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Abstract

Advances and increasing interest in Al (Artificial Intelligence) in the field of health have
created novel issues, namely explainability and reproducibility of ML (Machine Learning)
models.

In addition, while the training of ML models traditionally favors a centralized approach,
scalability and privacy issues seem to lead towards a distributed one. The latter poses
challenges to ML algorithms and the efficacy of learning itself.

Reproducing ML models poses several challenges arising from the intrinsic variability of the
models themselves and the environment where they are trained. This problem is aggravated
by their lack of standardization and common terminology.

The main goal of this work is to conceptualize and prototype a framework to train, evalu-
ate and describe ML models, in a decentralized way, over immunogenetics datasets. This
framework will promote model reproducibility and comparability, as well as its adaptability.

This work will start by implementing a federated/decentralized training framework over
existing ML pipelines. Then, it will be possible to list and select potential dataset sources,
aiming to provide an easy path to model adaptation and optimization.

Keywords: federated learning, decentralization, machine learning, immunology, immunother-
apy, genetics






Resumo

Os continuos avangos e crescente interesse em |A (Inteligéncia Artificial) no campo da
salde levantaram novas questdes, nomeadamente a explicabilidade e a reprodutibilidade de
modelos de ML (Machine Learning).

Adicionalmente, enquanto o treino de modelos de ML favorece tradicionalmente uma abor-
dagem centralizada, questdes de escalabilidade e privacidade tendem a levar a uma abor-
dagem distribuida. Esta Gltima apresenta desafios aos algoritmos de ML e a eficacia do
treino em si.

A reproducdo de modelos de ML apresenta varios desafios decorrentes da variabilidade in-
trinseca dos préprios modelos e do ambiente onde s3o treinados. Este problema é agravado
pela falta de padronizacdo e terminologia comum.

O principal objetivo deste trabalho é conceptualizar e prototipar uma framework para treinar,
avaliar e descrever modelos de ML, de forma descentralizada, sobre conjuntos de dados
imunogenéticos. Essa framework promovera a reproducibilidade e comparabilidade dos mod-
elos, bem como a sua adaptabilidade.

Este trabalho comecgara com a implementagdo de uma framework de treino federado/des-
centralizado sobre pipelines de ML existentes. De seguida, sera possivel listar e selecionar
potenciais fontes de dados, esperando facilitar a adaptacdo e otimizacdo dos modelos.

Palavras-chave: federated learning, decentralization, machine learning, immunology, im-
munotherapy, genetics
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Chapter 1

Introduction

1.1 Introduction

The international iReceptor Plus consortium promotes human immunological data storage,
integration, and controlled sharing for clinical and scientific work. Co-funded by the EU
and the Canadian government, the project develops an innovative platform to integrate dis-
tributed repositories of Adaptive Immune Receptor Repertoire sequencing (AIRR-seq) data.
This platform will improve personalized medicine and immunotherapy in cancer, inflamma-
tory and autoimmune diseases, allergies, and infectious diseases (Promote Integration of
Large AIRR-seq Data 2022).

This (AIRR-seq) data must adhere to the AIRR Community standards and protocols for
generating, analyzing, depositing, exploring, and sharing such data. iReceptor Plus will
be designed as a federated repository (AIRR Data Commons) network. Such a network
facilitates data queries and advanced analyses through easy-to-use web portals (Platform to
Integrate Distributed Repositories of AIRR-seq Data 2022).

1.2 Problem

While the training of ML models traditionally favors a centralized approach, scalability,
bandwidth, and privacy issues reveal the distributed approach to be the most appropriate
solution. This decentralized approach challenges ML algorithms and their learning efficacy.
Still, it enables models to be created without a central data repository, having no data leave
its original repository, thus maintaining compliance to local, specific privacy constraints (Gad
2020).

immuneML, described in section 2.3, is a data analysis framework developed by iReceptorPlus
partners. This package already performs data encoding, which is considered a more (albeit
not fully) private approach for the sharing of data in ML studies. This means actual data
is never shared, but the meaningful information, needed for the ML to effectively work, is
still shared, along with some metadata, connecting each data entry to at least the training
flags, e.g. a certain disease being present or not.

A prototype has already been developed that reuses a selection of packages and modules
from immuneML (section 2.3) to create a platform that performs a decentralized data
encoding and workflow execution. This work is limited due to its inability to share trained
models instead of encoded data, which, albeit encoding the data before sharing, still allows
some information to reach the analyzing party. The whole interface and interaction with the
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application are also primitive and should be improved to allow for more reproducible results.

1.3 Motivation

New technology can spread quickly, sometimes even quicker than a third party's knowledge
of making the technology reliable, reproducible or usable. Many challenges currently weigh
down on the effective sharing of AIRR-seq data. First, the ample datasets storage and trans-
fer, which can incorporate hundreds of millions of sequences (and hundreds of gigabytes) for
a study, are time and resource-heavy. Also, journals or funding agencies do not consistently
require data upload to public archives. Finally, the steps necessary for properly using the
data by third parties should be standardized (Breden et al. 2017).

The processing AIRR-seq pipeline between the experiment and the data analysis is long
and specialized. New metadata standards, specific to AIRR-seq methods, are required to
effectively share and reanalyze this pipeline and data (Breden et al. 2017).
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State of the art

2.1 Background

In this section, some detail will be introduced about AIRR sequencing, which is the basis of
the work and platforms developed, the iReceptorPlus project, within which this work was de-
veloped, and some information about the state of artificial intelligence in the immunotherapy
field.

2.1.1 AIRR-seq

The many pathogens a person will contact during her life create a reaction from the adaptive
immune system. This reaction is what protects people against diseases. B and T cells are
the pillars of the adaptive immune system, and both show variable, antigen-specific receptors
called B cell receptors (BCRs) and T cell receptors (TCRs), respectively. These receptors are
generated by somatic gene-segment rearrangement, which produces unique, antigen-specific
regions. An individual's combination of BCRs and TCRs is called the adaptive immune
receptor repertoire (AIRR), responsible for recognizing various pathogens, auto-antigens,
allergens, toxins, and tumors (Breden et al. 2017; Rubelt et al. 2017). These receptors
and their sequences have been studied for decades, providing insights into the interactions
between the immune receptors and antigens and helping with antibody engineering. Since
HTS (High Throughput Sequencing) started being applied to AlIR sequences, experimental
and computation techniques have advanced rapidly. These techniques provide information
on how different factors, like age, genetic background, health status, and antigen exposure,
variate the AIRR (Breden et al. 2017). AIRR-seq data is increasingly important in biomedical
research and health care applications such as vaccine research, cancer immunotherapy, an-
tibody discovery, Minimal-Residual Disease (MRD) detection, therapy response monitoring
(Breden et al. 2017; Rubelt et al. 2017).

The massive amount of datasets and data analysis tools created a need for platforms to
enable their management. Sharing and managing solutions started being presented by the
AIRR community, like the iReceptor project (Rubelt et al. 2017). In recent years, the
iReceptor Plus project set out to improve and work on its predecessor.

2.1.2 iReceptorPlus project

The iReceptor Plus project has a four-year duration and is co-funded by the EU and Canadian
governments. The project comprises twenty partners from Europe, Canada, and the USA,
including INESC TEC from Portugal. This platform aims to improve personalized medicine
and immunotherapy by enabling researchers to store, share, and analyze massive datasets
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located in multiple storage facilities (Platform to Integrate Distributed Repositories of AIRR-
seq Data 2022).

Usually, AIRR-seq datasets are stored and curated in separate and individual labs. The
platform will ease the access and analysis of large amounts of AIRR-seq data, facilitat-
ing worldwide studies. This ability will promote the discovery of biomedical interventions
that manipulate the adaptive immune system, aiding the personalization in medicine and
immunotherapy in cancer, inflammatory and autoimmune diseases, infectious diseases and
allergies (Platform to Integrate Distributed Repositories of AIRR-seq Data 2022).

AIRR-seq datasets can be colossal and very complex, so platforms like iReceptor and iRe-
ceptor Plus appeared to improve their usability. The iReceptor Plus framework will follow
the AIRR Community guidelines and standards to increase interoperability and reproducibility
within the area. The project is also focused on preserving the privacy of any and all sensitive
data, intending to create a platform that allows for data analysis with minimal to no privacy
concern. (Platform to Integrate Distributed Repositories of AIRR-seq Data 2022).

2.1.3 Artificial Intelligence and Immunotherapy

Machine Learning is able to import and process enormous datasets and generate models that
fit not only the data they are trained on, but also other similar data inputs. Immunotherapy,
on a molecular level, is assisted by ML in several fields (Jabbari and Rezaei 2019):

e Classification - Phenotype detection and classification are able to determine the pres-
ence and potential outcome of a disease. For instance, as some viral phenotypes are
directly linked to drug resistance, the HIV-1 reaction and response to certain treat-
ments can be accurately predicted. The classification of virus strains based on their
phenotype features that are linked to resistance is also possible and made more effi-
clent;

e Image-based detection - Phenotype detection, at both molecular and cellular level,
can require less time and become less prone to a subjective judgment, when allied by
ML-powered image-based detection systems. Human visual inspections are slow and
unable to handle the enormous amounts of data some studies produce. ML methods
can not only handle much higher orders of dataset sizes, but are also more unlikely to
miss phenotype changes that a human;

e Predictive model - Predicting the probability of the MHC molecules presenting a
certain peptide, which represent the ability of the immune system to bind with and
recognize foreign substances, has been tested with ML models with very high accu-
racy. These predictions are some of the strongest Al tools in developing new thera-
peutic/prophylactic agents like vaccines.

There are also other fields within immunotherapy that can be aided by ML methodologies
(Jabbari and Rezaei 2019):

e Video-based detection - Video-based algorithms are used to recognize the patient’s
face and mouth, as well as the medication being administered, aiming to determine
whether the drug has been swallowed;

e Trial eligibility - Al's pattern-finding nature can help researchers find eligible patients
by scanning their (digital) medical records. With this information, patient’'s data can
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be compared and fitted against the study-specific criteria for eligibility and return the
ideal subjects;

e Simulate/Replace humans in trials - When the right data is trained on an ML model,
there is the possibility of Al replacing human patients on clinical trials. With many
aspects of Al and ML under a gray ethical area, this replacement is considered very
useful in the early stages of clinical trials.

Between all uses for ML methods in immunotherapy, AIRR-seq takes advantage of its clas-
sification and predictive properties. AIRR-seq ML pipelines are built to classify and predict
on AIRR data, like the presence of a disease, exposure to pathogens or vaccines (Mining
adaptive immune receptor repertoires for biological and clinical information using machine
learning - ScienceDirect 2022).

2.2 Reproducibility

Machine learning in the life sciences has shown tremendous growth in the past years, primarily
due to its ability to handle the scale and complexity of biological data. However, machine
learning models are opaquer and more prone to learning bias than simpler models (Heil et al.
2021). With the increasing usage of ML for decision-making and knowledge generation, it
becomes crucial to reproduce ML experiments. To trust and build upon any results, these
must be reproducible. As with many science disciplines, ML is facing a “reproducibility crisis”
(Hutson 2018).

Meanwhile, study (Gundersen, Shamsaliei, and Isdahl 2022) suggests that the leading com-
mercial and academic machine learning platforms do not enable full reproduction potential.
These platforms need extra work from researchers to make their work reproducible. Although
reproducibility and replication discussions are mainly focused on traditional statistical mod-
els and results from randomized clinical trials, the same ideals should be implemented in
machine learning studies (Beam, Manrai, and Ghassemi 2020).

Managing and storing each model checkpoint is essential to reproducibility because artifacts
make it easy for ML team members to replicate and validate models. Data sources are also
a crucial aid in helping other researchers fully reproduce ML experiments (Beam, Manrai,
and Ghassemi 2020; Onose 2021).

Samuel (Samuel, Loffler, and Konig-Ries 2020) argues that the description and sharing
of the research process and related data should follow FAIR data principles. The FAIR
data principles are aimed to improve Findability, Accessibility, Interoperability, and Reuse.
These principles were created to improve the capacity of computational systems to find,
access, interoperate, and reuse data with as little human interaction as possible (Wilkinson
et al. 2016). To promote interoperability, shared ML research should be based on common
terminology, and Samuel (Samuel, Loffler, and Konig-Ries 2020) presents a set of questions
to help the standardization processs:

e Which hyperparameters were used in one run of the model?

e Which libraries and their versions are used in validating the model?

What is the execution environment of the ML pipeline?

e How many training runs were performed in the ML pipeline?

What is the allocation of samples for training, testing, and validating the model?
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e \What are the defined error bars?

Which are the measures used for evaluating the model?

Which are the predictions made by the model?

In the same paper (Samuel, Loffler, and Konig-Ries 2020), the author presents several
challenges faced by scientists when trying to reproduce other work results:

Unavailability, incomplete, outdated, or missing parts of source code;
Unavailability of datasets used for training and evaluation;
Unavailability of a reference implementation;

Missing or insufficient description of hyperparameters that need to be set or tuned to
obtain the exact results;

Missing information on the selection of the training, test, and evaluation data;
Missing information of the required packages and their version;
Tweaks performed in the code not mentioned in the paper;

Missing information in methods and the techniques used, e.g., batch norm or regular-
ization techniques;

Lack of documentation of preprocessing steps, including data preparation and cleaning;

Difficulty in reproducing training of large neural networks due to hardware require-
ments.

In another study (McDermott et al. 2019), reproducibility is divided into three replicability
ranks, depending on their application in different environments:

Technical Replicability — where a result can be fully replicated and match the results
reported by the original researcher;

Statistical Replicability — where re-sampled conditions (e.g., change in train/test
splits) yield different configurations but do not statistically affect the original results;

Conceptual Replicability — where the results maintain statistical relevance in the same
conceptual field as the purported effect. This reproducibility requirement is harder to
meet as the conceptual horizon of generalizability increases.

Similarly, but having in mind the easiness of reproducibility, study (Heil et al. 2021) creates
the following three standards:

Bronze — where data, models, and source code are published and downloadable;

Silver — where Bronze is met, dependencies are set up in a single command, key details
from the analysis are recorded, and the analysis components are set to deterministic;

Gold — where Silver is met, and the entire analysis is reproducible with a single com-
mand.

As shown in Figure 2.1, ML4H lags behing all other ML fields in all reproducibility evaluation
metrics except on the statistical replicability front, where ML4H reports the inclusion of
proper statistical variance. The biggest differences are:



2.2. Reproducibility

. . 1 g D
Evaluatloh Metrlc.s. N MLAH @ o @ @
A. Technical replicability underperforms o @ .
: 0.75 .
1. Code available ‘ b
2. Public dataset % 05 g ",x 8 "‘..
® - o)
25

0.
C. Conceptual replicability r’]}”'—‘“‘l O
1. Multiple datasets overperiorms ‘

Ccv
General ML

0

0 025 05 075 1 0 025 05 075 1 0 025 05 075 1
ML4H ML4H ML4H

Figure 2.1: Comparison of Technical, Statistical, and Conceptual replicability
between ML4H and other ML fields (McDermott et al. 2019)

NLP cVv genML ML4H
Usage of public datasets  >90% >90% 77% 51%
Public code release 50%  37% — 13%

Multiple dataset testing 66%  83% — 19%

Table 2.1: Comparison of replicability guidelines between ML4H and other
ML fields (McDermott et al. 2019)

With these questions, problems, and goals in mind, studies (Banna et al. 2021; Pineau et al.
2020) share some checklists to go over before the release of an ML work, where the potential
problems and considerations for the model re-implementation should arise. Study (Pineau
et al. 2020) presents a shorter list, as seen in Figure 1, in Appendix, whereas study (Banna
et al. 2021) divides these checks in three main blocks that follow:

e General Checks:

Model Purpose;

Code Availability;

Language/Framework/Libraries Used:;

Networks Referenced.
e Model and Design Checks:

— Model Architecture;

Model Sub-Networks;
Model Building Blocks;

Custom Layers;

Loss Function;
— Output Structure.

e Training and Evaluation Checks:
— Dataset Used;

— Pre-Processing Functions;
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Output Processing Functions;

— Testing and Target Metrics;

Training Steps.

Both lists show slightly different yet complementary approaches for a model reproducibility
check. When used together, there will be a high degree of confidence in whether the model
is reproducible.

2.3 immuneML

immuneML is an open-source platform for AIRR ML (Figure 2.2). immuneML enables AIRR-
seq data ML study, from preprocessing to model training and interpretation. This platform
has four main scopes, all of which are used to perform data analysis, with or without the
usage of ML (immuneML documentation 2022; Pavlovi¢ et al. 2021):

e Training ML models — allows for repertoire or receptor sequence classification, like
disease or antigen binding prediction, respectively. Different ML settings, like data
preprocessing steps, encodings, and ML models and their hyperparameters, can be
compared using nested cross-validation for performance measurement;

e Exploratory analysis of datasets — allows for the application of preprocessing, encod-
ing, and plotting descriptive statistics without training ML models;

e Simulating — allows for the simulation of immune events, like disease states, and
subsequent insertion into a dataset. ML settings can then be compared with known
immune signals implanted in a dataset, creating a ground truth benchmarking dataset;

e Applying trained ML models — allows for the application of already trained ML
models to new datasets, even when class labels are not known.

To start an analysis, immuneML requires a specification file, namely a YAML file. Looking
at (Figure 2.2), this file defines the analysis settings: Dataset, Preprocessing, Encoding,
ML method, Report or Simulation. The file also defines an instruction: TrainMLModel,
ExploratoryAnalysis, Simulation, MLApplication, DatasetExport or SubSampling. A
result HTML file is generated which may include models, predictions, plots or datasets.
immuneML can be used via the command line or a web interface through Galaxy (Pavlovi¢
et al. 2021).

2.3.1 Usage

This section walks through the main flows to use immuneML, as shown on (immuneML
documentation 2022).

Analysis specification

In immuneML, an analysis is specified through a fixed structure YAML file. The file defines
the execution of different tasks, such as training ML models, data simulation or exploratory
analysis. This specification consists of three parts (immuneML documentation 2022):

e Definitions — are the components that will be used inside the Instructions. They
can be datasets, preprocessing steps, encodings, ML methods or reports. The user
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Figure 2.2: Overview of how immuneML analyses are specified (Pavlovi¢ et
al. 2021)

must identify each component using any desired, unique key. This unique key is later
referenced in the instructions;

e Instructions — are components that describe the type of analysis to be made and all its
respective and specific settings. If an output from an instruction is needed for another
instruction, two separate immuneML flow runs need to be made;

e Output — currently only HTML is supported.

Data import

To start an analysis in immuneML a dataset must be imported. immuneML supports three
types of datasets (immuneML documentation 2022):

o Repertoire datasets — used on per repertoire predictions, like disease state prediction;

e Sequence datasets — used on single immune receptor chain prediction, like antigen
specificity;

e Receptor datasets — used on paired receptor chain prediction. Is the paired version
of Sequence datasets.

A vast array of formats are allowed for import, including AIRR (Christley et al. 2020; Vander
Heiden et al. 2018), MiXCR (Bolotin et al. 2015; Rosenfeld et al. 2018), VDJdb (Bagaev
et al. 2020; Goncharov et al. 2022; Shugay et al. 2018), among others, with non-supported
datasets able to be imported with a Generic option. Some metadata is required such as the
filename and subject id. When importing data, some fields are mandatory like the dataset
key name, format and path (immuneML documentation 2022).
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Data generation

In order to try out some functionalities, or create baseline datasets for ML model compar-
ison, immuneML offers the possibility of generating random datasets of immune receptor
sequences, immune receptors or immune repertoires. This option comes as an alternative
to loading an existing dataset in an analysis specification. Dataset size, sequence lengths
and labels can be specified by the user (immuneML documentation 2022).

Focusing on the Repertoire datasets, the datasets field in the YAML file Definitions should
be designed as shown in Listing 2.1.

datasets:
my dataset:
format: RandomRepertoireDataset
params:
repertoire count: 100 # number of repertoires to be generated
sequence count probabilities: # the probabilities have to sum to 1
100: 0.5 # the probability that any repertoire will have 100
sequences
120: 0.5 # the probability that any repertoire will have 120
sequences
sequence length probabilities: # the probabilities have to sum to
1
12: 0.33 # the probability that any sequence will contain 12
amino acids
14: 0.33 # the probability that any sequence will contain 14
amino acids
15: 0.33 # the probability that any sequence will contain 15
amino acids
labels: # metadata that can be used as labels , can also be empty
HLA: # label name, any name can be chosen (the probabilities per
label value have to sum to 1)
A: 0.6 # the probability that any generated repertoire will
have HLA A
B: 0.4 # the probability that any generated repertoire will
have HLA B

Listing 2.1: Dataset generation YAML definition (immuneML documentation
2022)

The defined dataset can be exported with the Listing 2.2 instruction set.

instructions:
my dataset export instruction:
type: DatasetExport
datasets: [my dataset] # list of datasets to export
export formats: [AIRR, ImmuneML] # list of formats to export the
datasets to.

Listing 2.2: Dataset generation YAML instructions (immuneML
documentation 2022)

Train and assess

Receptor or repertoire classification ML models can be trained and assessed with immuneML.
The settings for hyperparameters influence the training process and can not be optimized
by training. Since preprocessing steps and encoding also affect the model's performance,
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they can be considered hyperparameters during training. Several methods, like nested cross-
validation, and fixed splits, are supported, which allow for hyperparameter optimization and
an overall unbiased assessment (immuneML documentation 2022). The ML workflow is
depicted in Figure 2.3.

ML workflow

multiple splits to
train/validation/test

N/

optimize preprocessing, |

data representation
and ML model

estimate model
= performance on
optimal

. ” the task
preprocessing,
data representation use the model on
and ML model new data

Figure 2.3: Overview of the training process of an ML classifier: hyperpa-
rameter optimization is done on training and validation data and the model
performance is assessed on test data (immuneML documentation 2022)

Apply trained ML model

The optimal ML settings retrieved from training (trained model, encoding and/or prepro-
cessing steps) are exported for each label. New analysis are able to predict labels on new
datasets by using these settings. This means the model will only work if the new dataset is
preprocessed and encoded in the same way. If other major differences are present in dataset
generation, like different sequencing platform, the model performance may deteorate (im-
muneML documentation 2022).

Exploratory analysis

Preprocessing steps, encodings and reports can be explored without running an ML algorithm.
Each analysis must contain a dataset and a report and multiple analysis can be specificated
in the same instruction (immuneML documentation 2022).

The definition of a default analysis based on an imported dataset, an (arbitrary) encoder,
and two different (also arbitrary) reports is shown in the Listing 2.3 YAML configuration.
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definitions:
datasets:
# imported datasets
my dataset: # user—defined dataset name
format: AIRR
params:
metadata file: path/to/metadata.csv
path: path/to/data/

encodings:
my regex matches:
MatchedRegex:
motif filepath: path/to/regex file.tsv

reports:

my seq_lengths: SequencelengthDistribution # reports without
parameters

my matches: Matches

Listing 2.3: Exploratory analysis YAML definition  (immuneML
documentation 2022)

The encoder definition is present to allow for two different analysis to be performed on the
same dataset, as shown in the Listing 2.4 YAML snippet.

instructions:
my instruction: # user—defined instruction name
type: ExploratoryAnalysis
analyses:
my analysis 1: # user—defined analysis name
dataset: my dataset
report: my_ seq_ lengths
my analysis_2:
dataset: my dataset
encoding: my regex matches
report: my matches

Listing 2.4: Exploratory analysis YAML instructions (immuneML
documentation 2022)

Various analysis can be run on the same dataset if correctly encapsulated in their respective
analysis object.

Signal simulation and motif implantation

Immune events on repertoires can have their effects simulated by implanting signals in the
original dataset. The original dataset can be any repertoire dataset, whether experimental
or simulated (immuneML documentation 2022).

Immune events within a simulation are represented by three classes, as seen in Figure 2.4:

e Motif - the sequence of amino acids to be implanted in an AIRR repertoire dataset.
This is described by a seed and instructions on how that seed is instantiated, working
in a similar way to regular expression algorithms but with focus on known genetic
properties;

12
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Motif Signal ( Simulation
. Implantin
seed: CA/T motifs: p 9
- motif 1 .
] signals:
L - signal 1
Motif instances: - motif n g
CAT - signal n
CA--T Sequence position weigths AN J/
CST CAT

Dataset implanting rate
/N /N

105106 107 108...114 115 116 117

™ Repertoire
<= implanting
» rate
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Figure 2.4: How different concepts in a simulation relate: Motif, Signal,
Implanting, and Simulation (immuneML documentation 2022)

e Signal - the list of different motifs aligned with the sequence position weights, which
represent the probability of a motif to be implanted in the given sequence positions;

e Implanting - the interface connecting the signal to the actual dataset simulation. Here
the dataset and repertoire implanting rates, for each signal (or combination of signals),
are defined. Representing the percentage of repertoires and receptor sequences which
will contain the signal, the dataset and repertoire implanting rates, respectively, can
be varied to understand how a signal presence can affect a study outcome.

In the Listing 2.5 is the documentation guide on building a simulation YAML specification
file, with instructions being very similar to previous examples (immuneML documentation
2022). Initially, a simple motif is created with the seed AAA, meaning that string will be
implanted in the sequence. A signal is created pointing to the previously created motif, as
well as the possible implanting positions and their relative weight, meaning the motif can
be implanted in the positions 109, 110, 111, or 112, with probabilities of 0.1, 0.2, 0.5, and
0.1, respectively. The simulation part of the file defines the signal that is being implanted
and its details. The details include the dataset implanting rate, that defines the percentage
of repertoires that will have the signal implanted, and the repertoire implanting rate, that
defines the percentage of sequences, inside each repertoire, implanted with the signal.
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definitions:
motifs:
my simple motif: # a simple motif without gaps or hamming distance
seed: AAA
instantiation: GappedKmer

signals:
my signal:
motifs:

- my_simple motif
implanting: HealthySequence
sequence position weights:

109: 0.1
110: 0.2
111: 0.5
112: 0.1

simulations:
my simulation:
my implanting:
signals:
- my _signal
dataset implanting rate: 0.5
repertoire implanting rate: 0.25

Listing 2.5: Simulation YAML (immuneML documentation 2022)

2.4 Federated Learning

Federated Learning (FL) has its origin in the Google Keyboard in 2016, where several Android
devices collaboratively learn. The potential to apply this technology to other edge devices
brings the possibility of revolution in domains such as healthcare (Mammen 2021).

Traditional, centralized ML algorithms require the data to be aggregated in a central repos-
itory for model training. Regulatory restrictions on sensitive data sharing are the main
challenge for genetic information-based healthcare applications. FL eliminates the need for
raw data sharing, allowing ML model training with data distributed between multiple data
storage facilities. After a global model is built and shared across nodes, each node can train
the model based on its data, and the updates to the model are later joined in an aggregation
server. This process is repeated until a global model convergence criterion is met (Choud-
hury et al. 2020). The process through which the global model is generated from the local
models is called Federated Averaging Algorithm (Gad 2020).

FL has shown merit in various real-world applications, like image classification and language
modeling. In healthcare applications, where data is personal, sensitive, and highly regulated,
FL shows particular relevance (Choudhury et al. 2020).

2.4.1 Types of Federated Learning

Federated Learning can be divided into the following types (Mammen 2021; Yang et al.
2019):

e Vertical Federated Learning - used when each device contains a dataset with a
different set of features but the same group of sample instances;
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Horizontal Federated Learning - opposing to Vertical Federated Learning, is used
when each device contains a dataset with the same set of features but for a different
group of sample instances;

Federated Transfer Learning - used for adding a new feature to a model that was
already fitted to previous features.

2.4.2 \Workflow

There are four main steps to the federated learning workflow cycle, all of which are repeated,
in order, for as many times as the user or convergence mechanism determine (Bonawitz et al.

2019;

et al.

Li, Sahu, Talwalkar, et al. 2020; Mammen 2021; Rieke et al. 2020; Rodriguez-Barroso
2020):

Client selection - Server pings and selects the desired amount of clients from those
connected, using a (possibly random) algorithm. (Khan et al. 2020; H. Yu et al. 2020;
T. Yu et al. 2020) study in more depth the intricacies of the client selection process;

Parameter broadcast - Server sends the parameters of the global model to the picked
clients;

Local model training - The clients download the global model parameters and start
a new round of model training using local data, sending the results back to the server;

Model aggregation - The server receives the new models with the updates and ag-
gregates them together to generate a new global model.

2.4.3 Usual applications

There are four main areas where federated learning has the most impact, according to
(Mammen 2021):

Healthcare - The biggest source of healthcare data for ML model training are the
Electronic Health Records. Training data quality is essential for model performance
and when these models are created using data from only one hospital, the predictions
tend to have a higher probability of being biased. To try to generalize models, data
needs to be shared across institutions which, with healthcare data being sensitive and
restricted, sharing datasets may not be an option and federated learning can be an
important tool in allowing for greater, privacy-respecting research;

Transportation - Technology and sensor integration in vehicles has allowed for an
ever bigger amount of data being collected and available for ML studies. Vehicle and
traffic management and autonomous driving are some of the areas where ML models
can have a big impact and, due to the centralization of the training process, vehicles
can have a hard time adapting to the plethora of unique situations each of them faces
every ride. Federated learning can not only protect the driving data of drivers, but
also improve the labeling accuracy of the different features;

Finance - The financial sector can also benefit from federated learning, in areas such as
loan risk assessment. Sharing information between financial institutions and commerce
companies can allow for very sensitive data to be exposed, and federated learning could
be used to create a risk assessment ML model that factors in all that information;
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e Natural Language Processing - NLP is one of the most common ML applications,
with the downside of needing really massive datasets to train precise models. The
data for this type of model can be found in every common edge device, from phones
and tablets, to headphones and smartwatches. Again, the data is highly available but
highly confidential, so federated learning comes again as a strong candidate to tackle
this matters. A working example of this implementation strategy is shown in (Bernal
n.d.).

2.4.4 Strategies

For a Federated Learning pipeline to work, it must select a way in which it will merge

FedAvg

FedAvg tries to train a shared model across devices, by attempting to minimize a global loss.
This overall loss is calculated by a weighted average of all client node’s losses (McMahan
et al. 2017).

K
F(w) = Y- Fu(w)

k=1

This function considers K clients, each one running its own loss function, Fx(w). It also
shows the weight of each client's loss is calculated by dividing the client's dataset size, ny,
by the sum of all client's dataset sizes, n. This approach means that devices with bigger
datasets at training time will get bigger weights and, therefore, more importance in the
shared model aggregation (McMahan et al. 2017).

Although this strategy works well in practise, and does well in mantaining the model impor-
tance based on the amount of data provided, it is not the best solution for every scenario.
Federated Averaging makes these simplifying assumptions that may hinder the learning pro-
cess in specific situations:

e |t assumes every client will be able to perform a predetermined number of training
epochs in about the same time. In a situation with a big performance spread, the
convergence speed and overall training performance can be hindered by slower devices.
There is also the possibility that most devices connected are slow and their data is
needed, so there is not the possibility of just dropping them for faster clients;

e Convergence is not guaranteed on very heterogeneous data, as the weighted average
favors the clients with the biggest datasets, making the models biased towards these
devices' data.

For comparison in the next strategies, the following function will be used, replacing the client
weight fraction with pg, representing that same proportion.

min F(w) = 3 peFi(w)
k=1
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FedProx

FedProx, with Prox meaning proximal, tries to tackle the discrepancy in device performance
by allowing devices to do variable work, meaning it will approximate the devices performances.
While it seems that this strategy will allow for faster devices to perform more training
epochs and, therefore, change their weights far more than a slower counterpart, FedProx
itriesntroduces a regularization term, or proximal term, to its loss function (Li, Sahu, Zaheer,
et al. 2020).

mmin h(w; wh) = Fr(w) + %HW — wi||?

Having the current round t, and the hyperparameter p, the regularization term, £||w — w?||?
penalizes large changes in model weights more. This can prove helpful in the convergence
of highly heterogeneous data, as this proximal term can be seen as a mechanism to stop the
model from changing too much in any given device. The hyperparameter y can be tuned in
order to change the penalty magnitude and sensitivity.

qFedAvg

gFedAvg intends to bring fairness to the shared model learned in a federated learning pipeline,
meaning it tries to make the model perform in the same way on all devices (Li, Sanjabi, et al.
2020).

m
. Pk +1
min q(w) ;:1 g1k (w)

By using the same data proportion as FedAvg, pk, this strategy penalizes the worse per-
forming devices more, in an attempt to make the model improve its performance on those
devices. By tuning the hyperparameter g, it becomes possible to affect how much the worse
devices dominate the overall model. Increasing g will make these devices dominate the model
more, making the model more fair, and vice-versa.

perFedAvg

perFedAvg tries to create a personalized model for each client with few local epochs (Fallah,
Mokhtari, and Ozdaglar n.d.).

mmi/n f(w) = Z prFr(w — aV Fi(w))
k=1

This method differs from FedAvg by not calculating the client’s loss on its current weights
but on the weights after a gradient descent step, as seen by the replacement of Fy(w) with
Fr(w — aV Fi(w))

2.4.5 Frameworks

There already exist some frameworks that enable Federated Learning from existing ML
pipelines, and a few will be explored in this section.
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Flower

Flower is a Federated Learning framework that focuses on the execution of large-scale exper-
iments, simulate and deploy to highly heterogeneous devices, for system oriented research
within the domain. Flower is a ML framework and language-agnostic platform, meaning
that with some degree of tweaking, most ML pipelines can be federated and decentralized
(Beutel et al. 2022).

TensorFlow Federated

TensorFlow Federated is a computational framework for decentralized data, which includes
ML algorithms. This framework works on top of Google's TensorFlow, and attempts to
enable Federated Learning practices to it. This pipeline has been used to train language
models from devices' keyboards, without ever releasing or uploading their (private) data
(TensorFlow Federated 2022).

PySyft

PySyft is an open source library that intends to provide more security and privacy to Data
Science operations in Python. Developed by OpenMined, this framework can enable Fed-
erated Learning studies in pipelines built over major ML libraries, such as Tensorflow, and
PyTorch (Ryffel et al. 2018).

Comparison

Although all platforms allow for both simulating the FL pipeline and running the pipeline in
actual devices, when it comes to scalability all frameworks lose to Flower. The fact that this
platform is ML framework-agnostic gives it a serious advantage to all competitors, as you
can use the same implementation, and very similar code, to run different studies, requiring
different ML tools, in the same devices (and perhaps same data).

Given Flower's Communication and Language-agnostic nature, it allows for its client to
be ran on any type of device (e.g., phone, laptop, server, embedded), while TensorFlow
Federated and PySyft expect the framework to provide the runtime environment to the
client.
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Solution

3.1 Proposed solution

As mentioned in the problem definition (section 1.2), a primitive prototype platform was
developed that allows for decentralized workflows based on immuneML. This prototype is
divided into three main components:

e Data Provider Node — contains sensitive local data. When its data is requested by
the Analysis Node, it encodes the data in an irreversible way before sending it;

e Analysis Node — requests Data Provider Nodes and receives encoded data. Node
where model training occurs. Before training, the data is merged, splited, normalized,
and standardized;

e Server — Data Provider Nodes and Analysis Nodes are registered here. Facilitates
connections between them.

Meetings were held with members of the immuneML development and management teams,
and the clear path towards more accessible and private analysis using the platform was
discussed. While the created prototype already works in a decentralized way, the model is
trained in a single, central node, where all training data has to be placed before starting the
study. This either sends relevant (and possibly sensitive) data to the analysis node, since
that data must contain the information the model will be trained on, or will share very poor
quality data, as to not leak any information from its origin, resulting in bad model quality.

The solution presented here consists of federating the existing prototype, meaning that
a model training and evaluating implementation will be added to each DPN, and model
aggregation and evaluation modules will be added to the AN. The Server will still provide
an easy path for ANs to discover which DPNs are online. This decentralization process will
allow for models to be trained on data from all the selected entities, without ever sharing
actual data, thus contributing to a higher preservation of privacy of the analysis.

Some modules from immuneML that were reused in the prototype, as well as some new ones,
will be refactored and used in the new federated framework. These packages will enable the
importing, encoding, normalization, merging, and splitting of the data, as well as training,
assessing and reporting on the ML model, in both DPN and AN pipelines. The Server will
continue to allow for ANs and DPNs to discover each other, but will no longer take part in
the connection process, with this becoming direct communication between them.
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3.2 ImmuneML package analysis

Initially, the immuneML analysis flow was decomposed in order to understand how they are
defined and how the different components interact with each other. This flow is defined
in a YAML specification file, as mentioned in section 2.3. The immuneML website docu-
mentation section 2.3 sheds some light on the multiple dependencies that exist within this
specification.

In order to better understand how immuneML components interact between them, they
must first be well identified. Three main groups were identified as the highest level spec-
ification division: Definitions, Instructions and Output. Any analysis type can be defined
as Instructions, while the actual running of the analysis is defined by the content of the
Definitions block. The Output is limited to HTML so it will not be discussed in its own
section.

3.2.1 Definitions

This section shows the components to be used in the remaining of the file and on the
analysis, as well as their relations. These components are: Datasets, Encodings, ML
Methods, Preprocessing Sequences, Reports, Simulations, Signals, and Motifs. In order
to use some components, others are required or able to be set, according to the following
dependencies:

e Encodings and Preprocessing Sequences — depends on Datasets;
e ML Methods and Reports — depend on Encodings;
e Signals — depends on Motifs;

e Simulations — depends on Signals and Motifs.

3.2.2 Instructions

This section conjugates the analysis steps with the components defined in Definitions, as
well as the instructions parameters. The possible steps in this section are: DatasetExport,
ExploratoryAnalysis, MLApplication, Simulation, Subsampling, and TrainMLModel.
They correlate with the Definitions as follows:

e DatasetExport — depends on Datasets;

ExploratoryAnalysis — depends on Datasets, Encodings and Reports;

MLApplication — depends on Datasets and Encodings;

Simulation — depends on Datasets and Simulations;

Subsampling — depends on Datasets;
e TrainMLModel — depends on Datasets, Encodings, and ML Methods.

As the solution is based on ML model training, we can identify Datasets, Encodings, and
ML Methods as vital in its development.
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3.2.3 Analysis dependencies

As mentioned in section 2.3, Datasets can be categorized as Repertoire Dataset, Receptor
Dataset, and Sequence Dataset. Figure 3.1 presents how the the analysis-pertinent mod-
ules are distributed. The dependencies between the Encoders and the Dataset categories,
as well as between the ML Methods and the Encoders, are represented in Figure 3.1.

E—lt—)o—) Definitions

Instructions

ML Methods |-,
o

4

Encodings [~

4y

Figure 3.1: immuneML analysis specification diagram

Encoders

There are fourteen encoders in immuneML: AtchleyKmer, CompAIRRDistance, CompAIRRSe-
quenceAbundance, DeepRC, Distance, EvennessProfile, KmerFrequence, MatchedRecep-

tors, MatchedRegex, MatchedSequences, OneHot, SequenceAbundance, TCRdist, and Word2Vec.
All encoders work on Repertoire Datasets, but only OneHot works for Receptor and Se-
quence Datasets. EvennessProfile, KmerFrequence and OneHot, Word2Vec, Kmer-
Frequency, or EvennessProfile encoders are already implemented in the prototype, the
solution aims to implement OneHot as to allow for a wider variety of Dataset category
acceptance.

ML Methods
e AtchleyKmerMILClassifier — depends on AtchleyKmer encoder;
e DeepRC — depends on DeepRC encoder;

e KNN - depends on OneHot, Word2Vec, KmerFrequency, EvennessProfile, or Dis-
tance encoders;

e LogisticRegression — depends on OneHot, Word2Vec, KmerFrequency, or Even-
nessProfile encoders;

¢ ProbabilisticBinaryClassifier — depends on SequenceAbundance encoder;
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¢ RandomForestClassifier — depends on OneHot, Word2Vec, KmerFrequency, or
EvennessProfile encoders;

e ReceptorCNN — depends on OneHot encoder;

e SVM - depends on OneHot, Word2Vec, KmerFrequency, or EvennessProfile en-
coders;

e TCRdistClassifier — depends on TCRdist encoder.

KNN, Logistic Regression, RandomForestClassifier, and SVM methods are already im-
plemented in the prototype. To match the OneHot Encoder, RandomForestClassifier will
aid testing and the KNIN and ReceptorCNN are aimed to be implemented.

3.2.4 Simulation dependencies

Datasets can be simulated, as mentioned in section 2.3. For a simulation pipeline to run on
immuneML, the Simulation, Signal, and Moetif fields must be defined. Their dependencies
are shown in Figure 3.2.

Instructionsi< | Simulation

I
i

=
Definitions | Simulations

Figure 3.2: immuneML simulation specification diagram

3.3 ImmuneML reference pipeline

To develop a federated ML framework, a base pipeline from immuneML was selected as the
base of this work. Initially, a summary of the packages and modules that will be used from
immuneML are presented, then the pipeline that is going to be processed for decentralization
is explored in greater detail.

3.3.1 Packages and methods used

This section will describe the modules from immuneML used in this project to implement the
training, assessment, and reporting pipeline. These modules are used to make the federated
framework compatible with the remaining workflows of immuneML. In Table 3.1 we explore
where the different modules are located within immuneML.

¢ NormalizationType - Normalization of the train and test encoded datasets is selected
and applied with the help of this module;

e RepertoireDataset - The EncodedData module can create a RepertoireDataset, needed
for training, assessment, and reporting on an ML model;

e Dataset - The AIRR format is used throughout this project, and this module allows
for the dataset to be stored after importing it;
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Packager Modules
analysis.data__manipulation NormalizationType
data model.dataset RepertoireDataset
- Dataset
data__model.encoded data EncodedData
encodings EncoderParams
encodings.kmer _frequency KmerFrequencyEncoder
encodings.preprocessing FeatureScaler
environment Label .
LabelConfiguration
|O.dataset _import AIRRImport
MLMethod
ml methods . .
— LogisticRegression
ml__methods.util Util
ml__metrics Metric

Coefficients
CoefficientPlottingSetting
MLMethodAssessmentParams
MLMethodAssessment
MLMethodTrainerParams
MLMethodTrainer

reports. ml_ reports

workflow.steps

Table 3.1: List of packages and respective modules used from the immuneML
framework

e EncodedData - This module contains an object capable of storing the datasets after
the encoding process, allowing it to be aligned with immuneML data standards;

e EncoderParams - To be able to use an Encoder, the EncoderParams object must be
defined with the Encoder-specific parameters;

o KmerFrequencyEncoder - This module allows for data to be processed with the
KmerFrequency Encoder;

e FeatureScaler - Used to normalize and scale data before training. For the normaliza-
tion process, it takes the NormalizationType as input;

e Label - This module contains the Label object for the Encoders, where it usually
consists of the variable to predict or classify on;

e LabelConfiguration - Encapsulation of Label objects for use with Encoders;
o AIRRImport - Used to load datasets from a data storage to a Dataset object;

o MLMethod - Abstract module where the common and useful ML method functions
are defined. Actual used methods inherit this class, allowing for immuneML'’s easy
method integration;

e LogisticRegression - Wrapper for sklearn's LogisticRegression ML method. This class
iherits from MLMethod and applies method-specific tasks to it;

e Util - An utilitary class for various helpful functions;

e Metric - Object used to specify Metrics for training, assessment, and reporting;
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Coefficients - This module encompasses a reporting mechanism, that generates a
barplot from the coefficients’ values of the given model;

CoefficientPlottingSetting - Configuration needed to plot a model with the Coeffi-
cients module;

MLMethodAssessmentParams - Parameters needed for the assessment of an ML
model;

MLMethodAssessment - This class configures and runs the assessment of an ML
model;

MLMethodTrainerParams - Parameters needed for the training of an ML model;

MLMethodTrainer - This module configures and runs the training of an ML model.

3.3.2 Pipeline specification

The immuneML centralized pipeline steps are the following:

24

e 1. Define encoding arguments - Initially, the encoding parameters are set in a key-

value dictionary. For encoding the option KmerfFrequency, for sequence encoding
the value CONTINUOUS KMER, for reads the value UNIQUE, for sequence _type
the value AMINO ACID, and for k a value of 3 was chosen. Essentially, the encoder
groups each sequence into k-mers of size 3 (k), meaning it encapsulates all continuous
sub-strings of the specified length;

2. Import dataset - The dataset is imported from the data storage, by receiving a
path to the metadata and repertoires’ directories;

3. Encode dataset - After importing, the system immediately runs the encoding steps
with the above configuration. The datasets are then only used inside the system after
encoding, which avoids any original data leak;

4. Add dataset - The encoded datasets are added to an EncodedDatasets object,
that can hold several datasets as needed by the analysis;

5. Merge datasets - If more than one dataset is added to the EncodedDatasets
object, they are merged into a single, bigger dataset in this step;

6. Define split, scale, and normalize parameters - At this point, the parameters
for data preprocessing are defined. The normalization type is set to max, the scal-
ing _to zero mean flag is set to False, and the split percentage is set to 0.1, which
translates to ten percent of the dataset being used for testing and ninety percent for
training;

9. Split, scale, and normalize data - This step takes the previously defined parame-
ters and processes the data prior to model training;

10. Initialize ML model - This step defines the ML method that is being used along
with its parameters, and how it should be initialized. For this pipeline the Logistic
Regression method was chosen. This method will take various iterations to train
the model, hence the parameter max_iter becoming important to variate this, and
understand its effect on the final model;
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e 11. Train ML model - After initializing the model, it is used, along with the encoded
data meant for training, and the training process starts;

e 12. Assess ML model - After training a model, it can be measured against the part
of the encoded data meant for testing, returning the accuracy and loss values of the
model, when tested against that portion of data;

e 13. Report on ML model - This step reads the trained model and builds a data
structure based on the coefficient values of the Logistic Regression model. Given an
output path, an HTML file is generated with a bar graph comparing the coefficient
values of the model. This can show how a model was able to have a bigger coefficient
for the injected k-mers section 3.4, in comparison to others.

3.4 Data gathering and identification

As explained before, ML model training depends on the encoding of datasets, which have
a tendency to be very large. In order to obtain more manageable and predictable data,
for faster testing, and data modeling, the immuneML dataset generation feature was used.
As mentioned in section 2.3, using the YAML specification file, it is possible to generate a
random dataset, and then implant immune signals inside it.

3.4.1 Test case definition

After some meetings, two test cases were defined as crucial for the federation of the im-
muneML to be considered valid. These test cases assess if the merging of the models
trained in each node is able to produce significant results, as well as the model behavior
under an heterogeneous network, with the majority of the nodes used for training not having
significant amounts of data.

Following these guidelines, those meetings resulted in the following two test setups:

Convergence test

In this test case, 50 Data Provider Nodes will be created and run. Each node must perform
well when running the centralized pipeline, allowing for the most stable test of the model
merging.

This process will be repeated several times in order to assess the impact of node quantity
in the merging process. For this, different runs will be made, with two different amount of
nodes: 5, 25, and 50.

The goal of this test case is to understand if the merging is working and its limitations
regarding the amount of nodes used for training. Merged models will be assessed and
reported on to analyze their performance.

Heterogeneity test

For the second test case, 50 Data Provider Nodes will be created and run. Some nodes
will be created as subsection 3.4.1, with good performance on the centralized pipeline. The
remaining nodes will be created with tiny datasets, meaning they will have a very poor
performance on the same pipeline.
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This process aims to understand the impact of nodes with little value on the final model
performance, with the goal of understanding if heterogeneity may present a problem. The
test will be ran with a dataset of 50 nodes, 45 of them being strong nodes, and the other
5 being weak nodes.

3.4.2 Data generation and signal implantation

Following the already implemented prototype settings, the dataset format is selected as
repertoire. This section will provide an in-depth view over the data generation YAML files
and selected properties.

Convergence test

The first dataset collection will consist of fifty nodes, each with 100 repertoires. Each
repertoire will contain 600 sequences of length 32. The YAML file in Listing 3.1 was built
and run fifty times to generate the different datasets.

definitions:
datasets:
my dataset:
format: RandomRepertoireDataset
params:
repertoire _count: 100 # number of repertoires to be generated
sequence count probabilities:
600: 1 # all repertoires have 600 sequences
sequence length probabilities:
32: 1 # sequence length is 32
labels: null

instructions:
dataset export: # instruction 1: export the randomly generated dataset
in AIRR format
type: DatasetExport
datasets:
- my dataset
export formats:
- AIRR

Listing 3.1: Random dataset generation YAML specification file for 100
repertoires.

ImmuneML's random dataset generation only creates the repertoire files. To be able to run
a study on the platform, a metadata file per dataset/node is required, as per section 2.3.
A python script was developed to create such file, and some assumptions were made: every
repertoire belongs to a different subject, and the subjects’ identifier is random and incre-
mental in each metadata file.

In section 2.3, signal injection was studied, as how it can simulate immune events. After
generating the datasets, the collection must be injected with a signal, and the process is
described in the Listing 3.2.

This specification entails the dataset path, which was replaced by each of the nine nodes’
paths in each run. The motif to be implanted is a k-mer with a length of 5, VERYW.
This motif is applied in the disease signal, and this signal specifies that the k-mer must be
positioned in between the positions 20 and 23, with even probabilities.
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3.4. Data gathering and identification

The most important tweak aspect of the simulation is the implanting, where the dataset
and repertoire implanting rates can be varied. The dataset implanting rate corresponds to
the fraction of the repertoires that will have the signal disease implanted, in this case, half
of the repertoires in each dataset. The repertoire implanting rate translates to the fraction
of sequences, in each signaled repertoire, that will actually get the k-mer implanted. A
repertoire implanting rate of ten percent was chosen in order to help maintain a high model
accuracy. For this work’s scope is not to evaluate how the model performs on each dataset,
but if the models can be merged.

The simulation also creates a new data column in all nodes’ metadata files, with the name
of the signal: disease. This column will read True if the signal was implanted in the corre-
sponding repertoire, and False otherwise.

definitions:
datasets:
my dataset:
format: AIRR

params:
metadata file: ./dataset/metadata.csv
path: ./dataset/
result path: ./dataset/result —immunem!| imported files/
motifs:
kmer:

instantiation: GappedKmer
seed: VERYW
signals:
disease:
implanting: HealthySequence
motifs:
— kmer
sequence position weights:
20: 0.25
21: 0.25
22: 0.25
23: 0.25
simulations:
sim:
implantingl:
dataset implanting rate: 0.5
repertoire implanting rate: 0.1
signals:
— disease
instructions:
sim __instruction:
dataset: my dataset
export formats:
- AIRR
simulation: sim
type: Simulation

Listing 3.2: Motif implantation YAML specification file for a repertoire
implanting rate of 10%.

These datasets are saved and arranged in a collection of 50 directories with names from
node0 to node49, from which the varying number of nodes, mentioned in subsection 3.4.1,
can be selected: either 5, 25, or 50. After the generation, the datasets are joined so that
results may be evaluated against data from all nodes, and so that a full model can be trained
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in a centralized way and the results can be compared. For this, all repertoires’ files are copied
into a single directory, and all metadata files have their content merged into a single file.
As each metadata file identifies their subjects with ascending identifiers starting from 1, on
the merged file these entries are edited and, on the final version, contains identifiers ranging
from 1 to 5000. The merged results are stored in a directory called server. A repertoire’s
file unique fields (Table 3.2), and a metadata’s file fields (Table 3.3) examples are shown
for reference.

sequence_ id cdr3_aa
0 LPISDEACYYLPASMSKWYHHCQYGKIVFFLR
1 FADMSHKQDYQNLMTEEIQNMHHEWQHTVHEE
2 KPMVPDNRRWEKLMVGLEQYSYRGFPDCSRKR
3 LPKAHNTHNQFTPMEIHRTRLLNAQIHGFVWH
4 WLFTVEDDNSGPEEGDKNHRRELDAWEVWVMS
5 YAVNPEGLKTWPLMRFNLAGMDVYASSWRNQG
595 QCCDWKLGPTFIRSSRDWWTLLTENGYSHGNC
596 LYEWKIGTIAKADKFQILSPFPYRAASIWILL
597 EDCYTMCAARRFYCDYTVAWQKSEPRYIADDF
598 TMLHHEQWLAAFKGEARTGFNQQEHDKWCDDI
599 PVPWLNMHKWGECVCEAVPRADGFAKCEWSWW

Table 3.2: Generated repertoire file example

disease filename identifier subject id
True  repertoires/a.tsv a 1
True  repertoires/b.tsv b 2
True  repertoires/c.tsv c 3
True  repertoires/d.tsv d 4
True  repertoires/e.tsv e 5
False  repertoires/v.tsv v 96
False  repertoires/w.tsv w 97
False  repertoires/x.tsv X 98
False repertoires/y.tsv y 99
False  repertoires/z.tsv z 100

Table 3.3: Generated metadata file example

Heterogeneity test

As explained in subsection 3.4.1, this test-case will use the same datasets from the previous
test-case for the strong nodes, and new weak datasets will be generated. Following the
same principle, the weak datasets will be generated using the YAML file in Listing 3.3
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3.5. Implementation and results

definitions:
datasets:
my dataset:
format: RandomRepertoireDataset
params:
repertoire count: 6 # number of repertoires to be generated
sequence count probabilities:
600: 1 # all repertoires have 600 sequences
sequence length probabilities:
32: 1 # sequence length is 32
labels: nul

instructions:
dataset export: # instruction 1: export the randomly generated dataset
in AIRR format
type: DatasetExport
datasets:
- my dataset
export formats:
- AIRR

Listing 3.3: Random dataset generation YAML specification file for single
repertoire.

This generation process will be ran several times, as a number of tests is performed. As
shown in subsection 3.4.1, 5 datasets of weak nodes will be generated, which may then be
used to test the pipeline. Tests will be ran the same way as in the Convergence test-case,
with a joined model being created, and both centralized and federated analysis being ran
and reported on.

For the motif implanting, the same file as the Convergence test-case nodes will be used,
meaning all simulated datasets will have the same implanting rates, as well as the same
signal properties, such as sequence positioning and motif seed.

3.5 Implementation and results

This section will cover how the Flower framework subsection 2.4.5 was implemented in
the immuneML prototype described in section 3.1, the changes that were made to some
packages of the prototype in order for it to comply with federated training, and will finally
present the results of the Convergence and Heterogeneity test-cases, which were described
in subsection 3.4.1.

3.5.1 Flower implementation

In order to integrate the Flower federated framework with the built prototype, some changes
were required. The Client and Server modules were coded into the platform, the Federat-
edLogisticRegression and FederatedCoefficients classes were created as wrappers for the
immuneML’s LogisticRegression ML method, and Coefficients Report, respectively, in or-
der to add, or customize their features. The original FedAvg package from Flower, and the
MLTrainer, and MLAssessment from the existing prototype, were lightly modified to adapt
to the new requirements, and MLReport was created, based on the latter two packages'’
configurations. For this framework there was also needed an utilitary package Utils, which
connects various services within the new prototype. This part of the document will focus
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on the Client, the Server, and the Utils packages, as well as the FederatedLogisticRe-
gression wrapper, and the settings used for the FedAvg merging strategy. Other packages
will not be discussed here as they only required changes in order to work along with these
implementations.

Some packages, related to encoding and importing, were re-used from immuneML. Since
they were already explained in section 3.2, they will not be covered in this section.

Client

Following the pipeline presented in subsection 3.3.2, the Client performs the 9 first steps
in the same way the centralized pipeline does. Initially, the Client runs the defines the
parameters that will be used by the encoder, as seen in Listing 3.4.

encoding arguments = {
"encoding': 'KmerFrequency',
'sequence encoding': 'CONTINUOUS KMER',
"reads': 'UNIQUE',
'sequence type': 'AMINO_ACID',
'k': 3
b

Listing 3.4: Encoder parameters.

Then, the dataset is imported, and the merge process is ran, which is always necessary, even
if only one dataset is imported. The normalization and scaling steps are ran, and finally
the dataset is split in training and testing parts. The code for these steps can be seen in
Listing 3.5.

original encoded data = utils.get encoded dataset(encoding arguments,
node id)

encoded datasets = EncodedDatasets(encoding = encoding arguments]['
encoding '], params = encoding arguments)

encoded datasets.add dataset(original encoded data)
encoded datasets.merge datasets()

encoded datasets.normalizationType = NormalizationType( 'max"')
encoded datasets.scaled to zero mean = False

encoded datasets.split _normalize (0.2)

Listing 3.5: Dataset import, merge, encoding, normalization, and split.

After the datasets are processed, the ML model must be initiated, requiring the maximum
number of iterations to be set, and the warm start flag to be activated. The number of
iterations was kept high in order to not limit the model, and have a high probability of a suc-
cessful convergence. The warm _start flag is used because without it the LinearRegression
ML model resets its own coefficients (or weights) before the fitting process, meaning the
model would be trained from scratch, instead of training over the dataset received from the
Server. Regardless of the warm _start flag, this initialization process is happening before
any round of actual training, so the model must be initialized with the correct parameter
shape, in order to match the other Clients, and allow for posterior merging. The model
initialization code is detailed in Listing 3.6.
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new model = LogisticRegression (
max __iter=20,
warm _start=True

)

utils.set initial params(new_model)

Listing 3.6: Client ML model initialization.

With the datasets processed, and the model initialized, the NodeMLClient class is defined,
which extends directly from Flower’'s Client. This class defines 3 functions, which are exposed
to the Server during the federated learning cycle, meaning the Server can call these functions
in order to define the flow of the training process. All the client functions also receive a config
parameter, which can share important data between the Server and the Client, primarily
the current round of training. The first function is used to retrieve the model parameters
from the Client, usually after each training round, and is show in Listing 3.7.

def get parameters(self, config):
return utils.get model parameters(self.model)

Listing 3.7: Client get parameters method.

The second function provided by the Client is the model fitting function. This function is
called by the Server for each round of training that the Client is selected to participate
in. Initially, the method sets the ML model parameters received, meaning that, after each
round of training, the merged coefficients are received from the Server and set, so that the
model will now train over this data, and improve the received model. This is followed by
the actual model training instructions, using the training portion of data from the encoded
dataset, and finally, the method returns the model's parameters as well as the length of the
dataset the Client used. The coding details can be seen in Listing 3.8.

def fit(self, parameters, config):
utils .set model params(self.model, parameters)

with warnings.catch _warnings():

warnings.simplefilter("ignore")

self.model = utils.train_model(node id, encoded datasets.
encoding , encoded datasets.train_encoded data, f"/path/to/results/
rnd {config['server round']}", 'log loss self.model)
print(f"Training finished for round {config['server round']}")

return utils.get model parameters(self.model), len(encoded datasets.
train_encoded data.example ids), {}

Listing 3.8: Client fit method.

Finally, the Client exposes an evaluation function, so that the locally trained model may be
assessed. This function starts by also setting the coefficients it receives from the Server
to the model. This function uses the testing part of the encoded dataset to perform an
analysis, resulting in the logarithmic loss, and accuracy of the model being returned, along
with the amount of samples used for testing. The code for the assessment is present in
Listing 3.9.
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def evaluate(self, parameters, config):
utils .set _model params(self.model, parameters)

m|_ assessment = MLAssessment(node id, encoded datasets.

test encoded data, self.model, 'auc', f"/path/to/results/rnd {config
['server round']}", [Metric.LOG_LOSS, Metric.ACCURACY])

scores = ml_assessment.run ()

return float(log loss), len(encoded datasets.test encoded data.
example ids), {"accuracy": accuracy}

Listing 3.9: Client evaluate method.

Every function presented uses some form of reading from, or writing to the actual ML
model, and the code for these was made available in the utilities package Utils. Furthermore,
since the training and assessment process were also activities performed on the models, the
decision was made to offload these code bits to the utilities package as well. This decision
stems from the reusing of that code by other packages, including the Server, avoiding any
needless and potentially hazardous code duplication.

Server
like Client, adds strategy, like FedAvg

The Server package also follows the first 9 steps of the centralized pipeline in the same
way the Client does, having the same initialization code seen in Listing 3.4 and Listing 3.5.
Since the Server never performs a training step itself, the model can be initialized without
any parameters, as the fitting is the only process that resets the model's coefficients. The
new initialization process is shown in Listing 3.10, along with the utility function that defines
the model initial parameters.

new model = LogisticRegression ()

utils.set initial params(new_model)

Listing 3.10: Server ML model initialization.

The next function, presented in Listing 3.11, is an interface for the Client to be able to
query the Server on which round of training is happening, allowing for the possibility of
conditioning the pipeline flow based on such value.

def fit_round(server round: int):
return {"server round": server round}

Listing 3.11: Server fit round method.

Finally, the Server must be initialized with the training settings, namely the strategy, that
is going to be used for the model merging process, and the number of rounds of training,
that limits the pipeline to the specified number of executions. The starting method is show
in Listing 3.12.
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fl .server.start server(
server address="0.0.0.0:8080",
strategy=strategy ,
config=fl.server.ServerConfig(num_rounds=10)

Listing 3.12: Server start command.

Utils

The utility package Utils is a simple interface between the prototype's code and the actual
ML model. Since both the Server and the Client need to perform certain actions on the
LogisticRegression model, this package was created in order to group the needed functions,

and reduce code duplication. Methods to retrieve and set model parameters are detailed in
Listing 3.13 and Listing 3.14.

def get model parameters(model: LogisticRegression
).

return model.get parameters ()

Listing 3.13: Utility to retrieve model
parameters.

def set model params(model: LogisticRegression ,
params: LogRegParams):
model.set params(params)
return model

Listing 3.14: Utility to set model parameters.

After running the ML model in the centralized pipeline, the amount of classes and features
of the dataset were analyzed and used to create the code for the initial parameters set

method, shown in Listing 3.15. This guarantees the heterogeneity of models between all
Clients, and now, the Server.

def set initial params(model: LogisticRegression):
n_classes = 2
n_ features = 8000
classes = np.array ([i for i in range(n_classes)])
coef = np.zeros((n_classes, n_features))
intercept = np.zeros((n_classes,))
model.set initial params(model. get ml model(), classes , coef
intercept )

Listing 3.15: Utility to set model's initial parameters.

Listing 3.8 also shows the usage of the method train _model, which only goal is to verify
the presence of an optimization metric before launching the MLTrainer runner.
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FederatedLogisticRegression wrapper

The FederatedLogisticRegression wrapper was built in order to modify, and add methods
from the immuneML's LogisticRegression wrapper, which in its turn, wraps around the orig-
inal sklearn’s LogisticRegression. Methods were developed to enable the model parameters
retrieval, and editing, and to enable the initial parameters to be set. The getter and setter
methods, described in Listing 3.16 and Listing 3.17, respectively, simply return or overwrites
the model's coef and intercept  variables, which is the data the model needs in order to
be shared and fully functional when restored.

def get parameters(self):
params = |
self . model.coef
self.model.intercept

]

return params

Listing 3.16: Federated Logistic Regression
getter.

def set params(self , params):
self.model.coef = params[0]
self.model.intercept = params][1]

Listing 3.17: Federated Logistic Regression
setter.

As for the initial parameters, the classes  variable must also be set, since no action can
be performed on the ML model without it. The code to this method is represented in
Listing 3.18.

def set initial params(self , model, classes
coef , intercept ):
self.model = model
self . model.classes = classes
self . model.coef = coef
self . model.intercept = intercept

Listing 3.18: Federated Logistic Regression
initial parameter setter.

FedAvg

The FedAvg, or Federated Average, was chosen to aggregate the model. In order to
initialize this strategy, some parameters must be defined. First, the min_available clients
is set, which defines how many Clients must be actively connected to the Server, and the
min_fit _clients, and min_evaluate clients, which define the minimum amount of Clients
that will be pooled from all the connected ones, in order to train and evaluate the model,
respectively. The entries fraction fit and fraction evaluate also represent the amount of
Clients used in training and evaluation, respectively, but should this percentage result in
a number of clients below the minimum set in min_fit _clients, or min_evaluate_  clients,
it will be ignored and the minimum number will prevail. This configuration is detailed in
Listing 3.19, and since this work is based on a fixed amount of nodes, all entries equate to
the number of Clients being used in each test.

34



3.5. Implementation and results

strategy = fl.server.strategy.FedAvg(
min _available clients=50,
min _fit clients=50,
min_evaluate clients=50,
fraction fit=1,
fraction evaluate=1,

Listing 3.19: FedAvg strategy parameters.

3.6.2 Convergence test

In this section we will present the model training loss and accuracy, for each of the tested
scenarios, along with the reports from the centralized run on the whole dataset, and the
federated run, for comparison.

Initially, as the nodes are similar between them, we perform a centralized run on a single
node and present the same metrics for it, as well as the generated report in Figure 3.3:

e log loss - 0.4510971034124941

e accuracy - 1.0

ion - largest 20

° ERY

VER RYW YVE QUE TVE MVE HVE NVE GVE DVE FVE RVE EVE WL WE Ywp YWK KVE PVE
features.

Figure 3.3: Coefficient report on single node centralized model.

5 nodes
e Centralized
— log_loss - 0.18608316642434025
— accuracy - 1.0
e Federated
— log_loss - 0.398587337279971

— accuracy - 1.0
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- largest 20

VER TVE QUE SVE MVE EVE YWE NVE WE KVE LVE GVE RVE 3 FVE AVE cvE DVE
features

Figure 3.4: Coefficient report on the 5 node centralized model.

25 nodes
e Centralized
— log_loss - 0.03238872034032445
— accuracy - 1.0
e Federated
— log_loss - 0.37750687996030513

— accuracy - 1.0

50 nodes
e Centralized
— log_loss - 0.01672917265554102
— accuracy - 1.0
e Federated
— log_loss - 0.3205385183804359

— accuracy - 1.0

3.5.3 Heterogeneity test

This section will be similar to subsection 3.5.2, but this time will include the weaker nodes.
The results will be presented in a similar manner, and, for comparison, the centralized pipeline
was ran against a single weak node. As was expected, a dataset with only 6 entries will not
perform very well, and immuneML ends up returning a not computed error for the model
losses, so no analysis is performed on a single weak node.
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- largest 20

RYW TVE QuE WE SVE EVE MVE NVE LVE WE 3 AVE GVE DVE RVE PVE KVE FVE
features.

Figure 3.5: Coefficient report on the 5 node federated model.

5 weak + 45 strong nodes
e Centralized

— log_loss - 0.017744661679538774
— accuracy - 1.0

e Federated
— log_loss - 0.3770383377311905

— accuracy - 1.0
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Figure 3.6: Coefficient report on the 25 node centralized model.
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Figure 3.7: Coefficient report on the 25 node federated model.
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coefficients.
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features.

Figure 3.8: Coefficient report on the 50 node centralized model.

- largest 20

features.

Figure 3.9: Coefficient report on the 50 node federated model.
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Figure 3.10: Coefficient report on the 5/45 node centralized model.
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Figure 3.11: Coefficient report on the 5/45 node federated model.
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Conclusion

4.1 Conclusions

The main goal of this dissertation is to improve the decentralized training prototype by
enabling more analysis, adding training ability to the Data Provider Nodes and improving
the user interface. As literature shows, decentralization is a good privacy-preserving measure,
although it must be tailored to each specific analysis type, and the usage of such frameworks
allows for more reproducible results.

While working for TPPROJIA and IAAPLIA courses, the context, motivation and main
goals for this work have been detailed. Regarding the research of the state of the art on
ML reproducibility, Federated Learning, and different techniques and tools were reported.
Finally an experimentation guide for an initial prototype of the solution was fully explained.

The federated prototype enables immunotherapy studies to be performed across several
devices, without ever releasing the original information from the datasets. By enabling each
data owning node to perform the ML training locally, we take away some of the responsibility
and legal obstacles to large scale medical ML studies, possibly improving future research.

In order to have the prototype validated, meetings with immuneML members were held,
where there was very good feedback and interest in the platform. Those meetings not only
served to move forward in the development phase, but also to understand the implications
and possible future work for the prototype.

Furthermore, we can understand that the convergence of the models in a federated learning
environment is possible, whether the total amount of nodes is small or big, and even if
there are some nodes within the study which lack the information quantity, compared to the
other ones. This means that the prototype could potentially be used for research in both
large-scale and small-scale studies and research operations. Since the convergence is not
highly affected by the presence of weak nodes, it is also safe to assume that the selection
of nodes and available datasets may not follow as strict rules as in other ML scenarios.

4.2 Future Work

There are a lot of features that could potentially improve, or at least help understand better,
what can and cannot be done with the developed prototype. After some meetings with the
immuneML team, and following the research done throughout the document, some ideas
were gathered as to what could be done next:
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There should be more strategies tested, as to gain an understanding on the different
applications of each one;

There should be tests done with more and bigger nodes to understand if scalability is
an issue, although much more powerful systems will be needed to test and simulate
this;

The data heterogeneity should be tested by running examples with very different data
configurations between them;

The integration with a Web API, and a posterior front-end development should be
considered in order to improve the usability of the platform.
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