter describes the author opinion regarding the solution.

141

Chapter 7

Conclusion

This chapter discusses the Achievements, Unfulfilled Results, and Future Work of this
project. In the end it’s presented an overview of the influence this work had on the
development of the solution and the author perception of the IoT landscape.

This work had two main objectives:

• Create a platform to ease the development of IoT solutions;

• Create PoCs that tackled business cases related to IoT.

During this project’s time span it was clear that the initial objectives were much more
challenging and ambitious than envisioned given the time and resources available. The
constant changes made to the requirements regarding the business cases lead to a lot of
wasted time and resources. Nevertheless, the author focused on three business cases.
They were addressed according to the requirements discussed during meetings with
costumers. The developed PoCs had a positive evaluation regarding their performance.
Even though no factual survey was made, the costumers had favorable opinions regarding
the Notification Management Service for Indoor Fire Detention and the Smart Irrigation
Service for Greenhouse Humidity Control. It was also clear in Phase II, that most of the
work needed to implement these PoCs could be integrated in the platform, Sensae
Console.

7.1 Achievements

The developed PoCs allowed, in the first phase of the project, to determine the various
processes that most services needed to function. This assessment helped to define the
most important functionalities Sensae Console had to provide.

After developing the platform and integrating the PoCs in it, its possible to infer that
Sensae Console tackles the most crucial requirements and concerns in this area. The
platform eases the integration with multiple IoT Middlewares while providing ways to
homogenize the data sent by virtually any device.

The model envisioned to represent devices and their measures is far from being mature and
complete, but the author thinks the development of a separated, open-source library to
handle it, paves the way for constant improvements. The library also facilitates the
integration of new custom services with the platform.

142 Chapter 7. Conclusion

The rule engine, even though complex, also proved to be an important feature due to its
flexibility. With it, and the notification management service, several business cases that
don’t require a UI can be promptly addressed.

By decoupling the solution’s architecture according to the various functionalities and
discussed responsibilities it’s possible to easily support the hosting requirements of most
costumers. One can choose between integrating one or various frontends directly in their
platform, create new frontends that consume the provided API or use the complete UI
provided by the platform. The UI Aggregator can also be configured to consume and serve
custom made services with UI or just an API.

Even though this project is still in its early phases, the work done here paves the way for a
platform that is easy to maintain, improve and extend.

For these reasons, the author believes that the pivotal requirements of this project were
successfully fulfilled.

7.2 Unfulfilled Results

The author thinks that this project’s requirements were successfully tackled. The
functional requirements were fully addressed and most non functional requirements were
also addressed. This is further detailed in Appendix P. Therefore, the final solution proved
itself to answer the most important requirements of the initial proposal.

With regards to the initial proposal made in November 2021, this project’s requirements
also envisioned the creation of PoCs for smart parking and public health condition
monitoring for organization A. Neither of these two were tackled due to time constrains
and the service contracts being cancelled.

The same organization that required these two solutions also required the generation of
reports with several KPI for their fleet management solution. The creation of these reports
was once again postponed and not included in the final list of requirements for this project.

The initial idea behind this project’s proposal envisioned that the evaluation of the solution
would be preformed by analyzing questionnaires handed to employees of the organization
A. Once again, this objective was not attained due to the termination of contracts with
organization A.

The requirements mentioned above were removed in April after it became clear that
organization A was not interested in pursuing further agreements.

In retrospective, the initial proposal was ambitious and nearly impossible to fulfill given the
time span of the project and the size of the team. The final proposal, made around April
and adopted for this document, is much more tailored for the expectations given to a
project under these conditions.

With regards to all that was discussed here and after taking into account this project’s
circumstances, the author argues that the Unfulfilled Results are minimal compared to
what was achieved.

7.3. Future Work 143

7.3 Future Work

This project, and the solution it originated, still have a lot of ideas and features not
supported. Apart from all the business cases that were not addressed, and the much
needed improvements for those that were developed, it is clear that the Sensae Console
needs to support the following features:

• Post-Processing of device measures: One of the company’s project measured the
volume of wheat inside Silos. The sensors were installed in the silo’s ceiling pointing
downwards to measured the distance between themselves and the surface of the
wheat. This distance had to be translated to the occupied wheat volume in the silo.
Since each silo had different sizes and shapes, there was a need to calculate the
required volume depending on the device that sent it. The current solution doesn’t
easily support this;

• Image and Video support as device measures: One of the company’s project filmed
the interior of a chicken farm. The sensor was, in this case, a simple camera. The
intent behind this project was to live stream a video of the site, and if an alarm
warning about an indoor fire was received the owner could verify it by accessing the
live stream;

• UI Custom composition: One of the company’s requirements was for the platform to
support the creation of UI tailored for each costumer’s needs by dragging and
dropping resizable elements such as maps, charts, panels with latest/average device
measures and buttons to interact with actuators (Mashup-based development);

• Query-able Data Lake with device measures: One of the company’s ideas was to
provide a simple endpoint to query the latest information regarding any device
measures;

• Customizable monthly reports: One of the company’s costumers requested the
creation and delivery of reports with various monthly KPI, such as: fleet’s distance
traveled per day, fleet’s active/inactive hours per day, frequent stop locations;

• Observability: The author argues that there’s a need to monitor the internal state
and conditions of the platform in real-time so that problems can be found and
resolved faster;

• Automatic Scalability: Currently most costumers request a shared and remote
hosting option managed by the company. This means that the number of devices
and, consequently, the generated network traffic and data targeting the platform’s
cloud instance will increase. In the following months the platform should be
orchestrated by a tool such as Kubernetes to automatically scale the solution as
needed;

• Big Data analytics: Some of the most advanced features this platform could provide
would be automatic analytics to help decision making and driving business decisions
for costumers. This topic is beyond the knowledge of the author but is something
increasingly important in the today’s competitive world where every company is
trying to squeeze the most value from available assets;

• IoT-A requirements compliance: The requirements gathered by European Lighthouse
Integrated Project 2013a focus on may important features that this solution doesn’t

144 Chapter 7. Conclusion

answer, such as UNI.027, UNI.047 UNI.239, UNI.094 and UNI.023 (European
Lighthouse Integrated Project 2013a);

• Sensor Measurement Lists (SenML) Standard compliance: The open-source library
created should be able to translate between the model envisioned here and SenML;

• Monetizing Policies: The revenue model needs to be discussed so that this solution
can be monetized. Normally this platforms measure metrics such as megabyte (MB)
of data stored, network bandwidth volume, number of devices registered and others
to calculate the monthly bills of each costumer. To do so, one must first register
and monetize the metrics related to each costumer and then incorporate a payment
system in the platform.

As seen by this list, creating a public, monetizable platform to ease the creation of IoT
Application/Services is a complex and drawn-out process. Maintaining a service like this
feels even more like an interminable task due to all the business cases surrounding IoT.

7.4 Synopsis

In summary, the solution can be seen as a first and very important step to create an IoT
platform but it isn’t ready to be sold as a service to third-parties. It is advised to keep
developing the solution and services surrounding IoT related business cases for at least
another year while offering customers early access to the platform. Continuous costumers
evaluations would help to guide the solution to the desired outcomes.

Even though it is easy to envision the continuous development of this solution for the
forthcoming years, without a solid product, costumers will start to cease their contracts.
Without revenue streams it’s expected that this solution will be abandoned and the
company dissolved. In retrospective, the best approach for the problem in hands was not to
build a platform from the ground up but to rely on open-source solutions or paid services.

Nonetheless the author benefited immensely with the development of this project. The
author gained a lot of experience and knowledge regarding the IoT world and also the
difficulties surrounding the creation of a business from the ground up.

145

Bibliography

Alaa, Musaab et al. (Sept. 2017). “A Review of Smart Home Applications based on
Internet of Things”. In: Journal of Network and Computer Applications 97. doi:
10.1016/j.jnca.2017.08.017.

Amazon (2022a). Amazon Cognito. url: https://aws.amazon.com/cognito/.
– (2022b). DynamoDB. url: %5Curl%7Bhttps://aws.amazon.com/dynamodb/%7D.
Andy Clement Sébastien Deleuze, Filip Hanik (2022). Spring Native. url:
https://docs.spring.io/spring-native/docs/current/reference/htmlsingle/.

Angles, Renzo (2012). “A comparison of current graph database models”. In: 2012 IEEE
28th International Conference on Data Engineering Workshops. IEEE, pp. 171–177.

Angles, Renzo and Claudio Gutierrez (2008). “Survey of graph database models”. In: ACM
Computing Surveys (CSUR) 40.1, pp. 1–39.

Apache (2022). Apache HTTP Server Project. url: https://httpd.apache.org/.
Atzori, Luigi, Antonio Iera, and Giacomo Morabito (2010). “The Internet of Things: A

survey”. In: Comput. Networks 54, pp. 2787–2805.
Auth0 (2022). Auth0 Customer Identity. url:
https://auth0.com/b2c-customer-identity-management.

AWS (2022). AWS IoT Core. Accessed: February 8, 2022.
Azure (2022). Azure Active Directory (Azure AD). url:
https://azure.microsoft.com/en-us/services/active-directory/.

Bellemare, A. (2020). Building Event-Driven Microservices. O’Reilly Media. Chap. 3,
pp. 39–45. isbn: 9781492057840.

Bernstein, David (2014). “Containers and cloud: From lxc to docker to kubernetes”. In:
IEEE cloud computing 1.3, pp. 81–84.

Bibri, Simon Elias (2018). “The IoT for smart sustainable cities of the future: An analytical
framework for sensor-based big data applications for environmental sustainability”. In:
Sustainable Cities and Society 38, pp. 230–253. issn: 2210-6707. doi:
\url{https://doi.org/10.1016/j.scs.2017.12.034}. url: %5Curl%7Bhttps:
//www.sciencedirect.com/science/article/pii/S2210670717313677%7D.

Blomstedt, Fredrik et al. (2014). “The arrowhead approach for SOA application
development and documentation”. In: IECON 2014-40th Annual Conference of the IEEE
Industrial Electronics Society. IEEE, pp. 2631–2637.

Brown, Simon (2018). The C4 model for visualising software architecture. [Online;
accessed 30. Jun. 2022]. url: https://c4model.com.

Brush, A.J. Bernheim et al. (2011). “Home Automation in the Wild: Challenges and
Opportunities”. In: Proceedings of the SIGCHI Conference on Human Factors in
Computing Systems. CHI ’11. Vancouver, BC, Canada: Association for Computing
Machinery, pp. 2115–2124. isbn: 9781450302289. doi: 10.1145/1978942.1979249. url:
https://doi.org/10.1145/1978942.1979249.

By, Slides and Jack ZhenMing Jiang (Nov. 1995). “Architectural Blueprints–The "4+ 1"
View Model of Software Architecture”. In: [Online; accessed 30. Jun. 2022].

146 Bibliography

Byars, Brandon (Dec. 2021). You Can’t Buy Integration. url:
https://martinfowler.com/articles/cant-buy-integration.html.

Cake, Data (2021). Making IoT accessible to Everyone. Accessed: February 8, 2022.
Cerny, Tomas, Michael J Donahoo, and Jiri Pechanec (2017). “Disambiguation and

comparison of soa, microservices and self-contained systems”. In: Proceedings of the
International Conference on research in adaptive and convergent systems, pp. 228–235.

Chen, Shanzhi et al. (2014). “A Vision of IoT: Applications, Challenges, and Opportunities
With China Perspective”. In: IEEE Internet of Things Journal 1.4, pp. 349–359. doi:
10.1109/JIOT.2014.2337336.

Chisholm, Malcolm (2004). “1 - What are Business Rules and Business Rules Engines?” In:
How to Build a Business Rules Engine. Ed. by Malcolm Chisholm. The Morgan
Kaufmann Series in Data Management Systems. San Francisco: Morgan Kaufmann,
pp. 1–7. isbn: 978-1-55860-918-1. doi:
https://doi.org/10.1016/B978-155860918-1/50002-8. url:
https://www.sciencedirect.com/science/article/pii/B9781558609181500028.

Cisco (2017). Cisco Survey Reveals Close to Three-Fourths of IoT Projects Are Failing.
Accessed: February 8, 2022.

Confluent (2022a). Kafka Connect. url:
https://docs.confluent.io/platform/current/connect/index.html.

– (2022b). Kafka Streams. url:
https://docs.confluent.io/platform/current/streams/index.html.

Craggs, Ian (2022). MQTT vs AMQP for IoT. url:
https://www.hivemq.com/blog/mqtt-vs-amqp-for-iot/.

Cugola, Gianpaolo and Alessandro Margara (2012). “Processing flows of information: From
data stream to complex event processing”. In: ACM Computing Surveys (CSUR) 44.3,
pp. 1–62.

Cumulocity (2022). Real-time processing. url:
%5Curl%7Bhttps://cumulocity.com/guides/concepts/realtime/%7D.

Cypress (2022). Cypress. url: https://www.cypress.io/.
D. Hardt, Ed. (2012). The OAuth 2.0 Authorization Framework. url:
https://datatracker.ietf.org/doc/html/rfc6749.

Date, Christopher John (1989). A Guide to the SQL Standard. Addison-Wesley Longman
Publishing Co., Inc.

Dave Evans, Cisco (2011). The Internet of Things: How the Next Evolution of the
Internet Is Changing Everything. Accessed: February 8, 2022.

DeCandia, Giuseppe et al. (2007). “Dynamo: Amazon’s highly available key-value store”.
In: ACM SIGOPS operating systems review 41.6, pp. 205–220.

Deere, John (2020). What is JDLink? Accessed: February 8, 2022.
Dehdouh, Khaled et al. (2015). “Using the column oriented NoSQL model for

implementing big data warehouses”. In: Proceedings of the International Conference on
Parallel and Distributed Processing Techniques and Applications (PDPTA). The
Steering Committee of The World Congress in Computer Science, Computer , p. 469.

Dgraph (2022). Dgraph. url: %5Curl%7Bhttps://dgraph.io/%7D.
Dias, João Pedro, André Restivo, and Hugo Sereno Ferreira (2022). “Designing and

constructing internet-of-Things systems: An overview of the ecosystem”. In: Internet of
Things 19, p. 100529. issn: 2542-6605. doi:
https://doi.org/10.1016/j.iot.2022.100529. url:
https://www.sciencedirect.com/science/article/pii/S2542660522000312.

Bibliography 147

Dobbelaere, Philippe and Kyumars Sheykh Esmaili (2017). “Kafka versus RabbitMQ: A
Comparative Study of Two Industry Reference Publish/Subscribe Implementations:
Industry Paper”. In: Proceedings of the 11th ACM International Conference on
Distributed and Event-Based Systems. DEBS ’17. Barcelona, Spain: Association for
Computing Machinery, pp. 227–238. isbn: 9781450350655. doi:
10.1145/3093742.3093908. url: https://doi.org/10.1145/3093742.3093908.

Docker (2022a). Docker overview. url:
https://docs.docker.com/get-started/overview/.

– (2022b). Overview of Docker Compose. url: https://docs.docker.com/compose/.
Drools (2022). Drools. url: https://www.drools.org/.
Eeles, Peter (2005). “Capturing architectural requirements”. In: IBM Rational developer

works.
Eizinger, Thomas (2017). “API design in distributed systems: a comparison between

GraphQL and REST”. In: University of Applied Sciences Technikum Wien-Degree
Program Software Engineering.

Elijah, Olakunle et al. (2018). “An Overview of Internet of Things (IoT) and Data
Analytics in Agriculture: Benefits and Challenges”. In: IEEE Internet of Things Journal
5.5, pp. 3758–3773. doi: 10.1109/JIOT.2018.2844296.

Elmasri, R et al. (2000). Fundamentals of Database Systems. Springer.
Ericson (2020). Maritime Mesh Networks set to transform connectivity at sea. Accessed:

February 8, 2022.
Esri (2022). ArcGIS. url: https://www.arcgis.com/index.html.
Eugster, Patrick Th. et al. (June 2003). “The Many Faces of Publish/Subscribe”. In: ACM

Comput. Surv. 35.2, pp. 114–131. issn: 0360-0300. doi: 10.1145/857076.857078. url:
https://doi.org/10.1145/857076.857078.

European Lighthouse Integrated Project (2013a). Internet of Things - Architecture.
Accessed: April 14, 2022.

– (2013b). Introduction to the Architectural Reference Model for the Internet of Things.
Accessed: April 20, 2022.

– (2013c). The Internet of Things - Architecture. Accessed: April 25, 2022.
Evans, E. (2014). Domain-Driven Design Reference: Definitions and Pattern Summaries.

Dog Ear Publishing. isbn: 9781457501197.
Facebook (2022a). CassandraDB. url: https://cassandra.apache.org/.
– (2022b). GraphQL. url: https://graphql.org/.
– (2022c). Jest Testing Framework. url: https://jestjs.io/.
– (2022d). React. url: https://reactjs.org/.
Firouzi, Farshad et al. (2018). “Internet-of-Things and big data for smarter healthcare:

From device to architecture, applications and analytics”. In: Future Generation
Computer Systems 78, pp. 583–586. issn: 0167-739X. doi:
https://doi.org/10.1016/j.future.2017.09.016. url:
https://www.sciencedirect.com/science/article/pii/S0167739X17319726.

flink.apache.org (2022). Apache Flink. Accessed: February 22, 2022.
Fowler, Martin and James Lewis (2014). Microservices. url:
https://www.martinfowler.com/articles/microservices.html.

Garca, Laura et al. (2020). “IoT-based smart irrigation systems: An overview on the recent
trends on sensors and IoT systems for irrigation in precision agriculture”. In: Sensors
20.4, p. 1042.

Gartner (2022). Magic Quadrant for Industrial IoT Platforms. url: %5Curl%7Bhttps:
//www.gartner.com/doc/reprints?id=1-27IESWUW&ct=210922&st=sb%7D.

148 Bibliography

Gartner (n.d.). Customer Identity and Access Management (CIAM). url:
https://www.gartner.com/en/information-technology/glossary/customer-
identity-access-management-ciam.

Gazis, Vangelis et al. (2015). “Short Paper: IoT: Challenges, projects, architectures”. In:
2015 18th International Conference on Intelligence in Next Generation Networks,
pp. 145–147. doi: 10.1109/ICIN.2015.7073822.

Geers, Michael (2017). Microfrontends. url: https://micro-frontends.org/.
George, Lars (2011). HBase: the definitive guide: random access to your planet-size data.

" O’Reilly Media, Inc."
German Electrical and Electronic Manufacturers’ Association (2017a). RAMI4.0 - a

reference framework for digitalisation. Accessed: June 26, 2022.
– (2017b). Reference Architectural Model Industrie 4.0 - An introduction. Accessed: June

26, 2022.
Gilchrist, Alasdair (2016). Industry 4.0: The Industrial Internet of Things. 1st. USA:

Apress. isbn: 1484220463.
Gillis, Alexander S. (2020). Definition: multi-tenancy. url:
%5Curl%7Bhttps://www.techtarget.com/whatis/definition/multi-tenancy%7D.

Goap, Amarendra et al. (2018). “An IoT based smart irrigation management system using
Machine learning and open source technologies”. In: Computers and Electronics in
Agriculture 155, pp. 41–49. issn: 0168-1699. doi:
https://doi.org/10.1016/j.compag.2018.09.040. url:
https://www.sciencedirect.com/science/article/pii/S0168169918306987.

Google (2022a). Angular. url: https://angular.io/.
– (2022b). Firestore. url:
%5Curl%7Bhttps://firebase.google.com/docs/firestore/%7D.

– (2022c). Google Cloud IoT. Accessed: February 8, 2022.
– (2022d). Google Identity Platform. url:
https://cloud.google.com/identity-platform/.

– (2022e). Google Maps. url: https://mapsplatform.google.com/maps-products/.
– (2022f). Protocol Buffers. url:
https://developers.google.com/protocol-buffers/.

Grafana (2022). K6. url: https://k6.io/.
Haller, Stephan et al. (2013). “A Domain Model for the Internet of Things”. In: 2013 IEEE

International Conference on Green Computing and Communications and IEEE Internet
of Things and IEEE Cyber, Physical and Social Computing, pp. 411–417. doi:
10.1109/GreenCom-iThings-CPSCom.2013.87.

Han, Jing et al. (2011). “Survey on NoSQL database”. In: 2011 6th international
conference on pervasive computing and applications. IEEE, pp. 363–366.

Hankel, Martin and Bosch Rexroth (2015). “The reference architectural model industrie
4.0 (rami 4.0)”. In: ZVEI 2.2, pp. 4–9.

Hardt, Red (2022). Test Containers. url: https://www.testcontainers.org/.
Harris, Chandler (n.d.). Microservices vs. monolithic architecture. url:
https://www.atlassian.com/microservices/microservices-
architecture/microservices-vs-monolith.

HashiCorp (2022). Vault. url: https://www.vaultproject.io/.
Hat, Red (2022). Quarkus. url: https://quarkus.io/.
HBase (2022). HBase. url: https://hbase.apache.org/.
Helium (2018a). Helium Whitepaper. url:
%5Curl%7Bhttp://whitepaper.helium.com/%7D.

Bibliography 149

– (2018b). Integrations. url: %5Curl%7Bhttps://docs.helium.com/use-the-
network/console/integrations%7D.

– (2022). Helium Console. url: https://www.helium.com/console.
Hughes, Karl (2017). Why Testing Is Important for Distributed Software. url: https:
//www.linuxfoundation.org/blog/testing-important-distributed-software/.

IBM (Oct. 2020a). Three-Tier Architecture. url:
https://www.ibm.com/cloud/learn/three-tier-architecture.

– (Jan. 2020b). What are Message Brokers? url:
https://www.ibm.com/cloud/learn/message-brokers.

– (2020c). What is HBase? Accessed: February 22, 2022.
– (Mar. 2021a). Microservices. url:
https://www.ibm.com/cloud/learn/microservices#toc-anti-patte-uScI1WAE.

– (Apr. 2021b). Rest API. url: https://www.ibm.com/cloud/learn/rest-apis.
– (Apr. 2021c). SOA (Service-Oriented Architecture). url:
https://www.ibm.com/cloud/learn/soa.

– (2022a). How does software testing work? url:
https://www.ibm.com/topics/software-testing.

– (2022b). Node-RED. url: %5Curl%7Bhttps://nodered.org/%7D.
IEEE (2020). “IEEE Standard for an Architectural Framework for the IoT”. In: IEEE Std

2413-2019, pp. 1–269. doi: 10.1109/IEEESTD.2020.9032420.
Ilyushchenko, Vlad (2021). How we achieved write speeds of 1.4 million rows per second.

Accessed: February 24, 2022.
Industries, The Things (2021a). The Things Industries. Accessed: February 8, 2022.
– (2021b). The Things Stack Github Page. Accessed: February 8, 2022.
Industry IoT Consortium (2019). The Industrial Internet of Things Volume G1: Reference

Architecture. Accessed: May 20, 2022.
InfluxDB (2022a). InfluxDB. url: https://www.influxdata.com/.
– (2022b). InfluxDB line protocol tutorial. url: %5Curl%7Bhttps://docs.influxdata.
com/influxdb/v1.8/write%5C_protocols/line%5C_protocol%5C_tutorial/%7D.

Jacobs, Mike and Craig Casey (2022). What are Microservices? url:
https://docs.microsoft.com/en-us/devops/deliver/what-are-microservices.

Jatana, Nishtha et al. (2012). “A survey and comparison of relational and non-relational
database”. In: International Journal of Engineering Research & Technology 1.6, pp. 1–5.

Jennings, C. et al. (Aug. 2018). Sensor Measurement Lists (SenML). RFC 8428. RFC
Editor.

Jonas Bonér Dave Farley, Roland Kuhn and Martin Thompson (Sept. 2014). The Reactive
Manifesto. url:
https://www.reactivemanifesto.org/pdf/the-reactive-manifesto-2.0.pdf.

JUnit5 (2022). JUnit5 Testing Framework. url: https://junit.org/junit5/.
Kafka (2022). Kafka Design: The Consumer. url:
https://kafka.apache.org/documentation/#theconsumer.

kafka.apache.org (2022). Apache Kafka. Accessed: February 22, 2022.
Kaviraju, R D (2021). RAMI 4.0: Explained with example. Accessed: June 26, 2022.
Khanna, Abhirup and Rishi Anand (2016). “IoT based smart parking system”. In: 2016

International Conference on Internet of Things and Applications (IOTA), pp. 266–270.
doi: 10.1109/IOTA.2016.7562735.

Kiran, Mariam et al. (2015). “Lambda architecture for cost-effective batch and speed big
data processing”. In: 2015 IEEE International Conference on Big Data (Big Data).
IEEE, pp. 2785–2792.

150 Bibliography

Klishin, Michael (2022). Fetching Individual Messages ("Pull API"). url:
https://www.rabbitmq.com/consumers.html.

Koo, Jahoon and Young-Gab Kim (2022). “Resource identifier interoperability among
heterogeneous IoT platforms”. In: Journal of King Saud University - Computer and
Information Sciences 34.7, pp. 4191–4208. issn: 1319-1578. doi:
https://doi.org/10.1016/j.jksuci.2022.05.003. url:
https://www.sciencedirect.com/science/article/pii/S1319157822001525.

Kro, Srdjan, Boris Pokri, and Francois Carrez (2014). “Designing IoT architecture (s): A
European perspective”. In: 2014 IEEE world forum on internet of things (WF-IoT).
IEEE, pp. 79–84.

Kumar, Abhishek and Jyotir Chatterjee (Mar. 2020). Internet of Things Use Cases for the
Healthcare Industry. isbn: 978-3-030-37525-6.

Lakshman, Avinash and Prashant Malik (2010). “Cassandra: a decentralized structured
storage system”. In: ACM SIGOPS Operating Systems Review 44.2, pp. 35–40.

Lazidis, Apostolos, Konstantinos Tsakos, and Euripides G.M. Petrakis (2022).
“Publish-Subscribe approaches for the IoT and the cloud: Functional and performance
evaluation of open-source systems”. In: Internet of Things 19, p. 100538. issn:
2542-6605. doi: https://doi.org/10.1016/j.iot.2022.100538. url:
https://www.sciencedirect.com/science/article/pii/S2542660522000403.

Lewis, William E. (2008). Software Testing and Continuous Quality Improvement.
Lighttpd (2022). Lighttpd. url: https://www.lighttpd.net/.
Lin, Shi-Wan et al. (2017). Architecture Alignment and Interoperability. Accessed: June

26, 2022.
Listyorini, Tri and Robbi Rahim (2018). “A prototype fire detection implemented using the

Internet of Things and fuzzy logic”. In: World Trans. Eng. Technol. Educ 16.1,
pp. 42–46.

López Peña, Miguel Angel and Isabel Muñoz Fernández (2019). “SAT-IoT: An
Architectural Model for a High-Performance Fog/Edge/Cloud IoT Platform”. In: 2019
IEEE 5th World Forum on Internet of Things (WF-IoT), pp. 633–638. doi:
10.1109/WF-IoT.2019.8767282.

Luo, Xi et al. (2021). “A scalable rule engine system for trigger-action application in
large-scale IoT environment”. In: Computer Communications 177, pp. 220–229. issn:
0140-3664. doi: https://doi.org/10.1016/j.comcom.2021.06.016. url:
https://www.sciencedirect.com/science/article/pii/S0140366421002401.

Lynn, Theo et al. (2020). “The Internet of Things: Definitions, Key Concepts, and
Reference Architectures”. In: The Cloud-to-Thing Continuum: Opportunities and
Challenges in Cloud, Fog and Edge Computing. Ed. by Theo Lynn et al. Cham: Springer
International Publishing, pp. 1–22. isbn: 978-3-030-41110-7. doi:
10.1007/978-3-030-41110-7_1. url:
https://doi.org/10.1007/978-3-030-41110-7_1.

Mapbox (2022). Mapbox GL JS. url: https://www.mapbox.com/mapbox-gljs.
Marcu, Ioana et al. (2020). “Arrowhead technology for digitalization and automation

solution: Smart cities and smart agriculture”. In: Sensors 20.5, p. 1464.
Martin, R.C. (2003). Agile Software Development: Principles, Patterns, and Practices.

Alan Apt series. Pearson Education. isbn: 9780135974445. url:
https://books.google.pt/books?id=0HYhAQAAIAAJ.

Microsoft (2018). Microsoft Azure IoT Reference Architecture. Accessed: June 26, 2022.
– (2022a). Azure IoT. Accessed: February 8, 2022.
– (2022b). Azure IoT Hub. Accessed: February 25, 2022.

Bibliography 151

– (2022c). Read device-to-cloud messages from the built-in endpoint. Accessed: April 3,
2022.

– (2022d). Typescript. url: https://www.typescriptlang.org/.
Milenkovic, Milan (2020). “Chapter 8: IoT Platforms”. In: Internet of Things: Concepts

and System Design. Cham: Springer International Publishing, pp. 247–265. isbn:
978-3-030-41346-0. doi: 10.1007/978-3-030-41346-0_8. url:
https://doi.org/10.1007/978-3-030-41346-0%5C_8.

Miller, Justin J (2013). “Graph database applications and concepts with Neo4j”. In:
Proceedings of the southern association for information systems conference, Atlanta,
GA, USA. Vol. 2324. 36.

Miloslavskaya, Natalia and Alexander Tolstoy (2016). “Big data, fast data and data lake
concepts”. In: Procedia Computer Science 88, pp. 300–305.

Mockito (2022). Mockito Testing Framework. url: https://site.mockito.org/.
Mohammed, Abrar Ahmed et al. (2021). “Computer Vision Based Autonomous Fire

Detection and IoT Based Fire Response System”. In: Proceedings of International
Conference on Communication and Computational Technologies. Springer, pp. 551–560.

MongoDB (2022). MongoDB. url: https://www.mongodb.com/.
Morrison, J Paul (1994). “Flow-based programming”. In: Proc. 1st International Workshop

on Software Engineering for Parallel and Distributed Systems, pp. 25–29.
Morrison, J.P. (2010). Flow-based Programming: A New Approach to Application

Development. J.P. Morrison Enterprises. isbn: 9781451542325. url:
https://books.google.pt/books?id=R06TSQAACAAJ.

Mozzila (2022). Javascript. url:
https://developer.mozilla.org/en-US/docs/Web/JavaScript.

MQTT (2022). MQTT: The Standard for IoT Messaging. url: https://mqtt.org/.
Muller, Gerrit (2008). “A reference architecture primer”. In: Eindhoven Univ. of Techn.,

Eindhoven, White paper.
MySQL (2022). MySQL. url: https://www.mysql.com/.
Nadiminti, Krishna, Marcos Dias De Assunçao, and Rajkumar Buyya (2006). “Distributed

systems and recent innovations: Challenges and benefits”. In: InfoNet Magazine 16.3,
pp. 1–5.

Naqvi, Syeda Noor Zehra, Sofia Yfantidou, and Esteban Zimányi (2017). “Time series
databases and influxdb”. In: Studienarbeit, Université Libre de Bruxelles 12.

Neo4j (2022). Neo4j. url: %5Curl%7Bhttps://neo4j.com/%7D.
Nginx (2022). Nginx. url: https://nginx.org/en/.
Nish Anil, Tarun Jain and Miguel Veloso (2022a). Asynchronous message-based

communication. url: https://docs.microsoft.com/en-
us/dotnet/architecture/microservices/architect-microservice-container-
applications/asynchronous-message-based-communication.

– (2022b). Communication in a microservice architecture. url:
https://docs.microsoft.com/en-
us/dotnet/architecture/microservices/architect-microservice-container-
applications/communication-in-microservice-architecture.

Nieti, Sandro, Nedjib Djilali, et al. (2019). “Smart technologies for promotion of energy
efficiency, utilization of sustainable resources and waste management”. In: Journal of
cleaner production 231, pp. 565–591.

Nieti, Sandro, Petar oli, et al. (2020). “Internet of Things (IoT): Opportunities, issues and
challenges towards a smart and sustainable future”. In: Journal of Cleaner Production
274, p. 122877. issn: 0959-6526. doi:

152 Bibliography

https://doi.org/10.1016/j.jclepro.2020.122877. url:
https://www.sciencedirect.com/science/article/pii/S095965262032922X.

Noura, Mahda, Mohammed Atiquzzaman, and Martin Gaedke (2019). “Interoperability in
internet of things: Taxonomies and open challenges”. In: Mobile networks and
applications 24.3, pp. 796–809.

Nx (2022). Nx. url: https://nx.dev/.
Obaideen, Khaled et al. (2022). “An overview of smart irrigation systems using IoT”. In:

Energy Nexus 7, p. 100124. issn: 2772-4271. doi:
https://doi.org/10.1016/j.nexus.2022.100124. url:
https://www.sciencedirect.com/science/article/pii/S2772427122000791.

Okta (2022). Okta Customer Identity. url:
https://www.okta.com/solutions/secure-ciam/.

OpenID (2014). OpenID Connect. url: https://openid.net/connect/.
Oracle (2022a). GraalVM. url: https://www.graalvm.org/.
– (2022b). Introduction to GraalVM. url:
https://www.graalvm.org/22.2/docs/introduction/.

– (2022c). Oracle database. url: %5Curl%7Bhttps://www.oracle.com/database/%7D.
OWASP (2021). TOP 10. Accessed: February 14, 2022.
Palermo, Jeffrey (2008). The Onion Architecture. url:
https://jeffreypalermo.com/2008/07/the-onion-architecture-part-1/.

Paradigm, Visual (2020). Requirement Analysis Techniques. Accessed: February 14, 2022.
Pierleoni, Paola et al. (2020). “Amazon, Google and Microsoft Solutions for IoT:

Architectures and a Performance Comparison”. In: IEEE Access 8, pp. 5455–5470. doi:
10.1109/ACCESS.2019.2961511.

Pittet, Sten (2022). The different types of software testing. url:
https://www.atlassian.com/continuous-delivery/software-testing/types-
of-software-testing.

Pokorny, Jaroslav (2011). “NoSQL databases: a step to database scalability in web
environment”. In: Proceedings of the 13th International Conference on Information
Integration and Web-based Applications and Services, pp. 278–283.

PostgresSQL (2022a). Array Functions and Operators. url:
https://www.postgresql.org/docs/current/arrays.html.

– (2022b). Array Functions and Operators. url:
https://www.postgresql.org/docs/current/functions-array.html.

– (2022c). PostgresSQL. url: https://www.postgresql.org/.
Powell, Ron (Oct. 2021). SOA vs microservices: going beyond the monolith. url:
https://circleci.com/blog/soa-vs-microservices/.

Preston-Werner, Tom (June 2011). Semantic Versioning 2.0.0. [Online; accessed 30. Jun.
2022]. url: https://semver.org/.

Pulsar, Apache (2022a). Pulsar. url:
https://pulsar.apache.org/docs/2.6.0/pulsar-2.0.

– (2022b). Pulsar - Multi-topic subscriptions. url:
https://pulsar.apache.org/docs/2.6.0/concepts-messaging#multi-topic-
subscriptions.

Al-Qaseemi, Sarah A et al. (2016). “IoT architecture challenges and issues: Lack of
standardization”. In: 2016 Future technologies conference (FTC). IEEE, pp. 731–738.

questdb.io (2022). QuestDB. url: https://questdb.io.

Bibliography 153

Qureshi, Waqar et al. (Apr. 2015). “QuickBlaze: Early Fire Detection Using a Combined
Video Processing Approach”. In: Fire Technology 52. doi:
10.1007/s10694-015-0489-7.

Ray, Partha Pratim (2016). “A survey of IoT cloud platforms”. In: Future Computing and
Informatics Journal 1.1, pp. 35–46. issn: 2314-7288. doi:
https://doi.org/10.1016/j.fcij.2017.02.001. url:
https://www.sciencedirect.com/science/article/pii/S2314728816300149.

RedHat (2022). What is CI/CD? url:
https://www.redhat.com/en/topics/devops/what-is-ci-cd.

– (n.d.). Drools Testimonials and Case Studies. url:
https://www.drools.org/learn/testimonialsAndCaseStudies.html.

redhat (2021). Quarkus Reactive Architecture. url:
https://quarkus.io/guides/quarkus-reactive-architecture.

Redis (2022). Redis. url: %5Curl%7Bhttps://redis.io/%7D.
Reselman, Bob (Mar. 2021). The pros and cons of the Pub-Sub architecture pattern. url:
https://www.redhat.com/architect/pub-sub-pros-and-cons.

Richards, M. (2015). Microservices Vs. Service-oriented Architecture. O’Reilly Media. isbn:
9781491975657. url: https://books.google.pt/books?id=Bd5mAQAACAAJ.

Richards, M. and N. Ford (2020). Fundamentals of Software Architecture: An Engineering
Approach. O’Reilly Media. Chap. 6, pp. 86–87. isbn: 9781492043409.

Richardson, Chris (2021a). Pattern: Microservice Architecture. url:
https://microservices.io/patterns/microservices.html.

– (2021b). Pattern: Monolithic Architecture. url:
https://microservices.io/patterns/monolithic.html.

– (2022a). Database per service Pattern. url:
https://microservices.io/patterns/data/database-per-service.html.

– (2022b). Event sourcing Pattern. url:
https://microservices.io/patterns/data/event-sourcing.html.

– (2022c). Externalized configuration Pattern. url:
https://microservices.io/patterns/externalized-configuration.html.

Rogerson, Steve (2021). Safecube uses Microsoft Azure for asset tracking. Accessed:
February 8, 2022.

Roy, Sanku Kumar et al. (2021). “AgriSens: IoT-Based Dynamic Irrigation Scheduling
System for Water Management of Irrigated Crops”. In: IEEE Internet of Things Journal
8.6, pp. 5023–5030. doi: 10.1109/JIOT.2020.3036126.

Saeed, Faisal et al. (2018). “IoT-based intelligent modeling of smart home environment for
fire prevention and safety”. In: Journal of Sensor and Actuator Networks 7.1, p. 11.

Safecube (2021). Locatrack Solution: Locate your assets, Manage your fleet. Accessed:
February 8, 2022.

Sanjay Aiyagari, Matthew Arrott (2008). Advanced Message Queuing Protocol
Specification, Version 0-9-1. url:
https://www.rabbitmq.com/resources/specs/amqp0-9-1.pdf.

Schwaber, Ken (1997). “Scrum development process”. In: Business object design and
implementation. Springer, pp. 117–134.

Services, Amazon Web (2022). Rules for AWS IoT. url: %5Curl%7Bhttps:
//docs.aws.amazon.com/iot/latest/developerguide/iot-rules.html%7D.

Shyam, Gopal Kirshna, Sunilkumar S. Manvi, and Priyanka Bharti (2017). “Smart waste
management using Internet-of-Things (IoT)”. In: 2017 2nd International Conference on

154 Bibliography

Computing and Communications Technologies (ICCCT), pp. 199–203. doi:
10.1109/ICCCT2.2017.7972276.

SierraWireless (2017). Build Efficient and Reliable IoT Smart Meters for Utilities.
Accessed: February 8, 2022.

Silva, Bhagya Nathali, Murad Khan, and Kijun Han (2018). “Towards sustainable smart
cities: A review of trends, architectures, components, and open challenges in smart
cities”. In: Sustainable Cities and Society 38, pp. 697–713. issn: 2210-6707. doi:
https://doi.org/10.1016/j.scs.2018.01.053. url:
https://www.sciencedirect.com/science/article/pii/S2210670717311125.

Silva, Margarida et al. (2020). “Visually-Defined Real-Time Orchestration of IoT Systems”.
In: MobiQuitous 2020 - 17th EAI International Conference on Mobile and Ubiquitous
Systems: Computing, Networking and Services. MobiQuitous ’20. Darmstadt, Germany:
Association for Computing Machinery, pp. 225–235. isbn: 9781450388405. doi:
10.1145/3448891.3448938. url: https://doi.org/10.1145/3448891.3448938.

Slee, Mark, Aditya Agarwal, and Marc Kwiatkowski (2007). “Thrift”. In: Facebook white
paper 5.8, p. 127.

SmartDrive (2018a). SR4: Fuelling The Future of Intelligent Transportation. Accessed:
February 8, 2022.

– (2018b). Transportation Intelligence Platform. Accessed: February 8, 2022.
spark.apache.org (2022). Apache Spark. Accessed: February 22, 2022.
Spring (2022). Spring Native documentation. url:
https://docs.spring.io/spring-native/docs/current/reference/htmlsingle/.

Statista, Arne von See (2021). Number of Internet of Things (IoT) connected devices
worldwide from 2019 to 2030. Accessed: February 6, 2022.

storm.apache.org (2022). Apache Storm. Accessed: February 22, 2022.
Sumaray, Audie and S Kami Makki (2012). “A comparison of data serialization formats for

optimal efficiency on a mobile platform”. In: Proceedings of the 6th international
conference on ubiquitous information management and communication, pp. 1–6.

T-Mobile (2021). IoT: How It’s Making Small Businesses More Efficient. Accessed:
February 8, 2022.

TagoIO (2022). TagoIO. url: https://tago.io/.
Tapscott, Don and Anthony D. Williams (Dec. 2006). Wikinomics: How Mass

Collaboration Changes Everything. New York, NY: Portfolio. isbn: 978-1591841388.
ThingsBoard (2022a). Rule Engine Overview. url: %5Curl%7Bhttps:
//thingsboard.io/docs/user-guide/rule-engine-2-0/overview/%7D.

– (2022b). ThingsBoard. url: https://thingsboard.io/.
TracPac (2022). TrackPac: Track everything that matters. Accessed: July 13, 2022.
Tracy, Phillip (2017). The top 5 industrial IoT use cases. Accessed: February 8, 2022.
Urquhart, J. (2021). Flow Architectures The Future of Streaming and Event-Driven

Integration. O’Reilly Media. isbn: 9781492075868.
Van Lamsweerde, Axel (2009). Requirements engineering: From system goals to UML

models to software. Vol. 10. Chichester, UK: John Wiley & Sons.
Varga, Pal et al. (2017). “Making system of systems interoperable–The core components

of the arrowhead framework”. In: Journal of Network and Computer Applications 81,
pp. 85–95.

Verizon (2022). Fleet management software. Accessed: February 8, 2022.
VMWare (2022a). AMQP 0-9-1 Model Explained. url:
https://www.rabbitmq.com/tutorials/amqp-concepts.html.

– (2022b). RabbitMQ. url: https://www.rabbitmq.com/.

Bibliography 155

– (2022c). Spring Boot. url: https://spring.io/projects/spring-boot.
Waylay (2020). A guide to: Rules Engines. url: %5Curl%7Bhttps:
//query.prod.cms.rt.microsoft.com/cms/api/am/binary/RE36M3O%7D.

Webpack (2022). Module Federation. url:
https://webpack.js.org/concepts/module-federation/.

Wegner, Philipp (2020). The top 10 Smart City use cases that are being prioritized now.
Accessed: February 8, 2022.

Weyrich, Michael and Christof Ebert (2015). “Reference architectures for the internet of
things”. In: IEEE Software 33.1, pp. 112–116.

Winslow, Robert (2021). Time Series Benchmark Suite (TSBS). Accessed: February 24,
2022.

WSO2 (2015). A Reference Architecture for the Internet of Things. Accessed: May 20,
2022.

Wu, Lesong, Lan Chen, and Xiaoran Hao (2021). “Multi-sensor data fusion algorithm for
indoor fire early warning based on BP neural network”. In: Information 12.2, p. 59.

Yoon, Ayoung et al. (2017). “In between data sharing and reuse: Shareability, availability
and reusability in diverse contexts”. In: Proceedings of the Association for Information
Science and Technology 54.1, pp. 606–609. doi:
https://doi.org/10.1002/pra2.2017.14505401085. eprint: https:
//asistdl.onlinelibrary.wiley.com/doi/pdf/10.1002/pra2.2017.14505401085.
url: https:
//asistdl.onlinelibrary.wiley.com/doi/abs/10.1002/pra2.2017.14505401085.

Zaniolo, Carlo and Miachel A Meklanoff (1981). “On the design of relational database
schemata”. In: ACM Transactions on Database Systems (TODS) 6.1, pp. 1–47.

157

Appendix A

Data Unit - Shared Model Schema

This schema represents the Shared Model Schema of a Data Unit as of iot-core package
version 0.1.20.

Due to the lack of standards, this model and the represented measures are possibly
incomplete. As the IoT landscape evolves and defines stricter and well-known standards for
sensor measurements and device parameters representation, the iot-core package must
adhere to them and be able to translate between the supported representations.

The version that is currently in development, 0.2.0, is planed to support Sensor
Measurement Lists (SenML). The reason behind the delayed support for it, steams from
the lack of open-source Java libraries related to SenML, the unfamiliarity of the author
with the standard till early April 2022, and the fast paced development of the solution
required to meet costumers’ needs.

1 {
2 "dataId": "[uuid]",
3 "reportedAt": "[long]",
4 "device": {
5 "id": "[uuid]",
6 "name": "[string]",
7 "downlink": "[string]",
8 "records": [{
9 "label": "[string]",

10 "content": "[string]"
11 }],
12 "domains": ["[uuid]"],
13 "commands": {
14 "[int]": [{
15 "id": "[uuid]",
16 "name": "[string]",
17 "payload": "[base64 string]",
18 "port": "[int]"
19 }]
20 }
21 },
22 "measures": {
23 "[int]": {
24 "airHumidity": {
25 "gramsPerCubicMeter": "[float]",
26 "relativePercentage": "[float]"
27 },

158 Appendix A. Data Unit - Shared Model Schema

28 "airPressure": { "hectoPascal": "[float]" },
29 "aqi": { "value": "[float]" },
30 "battery": {
31 "percentage": "[float]",
32 "volts": "[float]",
33 "maxVolts": "[float]",
34 "minVolts": "[float]"
35 },
36 "co2": { "ppm": "[float]" },
37 "co": { "ppm": "[float]" },
38 "distance": {
39 "millimeters": "[float]",
40 "maxMillimeters": "[float]",
41 "minMillimeters": "[float]"
42 },
43 "gps": {
44 "latitude": "[double]",
45 "longitude": "[double]",
46 "altitude": "[float]"
47 },
48 "illuminance": { "lux": "[float]" },
49 "motion": { "value": "[ACTIVE , INACTIVE or UNKNOWN]" },
50 "nh3": { "ppm": "[float]" },
51 "no2": { "ppm": "[float]" },
52 "o3": { "ppm": "[float]" },
53 "occupation": { "percentage": "[float]" },
54 "ph": { "value": "[float]" },
55 "pm2_5": { "microGramsPerCubicMeter": "[float]" },
56 "pm10": { "microGramsPerCubicMeter": "[float]" },
57 "soilConductivity": {
58 "microSiemensPerCentimeter": "[float]"
59 },
60 "soilMoisture": { "relativePercentage": "[float]" },
61 "temperature": { "celsius": "[float]" },
62 "trigger": { "value": "[boolean]" },
63 "velocity": { "kilometerPerHour": "[float]" },
64 "voc": { "ppm": "[float]" },
65 "waterPressure": { "bar": "[float]" }
66 }
67 }
68 }

Listing A.1: Data Unit - Shared Model Schema

159

Appendix B

Container Level - Logical View

This logical view represents a system when all business applications are included in the
platform, Sensae Console. It corresponds to the system used currently in production.

160 Appendix B. Container Level - Logical View

«System
»

Sensae
C

onsole

«C
ontainer»

U
I
A

ggregator

«C
ontainer»

F
leet

M
anagem

ent
Frontend

«C
ontainer»

Sm
art

Irrigation
Frontend

«C
ontainer»

D
evice

M
anagem

ent
Frontend

«C
ontainer»

D
ata

P
rocessor

Frontend
«C

ontainer»
D

ata
D

ecoder
Frontend

«C
ontainer»

Identity
M

anagem
ent

Frontend
«C

ontainer»
R

ule
M

anagem
ent

Frontend
«C

ontainer»
N

otification
M

anagem
ent

Frontend

F
leet

M
anagem

ent
U

I
Sm

art
Irrigation

U
I

D
evice

M
anagem

ent
U

I
D

ata
P
rocessor

U
I

D
ata

D
ecoder

U
I

Identity
M

anagem
ent

U
I

R
ule

M
anagem

ent
U

I
N

otification
M

anagem
ent

U
I

«C
ontainer»
M

essage
B

roker

«C
ontainer»

F
leet

M
anagem

ent
B

ackend

«C
ontainer»

Sm
art

Irrigation
B

ackend

«C
ontainer»

D
evice

M
anagem

ent
B

ackend

«C
ontainer»

D
evice

M
anagem

ent
F
low

B
ackend

«C
ontainer»

D
ata

G
atew

ay
B

ackend

«C
ontainer»

D
ata

R
elayer

«C
ontainer»

D
ata

P
rocessor

F
low

B
ackend

«C
ontainer»

D
ata

P
rocessor

B
ackend

«C
ontainer»

D
ata

D
ecoder

F
low

B
ackend

«C
ontainer»

D
ata

D
ecoder

B
ackend

«C
ontainer»

D
ata

V
alidator

B
ackend

«C
ontainer»

D
evice

M
anagem

ent
D

atabase

«C
ontainer»

D
ata

P
rocessor

D
atabase

«C
ontainer»

D
ata

D
ecoder

D
atabase

«C
ontainer»

Identity
M

anagem
ent

D
atabase

«C
ontainer»

D
ata

Store
B

ackend

«C
ontainer»

F
leet

M
anagem

ent
D

atabase

«C
ontainer»

D
ata

Store
D

atabase

«C
ontainer»

Sm
art

Irrigation
D

ata
D

atabase

«C
ontainer»

Sm
art

Irrigation
B

usiness
D

atabase

«C
ontainer»

Identity
M

anagem
ent

B
ackend

«C
ontainer»

D
evice

O
w

nership
B

ackend

«C
ontainer»

D
evice

C
om

m
ander

B
ackend

«C
ontainer»

R
ule

M
anagem

ent
B

ackend

«C
ontainer»

R
ule

M
anagem

ent
D

atabase

«C
ontainer»

A
lert

D
ispatcher

B
ackend

«C
ontainer»

N
otification

M
anagem

ent
B

ackend

«C
ontainer»

N
otification

M
anagem

ent
D

atabase

«C
ontainer»

N
otification

D
ispatcher

B
ackend

M
essage

B
roker

A
P
I

F
leet

M
anagem

ent
B

ackend
A

P
I

Sm
art

Irrigation
B

ackend
A

P
I

D
evice

M
anagem

ent
B

ackend
A

P
I

D
ata

P
rocessor

B
ackend

A
P
I

D
ata

D
ecoder

B
ackend

A
P
I

D
evice

M
anagem

ent
D

atabase
A

P
I

D
ata

P
rocessor

D
atabase

A
P
I

D
ata

D
ecoder

D
atabase

A
P
I

Identity
M

anagem
ent

D
atabase

A
P
I

F
leet

M
anagem

ent
D

atabase
A

P
I

D
ata

Store
D

atabase
A

P
I

Sm
art

Irrigation
D

ata
D

atabase
A

P
I

Sm
art

Irrigation
B

usiness
D

atabase
A

P
I

D
ata

G
atew

ay
B

ackend
A

P
I

Identity
M

anagem
ent

B
ackend

A
P
I

R
ule

M
anagem

ent
B

ackend
A

P
I

R
ule

M
anagem

ent
D

atabase
A

P
I

N
otification

M
anagem

ent
B

ackend
A

P
I

N
otification

M
anagem

ent
D

atabase
A

P
I

U
I

Sensae
C

onsole
U

plink
R

est
A

P
I

IoT
M

iddlew
are

D
ow

nlink
R

est
A

P
I

T
w

ilio
SM

S
D

isptacher
A

P
I

SM
T

P
Server

O
penID

C
onnect

A
P
I

F
igure

B
.1:

C
om

plete
Solution

-
C

ontainer
Level-

LogicalV
iew

D
iagram

161

Appendix C

C4 Level 3 - Components

The component level describes the internals of a specific container. A container is made
up of a number of components, each with well-defined responsibilities. In the following
diagrams the dependencies between the various components will also be presented.

Most developed containers share the same architecture and will therefore be addressed as
groups of containers.

The physical view will not be presented since all relevant details have been addressed above.

C.1 Components Level - Logical View

The architectures used in the various developed containers can be condensate into 3 types
with minor variations:

• Frontend Architecture: used on all Configuration scope frontend containers;

• Configuration Backend Architecture: used on all Configuration scope backend
containers;

• Data Flow Architecture: used on most Data Flow scope containers.

Starting with the Frontend Architecture used, it was decided to maintain two distinct
domains (Model and DTOS) in order to meet the Single Responsability Principle (SRP)
(high cohesion) and to lower the coupling between the information displayed in the UI and
the data sent/received by the container. This segmentation led to the addition of the
Mapper component, which has the responsibility of converting the data (DTOS
component) into information (Model component) and vice-versa. The Auth component
indicates what backend resources the user has access to, by decoding the access token,
and the Utils component has several methods commonly used to process backend requests.
These two components are reused in all frontend containers, including the ones related to
the Business Applications.

As an example, the logical view of the Data Decoder Frontend is presented in Figure C.1.

162 Appendix C. C4 Level 3 - Components

«Container»
Data Decoder Frontend

App

Library

Data Decoder

Services API

Model API

«Component»
Presentation

«Component»
Auth

«Component»
Utils

Auth API

Utils API

«Component»
DTOS

«Component»
Mappers

«Component»
Model

«Component»
Services

DTOs API Mappers API

UI

Figure C.1: Data Decoder Frontend - Component Level - Logical View Dia-
gram

This architecture is used on the containers: (i) Device Management Frontend, (ii) Data
Decoder Frontend, (iii) Data Processor Frontend, (iv) Rule Management Frontend. The
UI Aggregator has a simpler architecture them the other frontend containers, it is
comprised by a Presentation component that depends on the Auth component to handle
user authentication and authorization.

Next, the Configuration Backend Architecture is discussed. It is based on the Onion
Architecture, an architecture pattern that “emphasizes separation of concerns throughout
the system” and “leads to more maintainable applications” (Palermo 2008).

As an example the logical view of the Device Management Backend is presented in
Figure C.2.

C.1. Components Level - Logical View 163

«Container»
Device Management Backend

Infrastructure

PresistenceEndpoint

«Component»
Application

«Component»
Domain

«Component»
Domain Services

Application API Domain APIDomain Services API

«Component»
Postgres

«Component»
Graphql

«Component»
AMQP

Graphql API AMQP API Postgres API

Figure C.2: Device Management Backend - Component Level - Logical View
Diagram

This architecture is used on the containers: (i) Device Management Backend, (ii) Data
Decoder Backend, (iii) Data Processor Backend, (iv) Rule Management Backend, (v)
Identity Management Backend.

The following table, Table C.1, discusses each component responsibilities.

164 Appendix C. C4 Level 3 - Components

Table C.1: Configuration Backend components responsibilities

Component Responsibilities

Infrastructure
- Enclose components that manage the Input/Output
operations required by the container.

Endpoint
- Enclose components that are used by external
containers to interact with the container.

AMQP
- Define how to consume and publish events in the Message Broker;
- Delegate the handling of events received to
specific Application processes.

GraphQl
- Define the interface to be consumed by the
frontend and external Systems;
- Delegate external requests made to specific Application processes.

Persistence
- Enclose components that interface with
containers responsible for persisting data.

Postgres - Interact with a database to persist and query data.

Application

- Represent the application processes;
- Ensure the propagation of events related to the
process in question, requiring this responsibility to AMQP;
- Ensure the execution of the process in question,
requiring this responsibility to Domain Services;
- Enforce user authorization.

Domain Services
- Represent business processes;
- Interact with the Domain;
- Ensure the persistence of the data in question,
requiring this responsibility to the Persistence.

Domain
- Represent de business rules and concepts;
- Manage the system information.

Finally the architecture used in containers related to the Data Flow Scope is presented. It
is based on a simplified version of the Onion Architecture since the intrinsic processes of
these containers are much simpler.

As an example the logical view of the Device Ownership Backend is presented in
Figure C.3.

C.2. Components Level - Process View 165

«Container»
Device Ownership Backend

Infrastructure

Endpoint

AMQP Persistence

«Component»
Application

«Component»
Domain

Application API Domain API

«Component»
Egress

«Component»
Ingress

«Component»
Internal

«Component»
Memory

AMQP API

Figure C.3: Device Ownership Backend - Component Level - Logical View
Diagram

This architecture is used on the containers: (i) Device Management Flow Backend, (ii)
Data Decoder Flow Backend, (iii) Data Processor Flow Backend, (iv) Device Ownership
Backend. The responsibilities of the components inside AMQP are:

• Internal: responsible for communicating with the system via internal topic;

• Ingress: responsible for consuming events/messages coming from data, alert or
command topics;

• Egress: responsible for publishing events/messages to the data or alert topics.

The Memory component is responsible for caching unhandled data units and other
information relevant for each context. This component is not present in Data Validator
Backend and Alert Dispatcher Backend since they don’t need to store context information
to function.

The Data Gateway, Device Commander and Data Store backend containers have
architectures that derive from this one and can be consulted in Appendix D.

C.2 Components Level - Process View

In this section some internal process deemed relevant are presented through sequence
diagrams in order to familiarize the reader with the interactions that occur between
components inside a container.

The internal processes that will be evaluated are:

• Process Data Unit in Device Management Flow Backend;

• Deploy Draft Rule Scenarios in Rule Management Backend.

166 Appendix C. C4 Level 3 - Components

This processes have been chosen in order to introduce the reader to specific operations not
yet explored in this chapter.

The first process to explore is meant to clarify how a Data Unit sent by a Controller
(devices that collect and report measures of various sensors) is processed inside the Device
Management Flow Backend. As explained in the Device Management Section, Data Units
sent by a Controller are partitioned into various Data Units. The following diagram,
Figure C.4, details this process.

C.2. Components Level - Process View 167

«Container»
Device Management Flow Backend

«Component»
Ingress

«Component»
Ingress

«Component»
Application

«Component»
Application

«Component»
Domain

«Component»
Domain

«Component»
Memory

«Component»
Memory

«Component»
Internal

«Component»
Internal

«Component»
Egress

«Component»
Egress

1
message
consumed dto

2 convert to consumed
message with data unit

3 consumed message
with data unit

4 search for data unit’s
device information

5 device information

6 publish device ping
notification

7 convert to dto

8 publish ping dto

9
merge data unit and
device information into
"device with measures"

10 device measures

11
extract controller data
unit from "device with
measures"

12 controller data unit

13

transform consumed
message into supplied
with updated routing
keys and controller
data unit

14 publish supplied
message

15
convert to
message dto

16 publish supplied
message dto

17
extract sub devices data
units from "device with
measures"

18 sub devices’ data units

loop [for each sub device data unit]
19 create new routing keys

20
create new message
with routing keys and
data unit

21 publish message

22
convert to
message dto

23 publish supplied
message dto

Figure C.4: Process Data Unit in Device Management Flow Backend - Com-
ponent Level - Process View Diagram

As presented in the diagram:

• As soon as the message dto arrives, it is mapped to the iot-core data unit model -
step 2 - this model is used inside every Data Flow container. Before publishing the

168 Appendix C. C4 Level 3 - Components

data unit it is mapped to the dto once again - step 15 and 22. This conversion
happens with any other event published and consumed in the system;

• If the device information is found, a ping notification for that device is sent - steps 6
to 8, otherwise an unknown notification would be sent and the container would store
the data unit in the Memory component and process it when possible;

• For each sub device of the controller, a new data unit with that device measures is
published in the system - steps 19 to 23;

Next, the process of deploying draft rule scenarios is described. Draft scenarios exist since
adding, removing or changing a rule scenario in Alert Dispatcher Backend requires the
entire data set to be removed. This procedure can lead to alerts not being dispatched.
The next diagram, Figure C.5, tackles this concern.

«Container»
Rule Management Backend

«Component»
Application

«Component»
Application

«Component»
Domain Services

«Component»
Domain Services

«Component»
Postgres

«Component»
Postgres

«Component»
AMQP

«Component»
AMQP

«Component»
Domain

«Component»
Domain

«Container»
Rule Management

Database

«Container»
Rule Management

Database

«Container»
Message
Broker

«Container»
Message
Broker

every 30 minutes

1 activate all
draft scenarios

2 fetch draft
cenarios

3 query draft scenarios

4 scenarios

5 map database model
to domain model

6 domain model

7 scenarios

8 mark scenarios
as active

9 active scenarios

10 update
scenarios

11 update scenarios

12 scenarios

13 map database model
to domain model

14 domain model

15 activated
scenarios

16 scenarios

alt [list of scenarios isn’t empty]
17 publish new active scenarios

18 publish scenarios

Figure C.5: Deploy Draft Rule Scenarios - Component Level - Process View
Diagram

C.3. Components Level - Implementation View 169

As seen in the diagram, to mitigate the number of lost alerts, new rule scenarios are
published at best every 30 minutes - step 1 - and only if any change was made - step 17
and 18.

C.3 Components Level - Implementation View

The implementation view of each container can also be condensate in the same 3 distinct
types presented in the Section Components Level - Logical View.

The next diagrams, Figure C.6, Figure C.7 and Figure C.8 describe this view at the
components level.

frontend-services

apps

data-decoder-frontend

libs

data-decoder

componentsauth

core dtos mappers model

services

Figure C.6: Data Decoder Frontend - Component Level - Implementation
View Diagram

The packages presented correspond to the components described in the logical view
(Figure C.1). Since the names given in both views are different, the following list maps the
logical view into the implementation view:

• components package corresponds to the Presentation component;

• auth package corresponds to the Auth component;

• core package corresponds to the Utils component;

• dtos package corresponds to the DTOS component;

• mappers package corresponds to the Mappers component;

• model package corresponds to the Model component;

• services package corresponds to the Services component.

170 Appendix C. C4 Level 3 - Components

device-management-backend

infrastructure

presistenceendpoint

application domaindomain-services

postgresgraphqlamqp

Figure C.7: Device Management Backend - Component Level - Implementa-
tion View Diagram

The packages presented correspond to the components described in the logical view
(Figure C.2). The names given in both views differ only on the case used.

device-ownership-backend

infrastructure

endpoint

amqp persistence

application domain

egressingressinternal memory

Figure C.8: Device Ownership Backend - Component Level - Implementation
View Diagram

The packages presented correspond to the components described in the logical view
(Figure C.3). The names given in both views differ only on the case used.

171

Appendix D

Sensae Console - Components Level
- Logical View

This Appendix presents the logical view, component level, of the Data Flow scope
containers that had minor differences when compared with the other containers.

«Container»

Data Gateway

Infrastructure

Endpoint

«Component»

Domain

«Component»

Application
Application API Domain API

«Component»

AMQP

«Component»

REST

AMQP API REST API

Figure D.1: Data Gateway - Component Level - Logical View Diagram

172 Appendix D. Sensae Console - Components Level - Logical View

«Container»

Data Store

Infrastructure

PersistenceEndpoint

«Component»

Domain

«Component»

Application
Application API Domain API

«Component»

MongoDB

«Component»

AMQP

AMQP API MongoDB API

Figure D.2: Data Store - Component Level - Logical View Diagram

«Container»

Device Commander

Infrastructure

Endpoint

AMQP

«Component»

Domain

«Component»

Application
Domain APIApplication API

«Component»

REST

«Component»

Ingress

«Component»

Internal

AMQP API REST API

Figure D.3: Device Commander - Component Level - Logical View Diagram

173

Appendix E

Business Applications - Components
Level - Logical View

This Appendix presents the logical view, component level, of all backend containers related
to the PoCs developed.

The AMQP API is the one represented as Sensae API for Business Applications in most
logical diagrams.

«Container»

Fleet Management Backend

Infrastructure

EndpointPresistence

«Component»

Application

«Component»

Domain

«Component»

Domain Services

Application APIDomain API Domain Services API

«Component»

Graphql

«Component»

AMQP

«Component»

QuestDB

QuestDB

JDBC API

QuestDB

ILP API

Graphql API AMQP API

Figure E.1: Fleet Management Backend - Component Level - Logical View
Diagram

174 Appendix E. Business Applications - Components Level - Logical View

«Container»

Smart Irrigation Backend

Infrastructure

EndpointPresistence

«Component»

Application

«Component»

Domain

«Component»

Domain Services

Application APIDomain API Domain Services API

«Component»

Graphql

«Component»

AMQP

«Component»

Postgres

«Component»

QuestDB

«Component»

Memory

QuestDB

JDBC API

QuestDB

ILP API

Postgres API Graphql API AMQP API

Figure E.2: Smart Irrigation Backend - Component Level - Logical View
Diagram

«Container»

Notification Management Backend

Infrastructure

PresistenceEndpoint

«Component»

Application

«Component»

Domain

«Component»

Domain Services

Application API Domain APIDomain Services API

«Component»

Postgres

«Component»

Memory

«Component»

Graphql

«Component»

AMQP

Graphql API AMQP API Postgres API

Figure E.3: Notification Management Backend - Component Level - Logical
View Diagram

Appendix E. Business Applications - Components Level - Logical View 175

«Container»

Notification Dispatcher Backend

Infrastructure

Endpoint Persistence

«Component»

Domain

«Component»

Application
Application API Domain API

«Component»

AMQP

«Component»

SMS

«Component»

EMAIL

«Component»

Memory

AMQP API SMS API EMAIL API

Figure E.4: Notification Dispatcher Backend - Component Level - Logical
View Diagram

177

Appendix F

User Authentication/Authorization

User Authentication/Authorization is an important aspect of the solution. During the
requirements elicitation, mentioned in Section 3.1.1, it was clear that several different
levels of permissions had to be given to Tenants. These levels of permissions also had to
be managed by someone. As such, users had to be authenticated in the system and all
accesses had to be authorized.

Four approaches were considered:

• Internal Authentication Server;

• External Authentication Server;

• External Authentication Server with Internal Authorization Server;

• External Authentication Server with Internal Oauth2 Server.

The fourth option was the approach taken.

F.1 Internal Authentication Server

By creating an Internal Authentication Server we could have a normal, private and
controlled user authentication/authorization flow in the environment. Both user
credentials and permissions would be managed internally.

The following diagram, Figure F.1,presents the normal environment flow for this
alternative.

178 Appendix F. User Authentication/Authorization

User

«Container»
Ui Aggregator

«Container»
X Content
Frontend

«Container»
X Content
Backend

«Container»
Internal

Autentication Server

1 Accesses the website

2 Presents a
Sign In/Sign Up section

3 Picks the Sign Up option

4 Requests user infromation

5 Provides information

6 Provides information
about new User

7 Provides information
about new User

8 Performs user
authentication

9 Provides the access token

10 Notifies that a new
access token is present

11
Checks what Frontends

the access token
gives access to

12 Presents
X Content Frontend

13 Accessses the service window

14 Presents X interaction with the service

15 Picks X interaction

16 Requests the
access token

17
Verifies if the
access token
is still valid

18 Provides the
access token

19 Requests infromation
with access token

20 Verifies user
authorization

21 Provides the information

22 Provides the information

Figure F.1: User Authentication/Authorization - Internal Authentication
Server Alternative - Sequence Diagram

This alternative introduces the need to internally secure user credentials and other
sensitive information from data breaches. It would also require each user to register in
sensae with a new account credentials. For this reasons this alternative was discarded.

F.2 External Authentication Server

By using an External Authentication Server there would be no need to store user
credentials or permissions. This services are commonly identified as CIAM solutions.
According to Gartner n.d. these solutions include features such as “self-service for

F.2. External Authentication Server 179

registration, password and consent management, profile generation and management,
authentication and authorization into applications, identity repositories, reporting and
analytics, APIs and SDKs for mobile applications, and social identity registration and login”.

The following diagram, Figure F.2, presents the normal environment flow for this
alternative.

«System»
Sensae Console

User

«Container»
Ui Aggregator

«Container»
X Content
Frontend

«Container»
X Content
Backend

«System»
External

Autentication Server

1 Accesses the website

2 Presents a Sign In section

3 Picks the Sign In option

4 Redirects to external
auth service

5 Accesses external auth service

6 Presents sign in/sign up page

7 Performs sign ip/sign up

8

Performs user
authentication

via OpenID
Connect Protocol

9 Redirect to registered callback with access token

10 Accesses registered
callback

11 Stores the access token

12 Notifies that a new
access token is present

13

Checks what
Frontends the
access token

gives access to

14 Presents the
X Content Frontend

15 Accessses the service window

16 Presents X interaction with the service

17 Picks X interaction

18 Requests the
access token

19
Verifies if the
access token
is still valid

20 Provides the
access token

21 Requests infromation with access token

22 Verifies user
authorization

23 Provides the information

24 Provides the information

Figure F.2: User Authentication/Authorization - External Authorization
Server Alternative - Sequence Diagram

This approach would create a strong dependency to the CIAM solution used since all user
credentials and authorization level would have to be managed by the CIAM solution. Some

180 Appendix F. User Authentication/Authorization

of this services are: (i) Auth0 Customer Identity, (ii) Google Identity Platform, (iii) Okta
Customer Identity, (iv) Amazon Cognito and (v) Azure Active Directory (Azure AD).

The platform Auth0 was tested and is capable of answering all of this project’s
requirements.

As stated before, the dependency created would force the environment to always be
coupled to the chosen CIAM solution. For this reason this alternative was discarded.

F.3 External Authentication Server with Internal Authorization
Server

By using an External Authentication Server there would be no need to store user
credentials, the user authorization aspects would then be managed internally via and
Authorization Server.

The following diagram, Figure F.3, presents the normal environment flow for this
alternative.

F.3. External Authentication Server with Internal Authorization Server 181

«System»
Sensae Console

User

«Container»
Ui Aggregator Shell

«Container»
X Content
Frontend

«Container»
Authorization

Server

«Container»
X Content
Backend

«System»
External

Autentication Server

1 Accesses the website

2 Presents a login section

3 Picks the login option

4 Redirects to external
auth service

5 Accesses external auth service

6 Presents sign in/sign up page

7 Performs sign ip/sign up

8
Authenticates

user via OpenID
Connect Protocol

9 Redirect to registered callback with access token

10 Accesses registered
callback

11 Stores the access token

12 Notifies that a
new access token is present

13

Checks what
Frontends the
access token

gives access to

14 Presents X Frontend

15 Accessses the service window

16 Presents X interaction with the service

17 Picks X interaction

18 Requests the
access token

19
Verifies if the
access token
is still valid

20 Provides the
access token

21 Requests infromation with access token

22 Verifies if the
token is valid

23
Requests

user
permissions

24
Provides

user
permissions

25
Verifies if the
user has the

needed permissions

26 Provides the information

27 Provides the information

Figure F.3: User Authentication/Authorization - External Authentication
Server with Internal Authorization Server Alternative - Sequence Diagram

This approach would create a dependency to the CIAM solution used and presented in the
second alternative.

This dependency is less severe compared with the second alternative since all authorization
aspects would be managed internally. This approach would require any backend to query
the Authorization Server for user permissions so that it could verify if the user was
authorized to preform the requested action or not. This would therefore linger down the

182 Appendix F. User Authentication/Authorization

performance of the system since each action would have to be verified in a single
container: the Authorization Server.

F.4 External Authentication Server with Internal Oauth2
Server

By using an external Authorization Server there would be no need to store user credentials.
An internal Oauth2 Server would remove the direct dependency to the Permissions Server
presented in the third alternative.

This alternative is introduced in Figure 4.17 and Figure 4.18 where the Internal Oauth2
Server is the Identity Management Backend.

This approach would create a dependency to the CIAM solution used and presented in the
second alternative. This dependency is less severe compared with the second alternative
since all user permissions would be managed internally. This approach would require the
system to create and refresh access tokens based on the id token received by the external
CIAM solution. Contrary to the third alternative it would not create excessive pressure in a
specific container.

This approach also allows the system to easily integrate with more than one CIAM solution
while managing user permissions in a single place. The CIAM solutions that Sensae
Console is integrated with are:

• Google Identity Platform: for common individuals that want to use the system, since
almost everyone has a google account;

• Azure Active Directory: for companies and organizations since most use Office 365
services internally.

Due to the reasons presented above, this was the adopted approach.

183

Appendix G

Sensae Console Domains

The Bounded Context concept, defined by Evans 2014, refers to an unified model - with
well-defined boundaries and internally consistent - that is, a single piece in a larger system
composed by various bounded contexts.

The concept Bounded Concern refereed in this section draws inspiration from the one
coined by Evans 2014, without the notion of Aggregates, Value Objects, Aggregate Root
and other Domain Driven Design (DDD) concepts. It is here to simply characterize the
various models of the system that, when isolated, can be more clearly interpreted and
understood by the reader.

For Sensae Console, each bounded concern can be pictured as a core business process of
the system, it is composed by the following:

• Data Processor;

• Data Decoder;

• Device Management;

• Identity Management;

• Rule Management.

Each of this concerns will be briefly addressed in the following sections.

G.1 Data Processor

The Data Processor concern refers to simple data mappers that translate inbound
information to Data Units, discussed in Section 4.2.3.1.

The received information must be decoded, meaning that the inbound information simply
has a different structure than Data Unit.

The diagram in Figure G.1 displays the noteworthy concepts in this concern.

184 Appendix G. Sensae Console Domains

C DataMapper

C DeviceTypeId

id: String

C SubDeviceReference

reference: Integer

C EncodedDataPropertyPath

path: String

A PropertyMapper

C UnknownPropertyMapper

dataUnitPropertyPath : String
C KnownPropertyMapper

E PropertyName

DATA_ID
DEVICE_ID
DEVICE_NAME
REPORTED_AT
MOTION
TEMPERATURE_CELSIUS
VELOCITY
BATTERY_MIN_VOLTS
...

path(subDeviceReference) : String

for a

1

1

composed by

1

*
related to1 1

for

1

1

references

1

1

Figure G.1: Data Processor Concern Model

As a brief description:

• DataMapper, the root entity in this concern is identified by a DeviceTypeId and
has various instructions to map properties from the inbound information to a Data
Unit properties;

• DeviceTypeId identifies the type of device that can be processed by this data
mapper. When a data unit’s message is supplied to this concern the data mapper
that has the DeviceTypeId equal to the message’s Device Type Options routing key
(mentioned in Table 4.3) is used to process that data unit;

• SubDeviceReference represents a number that will be used later to reference a sub
device when dealing with Controllers. For simple Devices the used and default value
is 0 ;

• PropertyName has much more properties that haven’t been presented for brevity.

As an example, consider the inbound information represented as a JSON document with
the structure in the example G.1. To map the temperature value to the
TEMPERATURE_CELSIUS property of a Data Unit, the EncodedDataPropertyPath
would be decoded.data[0].temperature.

1 {
2 " uu i d " : " de1a9d15 −c018 −4547−8453−87111 cb4 f81b " ,

G.2. Data Decoder 185

3 " i d " : " d81e6e69 −1955−48a1−a1dd −4 c812c15ebac " ,
4 " t ime " : 1657646955748 ,
5 " decoded " : {
6 " data " : [
7 {
8 " t empe r a t u r e " : 18 ,
9 }

10]
11 }
12 }

Listing G.1: Inbound Information Example

This process is simple since it expects the inbound information to be predisposed, but when
working with IoT Devices, to optimize the bandwidth used, it is common to send
information encoded. The following section presents an alternative to this process.

G.2 Data Decoder

The Data Decoder concern refers to a more complex data mapper that translates
inbound information to Data Units, discussed in Section 4.2.3.1. It was created to deal
with the limitations mentioned in Section G.1.

The received information is usually encoded, meaning that the inbound information is
received as it was sent by the Device, commonly as a Base64 encoded string, that needs
to be processed so that information can be extracted.

The diagram in Figure G.2 displays the noteworthy concepts in this concern.

C DataDecoder

C DeviceTypeId

value: String

C Script

C ScriptContext

value: String

E ScriptType

JAVASCRIPT

has

1
1

for

1
1

defined

1

1

written in
1

1

Figure G.2: Data Decoder Concern Model

As a brief description:

• DataDecoder, the root entity in this concern is identified by a DeviceTypeId and
has a Script;

• Currently, a Script can only be written in JavaScript but in the future more
languages like Python or Groovy can be added;

• The ScriptContent contains the code that will run for each inbound information
that matches the DeviceTypeId.

This process requires some knowledge of the Javascript language but it’s much more
flexible than the Data Processor operation.

186 Appendix G. Sensae Console Domains

G.3 Device Management

The Device Management concern refers to the inventory of all registered Devices in the
Sensae Console.

The diagram in Figure G.3 displays the noteworthy concepts in this concern.

C Device

C DeviceName

value: String

C DeviceId

value: UUID

C DeviceDownlink

value: URL

C DeviceCommand

C DeviceRecord

C DeviceStaticData

C SubDevice

E PropertyName

GPS_LATITUDE
GPS_LONGITUDE
GPS_ALTITUDE
BATTERY_MAX_VOLTS
BATTERY_MIN_VOLTS
...

C DeviceStaticDataValue

value: String

C DeviceRecordContent

value: String

C DeviceRecordLabel

value: String

C SubDeviceReference

reference: Integer

C SubDeviceId

reference: Integer

C CommandId

value: String

C CommandName

value: String

C CommandPayload

value: String

C CommandDevicePort

value: Integer

titled

1

1

with

1

1

with

1
0..1

composed by

1

*

composed by1
*composed by

1

*

composed by

1

*

references
1 1

with
1

1

with
1 1

with1

1

with1

1

with
1 1

with

1

1

with

1

1

with

1

1

with
1 1

Figure G.3: Device Management Concern Model

G.4. Identity Management 187

As a brief description:

• A Device is uniquely identified by a DeviceId and a DeviceName. It may have a
DeviceDownlink, an URL used to send device commands to;

• A DeviceCommand defines how to send a Downlink with a specific action;

• A DeviceStaticData helps to define data such as the device location;

• A DeviceRecord enriches the device information with anything deemed important.
This can also help to group devices by projects, type of utility and others;

• A SubDevice references another Device by its DeviceId. This, coupled with the
concepts SubDeviceMeasures and SubDeviceCommands presented in Figure 4.23
help to split a Controller’s Data Unit into various Data Unit, one for each
referenced SubDevice.

G.4 Identity Management

The Identity Management is concerned with identifying Tenants, defining their
permissions and what Devices they own. To simplify this, a forth concept is introduced:
Domain.

The diagram in Figure G.4 displays the noteworthy concepts in this concern.

C Domain

C Tenant

C Device

C Permission

C DeviceId

value: UUID

C TenantId

value: UUID

C TenantName

value: String

C TenantEmail

value: String

C TenantPhoneNumber

value: String

C DomainId

value: UUID

E PermissionType

READ_DEVICE_INFORMATION
EDIT_DATA_DECODER
CREATE_DOMAIN
READ_LIVE_DATA_FLEET_MANAGEMENT
CREATE_GARDEN_SMART_IRRIGATION
CONTROL_VALVE_SMART_IRRIGATION
...

is registered in

*

1

belongs to

1

*

has
1

*

parent

0..1 1

of type
1

1

identitfied by

1

1

identitfied by
1
1

with

1

1

with
1 1

with
1

1..0

identitfied by
1 1

Figure G.4: Identity Management Concern Model

As a brief description:

• A Domain is uniquely identified by a DomainId and can have a parent Domain;

• There’s a root Domain, the only one that doesn’t have a parent and has all the
available permissions;

188 Appendix G. Sensae Console Domains

• A Tenant has a TenantName and TenantEmail, unique TenantId and can have a
TenantPhoneNumber;

• A special Tenant, Anonymous, exists by default to give access to users without an
account in the platform;

• A Device is uniquely identified by a DeviceId;

• The PermissionType has much more types that haven’t been presented for brevity.

A Domain represents a department in a hierarchical organization. An organization is
composed by several domains in a tree like structure as presented in Figure G.5.

Root Organization

Public

Unallocated

Organization 1

Unallocated

Department

Sub Department 1

Sub Department 2

Organization 2

Unallocated

Department

Organization N

Unallocated

Department Sub Department 1

Figure G.5: Domain Structure

Coupled with the figure above, there are other constrains:

• A domain owns all devices in it and in his subdomains;

• A domain can only inherit his parent domain permissions;

• A tenant has all the domain permissions that he/she is registered in;

• A tenant can only see the devices that the domains he/she is registered in has access
to;

• All Unallocated domains have no permissions or devices and contain only tenants
that are waiting to be assigned to a department or organization;

• The creation of an Organization (level 2 domain), triggers the creation of its
Unallocated domain;

• The Public domain can be accessed by any tenant, including those who are not
authenticated in the system - with the Anonymous User account.

G.5. Rule Management 189

By default this concern contains the Root Organization domain, the Root Organization’s
Unallocated domain and the Public domain.

Referring to the roles in Section 3.1.1, a Manager belongs to the Root Organization, any
Costumer belongs to one or various Organizations, and the Anonymous user belongs to
the Public domain. Ultimately, what defines a user role is the domain he/she belongs to.
Even if an Organization ends up having all available permissions it will not be able to
control or access other Organization’s device data or employees information.

G.5 Rule Management

The Rule Management concern refers to rule scenarios.

The purpose of this concern is to provide a high-level language that can analyze a stream
of Data Units, identify abnormal occurrences, and output Alerts base on them.

In this concern, and according to Figure 2.2 in Section 2.1.1.4, the input data are Data
Units and the output data are the Alerts. This concern is involved on how rules are
defined. The diagram in Figure G.6 displays the noteworthy concepts.

C RuleScenario
C RuleScenarioId

value: UUID

C RuleScenarioName

value: String
C Script

C ScriptContext

value: String

has

1

1

identified by1 1

for

1

1

defined1 1

Figure G.6: Rule Management Concern Model

191

Appendix H

Business Applications Domains

The developed PoCs are:

• Smart Irrigation;

• Fleet Management;

• Notification Management.

Each of this services’ models will be briefly addressed in the following sections. The shared
model presented above defined the structure and semantic of incoming data. Each service
then uses the shared model how they envision, in their specific practical and pragmatic
fashion.

H.1 Fleet Management

The Fleet Management model simply refers to the past and current location of assets.

The diagram in Figure H.1 displays the noteworthy concepts related to this service.

C Device

C DeviceId C DeviceName

C Reading

C ReadingId C ReadingTime C GPSPoint

identityfied by

1

1

named

1

1

identityfied by

1

1

collected at

1

1

collected by

1

1

referes to

1

1

Figure H.1: Fleet Management Model

This was the first Business Application built as a PoC, it was intended to be
straightforward. The model references GPS readings and what device collected them.

192 Appendix H. Business Applications Domains

H.2 Notification Management

The Notification Management model refer to notifications and how/what types an
addressee wants to receive. There are two main concepts in this service, a notification and
an addressee.

The diagram in Figure H.2 displays the noteworthy concepts related to this service.

C Notification

C NotificationId

C NotificationReportedTimeC Description

C ContentType

C Category C SubCategory

E Severity

INFORMATION
WATCH
ADVISORY
WARNING
CRITICAL

C Addressee

C AddresseeId

C AddresseeConfiguration

E DeliveryType

UI
NOTIFICATION
EMAIL
SMS

C NotificationRead

C NotificationReadReportedTime

type

1

1

identified by

1

1

details

1

1

reported at

1

1

composed by

1

1

composed by

1

1

composed by

1

1

identified by

1

1

with

1

*

presented by

1

1

type

1

1

this

1

1

reported at

1

1

read by

1

1

Figure H.2: Notification Management Model

As a brief description:

• A Notification is a sanitized Alert that was captured with the intent to be presented
or delivered to addressees, its identified by an NotificationId;

• An Addressee is someone that receives notifications based on his configurations and
is identified by an AddresseeId;

• An AddresseeConfiguration defines for each type of notification - ContentType -
what will be the delivery method - DeliveryType;

• A DeliveryType can be of four types: (i) present in SPA - UI, (ii) publish notification
in SPA - NOTIFICATION, (iii) send an email - EMAIL, (iv) send an SMS - SMS;

• A ContentType is derived from the Alert Routing Keys mentioned in the Table 4.3
and defines the type of each Notification;

H.3. Smart Irrigation 193

• To enforce accountability in the system, the notion of who read a specific
notification and when was added - NotificationRead.

H.3 Smart Irrigation

The Smart Irrigation model refers to irrigation zones, sensors that read environmental
conditions in this zones, valves and the associated readings. This concepts are divided in
three diagrams presented below.

The diagram in Figure H.3 displays the noteworthy concepts related to irrigation zones.

An irrigation zone is an area intended to function as an isolated environment that may or
may not have valves or sensors.

C IrrigationZone

C IrrigationZoneName C Area C IrrigationZoneId

C BoundaryVertex

C GPSPoint C VertexPosition

has boundaries

1

*

defined by

1

1

named

1

1

identified by

1

1

at

1

1

numbered according to

1

1

Figure H.3: Smart Irrigation Model - Irrigation Zone

A sensor or valve belongs to an irrigation zone if it is inside the zone’s Area.

As presented in the following diagram, Figure H.4, a sensor/valve can be represents by a
Device.

194 Appendix H. Business Applications Domains

C ParkSensorC GreenHouseSensor C Valve

I Device

C LedgerEntry

C ContentC OpenDateC CloseDate

C DeviceName

C DeviceId

C GPSPoint C Record

C RemoteControl

C ParkSensorReadingC ValveReadingC GreenHouseSensorReading

identified by

1

1

has info

1

*

has

1

1

has

1

0..1

refer to

1

1

has

1

*

has

1

1

placed in

1

1

has

1

0..1

collects

*

1

collects

*

1

collects

*

1

Figure H.4: Smart Irrigation Model - Device

As a brief description:

• The RemoteControl defines if a Valve can be controlled remotely. A valve can be
controlled remotely only if two specific types of Commands (as defined in the
Canonical Model) are sent with the device’s Data Unit: OpenValve and CloseValve;

• A Device is identified by its DeviceId;

• Each Device stores an history of all its changes such as name, location or metadata
in Content, the same LedgerEntry is used as long as this values don’t change;

• There are three types of Device: (i) Green House Sensor, (ii) Park Sensor, (iii)
Valve. Each of this types collect different measures discussed in FigureH.5.

As mentioned above each type of device collects different readings. The following diagram,
FigureH.5, details this readings.

H.3. Smart Irrigation 195

C ParkSensorReading

C SoilMoistureReading

C IlluminanceReading

C GreenHouseSensorReading

C AirHumidityReading

C AirTemperatureReading

C ValveReading C ValveStatusReading

C ReportedTime

C ReadingId

I Reading

C ParkSensor

C Valve

C GreenHouseSensor

details

1
0..1

details
1

0..1

details

1
0..1

details
1

0..1

details
1 0..1

collects
*
1

collects
*
1

collects
*
1

identified by
1
1

collected at
1
1

Figure H.5: Smart Irrigation Model - Reading

As a brief description:

• A Reading is always identified by its ReadingId and is associated to the instant that
it was captured by the Device - ReportedTime;

• A ParkSensorReading measures soil moisture and illuminance;

• A Valve indicates if it is open or closed;

• A GreenHouseSensor measures air humidity and air temperature.

The concepts in this last diagram are different from the concepts in the other two diagram
since readings data is suppose to be immutable and ample as opposed to devices and
irrigation zones where information should be mutable but with a negligible size compared
with readings.

197

Appendix I

Sensae Console - Additional UI Pages

This appendix presents other Sensae Console pages.

Figure I.1: Identity Management Page

Figure I.2: Rules Management Page

198 Appendix I. Sensae Console - Additional UI Pages

Figure I.3: Data Processor Page

Figure I.4: Data Decoder Page

199

Appendix J

Business Applications - Additional UI
Pages

This appendix presents more pages related to the Solutions developed.

Figure J.1: Fleet Management Page

200 Appendix J. Business Applications - Additional UI Pages

Figure J.2: Notification Management Page

Figure J.3: Notification Management Page - Configuration

Appendix J. Business Applications - Additional UI Pages 201

Figure J.4: Smart Irrigation Page - Map

Figure J.5: Smart Irrigation Page - Device History

203

Appendix K

Production Deployment Details

This appendix details how Sensae Console and the Business Applications are currently
managed in production.

K.1 Containerization of services via Docker

This section describes how the final product is packaged into containers.

As stated in Docker overview 2022a, Docker acts as an intermediary layer between the
application to be deployed and the operating system where it will be deployed, ensuring
that the developed software has the same behavior regardless of the system. The
dependencies of the solution do not have to be present in the system, it is only necessary
to install the Docker tool in the OS.

This tool thus makes it possible to lower the coupling between the OS and the software to
be deployed.

With regards for this solution, each container defined in Section 4.2 is mapped into a
docker container. A container is often compared to a virtual machine running on a
hypervisor or OS, but it has a much lower resource consumption, since only the application
runs and not not all the processes inherent to an OS as described by Bernstein 2014.

The Figure K.1 compares a VM and Container-based deployments.

204 Appendix K. Production Deployment Details

Figure K.1: Comparison of VM (a) and Container-based (b) deployments by
Bernstein 2014

The system is thus represented as a collection of containers that communicate with each
other and the outside through standard protocols such as HTTP or AMQP.

The production environment can thus be quickly replicated on another machine in case of
a failure disaster or a overwhelming number of interaction with the server.

Details about service containerization can be found in Section K.4.

K.2 Orchestration of services via Docker Compose

This section describes how the final product is orchestrated using Docker Compose.

As stated in the article Overview of Docker Compose 2022b, “Compose is a tool for
defining and running multi-container Docker applications”.

Currently a single node is capable of handling the traffic generated by all the managed
devices and costumers. Due to this, it was decided to use a docker compose in production
inserted of tools like Kubernetes (that can ease the process of autoscaling individual
containers).

The solution’s orchestration is defined in a YAML file and then started with a single
command. To improve security, only the needed container ports are exposed. To ensure
data integrity throughout service disruptions, persistence data is mapped to folder in the
OS. To ensure an easy management of the environment, configurations are kept in the OS
and fetched by each container once they start.

The details about the solution orchestration can be found in Section K.5.

K.3. Usage of Nginx as a web server and reverse proxy 205

K.3 Usage of Nginx as a web server and reverse proxy

To serve the frontend pages and redirect requests made to backend containers, the
following technologies were analyzed:

• Nginx ;

• Apache HTTP Server Project;

• Lighttpd.

All of them support the necessary requirements, but some factors lead the author to pick
Nginx over the others, the following table, Table K.1, describes this criteria.

Table K.1: Technologies Comparison - Reverse Proxy Web Server

Criteria/Technology Nginx Apache HTTP Server Lighttpd

Resource Consumption low high medium

Community Size high very high medium

Familiarity with the tool high low low

The details about Nginx adoption and configuration can be found in Section K.6.

K.4 Sensae Console Containerization

The section describes how Sensae Console is containerized with docker. As explained in
Section K.1, the author choose to containerize the solution.

The following Code Samples describe how each container mentioned during the Design
Chapter are packaged. To simplify, only three distinct samples will be presented.

The first sample, Listing K.1, refers to UI Aggregator and is similar to all other frontend
containers.

1 FROM node :18 − a l p i n e AS b u i l d
2 WORKDIR / workspace
3 COPY package . j s o n . /
4 COPY . .
5 RUN npm i n s t a l l
6 RUN npm run nx b u i l d u i − a g g r e g a t o r −−omit=dev
7

8 FROM ng i n x : 1 . 2 3 . 1
9 COPY apps / u i − a g g r e g a t o r / n g i n x / ng i n x . con f / e t c / ng i n x / con f . d/ d e f a u l t . con f

10 COPY −− f rom= b u i l d / workspace / d i s t / apps / u i − a g g r e g a t o r / u s r / s h a r e / n g i n x /
html

Listing K.1: Dockerfile for UI Aggregator Frontend

This Dockerfile contains two stages to reduce the size of the final image. The first stage,
lines 1 to 6, builds the project. The second one, containing only Nginx and the code that
was previously built, is used to serve the UI Aggregator Frontend and route requests. The
Nginx configuration file at line 9 is discussed in the K.6 Section.

206 Appendix K. Production Deployment Details

The second sample, Listing K.2, refers to Fleet Management Backend and is similar to
all backend containers in the Configuration Scope or Business Applications.

1 FROM maven : 3 . 8 . 5 − open jdk −18 AS b u i l d
2 WORKDIR /app
3 # copy a l l pom . xml to p u l l o n l y e x t e r n a l d e p e n d e n c i e s
4 COPY a p p l i c a t i o n /pom . xml a p p l i c a t i o n /pom . xml
5 COPY domain /pom . xml domain /pom . xml
6 COPY i n f r a s t r u c t u r e / boot /pom . xml i n f r a s t r u c t u r e / boot /pom . xml
7 COPY i n f r a s t r u c t u r e / e n dpo i n t /pom . xml i n f r a s t r u c t u r e / e n dpo i n t /pom . xml
8 COPY i n f r a s t r u c t u r e / p e r s i s t e n c e /pom . xml i n f r a s t r u c t u r e / p e r s i s t e n c e /pom .

xml
9 COPY i n f r a s t r u c t u r e / p e r s i s t e n c e / que s tdb /pom . xml i n f r a s t r u c t u r e /

p e r s i s t e n c e / que s tdb /pom . xml
10 COPY i n f r a s t r u c t u r e / e n dpo i n t / g r a p h q l /pom . xml i n f r a s t r u c t u r e / e n dpo i n t /

g r a p h q l /pom . xml
11 COPY i n f r a s t r u c t u r e / e n dpo i n t /amqp/pom . xml i n f r a s t r u c t u r e / e n dpo i n t /amqp/

pom . xml
12 COPY i n f r a s t r u c t u r e /pom . xml i n f r a s t r u c t u r e /pom . xml
13 COPY pom . xml pom . xml
14 # b u i l d a l l e x t e r n a l d e p e n d e n c i e s
15 RUN mvn −B −e −C org . apache . maven . p l u g i n s : maven−dependency − p l u g i n : 3 . 1 . 2 :

go− o f f l i n e − D e x c l u d e A r t i f a c t I d s = f l e e t −management−backend , a p p l i c a t i o n ,
domain , i n f r a s t r u c t u r e , endpo i n t , g r aphq l , boot , amqp , que s tdb

16

17 COPY . .
18 RUN mvn c l e a n package
19

20 FROM open j dk : 17
21 WORKDIR /app
22 COPY −− f rom= b u i l d /app/ i n f r a s t r u c t u r e / boot / t a r g e t / f l e e t −management−

backend . war /app
23 CMD [" j a v a " , "− j a r " , " f l e e t −management−backend . war"]

Listing K.2: Dockerfile for Fleet Management Backend

This sample also presents a multi-stage Dockerfile. The first stage, line 1 to 18 builds the
project with Maven. All pom.xml files and dependencies are added first to reduce build
time during development, since these change less that the code written. The second stage
is the one that runs the service. It only contains the Java Development Kit (JDK) and the
compiled application.

The third sample, Listing K.3, refers to Device Commander and is similar to all backend
containers in the Data Flow Scope.

1 FROM quay . i o / qua r ku s / ub i −quarkus −n a t i v e − image :22 .1 − j a v a 17 AS b u i l d
2 COPY −−chown=qua r ku s : qua r ku s mvnw / code /mvnw
3 COPY −−chown=qua r ku s : qua r ku s . mvn / code / . mvn
4 COPY −−chown=qua r ku s : qua r ku s pom . xml / code /
5 USER qua r ku s
6 WORKDIR / code
7 RUN ./mvnw −B org . apache . maven . p l u g i n s : maven−dependency − p l u g i n : 3 . 1 . 2 : go−

o f f l i n e
8 COPY s r c / code / s r c
9 RUN ./mvnw package −Pna t i v e

10

11 FROM quay . i o / qua r ku s / quarkus −micro − image : 1 . 0
12 WORKDIR /work/
13 COPY −− f rom= b u i l d / code / t a r g e t / r u n n e r /work/ a p p l i c a t i o n

K.5. Sensae Console Orchestration 207

14

15 # se t up p e r m i s s i o n s f o r u s e r ‘1001 ‘
16 RUN chmod 775 /work /work/ a p p l i c a t i o n \
17 && chown −R 1001 /work \
18 && chmod −R "g+rwX" /work \
19 && chown −R 1001 : r o o t /work
20

21 EXPOSE 8080
22 USER 1001
23

24 CMD [" . / a p p l i c a t i o n " , "−Dquarkus . h t t p . ho s t = 0 . 0 . 0 . 0 "]

Listing K.3: Dockerfile for Device Commander

This sample, once again, is also a multi-stage Dockerfile. It was adapted from the one
generated by Quarkus when setting up the application. In the first stage the application is
built with a GraalVM native-image - lines 1 to 9. This allows the image to run without
Java Virtual Machine (JVM). The second stage runs the service after setting user
permissions, so that the process doesn’t run as root, at lines 17 to 20.

K.5 Sensae Console Orchestration

As described in Section 4.2.2.4, Overview of Docker Compose was the tool used to
orchestrate the whole solution, the Sensae Console and Business Applications. This tool
consumes a configuration file to know what containers, and their configurations, are
needed. The complete configuration file for production is vast, a summarized version will
be presented containing only the Data Processor Context’ related containers.

1 s e r v i c e s :
2 data −p r o c e s s o r − f r o n t e n d :
3 b u i l d :
4 d o c k e r f i l e : docke r / data −p r o c e s s o r − f r o n t e n d / D o c k e r f i l e
5 c o n t e x t : f r o n t e nd − s e r v i c e s
6 image : data −p r o c e s s o r − f r o n t e n d
7 vo lumes :
8 − / e t c / l e t s e n c r y p t : / e t c / l e t s e n c r y p t /
9 − / e t c / ng i n x / s s l : / e t c / ng i n x / s s l /

10 ne two rk s :
11 − sensae −network
12 p o r t s :
13 − 443
14 depends_on :
15 − data −p r o c e s s o r −master −backend
16 data −p r o c e s s o r −master −backend :
17 b u i l d : backend − s e r v i c e s / data −p r o c e s s o r −master −backend
18 image : data −p r o c e s s o r −master −backend
19 vo lumes :
20 − . / s e c r e t s / ke y s : / e t c / s s h /app
21 env i r onmen t :
22 s p r i n g _ p r o f i l e s _ a c t i v e : p rod
23 e n v _ f i l e :
24 − . / s e c r e t s / prod / data −p r o c e s s o r −master −backend . env
25 ne two rk s :
26 − sensae −network
27 p o r t s :
28 − 8080
29 data −p r o c e s s o r −da t aba s e :

208 Appendix K. Production Deployment Details

30 b u i l d : d a t a b a s e s / data −p r o c e s s o r −da t aba s e
31 conta iner_name : data −p r o c e s s o r −da t aba s e
32 e n v _ f i l e :
33 − . / s e c r e t s / prod / data −p r o c e s s o r −da t aba s e . env
34 ne two rk s :
35 − sensae −network
36 p o r t s :
37 − 5482 : 5432
38 vo lumes :
39 − . / da taba s e s −data / prod / data −p r o c e s s o r −da t aba s e : / v a r / l i b /

↪→ p o s t g r e s q l / data /
40 data −p r o c e s s o r − f l ow :
41 b u i l d : backend − s e r v i c e s / data −p r o c e s s o r − f l ow
42 image : s e n s a e / data −p r o c e s s o r − f l ow
43 e n v _ f i l e :
44 − . / s e c r e t s / prod / data −p r o c e s s o r − f l ow . env
45 ne two rk s :
46 − sensae −network
47 ne two rk s :
48 sensae −network :

Listing K.4: Docker Compose Configuration File for Production

The following conclusions can be observed:

• This context, similar to other contexts, is composed by four containers, a Frontend -
data-processor-frontend, a Configuration Backend - data-processor-master-backend,
a Database - data-processor-database, and a Data Flow Backend -
data-processor-flow ;

• All services communicate in the same network - sensae-network ;

• All services have instructions on how to build them;

• Various configuration files are loaded, e.g. in lines 19 to 20 and 28 to 31, this files
content will be discussed in the Sensae Console Configuration Files Section;

• The Frontend has two volumes mapped, one loads the letsencrypt configuration file
for Nginx and the other loads the SSL certificate - lines 7 to 9.

• The Configuration Backend needs to validate the authentication tokens received, for
that, it has access to the public key that pairs the private key used to created then in
Identity Management Backend - line 19 - 20;

• The database exposes a port to the host so that it can be managed remotely - lines
36 to 37;

• The database maps its data to a directory in the host, so that data is persisted
between server restarts - lines 38 to 39;

• The Data Flow container doesn’t need to expose any port since it only exchanges
information with the message broker;

K.6 Sensae Console Reverse Proxy Configuration

This section reveals how Nginx is configured for all frontend containers in the solution. As
an example, the Listing K.5, describes the Smart Irrigation Frontend.

K.6. Sensae Console Reverse Proxy Configuration 209

1 s e r v e r {
2

3 server_name l o c a l h o s t ;
4

5 l i s t e n 443 s s l ;
6

7 s s l _ c e r t i f i c a t e / e t c / ng i n x / s s l / n g i n x . c r t ;
8 s s l _ c e r t i f i c a t e _ k e y / e t c / ng i n x / s s l / n g i n x . key ;
9

10 r o o t / u s r / s h a r e / ng i n x / html ;
11

12 i n d e x i n d e x . html i n d e x . htm ;
13

14 i n c l u d e / e t c / l e t s e n c r y p t / op t i o n s − s s l −ng i n x . con f ;
15

16 l o c a t i o n ~ . ∗ r emoteEnt r y . j s $ {
17 e x p i r e s −1;
18 add_header ’ Cache−Con t r o l ’ ’ no− s t o r e , no−cache , must− r e v a l i d a t e ,

p roxy − r e v a l i d a t e , max−age=0 ’ ;
19 }
20

21 l o c a t i o n / smart − i r r i g a t i o n / g r a p h q l {
22 proxy_pass h t t p : // smart − i r r i g a t i o n −backend :8080/ g r a p h q l ;
23 proxy_set_header x− f o rwa rded − p r e f i x / smart − i r r i g a t i o n / g r a p h q l ;
24 proxy_set_header Host $hos t ;
25 proxy_set_header x− f o rwa rded −ho s t $hos t ;
26 p r o x y_ r e d i r e c t o f f ;
27 proxy_set_header x− f o rwa rded −po r t 443 ;
28 proxy_set_header x− f o rwa rded −p ro to h t t p s ;
29 }
30

31 l o c a t i o n / smart − i r r i g a t i o n / s u b s c r i p t i o n s {
32 proxy_pass h t t p : // smart − i r r i g a t i o n −backend :8080/ s u b s c r i p t i o n s ;
33 proxy_set_header x− f o rwa rded − p r e f i x / smart − i r r i g a t i o n /

s u b s c r i p t i o n s ;
34 p rox y_ht tp_ve r s i on 1 . 1 ;
35 proxy_set_header Upgrade $http_upgrade ;
36 proxy_set_header Connec t i on "Upgrade " ;
37 proxy_set_header Host $hos t ;
38 proxy_read_t imeout 6000 ;
39 proxy_send_t imeout 6000 ;
40 p r o x y_ r e d i r e c t o f f ;
41 proxy_set_header x− f o rwa rded −po r t 443 ;
42 proxy_set_header x− f o rwa rded −p ro to h t t p s ;
43 }
44

45 l o c a t i o n / {
46 t r y _ f i l e s $ u r i $ u r i / / i n d e x . html ;
47 }
48

49 i f ($scheme != " h t t p s ") {
50 r e t u r n 301 h t t p s : // $ h o s t $ r e q u e s t_u r i ;
51 } # managed by Ce r t bo t
52 }

Listing K.5: Configuration File for Production Environment

The following conclusions can be inferred:

210 Appendix K. Production Deployment Details

• It only exposes the HTTPS port - line 4 and lines 49 to 51;

• It loads the SSL certificates mapped in the Overview of Docker Compose file - lines
7 and 8;

• It uses the letsencrypt configuration - line 14;

• The remoteEntry file, responsible for providing the entry point to the service in a
Micro Frontend environment, is never cached in the client browser since it points to
the current compiled version of the service. If this file is cached, the updated version
of a micro frontend, can only be accessed by the client browser once the local cache
is cleaned up - lines 16 to 19;

• The GraphQL endpoint is defined as a reverse proxy endpoint. Requests made to
/smart-irrigation/graphql are routed to
http://smart-irrigation-backend:8080/graphql. It doesn’t use a secure connection,
HTTPS, since this communication already happens inside the docker network where
man in the middle attacks are disregarded - lines 21 to 29;

• The GraphQL subscription endpoint is also defined, this type of connection,
Websocket, requires the use of HTTP version 1.1 and the two Headers presented at
lines 34 to 36;

• All other requests are handled in lines 45 to 47.

K.7 Sensae Console Configuration Files

This section describes how a Sensae Console and Business Applications are configured.
One of the problems that arise from a microservice architecture is how to maintain all
configurations for each container developed and configured. Following the Externalized
configuration Pattern, all configurations are defined via configuration files that support
three environments: dev, test and prod.

This configurations are defined, for each environment, in a single file. This file,
Listing K.6, has the following structure:

1 e x p o r t SENSAE_MAPBOX_ACCESS_TOKEN=
2 e x p o r t SENSAE_MAPBOX_SIMPLE_STYLE=
3 e x p o r t SENSAE_MAPBOX_SATELLITE_STYLE=
4 e x p o r t SENSAE_BROKER_USERNAME=
5 e x p o r t SENSAE_BROKER_PASSWORD=
6 e x p o r t SENSAE_COMMON_DATABASE_PASSWORD=
7 e x p o r t SENSAE_DATA_STORE_USER_PASSWORD=
8 e x p o r t SENSAE_DATA_STORE_ROOT_PASSWORD=
9 e x p o r t SENSAE_AUTH_PATH_PUB_KEY=

10 e x p o r t SENSAE_AUTH_PATH_PRIV_KEY=
11 e x p o r t SENSAE_AUTH_ISSUER=
12 e x p o r t SENSAE_AUTH_AUDIENCE=
13 e x p o r t SENSAE_DATA_AUTH_KEY=
14 e x p o r t SENSAE_AUTH_EXTERNAL_MICROSOFT_AUDIENCE=
15 e x p o r t SENSAE_AUTH_EXTERNAL_GOOGLE_AUDIENCE=
16 e x p o r t SENSAE_SMS_TWILIO_ACCOUNT_SID=
17 e x p o r t SENSAE_SMS_TWILIO_AUTH_TOKEN=
18 e x p o r t SENSAE_SMS_SENDER_NUMBER=
19 e x p o r t SENSAE_SMS_ACTIVATE=
20 e x p o r t SENSAE_EMAIL_SENDER_ACCOUNT=

K.7. Sensae Console Configuration Files 211

21 e x p o r t SENSAE_EMAIL_SUBJECT=
22 e x p o r t SENSAE_EMAIL_SENDER_PASSWORD=
23 e x p o r t SENSAE_EMAIL_SMTP_HOST=
24 e x p o r t SENSAE_EMAIL_SMTP_PORT=
25 e x p o r t SENSAE_EMAIL_ACTIVATE=
26 e x p o r t SENSAE_PROD_PUBLIC_DOMAIN=
27 e x p o r t SENSAE_ADMIN_EMAIL=

Listing K.6: Configuration File for Production Environment

This file variables are then passed on to each container’s environment configuration file
with the help of a script. The Code Sample K.7 sheds a light on how the script propagates
the configurations.

1 #!/ u s r / b i n / sh
2

3 ROOT_DIR=$ (g i t rev −p a r s e −−show− t o p l e v e l)
4

5 cd "$ROOT_DIR"/ p r o j e c t | | e x i t
6

7 . . / s e c r e t s / prod . con f
8

9 SECRET_BACK= s e c r e t s / t emp l a t e s / prod / backend − s e r v i c e s
10 SECRET_FRONT= s e c r e t s / t emp l a t e s / prod / f r on t e nd − s e r v i c e s
11 SECRET_DB= s e c r e t s / t emp l a t e s / prod / d a t a b a s e s
12

13 BACK_PREFIX= s e c r e t s / prod
14 FRONT_PREFIX=f r on t end − s e r v i c e s / apps
15 FRONT_SUFFIX= s r c / e n v i r o nmen t s / env i r onmen t . p rod . t s
16

17 e n v s u b s t < $SECRET_BACK/ a l e r t − d i s p a t c h e r −backend . env > \
18 $BACK_PREFIX/ a l e r t − d i s p a t c h e r −backend . env
19 # and a l l o t h e r backend s e r v i c e s
20 e n v s u b s t < $SECRET_BACK/data − v a l i d a t o r . env >
21 $BACK_PREFIX/data − v a l i d a t o r . env
22

23 e n v s u b s t < $SECRET_FRONT/ de v i c e −management− f r o n t e n d . t s > \
24 $FRONT_PREFIX/ de v i c e −management− f r o n t e n d /$FRONT_SUFFIX
25 # and a l l o t h e r f r o n t e n d s e r v i c e s
26 e n v s u b s t < $SECRET_FRONT/ u i − a g g r e g a t o r . t s > \
27 $FRONT_PREFIX/ u i − a g g r e g a t o r /$FRONT_SUFFIX
28

29 e n v s u b s t < s e c r e t s / t emp l a t e s / prod /message −b r o k e r /message −b r o k e r . env > \
30 $BACK_PREFIX/message −b r o k e r . env
31

32 e n v s u b s t < $SECRET_DB/data −decoder −da t aba s e . env > \
33 $BACK_PREFIX/data −decoder −da t aba s e . env
34 # and a l l o t h e r d a t a b a s e s
35 e n v s u b s t < $SECRET_DB/ r u l e −management−da t aba s e . env > \
36 $BACK_PREFIX/ r u l e −management−da t aba s e . env

Listing K.7: Configuration Propagation Script

In the future, as more isolated deployments are made, a tool such as Vault should be
integrated in the solution.

213

Appendix L

Sensae Console Database
Configuration

The solution designed relies on various databases, and as discussed in Section 5.1.6.1 some
are relational databases. PostgresSQL and most databases of this data-model type require
a database schema. For this solution the schema of each database is defined in a sql file
that is executed at the start of the database, only if no data is found.

Further database schema migrations are preformed using custom SQL scripts when
needed. In the future, once more instance of Sensae Console are deployed, the use of
liquidbase or flyway is preferred.

The following Code Sample L.1 exemplifies the content of this scripts.

1 c r e a t e t a b l e i f not e x i s t s p u b l i c . t r a n s f o r m a t i o n
2 (
3 p e r s i s t e n c e _ i d b i g i n t g e n e r a t e d by d e f a u l t as i d e n t i t y
4 p r ima r y key ,
5 dev i c e_type v a r c h a r (255)
6 c o n s t r a i n t un i q u e_type_con s t r a i n
7 un i q u e
8) ;
9

10 c r e a t e t a b l e i f not e x i s t s p u b l i c . p r o p e r t y_ t r a n s f o rma t i o n
11 (
12 p e r s i s t e n c e _ i d b i g i n t g e n e r a t e d by d e f a u l t as

i d e n t i t y (maxva lue 2147483647)
13 p r ima r y key ,
14 v a l u e i n t e g e r not n u l l ,
15 o ld_path v a r c h a r (255) ,
16 t r a n s f o rm a t i o n_p e r s i s t e n c e_ i d b i g i n t
17 c o n s t r a i n t r e f_ t r a n s f o rma t i o n_c o n s t r a i n
18 r e f e r e n c e s p u b l i c . t r a n s f o rma t i o n ,
19 sub_sensor_id i n t e g e r d e f a u l t 0 not n u l l
20) ;

Listing L.1: Initialization Script Segment for Data Processor Database

This script defines two simple tables, transformation and property_transformation,
following the concepts defined in Section G.1.

Apart from the schema, the Identity Management Database also requires the following
bootstrap data, as implied in Identity Management Bounded Context Section:

• Root domain;

214 Appendix L. Sensae Console Database Configuration

• Public domain;

• Unallocated Root domain;

• Anonymous Tenant account;

• Admin Tenant account;

This data is inserted using the following function, Code Sample L.2:

1 CREATE FUNCTION p u b l i c . i n i t_doma i n s ()
2 RETURNS v a r c h a r (255) AS $root_o id$
3 DECLARE
4 roo t_o id v a r c h a r (255) := gen_random_uuid () ;
5 p u b l i c_o i d v a r c h a r (255) := gen_random_uuid () ;
6 u n a l l o c a t e d_o i d v a r c h a r (255) := gen_random_uuid () ;
7 BEGIN
8 INSERT INTO p u b l i c . domain (name , o id , path)
9 VALUES (’ r o o t ’ , root_oid , ARRAY[roo t_o id]) ;

10 INSERT INTO p u b l i c . domain (name , o id , path)
11 VALUES (’ p u b l i c ’ , p ub l i c_o i d , ARRAY[root_oid , p u b l i c_o i d]) ;
12 INSERT INTO p u b l i c . domain (name , o id , path)
13 VALUES (’ u n a l l o c a t e d ’ , u n a l l o c a t e d_o i d , ARRAY[root_oid ,

u n a l l o c a t e d_o i d]) ;
14 INSERT INTO p u b l i c . t e n an t (name , o id , phone_number , ema i l ,

domains)
15 VALUES (’ Anonymous ’ , gen_random_uuid () , ’ ’ , ’ ’ , ARRAY[p u b l i c_o i d

]) ;
16 INSERT INTO p u b l i c . t e n an t (name , o id , phone_number , ema i l ,

domains)
17 VALUES (’ Admin ’ , gen_random_uuid () , ’ ’ , ’$SENSAE_ADMIN_EMAIL ’ ,

ARRAY[roo t_o id]) ;
18 RETURN root_o id ;
19 END;
20 $root_o id$ LANGUAGE p l p g s q l ;
21

22 s e l e c t p u b l i c . i n i t_doma i n s () ;
23

24 DROP FUNCTION p u b l i c . i n i t_doma i n s ;

Listing L.2: Bootstrap function for Identity Management Database

This function starts by declaring three UUID - lines 4 to 6 - that will later be used to
populate the domain’s path and the tenant’s domains - lines 7 to 17. In the end the
function is executed and then removed to ensure that it isn’t executed again.

In line 17, the variable $SENSAE_ADMIN_EMAIL is replace by a valid email before
building the database container with the full script. This variable configuration is discussed
in the Section K.7.

215

Appendix M

Performance Tests Specification

1 // imports
2
3 e x p o r t con s t o p t i o n s = {
4 setupTimeout : "2m" ,
5 s c e n a r i o s : {
6 s u b s c r i b e : {
7 e x e c u t o r : " shared - iterations " ,
8 s t a r tT ime : "0s" ,
9 vus : 1 ,

10 i t e r a t i o n s : 1 ,
11 maxDurat ion : "3m" ,
12 exec : " subscribe " ,
13 } ,
14 i n g e s t i o n : {
15 e x e c u t o r : "per -vu - iterations " ,
16 vus : 100 ,
17 i t e r a t i o n s : 100 ,
18 s t a r tT ime : "5s" ,
19 exec : " ingestion " ,
20 maxDurat ion : "3m" ,
21 } ,
22 consumpt ion : {
23 e x e c u t o r : " shared - iterations " ,
24 s t a r tT ime : "3m" ,
25 vus : 1 ,
26 i t e r a t i o n s : 1 ,
27 maxDurat ion : " 10 s" ,
28 exec : " consumption " ,
29 } ,
30 } ,
31 } ;
32
33 con s t t imeLapseTrend = new Trend (" time_lapse ") ;
34
35 con s t s amp l eS i z e = new Sha r edA r r a y (" sampleSize " , f u n c t i o n () {
36 con s t s amp l eS i z e = [] ;
37 s amp l eS i z e . push (o p t i o n s . s c e n a r i o s . i n g e s t i o n . vus ∗
38 o p t i o n s . s c e n a r i o s . i n g e s t i o n . i t e r a t i o n s
39) ;
40 r e t u r n s amp l eS i z e ;
41 }) ;
42
43 con s t d a t a I d s = new Sha r edA r r a y (" dataIds " , f u n c t i o n () {
44 con s t d a t a I d s = [] ;
45 con s t numberOfDataUn i ts = o p t i o n s . s c e n a r i o s . i n g e s t i o n . vus ∗
46 (o p t i o n s . s c e n a r i o s . i n g e s t i o n . i t e r a t i o n s + 2) ;
47 f o r (l e t i n d e x = 0 ; i n d e x < numberOfDataUn i ts ; i n d e x ++)
48 d a t a I d s . push (randomId ()) ;
49 r e t u r n d a t a I d s ;
50 }) ;
51
52 con s t data = new Sha r edA r r a y (" data " , f u n c t i o n () {
53 con s t data = [] ;
54 con s t t o t a l = o p t i o n s . s c e n a r i o s . i n g e s t i o n . vus + 2 ;
55 f o r (l e t i n d e x = 0 ; i n d e x < t o t a l ; i n d e x ++)
56 data . push (c r e a t eD e v i c e (" em300th " , i n dex , t r u e)) ;
57 r e t u r n data ;
58 }) ;
59
60 e x p o r t f u n c t i o n s u b s c r i b e () {
61 con s t r e s = h t t p . po s t (‘ h t t p : // ${ __ENV . SENSAE_INSTANCE_IP }:8086/ graphql ‘, anonymousLoginQuery , {
62 h e ad e r s : { " Content - Type " : " application / json " } ,
63 }) ;
64
65 l e t r e c e i v e d = [] ;
66 ws . connec t (
67 ‘ ws : // ${ __ENV . SENSAE_INSTANCE_IP }:8801/ subscriptions ‘,
68 {
69 h e ad e r s : {
70 "Sec - WebSocket - Protocol " : " graphql - transport - ws " ,
71 } ,
72 } ,
73 (s o c k e t) => {

216 Appendix M. Performance Tests Specification

74 s o c k e t . on (" message " , (msg) => {
75 con s t message = JSON . p a r s e (msg) ;
76 i f (message . t ype == " next ") {
77 t imeLapseTrend . add (new Date () . getTime () −
78 message . p a y l o ad . data . da ta . r e p o r t e dA t
79) ;
80 r e c e i v e d . push (message . p a y l o ad . data . da ta . d a t a I d) ;
81 i f (r e c e i v e d . l e n g t h === samp l eS i z e [0])
82 c l o s e S o c k e t (socke t , r e c e i v e d) ;
83 }
84 }) ;
85 s o c k e t . on (" open " , () => {
86 s o c k e t . send (i n i t S u b s c r i p t i o n ()) ;
87 s o c k e t . send (
88 c r e a t e S u b s c r i p t i o n (sub s c r i b eToL i v eDataQue r y , {
89 f i l t e r s : c r e a t e L i v e D a t a F i l t e r s (data) ,
90 A u t h o r i z a t i o n :
91 " Bearer " + JSON . p a r s e (r e s . body) . da ta . anonymous . token ,
92 })
93) ;
94 }) ;
95 s o c k e t . se tT imeout (() =>
96 c l o s e S o c k e t (socke t , r e c e i v e d) , 300000) ;
97 }
98) ;
99 }

100
101 e x p o r t f u n c t i o n c l o s e S o c k e t (socke t , r e c e i v e d) {
102 check (r e c e i v e d , { " data units were received " :
103 (r e c) => r e c . l e n g t h === samp l eS i z e [0] ,
104 }) ;
105 r e c e i v e d . f o rEach ((d a t a I d) => {
106 check (da ta I d , {
107 " data units was sent " : (i d) => d a t a I d s . i n c l u d e s (i d) ,
108 }) ;
109 }) ;
110 s o c k e t . c l o s e () ;
111 }
112
113 e x p o r t f u n c t i o n i n g e s t i o n () {
114 con s t vu = exec . vu . i d I n T e s t − 1 ; // vus start at 1, arrays at 0;
115 con s t d e v i c e = data [vu] ;
116 con s t i d = d a t a I d s [vu + (data . l e n g t h − 2) ∗
117 exec . vu . i t e r a t i o n I n S c e n a r i o] ;
118
119 s l e e p (d e v i c e . i n t e r v a l) ;
120 con s t r e s = h t t p . po s t (
121 ‘ h t t p s : // ${ __ENV . SENSAE_INSTANCE_IP }:8443/ sensor - data /${ device . channel }/ ${ device . data_type }/ ${

↪→ device . device_type }‘,
122 randomBody (id , d e v i c e) ,
123 {
124 h e ad e r s : {
125 A u t h o r i z a t i o n : ‘ ${__ENV.SENSAE_DATA_AUTH_KEY} ‘ ,
126 " Content - Type " : " application / json " ,
127 } ,
128 }
129) ;
130 check (r e s , { " status was 202 " : (r) => r . s t a t u s === 202 }) ;
131 }
132
133 e x p o r t f u n c t i o n consumpt ion () {
134 v a r numbe rEn t r i e s = c o u n t S m a r t I r r i g a t i o n M e a s u r e s E n t r i e s () ;
135 check (numbe rEn t r i e s , {
136 " data units were all stored " : (r e s) => r e s === samp l eS i z e [0] ,
137 }) ;
138 }
139
140 e x p o r t f u n c t i o n s e t up () {
141 i n i t S m a r t I r r i g a t i o n D a t a b a s e () ;
142 data . f o rEach (i n s e r t D e v i c e) ;
143 data . f o rEach (moveDev iceToPubl icDomain) ;
144 g i v ePe rm i s s i o n sToPub l i cDoma i n () ;
145 createEM300THProcessor () ;
146 createEM300THDecoder () ;
147 }
148
149 e x p o r t f u n c t i o n tea rdown () {
150 c l e a r D e v i c e s () ;
151 c l e a r P r o c e s s o r s () ;
152 c l e a rD e c o d e r s () ;
153 c l e a rDoma i n sDev i c e sTenan t s () ;
154 r e s e t I d e n t i t y () ;
155 c l e a r I r r i g a t i o n D a t a () ;
156 }

Listing M.1: Smart Irrigation Performance Test Scenario Description

217

Appendix N

Performance Tests Analysis

1 ## Impor t L i b r a r i e s
2
3 p r e p a r e <− f u n c t i o n (path) {
4 data <− r e ad . c s v (path)
5 data <− data [data$metr ic_name == ’ t ime_ lap se ’ ,]
6 data <− data [c (’ t imestamp ’ , ’ me t r i c_va l u e ’ , ’ e x t r a_tag s ’)]
7 d a t a $ r e c e i v e d <− data$t imes tamp − min (data$t imes tamp)
8 da t a$me t r i c_va l u e <− da t a$me t r i c_va l u e / 1000
9 data$sent_t imestamp <− data$t imes tamp − da t a$me t r i c_va l u e

10 da t a $ s e n t <− data$sent_t imestamp − min (data$sent_t imestamp)
11 d a t a $ i t e r a t i o n <− s t r _ r e p l a c e (da ta$ex t r a_tags , ’ i t e r a t i o n = ’ , ’ ’)
12 r e t u r n (data)
13 }
14
15 c r e a t e <− f u n c t i o n (data f rame , xParam) {
16 gg p l o t (data=data f rame , mapping=aes (x =. data [[xParam]] , y=met r i c_va l ue , c o l = i t e r a t i o n , l a b e l ="")) +
17 geom_point (a l p h a = 1 , s t a t = " un i q u e ") +
18 theme (l e g e n d . p o s i t i o n = c (. 9 , . 4 5)) +
19 x l a b (p a s t e (" t ime data u n i t was" , xParam , " (s e cond s) ")) +
20 y l a b (" t ime taken to p r o c e s s data u n i t (s e cond s) ")
21 }
22
23 outputTex <− f u n c t i o n (pdot , path , xParam) {
24 t i k z (f i l e = path , w i d th = 5 , h e i g h t = 3 . 3)
25 p r i n t (pdot)
26 dev . o f f ()
27 }
28
29 p r o c e s s <− f u n c t i o n (path) {
30 data <− p r e p a r e (p a s t e (path , ’ da ta . c s v ’ , s ep = "/"))
31 pdot_sent <− c r e a t e (data , " s e n t ")
32 pdo t_r e c e i v e d <− c r e a t e (data , " r e c e i v e d ")
33 outputTex (pdot_sent , p a s t e (path , ’ data_sent . t e x ’ , s ep="/"))
34 outputTex (pdo t_rece i v ed , p a s t e (path , ’ d a t a_ r e c e i v e d . t e x ’ , s ep="/"))
35 }
36
37 p r o c e s s S c e n a r i o <− f u n c t i o n (path) {
38 s c e n a r i o <− l i s t . d i r s (path)
39 s c e n a r i o <− s c e n a r i o [−1]
40 f o r (i i n s c e n a r i o) {
41 p r o c e s s (i)
42 }
43 }
44
45 p r o c e s s A l l <− f u n c t i o n () {
46 p r o c e s s S c e n a r i o (’ s c e n a r i o 1 ’)
47 p r o c e s s S c e n a r i o (’ s c e n a r i o 2 ’)
48 p r o c e s s S c e n a r i o (’ s c e n a r i o 3 ’)
49 }
50
51 setwd ("/home/ u s e r / i o t − p r o j e c t / p r o j e c t /k6/ r e s u l t s ")
52
53 p r o c e s s A l l ()

Listing N.1: Analysis Script

219

Appendix O

Fire Detection Simulation Report

This Appendix presents the report related to the first fire detection simulation made inside
a costumer’s Chicken Farm. This report lead to the creation of a rule scenario to alert the
costumer of possible fire outbreaks in the farm.

Fire Detection Simulation (#1) - Sensae
Following is the variable analysis of the fire detection simulation which took place at 16:00 on

17/05/2022 for a duration of 20 min. The fire was contained in a relatively small surface area of <1m2.

The burning material composition was limited to pine wood. The experiment took place between

sensors #2 and #3 which are mounted at a height of 11 m.

Figure 1. Sensor installation locations. The experiment was conducted between sensors #2 (T/H) and #3

(CO2/T/H/Pressure).

Results

Relative Humidity

Figure 2. Relative Humidity variation during the experiment. A slight increase before followed by a drop after the

experiment can be observed across all sensors.

#1 Before: (64 %); After: (60 %); (4:00 – 4:14PM); (dt: 14 min); (d%: 4%)

#2 Before: (64 %); After: (50 %); (4:00 – 4:09PM); (dt: 9 min); (d%: 14%)

#3 Before: (65 %); After: (56 %); (4:03 – 4:14PM); (dt: 11 min); (d%: 9%)

#4 Before: (65 %); After: (59 %); (4:00 - 4:12PM); (dt: 12 min); (d%: 6%)

#5 Before: (63 %); After: (60 %); (4:00 – 4:14PM); (dt: 14 min); (d%: 3%)

Temperature:

Figure 3. Temperature variation during the experiment. A slight temperature increase can be observed during the

experiment across all sensors.

#1 Before: (23.1 °C); After: (24.3 °C); (4:00 – 4:14PM); (dt: 14 min); (dT: 1.2°C)

#2 Before: (23.1 °C); After: (28.8 °C); (4:00 – 4:08PM); (dt: 8 min); (dT: 5.7°C)

#3 Before: (22.9 °C); After: (25.8 °C); (4:03 – 4:14PM); (dt: 11 min); (dT: 2.9°C)

#4 Before: (23.0 °C); After: (24.0 °C); (4:00 - 4:12PM); (dt: 12 min); (dT: 1.0°C)

#5 Before: (23.0 °C); After: (24.0°C); (4:00 – 4:10PM); (dt: 10 min); (dT: 1.0°C)

CO2 / Pressure

Figure 4. CO2 variation during the experiment. A large increase in CO2 concentration can be observed in #3.

#3 Before: (319 PPM); After: (842 PPM); (4:00 – 4:06PM); (dt: 6 min); (dPPM:523)

There is no observable difference in atmospheric pressure.

We can observe that there is a large variability in values obtained of which the magnitude is reversely

correlated to the distance of the burning epicenter. Sensors closer to the burning epicenter display

larger numerical outliers.

Temperature
It can be observed that within 8-10 min after the start of the experiment all sensors display an increase

between 1 – 5.7°C as a result of the burning fire. Sensor #2 which is a T/H sensor and located downwind

to the burning fire also detected the larger increase in temperature of 5.7 °C or 0.71°C/min. This value is

beyond what is expected during normal weather variations.

Humidity
It can be observed that within 8-10 min after the start of the experiment all sensors display a 3 - 14%

drop in humidity with the larger drop occurring from sensor #2 at 14% 9 min after start of the

experiment. This equates to a drop of 1.55%/min. This value is beyond what is expected during normal

weather variations.

CO2
It can be observed that within 6 min after the start of the experiment the CO2 sensor displays a increase

in concentration from 319 PPM to 842 PPM after which it steadily decreases to pre-experimental values.

This equates to a increase of 87 PPM/min. This value is beyond what is expected during normal weather

variations.

Discussion
The fire simulation in this experiment was of relatively small scale compared to the 3000m2 chicken farm

the experiment was carried out in. This is however a very valuable experiment to calibrate the detection

algorithms to detect the fire as early as possible.

From the results we can observe a change in both Temperature, Humidity and CO2 as a consequence of

the fire. Furthermore their rate of change (ROC) is beyond what is expected during normal conditions.

From the measured variables, the CO2 concentration displays the largest relative increase and rate of

change (87 PPM/min) followed by the humidity (1.55%/min) and temperature (0.71°C/min).

To optimize the detection window we suggest to not only monitor for the magnitude of the measured

variables, however, we also advise to take into account the ‘Rate of Change (ROC)’ (slope of curve) in

the detection algorithm. This way, alerts can be set for variables that change rapidly. This way outlier

events like fires can be detected sooner. We furthermore suggest to carefully correlate the rate of

change between monitored variables to increase the robustness of the detection algorithm.

Sound Level and Fire Detection
When animal life is present during a fire, the increase of smoke, CO2 and other volatile elements makes

it hard to breath. We hypothesize that this will significantly increase the desire to flee and thus greatly

increase their sound output. We therefore suggest to include sound level in the fire detection algorithm.

Beyond fire detection monitoring sound level of animal activity provides further important insight into

the animal state of mind.

Points of consideration
1. The experiment was executed during stable/ideal conditions. The effect on the obtained data of

having biological life active in the experiment area cannot be neglected.

2. Very little ventilation was active during the experiment. During normal operation the additional

ventilation provides a significant oxygen supply which can significantly increase the burning rate

and thus impact the rate of change of the monitored variables.

Suggestions for further experiments
After implementing the current optimizations we suggest the following improvements:

1. Decrease the detection time of the CO2 Sensor.

2. Install at least 1 additional CO2 sensor to increase the detection area.

3. Take into consideration the sound level.

4. Explore the possibility of adding a water resistant photoelectric sensor, will this work?

5. Experiment with TIR sensors, how does biological life impact the measured values?

225

Appendix P

Requirements Report

This appendix presents a report targeted to the requirements answered by the solution.

P.1 Functional Requirements

All functional requirements were fully answered.

P.2 Non Functional Requirements

The tables presented below reference the Non Functional Requirements of the project and
adopted the same numeration of the lists in each category.

P.2.1 Functionality Requirements

Table P.1: Functionality Requirements Process Report

No. Progress Details

1 Done Via OpenID Connect.
2 Done Via Access Tokens verified in Backend.
3 Done Users can move their devices to a public domain.
4 Done Via Message Broker and Streaming API.
5 Done Via Rule Management concern.
6 Done Via canonical model in iot-core package.

7 Done, partially
Data Store is not accessible an only stores data.
Implemented separately in each business application.

8 Done Use of HTTPs, WSS and AMQP with TLS1.3.

9 Done, partially
Data Decoders run in a separate sandbox,
Rule Scenarios can be used to steal
information from other costumers.

11 Done, partially
Via Rule Management concern, but only supports
dispatching of alerts and analysis reports.

10 Done
Via Data Validator, a better alternative
should be discussed in the future,
e.g. use of one-class Support Vector Machine.

11 Done
Via Notification Management, with support
for UI Notifications, SMS and Email.

12 Done, partially
Only the business applications provide
real-time information.

226 Appendix P. Requirements Report

P.2.2 Usability Requirements

No requirements defined.

P.2.3 Reliability Requirements

Table P.2: Reliability Requirements Process Report

No. Progress Details

1 Done
All inputs are verified first in the
frontend and then in the backend.

2 Done
Docker compose is configured to
restart any failing container.

3 Done
Message Broker stores messages while
failing containers restart, ensuring
nothing of importance is lost.

4 Done, partially

The iot-core package enforces
compatibility on a system level via its
version, data decoders and rule scenarios
may fail between different iot-core versions.
Only rule scenarios are verified after
a system update.

P.2.4 Performance Requirements

Table P.3: Performance Requirements Process Report

No. Progress Details

1 Done Attested in Chapter 6.
2 Done Attested in Chapter 6.
3 Done Attested in Chapter 6.
4 Done Attested in Chapter 6.

P.2.5 Supportability Requirements

Table P.4: Supportability Requirements Process Report

No. Progress Details

1 Done Via Data Decoders and Data Processors

2 Done
Relies only on OpenID Connect, a standard,
if the need to change provider arrives,
only the configuration needs to be changed.

3 Done Via iot-core and Sensae API for Business Applications.
4 Done Via iot-core and Sensae API for Business Applications.

5 Done, partially

Supports Helium Console and data ingestion
from any IoT Middleware that supports
HTTP Webhooks, device commands can only
be sent to Helium Console.

P.2. Non Functional Requirements 227

P.2.6 Design Requirements

All requirements fully addressed.

P.2.7 Implementation Requirements

All requirements fully addressed, an SPA was developed.

P.2.8 Interface Requirements

Table P.5: Interface Requirements Process Report

No. Progress Details

1 Done
Done, currently using Azure Active Directory
and Google Identity Platform.

2 Done Via Device Commander.
3 Done Via Data Gateway.

P.2.9 Physical Requirements

Table P.6: Physical Requirements Process Report

No. Progress Details

1 Done Accessible at https://location-tracking.sharespot.dev/.
2 Done Running in a Ubuntu Server.
3 Done Explained in Appendix K.
3 Done Explained in Appendix K.

