
Issue Creator

CÉSAR ANDRÉ DA ROCHA SEABRA
Outubro de 2022

Issue Creator

César André da Rocha Seabra

A dissertation submitted in partial fulfillment of
the requirements for the degree of Master of Science,

Specialisation Area of Software Engineering

Supervisor: Dr. Paulo Gandra
Company Internship Supervisor: Ivo Pereira
Company Technical Supervisor: Vítor Tavares

Porto, October 15, 2022

iii

Dedicatory

Dedicated to all those who directly or indirectly helped me in this long academic journey,
especially my family for all their support.

Thank you very much!

v

Abstract

In the constant development of the technological industry, when it comes to product devel-
opment in terms of software development new trends tend to motivate the evolution of the
software through the analysis of user feedback from issue tracking systems. This is because
the ultimate success of any software and, as consequence, for any technology-driven com-
pany, falls on whether or not the developed solutions manage to fulfill the expectation of
the final users.

E-goi is a company that provides a platform for multi-channel marketing automation that
allows the integration of multiple channels from SMS and voice messages to e-mail and
webpush.

When it comes to SaaS companies such as E-goi, user feedback becomes of extreme impor-
tance in order to improve its products and create value for both the user and the company.
When managing user feedback, it is often important how it will be delivered to the devel-
opment teams in such a way that the problem at hand becomes easily understood with the
maximum information possible, to be able to replicate the bugs and to create new features
for the product. This, of course, must be achieved with minimal impact when it comes to
the analysis of the issues and consequent development.

However, the gathering and consequent delivery of this feedback to the product development
teams, in E-goi, can come with some problems in both information standardization and
duplicate prevention and extra costs when generated by the used tools when pursuing the
objective of allowing the entire company to provide said feedback as well.

So, to solve this problem, E-goi decided to create a tool that allows all the collaborators to
submit issues - the Issue Creator. Nevertheless, other described problems still need to be
solved. Here, is where this project comes into play by developing a revamp of this platform
and enabling the creation of standardized issue reports, issue duplication prevention, and
the implementation of other features that involve the integration of different platforms to
simplify the actions that are essential to the product development teams.

In this report, an introduction to the identified problem is described, along with the ob-
jectives and methodology followed. After this, a full contextualization on how the E-goi
organizational departments are distributed, with an emphasis on the product development
department, and their processes in software development. Subsequently, an analysis of the
value of the solution and the requirements gathered through the elicitation phase as part of
the requirements engineering practice is made, passing by a detailed view of the proposed
design to develop the platform. Finally, the developed platform was evaluated both from
the technical aspect through tests and quality aspects comprehended by the users, by taking
advantage of the stakeholder answers gathered from inquiries performed.

Keywords: Software Development, Agile Methodologies, BPMN, Bug Report, Issue Report,
Issue Duplication, System Integration

vii

Resumo

Com o constante desenvolvimento da indústria tecnológica, quando se trata de desenvolvi-
mento de produtos, mais concretamente em termos de desenvolvimento de software, as
novas tendências tendem a motivar a evolução do software através da análise do feedback
dos clientes reunido nos sistemas de gestão de tarefas. Isto deve-se essencialmente ao facto
do sucesso de qualquer software e de qualquer empresa tecnológica, depender do facto das
soluções desenvolvidas conseguirem ou não atender às expectativas dos utilizadores finais.

A E-goi é uma empresa que disponibiliza uma plataforma de automação de marketing multi-
canal que permite a integração de múltiplos canais desde SMS e mensagens de voz a e-mail
e webpush. No que concerne empresas SaaS como a E-goi, o feedback dos utilizadores
torna-se de extrema importância para melhorar os seus produtos e criar valor tanto para o
utilizador como para a empresa. Ao gerir o feedback do utilizador, muitas vezes é impor-
tante como ele será entregue às equipas de desenvolvimento, de forma a que o problema em
questão seja facilmente entendido com o máximo de informações possível, aquando se tenta
reproduzir os bugs reportados ou mesmo desenvolver novas funcionalidades. Isso, é claro,
deve ser alcançado com o mínimo de impacto aquando a análise das issues e consequente
desenvolvimento.

No entanto, a recolha e consequente entrega deste feedback às equipas de desenvolvimento
de produto, no E-goi, pode acarretar alguns problemas quer na uniformização da informação,
quer na prevenção de duplicações e custos extra gerados pela utilização das ferramentas de
gestão de issues pelos diversos colaboradores da empresa, de forma a permitir que estes
também possam reportar novos problemas.

Assim, para resolver esta problemática, a E-goi decidiu criar uma ferramenta que permitisse
a todos os colaboradores submeterem novas issues - o Issue Creator. No entanto, outros
problemas descritos ficaram por resolver. É aqui que entra este projeto, ao desenvolver uma
reformulação desta plataforma e permitir a criação de relatórios de issues standerdizados,
prevenção de duplicação de relatórios e a implementação de outras funcionalidades que
envolvem a integração de diferentes plataformas, de forma a simplificar as ações que são
essenciais para as equipes de desenvolvimento de produtos.

Neste relatório é descrita uma introdução ao problema identificado, bem como os objetivos
e a metodologia seguida. A seguir, é feita uma contextualização completa de como estão
distribuídos os departamentos da E-goi, com ênfase no departamento de desenvolvimento de
produto e nos seus processos no desenvolvimento de software. Posteriormente, é feita uma
análise de valor da solução e dos requisitos levantados na fase de elicitação como parte da
prática de engenharia de requisitos, passando por uma visão detalhada do design proposto
para o desenvolvimento da plataforma. Finalmente, a plataforma desenvolvida é avaliada
tanto do aspeto técnico por meio de testes quanto dos aspetos de qualidade compreendidos
pelos utilizadores, através da analise das respostas obtidas pela realização de questionários.

ix

Acknowledgement

Firstly, I would like to thank Professor Paulo Gandra for his advice and support, which allowed
me to complete this project successfully.

I also thank E-goi for the opportunity and support for this thesis, including all the employees
for their friendliness and fantastic personality.

Finally, I would like to thank Vítor Tavares for his follow-up and humor and, last but not
least, a big thank you to Ivo Pereira for his patience and incessant support in carrying out
the thesis.

xi

Contents

List of Figures xv

List of Tables xvii

List of Acronyms xix

1 Introduction 1
1.1 Context and Company Presentation . 1
1.2 Motivation . 2
1.3 Objectives . 3
1.4 Methodology . 3
1.5 Document Structure . 4

2 Context 5
2.1 Company Structure . 5

2.1.1 Customer Success Department . 6
2.1.2 E-goi Digital Solutions Department 6
2.1.3 Product and Engineering Department 6

2.2 Operational Position Responsibilities . 9
2.3 Feedback Gathering Process . 10
2.4 Product Development Process . 12

2.4.1 Objectives Definition Process . 13
2.4.2 Planning Phase Process . 14
2.4.3 Development Phase Process . 15
2.4.4 Release Phase Process . 16
2.4.5 Team Monitoring Process . 17

2.5 Software Development Methodology . 18
2.5.1 Kanban Board Workflow . 18
2.5.2 Issues Management . 19

2.6 Summary . 21

3 Literature Review 23
3.1 Issue Standardization . 23
3.2 Issue Duplication . 26
3.3 Issue Tracking Systems . 27
3.4 User Involvement in Software Development 28
3.5 Business Process Model Notation . 29
3.6 Summary . 29

4 Analysis 31
4.1 Value Analysis . 31

xii

4.1.1 Innovation Process . 31
4.1.2 New Concept Development . 32
4.1.3 Solution Value . 39

4.2 Requirements Engineering . 42
4.2.1 Functional Requirements . 42
4.2.2 Non-Functional Requirements . 45

4.3 Summary . 45

5 Design 47
5.1 Components . 47
5.2 Deployment . 48
5.3 Use Cases . 49

5.3.1 FR01-Submit New Report . 49
5.3.2 FR02-Search Issues . 51
5.3.3 FR03-Add New Case . 52
5.3.4 FR04-Add Comment . 53
5.3.5 FR05-Edit Customer Values . 53
5.3.6 FR06-Ask For Reopen . 54
5.3.7 FR07-Ask Estimation . 54
5.3.8 FR08-Watch Issue . 54
5.3.9 FR09-Get Status & Resolution Information 55
5.3.10 FR10-Create Release Post . 55

5.4 Alternative . 55
5.5 Summary . 57

6 Implementation 59
6.1 Technological Environment . 59
6.2 Development Methodology . 60
6.3 Front-End Development . 61
6.4 Back-End Development . 63
6.5 Summary . 65

7 Experimentation & Evaluation 67
7.1 Evaluation Indicators . 67

7.1.1 Hypothesis One . 68
7.1.2 Hypothesis Two . 69
7.1.3 Hypothesis Three . 71
7.1.4 Hypothesis Four . 72
7.1.5 Hypothesis Five . 75

7.2 Summary . 77

8 Conclusions 79
8.1 Achievements . 79
8.2 Future Work . 81

Bibliography 83

A Software Development Process Sub-Processes 89

B QEF Model 93

xiii

C Usability Questionnaire 97

D Satisfaction Questionnaire 99

E Satisfaction Questionnaire Responses 101

F Hypothesis Two - Integration Tests Results 103

xv

List of Figures

1.1 Identified problem general overview . 2

2.1 E-goi’s company structure . 5
2.2 Product & Engineering department structure 7
2.3 Product development process general view 12
2.4 Objectives definition process in product development 13
2.5 Propose roadmap sub-process . 14
2.6 Planning phase process . 14
2.7 Development phase process . 16
2.8 Release phase process . 17
2.9 Team Management Process . 17

4.1 Product SWOT analysis . 33
4.2 Comparisson tree of the problem . 35
4.3 E-goi value chain diagram . 40
4.4 Product value proposition . 41
4.5 Use Cases diagram . 43

5.1 Components diagram . 47
5.2 Deployment diagram . 48
5.3 Submit new report sequence diagram . 49
5.4 Search issues sequence diagram . 51
5.5 Add new case, sequence diagram . 52
5.6 Create release post sequence diagram . 55
5.7 Alternative solution sequence diagram . 56

6.1 Issue Creator web app class diagram . 61
6.2 Issue Creator issues search page . 62
6.3 Issue Creator similar issues shown when filling a new report 63
6.4 Issue Creator API component diagram . 64
6.5 Continuous querying component algorithm 65

7.1 Adjectives and acceptability associated with raw SUS scores. Adapted from
[58] . 71

7.2 Answers for the question - Do you consider that the amount of duplicate
issues has lowered over time? . 73

7.3 Answers for the question - Do you consider that the structure of the infor-
mation improves the task of issue reviewing? 74

7.4 Answers for the question - Do you consider that the amount of information
gathered improves the task of issue reviewing? 74

7.5 Answers for the question - Do you consider that the information in the issue
description is malformed and causes confusion? 74

xvi

7.6 Answers for the question - Do you consider that the overall performance in
issue reviewing has increased with the implementation of the new system? . 75

7.7 Answers for the question - Do you consider that the addition of buzz points
helps in the management of the visibility of the issues? 75

7.8 Answers for the question - Do you consider that the structure of the com-
ments helps in the identification of the different types of comment request? 75

A.1 Necessities prioritization sub-process . 89
A.2 Perform usability tests sub-process . 90
A.3 Perform code review sub-process . 90
A.4 Pre-release sub-process . 91
A.5 Internal communication sub-process . 91

B.1 QEF overall picture with dimensions, factors and requirements 93
B.2 Evaluation Indicators for the factors of the functionality dimension 94
B.3 Evaluation Indicators for the factors of the supportability dimension 94
B.4 Evaluation Indicators for the factors of the usability dimension 95

F.1 Integration and unit tests results . 103
F.2 Integration and unit tests results . 104
F.3 Postman integration test implementation 104

xvii

List of Tables

2.1 Operational position responsibilities inside the product department 9
2.2 Issues status descriptions . 19
2.3 Issues resolutions descriptions . 21

3.1 Feature request report elements . 25
3.2 ITS feature-comparison matrix . 28

4.1 Comparison matrix for the criteria and respective column sums 36
4.2 Normalized matrix with relative priorities 36
4.3 Matrix maximum own value calculation 37
4.4 The values of Random Consistency Index 37
4.5 Comparison matrix for the criteria "Lack of Integration" 38
4.6 Comparison matrix for the criteria "Customization" 38
4.7 Comparison matrix for the criteria "Cost" 38
4.8 Functional requirements list resultant from elicitation 43

5.1 Customer Values description . 53

7.1 Implemented tests summary . 69
7.2 Dimensions, factors and requirements of the QEF model 70
7.3 Stress testing scenarios . 76
7.4 Stress testing scenarios results . 77

xix

List of Acronyms

AHP Analytic Hierarchy Process.

AI Artificial Intelligence.

API Application Programming Interface.

BDD Behavior Driven Development.

BPM Business Process Management.

BPMN Business Process Model and Notation.

CEO Chief Executive Officer.

CI Consistency Index.

CR Consistency Ratio.

CTO Chief Technology Officer.

FEE Fuzzy Front End.

GRASP General Responsibility Assignment Software
Patterns.

HD Head of Department.

HTML HyperText Markup Language.

ITS Issue Tracking System.

JIT Just In Time.

JQL Jira Query Language.

KPI Key Performance Indicator.

xx

NCD New Concept Development.

NPD New Product Development.

OKR Objective Key Result.

PM Product Manager.

PT Product Team.

QA Quality Assurance.

QEF Quantitative Evaluation Framework.

RAM Random Access Memory.

REST Representational State Transfer.

SaaS Software-as-a-Service.

SRE Site Reliability Engineering.

SUS System Usability Scale.

SWOT Strengths, Weaknesses, Opportunities and
Threats.

TDD Test Driven Development.

TL Tech Lead.

UI User Interfce.

UML Unified Modeling Language.

UXA User Experience Assurance.

WIP Work In Progress.

1

Chapter 1

Introduction

This chapter focuses on the presentation of the project theme. Among the topics discussed
are the context of the problem, the presentation of the company in which the project took
place, the motivation for its development, the objectives, the methodology used, and finally,
a discussion of the document’s structure.

1.1 Context and Company Presentation

The current project was developed at E-goi, founded in 2008 and located in Porto, Matosin-
hos. It is considered a medium sized business that has more than 100 employees and serves
more than 450 thousand clients world-wide, with the majority of the market share in Brazil.

E-goi’s main business consists in the availability of a Software-as-a-Service (SaaS), providing
a multi-channel marketing automation platform that is able to integrate diverse communi-
cation channels such as Smart SMS, voice messages, push notifications, webpush and the
most used ones - e-mail and SMS.

The concept behind a SaaS is that instead of a customer buying a software license and
having it run in an environment created for them, they pay a periodic subscription, where
the necessary resources, the running environment and data center are all managed and
provided by the vendor, which is also responsible for the maintenance, support activities [1].

In the case of E-goi, its platform allows its clients to manage all the contacts of their
customers and to track and engage the behavior of said customers in order to act upon,
by automating and simplifying all the process of creating, sending and tracking marketing
campaigns and generating analytic reports from these.

Therefore, the company’s main mission is to develop digital communication solutions, ac-
cessible to everyone, especially to small and medium businesses. This is done in a way
that helps their clients to better relate to their customers, thereby creating more value for
everyone involved.

Currently, more and more companies are approaching a dynamic of delivering cloud-based
products, more specifically in the form of Software-as-a-Service (SaaS), in order to encom-
pass the constant evolution of the surrounding market.

As a result, other direct competitors are trying to adapt their business to their surroundings,
as is also the case with E-goi. In order to increase business value, the company must keep
a close relationship with not only the newest technological opportunities but also the needs
and feedback of their customers. This relationship offers new challenges and opportunities
to improve both the software development process and customer relationship.

2 Chapter 1. Introduction

1.2 Motivation

As previously stated, with the increasingly faster growth of the company and its product
(since each day nearly 350 new accounts are created) it becomes essential that the devel-
opment process and all other inherent processes must be revisited and rethought in order to
increase their performance and efficiency.

In recent years, E-goi has focused on increasing the number of customers and investing more
in improving their main product, creating new features and developing custom solutions for
their clients. This led to an increase in the complexity of the product, which, in turn, resulted
in the need for an increasing investment in human resources.

Since the issue management inside E-goi is made trough Jira1, the fact that the creation
of new users in this platform brings additional costs per user, it was not financially viable
to support the interaction of all the company collaborators with the platform, which didn’t
allow them to directly report any issues to the development team, task that was a must
have for the work organization.

This problem led to the creation of the platform Issue Creator, that communicated di-
rectly with the Jira platform and allowed the submission of issues trough Representational
State Transfer (REST) requests. This platform was a simple HyperText Markup Language
(HTML) page with a form that stakeholders used to submit issues.

This, however, led to other issues affecting the development team. Since the form was unique
and static, the creation of the issues was the same for all their types (bug, improvement,
feature, etc). This impacted the efficiency of the development process since the Product
Managers needed more time to clearly identify what each issue corresponded to. Additionally,
the absence of rule enforcement led to issues without proper standards, lacking information
and with ambiguous interpretation.

Figure 1.1: Identified problem general overview

1https://www.atlassian.com/software/jira

1.3. Objectives 3

Another of the problems consisted in the increase of duplicate issue reported and the lack
of integration possibilities with other platforms such as the ones used by the customer
success department (LiveAgent2) and the platform used by the entire company for process
management - Bitrix243. Figure 1.1, represents an overview of the problem identified.

Since the company’s product depends primarily on the development process, it becomes
crucial for the organization that the issue creation process is clear, fast, and normalized in
order to increase efficiency.

This raised the opportunity to perform the revamp of this platform in order to improve
several aspects such as: platform integrations, issue duplication reduction, issue reporting
normalization and performance (e.g. by allowing the addition of values that affect the issue
prioritization), and improvements to the client’s issuer feedback process.

1.3 Objectives

Upon analyzing the problem and retrieving the needs of the stakeholders, it became apparent
that it was necessary to restructure the application in order to create an integrated solution
for the submission of requests of new bugs and features in order to increase the performance
of the development team when analyzing and classifying issues. This application should be
able to increase the quality and quantity of the information reported in the issues created,
diminishing of duplicate reports, distinction of issue types, provide visibility and a work priority
for the entire company and, finally, the integration with other systems.

In order to achieve this objective, the following tasks were identified as essential to be able
to construct the final solution:

• Identify and analyze the process of software development inside the company and
perform informal interviews in order to gather all the requirements to be applied to
the platform;

• Identify and explore already conducted studies and information that may allow pro-
jecting the solution for the development of the pretended solution and, at the same
time, explore the technologies that will be covered;

• Define the solutions to the presented problems as well as an architecture for the
solution envisioning a scalable and robust solution;

• Implementation of the proposed solution and posterior validation of its performance in
the company’s problem resolution.

1.4 Methodology

This project firstly started with the research on the areas that where most relevant in order
to find solutions to the presented problems. In this phase, information was gathered and
summarized that allowed for the development of a theoretical background and provided
directions for the solution of the problem.

Then a qualitative and quantitative study was conducted in order to identify the processes
inherent to the development process and all cross-functional processes that occur when

2https://www.liveagent.com
3https://www.bitrix24.com

4 Chapter 1. Introduction

dealing with customer issues across multiple departments, as well as which problems were
more apparent in these processes. This study was conducted through informal and formal
surveys and observation.

Using the gathered data, it became possible to assemble a comprehensive picture of how
these processes work. This picture helped us identify the requirements that could be imple-
mented in the final solution to fill the gaps experienced by the stakeholders. This allowed
one to then proceed to the analysis of both the software and business value of the solution.

The piece of software was designed and implemented in order to integrate all the tools used
by the company. It also allowed to implement all the requirements gathered in the previous
step, using the appropriate practices of Software Engineering.

Finally, software tests and quality assurance methodologies were applied to the project in
order to ensure the final solution was in accordance with the planning, and that it met all
the requirements specified throughout the analysis and design phases.

1.5 Document Structure

This document is divided into eighth chapters. Presented in this chapter is a general context
of the problem. It also includes the company’s presentation, the reasons for the development
of the solution, the objectives that must be met and the methodology to be used.

The second chapter documents all the processes used by the company for the development of
their product. This gives general context on the flow of information, decisions and processes.

The third chapter discusses the theoretical background on the topics involved in the devel-
opment of this project, such as tasks prioritizing in issues, the correlation between SaaS and
customer feedback, Business Process Management (BPM), software development method-
ologies and tools for issue management.

In the fourth chapter, the analysis of the problem is presented, as well as the proposed
solutions for the difficulties identified in the previous chapter and, finally, the analysis of the
value of the project to the company.

In the fifth and sixth chapters are presented the design of the solution for the software
developed and the implementation process and overview, respectively.

The seventh chapter is used to describe the tests implemented in order to perceive if the
final solution has all the elements to consider itself a valid project.

Last but not least, in the last chapter, are presented the conclusions from the developed
project, along with some suggestions for the future work development.

5

Chapter 2

Context

In order to contextualize the problem and to perceive the reality of the software development
processes inside the company, an analysis of these processes must be made in order to verify
how they are made. In addition to the product department, these processes may involve
other departments across the company.

This chapter contains all the information relative to the company structure, with special
attention to the product development team and their processes in the releasing of newly
developed software. As such, this chapter is devoted to discussing the following topics:
description of company structure with focus on the product development department, oper-
ational responsibilities inside the product department, customer feedback gathering process
and tools, the software development process inside the department described using Business
Process Model and Notation (BPMN) (described in the Section 3.5 of Chapter 3), and,
finally, the software development methodology.

2.1 Company Structure

As in any other medium-size company, E-goi is segregated into multiple departments, each
one with a well-defined set of processes and responsibilities. Figure 2.1, presents the overall
view of the different departments present in E-goi.

Figure 2.1: E-goi’s company structure

All departments directly or indirectly affect the development of the product within the com-
pany. However, the ones with the most impact are the departments of customer success
and the department of E-goi digital Solutions, since they are the ones that report the higher
amount of issues.

6 Chapter 2. Context

2.1.1 Customer Success Department

The Customer Success department is responsible for increasing customer satisfaction by
providing both technical and general support to customers. Their main objective is the
reduction of client churn by providing solutions to their problems and gathering their feedback
in order to retain them.

The product support feature is provided to all types of clients, even though the personalized
technical support is only available to paying E-goi accounts. Accounts with free access have
access to automated support, courses, and helpdesk.

The way that the SAC department gathers and organizes the client’s needs is through the
tool LiveAgent. This tool allows them to collect issues in the form of tickets. More on this
feedback process is present in the Subsection 2.3

2.1.2 E-goi Digital Solutions Department

The E-goi Digital Solutions department is one of the most significant departments inside
the company in terms of revenue since they correspond to 70% of the annual revenue of the
company by managing more than 400 corporate accounts.

In addition to gathering new corporate clients, they also create custom marketing plans,
guide the new clients through the E-goi platform experience, and provide regular feedback
gathering and support to their clients.

They are divided into three sub-departments, namely:

• Account: which is responsible for the management of the corporate customer portfolio;

• New Business: responsible for acquiring prospects for corporate clients;

• Agency: responsible for the development of new corporate products and made-to-
measure projects

2.1.3 Product and Engineering Department

On the other hand, we have the product & engineering department whose main focus is the
development of products that offer solutions to the user’s problems, bringing value to their
business and contributing to meeting the company’s objectives.

This department is divided into three layers. Each layer comprises multiple product teams
with the same drive, coordinating with each other, focused on very similar Key Performance
Indicator (KPI) and goals. On the other hand, a product team corresponds to a multidis-
ciplinary team responsible for specific products or components of the ecosystem. They are
autonomous, self-organized, and self-managed and each one includes a manager who defines
the vision, the strategy, and the operations.

In Figure 2.2 is shown an overview of the product department structure, which shows the
different layers.

As stated in the previous figure, there are three different layers: core, backbone and business.
Each consists of a set of KPI and objectives and aggregates a group of well-defined teams.
Each one of them is explained in more detail in the topics below.

2.1. Company Structure 7

Figure 2.2: Product & Engineering department structure

Core Layer

The Core layer comprises a technology-centered team (Site Reliability Engineering (SRE)),
whose central focus is the improvement and maintenance of the technology and the architec-
ture of the ecosystem by refactoring code, switching to a better framework, and, sometimes,
researching on how to invest in new technologies. Their main responsibilities include soft-
ware architecture, data architecture, release management, and code review. Their KPI are
based on performance, scalability, and stability of the overall ecosystem, such as response
times and page loading times.

They also include a design team, which prioritizes the beauty and overall experience of the
products, reducing the dead-end experience. Some of their main tasks involve onboarding
experience, application content, knowledge base content, customer research, product design,
and application testing.

Backbone Layer

The Email & Automation team is responsible for the management of the e-mail and messag-
ing automation (Autobots software component). This component enables the automation
of all the marketing cycle processes of the customers. By using this tool, E-goi customers
can track their clients’ behavior based on factors such as email openings, total clicks, pro-
files, etc. This allows the creation of a personalized marketing campaign for each client
group in order to maintain client loyalty as high as possible. In terms of responsibilities, this
team acts upon:

• Corrective maintenance;

• Evolutive maintenance;

• Development of E-goi’s highest impact and highest usage components (Autobots).

8 Chapter 2. Context

Meanwhile, the Cross Components team focuses on reducing dead-end experiences and
increasing business as well as the purchase and payment process. Their main focus is:

• Experience and conversion-focused components such as payment intents, checkout,
products, etc;

• Components with a major focus on the user’s initial experience such as contacts, lists,
and segments.

Business Layer

The Business Layer consists of teams that are growth-centered, which means that its main
goal is the growth of the company’s business by improving and building new products.

The main KPIs of this layer are acquisition, conversion, engagement, and retention, as well
as revenue. It consists of five teams: Ads & Social, Slingshot, Integrations, Web, and Mobile
Messaging.

The Ads & Social team is responsible for the Ads component, which allows users to capture
clients that are not yet aggregated in the database (contacts). In order to achieve this, the
platform allows the creation of simple ads in the main search engines and social networks all
at once. Aside from that, data can be tracked centrally, with all information gathered into
reports that permit users to analyze and decide upon the success on various channels. The
main responsibilities of this team are:

• Boost the email campaigns, landing pages, and products;

• Distribution to the various communication channels (Facebook, LinkedIn, Instagram,
etc);

• Simplify the process of creation of reports and data analysis of campaigns launched in
social networks.

On the other hand, the Slingshot team has the objective of increasing the number of trans-
actional messages sent. Whenever an action is performed on the platform, these messages
appear. The main products and objectives of this team are:

• Transactional Email, SMS and Push notifications;

• Verification and authentication;

• Link shortener;

• Multi-channel messaging;

• Registered messages (certified messages with evidence).

The Integrations team focuses on increasing integration value in the company ecosystem.
The integrations allow the E-goi clients to synchronize the databases of their stores with
E-goi and to integrate E-goi solutions within various frameworks and through their API.
Thus, the main responsibilities and areas of this team are:

• Perform integration partnerships;

• Development of integration plugins (e.g. with WordPress, Prestashop, etc);

• Development and maintenance of their Application Programming Interface (API)
(both V2 and V3).

2.2. Operational Position Responsibilities 9

In the case of the Web team, their primary focus is on enhancing the client’s database and
getting clients involved. This team works with tools that allow the user to capture new
clients, create relevant content to convert visitors into buyers, and decrease the churn rate.
The commitment and activities of this team are based on the development and maintenance
of the following functionalities:

• Embed and Pop-up forms;

• Landing pages;

• Webpush notifications;

• Cart abandonment campaigns.

Finally, the Mobile Messaging team is responsible for ensuring the performance of operations
related to mobile messaging. This includes all the following services:

• SMS and Smart SMS;

• Voice broadcasting and IVR (Interactive Voice Response);

• Mobile Push Notifications.

2.2 Operational Position Responsibilities

In order to better comprehend how the different tasks are distributed among all the stake-
holders in the process of product development in E-goi, a table with all the roles and their
respective responsibilities was delineated. This information can be observed in the following
Table 2.1.

Table 2.1: Operational position responsibilities inside the product department

Role Description

Chief Executive Officer
(CEO)

It’s the person responsible for creating the annual
vision for the company and for defining the strategy
and objectives according to the company mission,
product, mission, and operational needs

Chief Technology Officer
(CTO)

The person who is responsible for technological ne-
cessities, as well as their research and development.
He is also in charge of defining the product vision,
organizing the teams, and establishing the depart-
ment culture

Tech Lead (TL) The person responsible for helping reach the tech-
nical, implementation, and architectural decisions
inside a team

10 Chapter 2. Context

Role Description

Product Manager (PM) Responsible for all the components in a business
area, ensuring the product delivery in accordance
with specifications. They are also responsible for
managing all the aspects related to the team such
as resources, people, and projects and providing
guidance, envisioning the fulfillment of the objec-
tives.

Product Team (PT) Focused on the development of products that of-
fer solutions to users and for corrective mainte-
nance. They are also responsible, during the plan-
ning phase, for analyzing, along with their PM, the
estimated effort of the tasks to perform.

Masters They correspond to all the managers of the existing
teams in the department of product development.

Head of Department (HD) Responsible for gathering the requirements of the
product. They correspond to the persons in charge
of each department. These, along with the remain-
ing members of the company, collaborate with the
product department to report issues related to the
system.

Quality Assurance (QA) The team is responsible for assuring that the prod-
uct is according to the specifications and the re-
quired quality by testing the new corrections and
functionalities.

User Experience Assurance
(UXA)

Team responsible for assuring the highest possi-
ble user experience. This involves the design of
all the processes of acquisition and integration of
the product, including branding issues, design, and
usability. This team is also responsible for the con-
tent creation for internal and external communica-
tion, including the maintenance of the knowledge
base.

2.3 Feedback Gathering Process

As with any other technology company and especially those that provide SaaS models, they
always seek to increase the amount of retained customers, so they need to monitor the
constant feedback provided by the clients, as it is extremely important in order to keep the
improvement flow on the products provided.

In E-goi, this feedback can be obtained from various sources, such as Google Analytics, Full
Story, forms, ChatGoi (live chat), the E-goi community, and LiveAgent. All this information
coming from different sources is analyzed and filtered in order to extract and define the
information that can lead to the creation of new issues - may it be bugs, features, or

2.3. Feedback Gathering Process 11

improvements - that are later used by the product team in order to define the road maps of
action.

In E-goi, there are numerous feedback input systems and the information recorded is not
stored in one place, but distributed among several tools and systems, which forces the
product management team to invest considerable resources (especially time) in gathering
and filtering feedback from numerous sources, leading not only to duplication of data, but
also (to some degree) to feedback starvation, or unused data. These fonts of information
are listed below.

Chatgoi

A chatbot, available on the E-goi main page and through the "Help" button, allows the user
to interact with and receive information from the knowledge base. In the end, the userAs a
result, the user is faced with the question of whether the information presented is relevant
or not, and if not, the user can contact customer support.

The data collected in this system is only used for statistical purposes in order to compare
the number of usages and types of interaction with the platform.

Issues in Jira

The platform is used by all employees of the company to create tasks for the product,
development, and systems teams. The issue submission takes place through E-goi’s internal
admin area (The Issue creator) which is integrated directly with Jira, which is the tool used
by the three teams to manage and organize the tasks of the product.

With the help of Jira API integration as well as components that keep track of the team
lead in each of the sub-areas of each team, tasks are automatically delegated to the person
responsible for that area and the information is stored directly in Jira database.

The evaluation of this type of feedback is made directly on the platform. This tool is used
not only to obtain feedback from users but also to provide a response to the person that
issued it and, subsequently, to the other teams, since each issue correlates to a determined
stage (stage of the development flow that the issue is in) which can provide insights about
the current situation with that issue.

Helpdesk - LiveAgent

Used by the customer support team, it corresponds to an integrated online customer service
system, where the main functionality is to capture user interactions whenever they request
support both on the "Help" page and in the ChatGoi feature.

User interactions are handled through tickets, which contain tags indicating the area (sales,
technical, etc) and priority of the problem. Currently, the product team analyzes and eval-
uates the various tickets that are created and takes action whenever they find a point for
improvement.

E-goi Community

Refers to a form that is shown to the users of the platform where they have the possibility
to submit suggestions for improvement. The data generated by this method is saved in the
same area as the raw data collected by ChatGoi.

12 Chapter 2. Context

The information produced by this method is directly evaluated by the product manager,
who promptly responds and determines the status of the said suggestion in four categories:
rejected, planned, evaluated, or implemented.

Google Analytics and Full Story

These two tools are used mainly by the product team in order to identify possible points
for improvement. These tools work essentially by recording user interaction with the E-goi
platform allowing a careful and more precise identification of bugs and improvements.

It is relevant to mention that this type of analysis data extraction is mainly through manual
observation. In this type of analysis, if any issue is found it is directly opened on the Jira
platform and delegated to the respective component.

2.4 Product Development Process

The definition of the roadmap of the processes present in the company’s product develop-
ment was possible through the analysis of the provided documentation, the formal interviews
with the CTO and other product managers and through field observations of the daily ac-
tivities of the team members. This general roadmap is presented in the following Figure
2.3.

Figure 2.3: Product development process general view

According to the figure, there is a first phase of defining objectives and then there are
two flows of parallel processes - a sequential flow with three processes referring to software
development more specifically (planning, development and release) and another referring to
the monitoring of the teams of product development.

The objective definition phase comprises the definition of the work plan that will be developed
during the trimester, according to the strategy defined by the company (CEO). At this stage,
according to the survey of the needs of each department, Objective Key Result (OKR) are
defined for each team, so that the employees of each product department have a vision of
the goals to be achieved. These needs are always aimed at improving the product, thus
meeting the needs of customers, their problems (bugs), and suggestions (improvements,
features, etc).

In the software development sequence, there are three phases. The first is the Planning,
which is a process executed weekly, where it is discussed what was done in the previous
sprint and what will be developed in the next sprint, the needs related to the integration of
components, and the suggestion of improvements according to the conclusions drawn from
the work presented during the week.

2.4. Product Development Process 13

Then we have the Implementation, a process that comprises the development of software,
according to the objectives established and the needs previously established and with the
appropriate prioritization.

Finally, the Release process that consists of the integration of the work developed by the
product teams and the subsequent launch of a newly developed version of the product. If the
features developed are relevant, the release is then communicated internally and externally.

Regarding the phase parallel to development, we have team monitoring. In this process,
transversal to the development processes, a monthly analysis of the work is done and un-
foreseen events are carried out as an adjustment of the defined objectives, if necessary. This
analysis is performed based on OKR and KPI assigned to each development team.

Next, each of the phases presented above is detailed with the help of BPMN diagrams. In
these processes, it is possible to verify the workflow and the interaction between the different
actors according to the table present in the Section 2.2 in the Table 2.1.

2.4.1 Objectives Definition Process

As previously mentioned, the process of defining the objectives is carried out quarterly, and
is based on the definition of what will be developed by the product teams. In the Figure 2.4,
the tasks inherent to this process are described, as well as the actors responsible for each of
them.

Figure 2.4: Objectives definition process in product development

The process begins with a survey of the needs of each department manager and then the
CTO meets with the managers in order to aggregate all the needs. This is so that they
can then present these to the other product managers. These needs are then analyzed by
each master and decisions are made, so that they can create the quarter work roadmap, as
shown in the figure above (Figure 2.4), with more detail in the Figure 2.5. The creation of
this roadmap allows the masters to balance the objectives to be accomplished during the
quarter and to meet the OKR, associated with the KPI.

From there, the CTO meets once again with each team in order to analyze and discuss
the proposals in order to group and prioritize the most relevant ones. The result of this
meeting is then presented to the CEO in order to align the objectives with the strategy
outlined by the company and, according to this result, the CTO adjusts the objectives and
communicates them to the masters.

14 Chapter 2. Context

Figure 2.5: Propose roadmap sub-process

As each master becomes aware of these objectives, it is then possible to create and share
tasks among team members by placing and explaining them in Jira, the platform used by
the product development department for task tracking.

2.4.2 Planning Phase Process

As previously mentioned, the planning process is carried out weekly and is distinguished by
the following steps: prioritization of needs, description of the previous sprint and definition
of the next sprint. The prioritization of needs is the responsibility of the masters and is the
first task to be done (as shown in the Figure 2.6).

Figure 2.6: Planning phase process

By analyzing the descriptions of the issues discussed by company employees, a process is
in place to categorize their priority. This is so that only the most significant issues can be
developed, and those that are in line with the objectives set in the previous phase. In the
Figure A.1 in Appendix A, the prioritization sub-process is described in detail.

In this sub-process, the master analyzes the issues, changes their status to "In Analysis"
and scores them. If it is a bug, it is examined and an attempt is made to replicate it. On
the other hand, if it is another type of issue, the objectives and scope are defined and it is
decided whether to implement it or not. If yes, then the issue is reported to the development
phase, if not, then the appropriate resolution is assigned (as per Subsection 2.5.2, Table
2.3) in order to inform the issue creator that it has been analyzed and dealt with.

Regarding the issue of scoring, this is carried out both with a focus on the customer and on
the product. This scoring was adopted in order for the issues created to have into account
the importance of the issue, the type of client associated with it (the product plan that
the customer has) and the degree of which the client has in terms of discomfort and the
potential churn of such client.

According to the model used, in relation to the customer, there are three classification
vectors that must be taken into account in order to correctly assess the priority of an issue.

2.4. Product Development Process 15

These consist on three fronts which are enumerated bellow:

• Customer Impact: corresponds to the day-to-day impact for the customer (e.g. none,
discomfort, blocker);

• Customer Business Value: correlates to the type of account of the customer, the
segment in which the customer is inserted (e.g. trial, free, pro, corporate, etc);

• Customer Satisfaction: related to the relationship status of the customer with the
platform (e.g. satisfied, neutral, lack of confidence, churn eminence, etc).

Regarding the product perspective, the scoring is calculated taking into account the following
factors:

• Product Impact: the measure of how big the effect will be on the users. It takes into
account the impact on features, the product, and the business;

• Product Reach: reflects the potential number of affected users. How many targets
it will reach;

• Product Effort: the effort needed to develop the issue, the longer the time invested,
the higher the cost, and, as such, the lower the priority.

After making the classifications in each of these vectors, the final score is calculated taking
into account the formula (cl ientperspective+productperspective)30 ∗10 and the MoSCoW method
is applied according to the final result.

The MoSCoW (must have, should have, could have, won’t have) method, is used to prioritize
stories in iterative approaches. It provides the means to reach a common understanding of
the relative importance of the delivery of a piece of value in the product [2]. As stated it
comprises the following categories and appropriate scoring variations:

• Must-have (8-10): major issue without which the product does not work;

• Should-have (6-8): issue with significant business value, but the product can work
without it, although it is important that it is included;

• Could-have (4-6): the issue does not have significant business value and can be left
out, it can be applied in future versions depending on the effort required;

• Won’t have (0-4): issue with a very low business value, so it is not considered for
development.

After the priorities are defined, as well as the issues that will be developed, these are dis-
tributed among the teams. Also in this sequence, meetings are held with all the masters, in
order to inform what was done in the previous sprint and what will be done in the next, as
well as exchanges of information about possible integration processes between teams. Here
is also carried a retrospective of problems that have occurred together with the CTO in
order to be able to take the best measures to overcome them.

2.4.3 Development Phase Process

This phase corresponds to the development of the issues declared in the previous phase. The
process starts by changing the status of the issues to "For Dev", in which it is verified whether
it is a bug or not (as shown in the Figure 2.7). If it is not a bug, the flow begins with the
creation of a mockup, which aims to create a general flow of the functionality/improvement

16 Chapter 2. Context

to be carried out. This mockup then passes to the UXA team, which is responsible for its
design. The issue then moves to development.

Figure 2.7: Development phase process

On the other hand, if the issue is a bug, then it moves to the "In Dev" state in which it is
developed by the developer. During this phase, the PM also has the role of monitoring the
team in order to answer any questions that arise during development. In case of doubts or
major unforeseen events, a meeting is held with the CTO in order to resolve the situation.

After the implementation of the issue, the developer creates the Dev and QA report, where
it describes what was done, how it was done, and what and how it should be tested by QA
and puts the issue in the state of "For QA", along with the appropriate resolution.

As shown in the Figure A.2 in Appendix A, the issue then passes to QA, where functional
tests are performed. If it doesn’t pass, the team that developed the request is notified
and the issue is moved to the status of "Failed in QA". Otherwise, iteration tests are
performed to verify the absence of errors. If there are problems, the issue is sent back to
the development team to be fixed. When the functionality is launched for production, the
QA is also responsible for analyzing user behavior via Full Story, a tool that allows capturing
the customer’s interaction with the platform in real time.

If there are no errors, the issue is moved to "For CR" status, where the code review will be
done by the TL. As shown in the Figure A.3 in Appendix A, if the code does not pass then
the issue moves to the "Failed in CR" state and the developer is notified. Otherwise, the
feature is merged in the release branch and the is assigned to the "In Release" state.

2.4.4 Release Phase Process

The release phase comprises three distinct phases: pre-release, technical release, and post-
release. In the pre-release (Figure 2.8, first activity), we have the grouping of commits that
should and should not go into the release, as well as the definition of epics - bigger and more
complex features of the issues developed during the week. The pre-release sub-process flow
is shown in Figure A.4 in Appendix A with more detail.

2.4. Product Development Process 17

Figure 2.8: Release phase process

In the technical release phase, according to the Figure 2.8, the TL is responsible for grouping
the merge requests for a new release branch and adding the respective versioning tags. This
phase includes the technical release itself and is carried out every Monday or Wednesday.

Next, there are checks for errors caused by the merge or for other reasons, such as project
builds. If there are errors, they are fixed, otherwise, the branch is sent to production. The
resolution of errors depends on their severity. If they are difficult to resolve, the deployment
to production is postponed and done in a new version. On the other hand, if they are minor,
these are corrected on the spot, and the deployment is done.

Finally, after this phase, enters the post-release phase, which comprises internal commu-
nication (if they are low-cost functionalities) through the Bitrix24 platform - used by the
entire company for internal communication - and later explained in a weekly event held by
CTO gauge (as shown in Figure A.5 in Appendix A). On the other hand, if it is a feature
of significant relevance, the UXA team is responsible for promoting it on the various E-goi
channels, such as blogs, knowledge base, newsletter, etc.

2.4.5 Team Monitoring Process

The team monitoring process is a monthly process that requires a great deal of involvement
between the product teams and the respective managers. This is a process that occurs
parallel to planning, development and release. It aims to analyze the activities carried out
by the teams in order to verify that the established objectives are being met.

Figure 2.9: Team Management Process

18 Chapter 2. Context

According to the Figure 2.9, this process falls on the masters who are responsible for con-
trolling and monitoring the KPI and OKR of their respective product team. Metrics for each
component are calculated and updated in real-time through a script. Otherwise, objectives
are manually updated by each manager as they are met.

As each team progresses, the CTO, along with each team’s masters, focuses on verifying
that the trimester is progressing as planned. The analysis is designed to identify occurrences
and unforeseen development deviations so that, if necessary, the planning can be adjusted,
focusing on the most urgent matters first.

2.5 Software Development Methodology

In order to more effectively manage the issues necessary to be developed, the company
uses a more visual software development methodology - Kanban. This management is done
through Jira, which, as previously mentioned, is the tool used by the product department to
manage and organize all the tasks.

Regarding the Kanban methodology, it is included in the agile group of methodologies. It
provides a means to create a visual representation of the work in progress during the software
development process and to limit it. It emphasizes the scheduling of the work in a way that
facilitates the delivery of a software product Just In Time (JIT) for implementation [3].
Some of the characteristics that characterize this methodology as per [3] are:

• Maximizes productivity: it delivers an optimized workflow by maximizing productivity
and reducing idle time;

• Continuous delivery: it suggests a continuous delivery approach instead of batch re-
leasing in order to release only small parts of software attending the dynamic meetings
of the customers;

• Waste minimization: the tasks are only carried out when they are really needed, which
results in the minimization of wasted work and time;

• Limits Work In Progress (WIP): its main objective is to limit the WIP in order to
optimize the system accordingly with its capacity;

• Kanban board: it represents a workflow visualization tool that guides the workflow and
optimizes it by diving it into to-dos, in-progress, and done requirements.

2.5.1 Kanban Board Workflow

The development teams Kanban board is divided into columns according to the possible
states of the issues (as per Table 2.2). This board holds two panes, one for the different
states of the issues and another for the epic issues (more complex issues).

In the backlog column, are present all the issues that were analyzed and prioritized based
on the prioritization system presented in the Subsection 2.4.2. Those with a more pressing
priority are moved to the column for development, which contains all the issues that are
going to be developed during the week.

By the time the developer responsible for the issue starts resolving it, he drags it to the "In
Dev" column, in which case the person that opened the issue is notified by e-mail. By the
time that the developer responsible for the issue finishes resolving it, he drags it to the "For

2.5. Software Development Methodology 19

QA" column. By this time, the developer must have also written the development and QA
report in order to explain what he did and what/how to test the feature.

After this, the QA team is responsible for analyzing and testing all the functionalities de-
veloped by the developers. If any problem arises, it should be dragged into the "Failed in
QA" column, in which case the developer must review the comments and act accordingly.
The same process happens afterwards, when the QA team puts the issues in the "For CR"
column, which is the responsibility of the Tech Lead to do code review and decide upon it.

Lastly, if there are no immediate problems, the issue is moved to "In Release," where all the
actions are taken to bring together all the issues that have been resolved and developed to
create a revised version of the product.

2.5.2 Issues Management

The issue creation can be made by all the members of the company, that are in direct
contact with the E-goi platform in order to aid the product department in bug discovery and
to suggest new improvements and features. This report is made in Jira software, however
due to the lack of resources in users limitations, the use of the platform could only be used
by the development team, this lead to the creation of the "Issue Creator", the project used
in order to allow all the collaborators in the company to create issues by piping them to the
Jira software, since it is integrated with it. The Issue Creator is a simple User Interfce (UI)
that allows users to fill out some fields to open an issue. Even though it prevents multiple
limitations, it serves its purpose, despite creating others.

Each issue has the same characteristics and must follow the same workflow. In addition to
the priority assigned to an issue, there are two other attributes that are equally important
to the company - the status and the resolution. In order to understand the current status
of an issue and the conclusions reached after analyzing it, these statements are imperative.

For product management inside the company, transparency of issue states is very important.
This provides an overall view, to the Masters, of the current state of each issue under
development as well as the amount of work that needs to be done. The Table 2.2, presents
each one of these states as well as their correspondent owner (person responsible for the
issue in that state) and their correspondent phase in the development.

Table 2.2: Issues status descriptions

Development
Phase

Status Description Owner

Planning

In Triage The issue is waiting to be reviewed. Typi-
cally, only recently created issues are in this
status. This issue is waiting for validation of
all information and a decision based on the
prioritization model

PM

Reopened The issue was once resolved, but the reso-
lution or the work done was not the correct
one

PM

20 Chapter 2. Context

Development
Phase

Status Description Owner

In Analy-
sis

The issue needs more supporting informa-
tion before any decision is taken (usually
from stakeholders or issue related members)

PM

On Hold The issue depends on another development
or another team. Dependencies need to be
solved in order for the issue to be considered

PM

Backlog The issue has been reviewed, prioritized and
accepted as a candidate for our roadmap

PM

Development

For Dev The issue is listed for short-term execution
(couple of weeks). The issue is more severe
or pervasive than other issues

TL

In Dev This issue is being actively worked on at the
moment by the assignee

Developer

For QA The issue is ready to start the quality assur-
ance tests

QA

In QA An action/development for this issue has
been proposed and is being reviewed and
quality-tested

QA

Failed in
QA

The issue did not passed the acceptance and
quality tests and needs additional work

Developer

In CR The issue is being reviewed by the tech lead
to ensure the patterns

TL

Failed in
CR

The issue did not passed the code review and
needs additional work

Developer

Release
In Re-
lease

A resolution has been taken and is waiting to
be shipped in a release. It’s not guaranteed
that it will be shipped

PM

Release The issue is considered finished, the resolu-
tion is correct and shipped in a release

PM

On the other hand, we have issue resolution that corresponds to the decision made regarding
the issue after it has been analyzed and/or developed. The issue resolution process is
important from a business standpoint as it allows the collaborators to verify that the problem
has been analyzed and solved. The Table 2.3, lists all the possible resolutions that an issue
can take part in.

2.6. Summary 21

Table 2.3: Issues resolutions descriptions

Resolution Description

Unresolved Default resolution

Done The issue is solved, checked into the release and tested

Done - No backwards compati-
bility

The issue is solved from the resolution date forward. It
will not solve the previous cases

Done - In another issue The issue was solved by doing another related issue

Done - With Reserves The issue is partially solved or solved but not tested
properly. A fail-safe may have been developed to pre-
vent this

Won’t Do The issue will not be solved anytime soon

Won’t Do - Cannot Reproduce The issue was not possible to reproduce in any envi-
ronment (development, Staging and Production). All
attempts at reproducing this issue failed, or not enough
information was available to reproduce the issue. Read-
ing the code produces no clues as to why this behavior
would occur. If more information appears later, please
reopen the issue

Won’t Do - Not a Bug The issue has the supposed behavior. This could lead
to an improvement or further discussions

Won’t Do - Deprecated The issue is related with a feature, or layer will no longer
be supported for new improvements or features. This
could lead to a different approach

Won’t Do - Unjustifiable The issue has a huge effort in relation with the outcome,
or it’s not strategically viable

Won’t Do - Lack of information The issue has not enough information to be pursued.
All attempts were made to pursue information with the
reporter and stakeholders

Won’t Do - Incident Related The issue was created due to an incident or a temporary
glitch

Duplicated The issue is a duplicate of an existing issue

2.6 Summary

In this chapter, were presented an overview of the company structure as well as the processes
inherent to the product department in the development of updated product versions. In the
same vein, the roles of the members of each team and the hierarchy of such and the
methodologies used to gather costumer feedback inside E-Goi was explored.

By conducting a process overview, it is possible to identify the opportunities and threats

22 Chapter 2. Context

available in these processes. This will enable one to develop an understanding of the re-
quirements needed to develop a solution that can overcome these problems.

The next chapter includes the solutions explored by other authors in the fields of issue
management as well as other relevant techniques related to the development of the project.

23

Chapter 3

Literature Review

To be able to follow the most effective approach to solving the problem at hand, a prior anal-
ysis of the theoretical background that will allow the retrieval of the necessary information
is made. The scientific areas to be researched are related to issue-reporting standardization,
issue duplication detection techniques, customer involvement in the development process,
issue tracking systems (with a comparative analysis between them), and BPMN.

3.1 Issue Standardization

To comprehend what elements are relevant for the uniformity of the submission of new
issues, we must first comprehend what is an issue. As stated in [4] an issue represents a
bug, a task, or other issue types (feature, improvement, task, etc) in a particular project.
In most cases, issues present a few default, mandatory fields that allow their management,
including issue type, priority, labels, complexity, summary, description, resolution, and status.

For software development, bug and issue reports are crucial since they allow users to inform
developers of problems, improvements, and new features. Issue reports typically contain the
details of the actions needed in order to point the developers in the right direction, in the
eyes of the reporter. These should define a reasonable amount of information, so that is not
too demanding for the reporters but enough to provide the needed information to developers
[5]

Bug Reports

In the case of the bug report, however, these reports vary drastically in terms of content qual-
ity in the sense that they often provide incorrect or insufficient information [6]. So, developers
often face themselves with descriptions such as "Alterar para lowercase bounce returnpath"
(E-goi Jira, Bug #BB-17756) or "Pago Plano + Addon, mas addon não atribuído" (E-goi
Jira, Bug #BB-18015). This problem slows down the developer’s work and the resolution
of the issue. This is because the developer has to request additional information from the
issue reporter to be able to resolve the issue.

Bug reports often contain multiple information, such as reproducing steps, test cases, crash
stack traces and fix suggestions, summary, and others. Thus, to make reports consistent,
templates are provided where certain required and optional fields are specified to be filled by
the reporters [7]. When very little data is provided, it is extremely difficult for developers to
reproduce the errors reported and, therefore, proceed to resolve them.

So, to decide which fields are the most pertinent to include, we must consider which ones
are more valued by the developers that treat those bugs. According to [7] when selecting

24 Chapter 3. Literature Review

the bug report to process, the developer’s first action is to try to reproduce the problem
at hand. This step is critical not only to verify that the problem exists but also to be able
to more easily evaluate the fix that they provide. Also, other information such as stack
traces, crash descriptions, observed behavior, and expected behavior are equally important
to achieve the proper issue correction [6].

According to [8–10] the sections that the developers find most useful when fixing bugs, with
their rank in importance, are the following ones:

1. Steps to reproduce: comprises a clear set of instructions that the developer can use
to reproduce the bug on their own. The set of operations must be clear enough so
that the developer can reproduce the error on his machine;

2. Stack traces: a stack trace produced by the application, most often when the bug is
related to a crash;

3. Test cases: steps that a developer can use to determine when they have fixed the
bug;

4. Observed behavior: the behavior of the application that the user saw happening as
a result of the bug. The statement should be informational and clear enough and not
contain simple statements such as "isn’t working" or "nothing happens";

5. Screenshots: screenshots of the application while the bug is happening;

6. Expected behavior: what the user expected to happen in the application on the
contrary of the observed behavior;

7. Code examples: an example of some code that can cause the referenced bug;

8. Summary: a short (usually one-sentence) summary of the bug. This field is mandatory
when writing a bug report. In fact, this field is often used to detect similar and duplicate
bugs [9];

9. Version: what version of the application the user was using at the time of the error
(if applicable);

10. Error reports: an error report produced by the application as the bug occurred.

Although the features reflected above are the main ones that seem to be valued by the
developers, other information can be included in order to also help the people from QA and
managers such as component, business information, additional information, and workaround
[10]. The fields needed to submit new bug reports vary according to the needs of the projects
and the teams.

Feature and Improvement Requests

Feature requests, also referred to as JIT requirements or enhancements, comprise a struc-
tured request (an issue report with a summary, description, and other attributes), that
documents an adaptive maintenance task whose implementation results in enhanced func-
tionalities, normally per user feedback [11].

A feature request usually relates to a single requirement. A user can specify them, or
even a developer can, after which they are analyzed and verified if and when they will be
implemented. The implementation of the requests depends on the priorities set by the users
(number of requests), developers, or managers [11].

3.1. Issue Standardization 25

Accordingly to [11], to submit a high-quality feature request one must follow the following
quality criteria:

• Completeness: all needed elements must be present, regardless of whether they are
basic, required, or optional. For the basic elements, we have the summary, description,
product version (if applicable), and relative importance. For the required ones we have:
keywords, rationale, and link to code (if applicable), and for the optional we have: use
case scenarios, screenshots, and possible solutions;

• Uniformity: the style and format should be standardized. This leads to reduced time
spent understanding and managing requirements. This can be achieved with the use
of appropriate tools;

• Conformance: the requirements should be consistent and correct. This includes the
use of correct language, specification of the problem identified, an accurate summary,
no duplicates.

These quality attributes allow the definition of the elements that must be present in a feature
request report. The Table 3.1 specifies the elements, their description, and their priority to
be included in a final report.

Table 3.1: Feature request report elements

Element Description Priority

Summary A brief description of the feature re-
quest that uniquely identifies the de-
sired behavior

Required

Desired behavior The detailed workflow of the desired
request. The steps the functionality
should follow

Required

Goal Detailed description of the impor-
tance of the desired request and how
it will improve the application

Required

Additional information Comprises any additional information
that may help in the implementation
of the functionality, such as refer-
ences or links to other implemented
functionalities of the same sort

Optional

Screenshots and other
attachments

Complements the previous element Optional

As it occurs with bug reports, these elements must also be adapted for the teams and
work methods of those teams. So other information can also be included, such as business
information, components attribution, etc.

On the other hand, the improvement request follows most of the guidelines of the feature
requests. According to [4], an improvement is an improvement or enhancement to an
existing feature or task. In contrast with the feature request, an improvement request
implies that additional elements beyond the ones referred to for the feature request (in

26 Chapter 3. Literature Review

Table 3.1) must also be included, namely the current behavior, which describes the current,
observable behavior that needs improvement.

3.2 Issue Duplication

Another problem regarding issue management, beyond uniformity, is the problem of issue
duplication. This problem is characterized by the potential submission of more than one
report describing the same change request [12]. The main consequence of this problem is
the additional work required by the triaging team elements to identify these duplicates.

Triaging is a process in which the person delegates the issue to a particular person for its
resolution [13]. Before assigning, the triager needs to read through the reports in order to
find which ones are duplicates and which ones are not. Sometimes the same problem is
assigned to more than one person, which leads to the waste of resources. This leads to
redundancy in the work and thus increases the workload for engineers [13].

Issue Duplication Causes

Even though many factors can contribute to the creation of duplicate issue reports, according
to studies performed by [6, 14, 15], some of these factors can be:

• Laziness and lack of experience from users: some users are not well known with
issue trackers, while others simply are not willing to spend time searching for the
reported issue;

• Poor search features: lack of functionality in the search feature of the used tools;

• Multiple issues, one reason: sometimes the same reported issue can be related to
the same cause, which is not always clear for the reporters;

• Intentional re-submission: some users intentionally submit the same report in order
to try to reach its resolution;

• Accidental re-submission: most of the issues submitted are due to errors in the
platform or the fact that two submitters report the same issue at the same time;

• Lack of uniformity: the lack of common vocabulary and consistency in the submission
of the reports causes some of the duplication tools to not be able to process correctly
such reports.

Issue Duplication Detection Methods

Most of the literature regarding the duplication of issue reports can be divided into two
categories. One is the prevention of duplicate issue reports while submitting - duplicate pre-
vention - and the other is the detection of duplicates during the triaging phase - deduplication
[13].

Deduplication methodologies also known as duplicate report detection, have been studied
and implemented by several authors [16]. They consist of querying almost identical reports
to group them. Most of these methodologies are based on machine-learning, topic analysis,
deep learning and information retrieval [16]. Information retrieval refers to the activity of
obtaining the required information from a group of document resources. They are applied
to various scopes such as image retrieval and web searches [17].

3.3. Issue Tracking Systems 27

Regarding the methodologies used to detect duplicates before the report submission, infor-
mation retrieval is the most commonly used. In fact, the author [16], suggests a methodology
known as "Continuous Querying".

This technique consists of providing multiple suggestions to the user as he writes his report,
by using machine learning algorithms to retrieve the top-n most similar issues to present
these suggestions to the user. As the user types in the information, either in the description
or the summary, queries are made to the issue tracker to find any identical reports. The
information is then presented to the user, who can pause the writing of the issue and inspect
any of the suggested duplicates. Using this method, the authors found that 42/

3.3 Issue Tracking Systems

Issue Tracking System (ITS) are a common standard in most software development projects.
They allow both developers, testers, managers, and users to submit issue reports or other
tasks [18–20].

These systems are not just a database to store and track bugs, features, and tasks but also
the main means of internal and external communication and work coordination for many
software development teams [20]. Because these systems are mainly used for project man-
agement, there is, in most cases, high integration with other development and management
tools [18].

On the topics bellow, is presented a brief description of each of the three most used and
referenced ITS and presented a feature-based matrix of comparison between the several
relevant features of them. This includes Jira, which is the ITS used by E-goi development
teams.

Jira

Jira [21] is a bug/issue tracking and project management system developed by Atlassian
Software Systems as an open-source code project. It provides complex features at the same
time, with an easy-to-use interface.

Jira provides numerous plug-ins and extensions developed by its community and an extensive
variety of documentation and learning material. Atlassian provides Jira for free to open-
source projects and small teams (10 users), however, it is paid for commercial uses.

Redmine

Redmine [22] is free and open-source, written in Ruby, and provides both the functionalities
of issue tracking and project management. It integrates with various version control systems
and is cross-platform and cross-database. As it happens with Jira, it also provides support
to add new plugins as required.

Bugzilla

Bugzilla [23] It is used on many open-source projects such as Mozilla, Eclipse, and many
Linux distributions, and is well suited to large, collaborative projects. It is a free and open-
source tool that possesses almost all the functionalities of the previous tools except for
project management and official plug-ins with cross-platform integration.

According to information retrieved by the articles [21–25] a feature-based matrix is presented
in Table 3.2 to compare the different features available on the three platforms.

28 Chapter 3. Literature Review

Table 3.2: ITS feature-comparison matrix

Feature Bugzilla Redmine Jira

JIT Duplicate Retrieval Yes Yes, through
plugins

Yes, as additional
plugin

Bitrix Integration No No No

LiveAgent Integration No No Yes, through plug-
ins

Advanced Search Yes Yes Yes

Field Customization Yes Yes Yes

Notifications Yes Yes Yes

Version Control Integration Yes Yes Yes

REST API Yes Yes Yes

Edit Conflict Warning Yes Yes No

The analysis of the presented table shows that all three IST provide almost the same features.
However, Jira allows the connection with the LiveAgent platform, even if that is done through
plugins. Although the use of any of the presented IST could in fact serve as a valid alternative
to the actual platform used in E-Goi (Jira), one thing that must be taken into account is that
none of them provides any form of integration with the Bitrix24 platform, which could pose
an obstacle to the requirements needed by the stakeholder of integrating the development
process life-cycle into this platform.

3.4 User Involvement in Software Development

In the last years, a new trend in requirements engineering is to motivate software evolution
by gathering and analyzing user feedback from issue tracking systems [26]. The ultimate
success of any software depends on whether or not the developed solution manages to fulfill
the expectations of the final users [27].

Regarding the development of new services, two main operational outcomes must be consid-
ered - operational efficiency and market competitiveness. In one sense, operational efficiency
relates to the speed of innovation and technical quality and is calculated by measuring the
effort on an internal basis. On the other hand, market competitiveness relates to market su-
periority and sales performance and is measured by the success achieved, which is calculated
in an external perspective [28].

In Agile methodologies, since they provide iterative development, they allow an intensive in-
volvement of the end-user [27]. This methodology allows the involvement of the end-user in
the development of new features more efficiently, rapid feedback gathering cycles, and func-
tionality prioritization. User involvement grants several advantages such as improved quality
due to more precise requirements and the reduction of waste by preventing the develop-
ment of non-required expensive features. This, as a consequence, enables the companies to
develop their products with bigger success rates [28].

3.5. Business Process Model Notation 29

On the other hand, the lack of customer collaboration in agile teams [29], revealed to lead
to several consequences such as pressure to over-commit, difficulty in rounding and deciding
upon requirements, requirements prioritization issues, loss of productivity, and, in rare cases,
business loss. For this reason, customer involvement is essential to improving performance
in the development of new services [28].

3.5 Business Process Model Notation

Originally published in 2004, BPMN defines a diagram based on a technique of workflow
development, through graphical schemes that translate to operations of business processes.
The primary goal of this notation is to provide a graphical language that is quickly under-
standable by business users, from the business analysts who are tasked with drafting the
processes to the developers responsible for implementing them [30].

This notation offers multiple benefits to the companies where it is implemented, such as
bigger visibility across the company of its activities and processes, process execution time
reduction, better chances to detect and correct poorly optimized processes and a better
understanding of the tasks and responsibilities of each collaborator inside the company [31].

By being a graphical notation, BPMN comprises four categories of graphical elements that
help build the diagrams [30]:

• Flow Objects: represent all the actions that can happen in a business process, which
determine their behavior. They include events, activities, and gateways;

• Connecting Objects: represent the message exchange between the flow objects. They
include three types of connections - sequence flow, message flow, and association;

• Swimlanes: they give the ability to group several elements into groups of actions
performed by the same intervenient;

• Artifacts: are used to provide additional information about the process.

3.6 Summary

In this chapter, all the information obtained and necessary for the resolution of the detected
problems was referenced. Several topics were discussed, such as the standardization of issue
reports and the reasons why most reports do not contain consistent information. The most
common causes for the appearance of duplicate issues in its analysis and the most effective
methods for their detection and reduction were also referenced. Finally, an evaluation of
different issue management platforms was also made, as well as the importance of the
feedback acquired from the final consumer for the improvement of the product.

In the following chapter, an analysis of the value of the project will be carried out. In
addition, it will be presented as a presentation of the requirements elicited in the interviews
carried out with the stakeholder.

31

Chapter 4

Analysis

This chapter analyzes the problem at hand. Not only does this analysis consider the value
of the proposed solution, but it also examines the value it will bring to the company, and
consequently to the customer and the requirements engineering section as well. In this
later section, the requirements gathered through elicitation are presented as well as the
non-functional requirements that translate into quality attributes.

4.1 Value Analysis

In accordance with [32], value analysis correlates to the use of specific techniques, knowledge,
and skills that allows the efficient discovery of unnecessary costs on a product, i.e. that
lacks customer features or quality. In general, it is defined as a method applied in order to
systematically improve the value of products, services, and processes [33].

Thus, to idealize, design, and implement a new product, a value analysis process must be
conducted. This analysis should, not only, cover the company’s need for the product, its
costs, and benefits, but also the value that it will bring to the customer. In this section, the
value analysis of the product to be developed will be addressed in more detail.

4.1.1 Innovation Process

Innovation can be described as "change and process improvement for a product or system in
a way that this change will be new for the firm" [34]. Innovation can bring several benefits
such as improved productivity, reducing costs, increasing competitiveness, among others and
a high innovation rate usually translates to higher profitability rates in the long-term [35].

Accordingly to [36], the process of innovation can be classified into three main areas:

• Fuzzy Front End (FEE)

• New Product Development (NPD)

• Commercialization

Regarding the FEE, it represents the initial phase of the innovation process. Its objective
is to generate an idea that will either be approved for development or cease. Thus, to
achieve that goal, it comprises two main sequential actions to be performed - idea generation
and assessment, which allows the definition, exploration, and selection of the new ideas;
and concept development and product planning, which results in the planning of the next
sequential phase which is the NPD [37].

32 Chapter 4. Analysis

On the other hand, the NPD phase entails the transformation of the idealized concept into
an actual product, which includes different actions such as design reviews, market tests,
prototype development, and product testing and redesign [37].

Finally, the commercialization phase corresponds to the production of the projected prod-
uct, market introduction, and penetration, and finally, the monitoring of the results and
continuous product verification.

4.1.2 New Concept Development

Despite the fact that the FEE represents a valuable opportunity for innovation process
improvement, the fact that the front end does not support a common language of the key
elements of the front end makes it difficult to compare and find the best practices to guide
the FEE [38]. This, in countermeasure, leads to the research and development of the New
Concept Development (NCD).

NCD consists of a model that aims to resolve the gap that exists in the need for a standard
language, concepts, and best practices for the FEE phase. The NCD comprises three
essential parts [36]:

• Engine: or central point corresponds to the portion that drives the five key elements
and that is conducted by the leadership and organization culture;

• Activity Elements: consists of five of them - opportunity identification, opportunity
analysis, idea generation, and enrichment, idea selection, and concept definition;

• Influencing Factors: the environment on the outside of the organization. Consists of
organizational capabilities, business strategy, the outside world, and the science that
will be utilized [38].

In order to apply the NCD model to the proposed solution developed in the organization,
each of the five key elements will be discussed below.

Opportunity Identification

Identifying the opportunity that the organization may want to pursue, usually aligned with
its business goals, constitutes this step. Opportunities can arise in a variety of forms such
as a response to the competition, a way to achieve a competitive advantage, to simplify
operations, or even to reduce the production costs [36].

As stated previously, in Section 1.2, several issues were identified that needed addressing in
such a way that it improves the efficiency of the processes in product development and costs
derived from used tools.

Opportunity Analysis

This element ensures that the opportunity addressed in the previous point is worth being
further explored, even though that additional analysis is required in order to successfully
translate the opportunity into business value.

Since the main objective of this element is to gather the necessary information regarding
the market and competitors a Strengths, Weaknesses, Opportunities and Threats (SWOT)
analysis can be performed. This analysis includes identifying the internal strengths and
weaknesses as well as external opportunities and threats. These are factors that can affect
the devised product. This analysis is present in the Figure 4.1.

4.1. Value Analysis 33

Figure 4.1: Product SWOT analysis

As a first step, we have strengths that provide the characteristics that will add value to the
organization, specifically to the development teams. These characteristics include improving
the efficiency of the development team and, consequently, reducing costs and waste. On
the other hand, we have weaknesses that will negatively impact the solution inside the
company such as the development costs and time required to build the platform and regular
maintenance associated.

As for the opportunities, we have the increasing of the customer feedback channels may it
be direct or indirect which, in turn, increases the amount of feedback (problems and features
requests), which directly impact the amount of work to be developed and the decreasing of
the development and releasing cycles to bring value to the customer more rapidly and be
able to encompass the constant market threats. In contrast, in threats, we often see the
emergence of new free tools that can render the product useless, and new license restrictions
on integrations that can complicate the use of certain features.

Shortly, it is possible to demonstrate that the development of the solution can, in fact,
deliver some benefits that will, directly and indirectly, enhance the customer experience.
These benefits can indeed justify development costs and resources.

34 Chapter 4. Analysis

Idea Generation and Enrichment

This phase consists of the creation, development, and transformation of the opportunity
into a concrete idea. In an effort to resolve the identified issues and meet all the requested
requirements. After some brainstorming, and taking notice of the cost and development
constraints, three options were identified:

• Development of a solution from scratch that can both enforce uniformity in the issue-
reporting process and perform integration with the other tools. This reduces the costs
related to the use of Jira for all the users but also creates the costs of development
and maintenance;

• Creation of the users in Jira, the definition of the reporting model templates and
enforcing them, and using other software to perform the integration with the applica-
tions. This involves costs associated with the use of another tool for integration (both
in configuration and for using the tool);

• Taking care of the uniformization problem using Jira but disregarding the tools inte-
grations.

Even though all the ideas fulfill the requirements needed, except for the last one which does
not take into consideration the integration with the tools, it is necessary to perform an
analysis on the viability of each of them to select the one that best suits the company needs
while creating value to the customer. Thus, this selection is made in the following phase of
NCD.

Idea Selection

This phase of the NCD consists of the analysis of the different ideas and the selection of the
ones to pursue to achieve the most business value (more on this subject in Section 4.1.3)
[36]. The selection may be as simple as an individual choice or formalized within a complex
business process.

One methodology that can be employed to achieve this selection is the Analytic Hierarchy
Process (AHP), which consists of a theory of measurement that allows a user to make
pairwise comparisons based on numerical decisions from a pre-specified scale of numbers
[39]. The model is one of the most widely used decision-making tools, used in the widest
range of fields like planning, selecting the most appropriate alternative, resource allocation,
conflict resolution, optimization, etc [40].

The following paragraphs will be devoted to applying the AHP method to the problem at
hand to find the most suitable alternative idea from those suggested during phase one. Its
important to reference that all the criteria and relative importance values given throughout
this analysis was previously analyzed and revised with the CTO, which means that the
conclusions taken take into account the necessities of the stakeholders.

The first step in AHP consists of the definition of the decision-making elements which consist
of the problem statement, the alternatives which were already devised earlier, and the criteria
associated with each one of the alternatives. These are presented in the hierarchical tree,
shown in Figure 4.2. The alternatives consist of the following (the letters associated with
each alternative and criteria reflect the ones used from this point forward in each of the
presented tables):

4.1. Value Analysis 35

• X: Resolve the uniformization problem using Jira but disregard the tools integrations;

• Y: Develop a customized solution from scratch;

• Z: Create the users in Jira and enforce uniformization through templates and integrate
using existing tools;

As for the criteria that will allow an improved understanding of what description better
relates to each of the alternatives, these are:

• A: Lack of integration

• B: Customization

• C: Cost

Figure 4.2: Comparisson tree of the problem

In the second phase, alternatives and criteria are compared by means of a comparison
matrix created after the problem statement is defined. The priority assigned to each one
of the attributes is defined in a Fundamental Scale. In this scale, the number 1 gives equal
importance to the attributes, and 9 represents the maximum importance. Intermediate
values can be proposed with a range of importance ranging from 1 to 9.

The priority matrix is presented in Table 4.1, compares all the alternatives in terms of their
importance and the sum is presented which is later used to calculate the normalized matrix.
For each interception of attributes (A with B, A with C and B with C) we present a value from
1 to 9 according to the relative importance that one has over the other, on the remaining
slots we calculate the inverse of that value, for example, in the interception of A with B
which is of value 7, the inverse will be 1/7 which is 0.14.

By analyzing the table, we can verify that the factor "customization" is more significant
than both the lack of integration and the cost of implementation, although the cost is more
important than the lack of integration.

36 Chapter 4. Analysis

Table 4.1: Comparison matrix for the criteria and respective column sums

- A B C

A 1,00 0,14 0,20

B 7,00 1,00 3,00

C 5,00 0,33 1,00

Sum 13,00 1,48 4,20

Next, to calculate the relative priority of each criterion we must create the normalized matrix
to match all the criteria to the same unit. To do so, each value of the matrix (Table 4.1) is
divided by the sum of its respective column. Table 4.2 shows the normalized matrix of the
original one.

Table 4.2: Normalized matrix with relative priorities

- A B C Relative Priorities

A 0,08 0,10 0,05 0,07

B 0,54 0,68 0,71 0,64

C 0,38 0,23 0,24 0,28

By analyzing the Table 4.2, we verify also the presence of the relative priorities vector, which
was calculated by doing the arithmetic average of the values of each one of the normalized
matrix rows. This vector corresponds to the order of importance of each one of the criteria.

With the analysis of the values, we can verify that the criteria "customization" is the one
that is considered to be the most relevant for the problem at hand. It makes sense since
a solution that is low cost as well as allowing customization of both its features and tools
integration is more likely to add value to the organization.

Even though all the necessary steps to calculate the priority vector were correctly performed,
the use of these values is still dependent on a consistency validation. This is to measure
how consistent the judgments are. To do so we must calculate the Consistency Index (CI)
to be able to determine the Consistency Ratio (CR). The CI is given by the formula:

CI =
(λmax − n)
(n − 1)

To get the λmax , first, we multiply each one one of the values in the original matrix by
the correspondent relative priority and sum the values of each row to get the weighted sum
(Sumi) and then divide by the correspondent weighted criteria (Wi), as per Table 4.3.

4.1. Value Analysis 37

Table 4.3: Matrix maximum own value calculation

- A B C Sumi Wi Sumi / Wi

A 0,07 0,09 0,06 0,22 0,07 3,01

B 0,52 0,64 0,85 2,01 0,64 3,12

C 0,37 0,21 0,28 0,87 0,28 3,06

Thus, λmax will be given by:

λmax =
(3, 01 + 3, 12 + 3, 06)

3
= 3, 07

And the consistency index by:

CI =
(3, 07− 3)
(3− 1) = 0, 03

With this, we can now calculate the CR with the formula:

CR =
CI

RIn=3
=
0, 03

0, 58
= 0, 06

,where RI represents the randomness index that can be retrieved in the Table 4.4, for n=3.

Table 4.4: The values of Random Consistency Index

Dimension RI

1 0

2 0

3 0,5799

4 0,8921

5 1,1159

6 1,2358

7 1,3322

8 1,3952

9 1,4537

10 1,4882

If the CR were to be superior to 0,1 then our judgments would not be trustworthy, since
they were too close to the comfort of aleatory, which would mean that our results didn’t
present consistent values.

38 Chapter 4. Analysis

Since 0,06 < 0,1 we can confirm that our values are consistent and thus proceed to the next
step, which is to calculate the comparison matrix for each one of the criteria, considering
each one of the selected alternatives. These matrices and their correspondent relative priority
vector is presented in the Tables 4.5, 4.6 and 4.7.

Table 4.5: Comparison matrix for the criteria "Lack of Integration"

- A B C Relative Priorities

A 1,00 9,00 9,00 0,82

B 0,11 1,00 1,00 0,09

C 0,11 1,00 1,00 0,09

Table 4.6: Comparison matrix for the criteria "Customization"

- A B C Relative Priorities

A 1,00 0,17 0,33 0,09

B 6,00 1,00 5,00 0,71

C 3,00 0,20 1,00 0,20

Table 4.7: Comparison matrix for the criteria "Cost"

- A B C Relative Priorities

A 1,00 5,00 0,33 0,28

B 0,20 1,00 0,14 0,07

C 3,00 7,00 1,00 0,64

The final step consists of the calculation of the composed priorities by multiplying the priority
matrix with all the values from the relative priorities of the solutions (Tables 4.5, 4.6 and
4.7) and the relative priority vector of the criteria calculated initially (Table 4.2):

0, 82 0, 09 0, 28

0, 09 0, 71 0, 07

0, 09 0, 20 0, 64

 x

0, 07

0, 64

0, 28

 =

0, 20

0, 48

0, 32

With this calculus, the final global weight of each solution relative to the criteria would be:

• X: 0,20

• Y: 0,48

• Z: 0,32

Trough the evaluation of the final result, since the alternative Y - Develop a customized
solution from scratch is the one with the highest value, we can verify that this is the best
alternative for the solution.

4.1. Value Analysis 39

Concept Definition

Finally, the concept definition consists of the proposition and definition of the "win state-
ment", which the company will support to make the final decision whether or not to invest
in the proposed solution.

Thus, the concept that the chosen solutions grasp is the development of a fully integrated
solution that can be used to optimize product development teams’ efficiency and reduce
waste, impacting the problems identification phase and improving software release cycles.

4.1.3 Solution Value

There is not much consensus on what value creation is and how it can be achieved. Accord-
ingly to [41], one can differentiate two types of value. The first, use value, which consists
of the value of a new service or product that is perceived by users relative to their needs.
These judgments are subjective and change from individual to individual.

The other type is exchange value. This represents either the monetary value made at a
certain point in time or the amount received from the user when he used the product or
service.

Thus, when put all together, we can see that the process of value creation depends on the
perception that the user makes of it, who is, ultimately, the judge of the product value. The
question then arises as to when the monetary exchange rate will be enough to capture the
value perceived, raising two important economic conditions that a company must endure in
order to successfully benefit from its value creation processes.

First, the price from the exchange must exceed the production costs and the other is that
the amount of money that a user will pay for a product or service is a "function of the
perceived performance difference between the new value that is created (...) and the target
user’s closest alternative" [41].

This subject is relevant for the problem in the way that, in E-goi, the activities that are
performed inside the company have a common object- the creation, direct or indirectly, of
value to the customer. In the case of product development, this is also true.

All the improvements and corrections are ultimately made to improve the perceived value
that the end-users have of the product and, thus, allowing the generation of exchange value
that is used to cover the production costs.

Thus, by improving the performance of the development cycle, we are generating more
value for the product by reducing the time needed in order to release a new version to the
customers.

Value Chain

A value chain consists of a set of activities that a company possesses and uses to create
value for its customers. In 1985, Michael Porter proposed a value chain that organizations
can use to examine their activities and see how they are connected [42]. This value chain
can be useful to examine how an organization can increase its value or reduce costs by
aggregating its activities/processes into well structured activity groups.

The premise here is that the more value an organization creates, the more profitable it will
consequently be. So when a company provides more value to its customers than, in theory,
the more competitively advantageous it will become.

40 Chapter 4. Analysis

The model consists of five primary activities and four support activities. Primary activities
are mainly related to the creation or delivery of a product or service. These activities include
the following:

• Inbound Logistics: related to the processes that manage activities like receiving,
storing and distributing inputs;

• Operations: conversion of raw materials into finished goods or services through man-
ufacturing (or transformation);

• Outbound Logistics: delivering of goods or services to the customer;

• Marketing & Sales: processes used to identify opportunities and processing customer
orders;

• Service: activities related to maintaining the value of the product after it has been
purchased. Providing after-sales support to customers.

These primary activities are facilitated by a group of support activities that span across the
entire organizations, which are:

• Firm Infrastructure: organization-wide administrative and management systems;

• Human Resource Management: human-resources management;

• Technology Development: research and development and continuous enhancements
of technology-related activities;

• Procurement: management of purchases of materials and equipment.

The margin is related to the difference between the value that is created and captured by
the organization and the cost of creating such value. In the Figure 4.3 is represented the
value chain for E-goi and its activities.

Figure 4.3: E-goi value chain diagram

4.1. Value Analysis 41

Value Proposition

A value proposition can be perceived as an explicit promise made by an organization to
deliver a particular aggregation of value-creating benefits. To put it another way, a value
proposition is an organization’s focus on elements that create differentiation when it comes
to the customer’s decision to purchase our products or services instead of the competition’s
[43].

Using a Business Model Canvas, one can capture the value proposition of the proposed
solution in the E-goi ecosystem. This canvas, originally developed by Alexander Osterwalder,
consists of a framework that ensures that there is a fit between the product and the market
- customer segments and value propositions. This model is often used when there is a need
to refine an existing product or service or when a new product is being developed or in stage
to be developed [44].

In this case of the solution being developed, the customers can be both the final users of
the E-goi platform, the working team members of the development team, since they are the
direct affected users of the platform and ultimately the remaining collaborators of E-goi since
they can also submit new issue reports. In the Figure 4.4, is presented the value proposition
for the Issue Creator platform and the characteristics it possesses in order to create value
for the customers.

Figure 4.4: Product value proposition

The value proposition canvas is divided into two building blocks. On the left hand side is
the customer profile with the following elements:

• Gains: the benefits which the customer expects and wants, what elements would
increase the odds of adopting the value proposition;

• Pains: the negative experiences, risks and emotions that the customer has when trying
to get the job done;

• Customer jobs: the functional, social and emotional tasks that the customers try to
perform.

42 Chapter 4. Analysis

On the right hand side, there is the company’s value proposition, with the following elements:

• Gain creators: how the product or service creates customer advantage;

• Pain relievers: how the product or service alleviates the customer’s pains;

• Products and services: the products and services which will create gain and are being
explored.

4.2 Requirements Engineering

Requirements engineering is most commonly seen as the first phase in the software engineer-
ing process and is considered a key task in software development. In fact, a well-implemented
requirements engineering reflects in the software development process in the measure that
it improves the productivity and quality of the product [45].

Concerning the requirements, these can be categorized into two types: functional and non-
functional. Functional requirements can be understood as requirements that specify an
action that a system must be able to perform, without considering any physical constraints.
It must specify the input/output of a system [46].

On the other side, non-functional requirements can be described as the constraints in which
the system must operate and the standards which must be met by the delivered system such
as delivery time or technical constraints like programming language to be used. As opposed
to functional requirements, non-functional requirements can be difficult to gather, define
and even prioritize, since there is no complete list and no standardization on a framework or
taxonomy to support them [47].

However, the quality of the developed software can be appraised through non-functional
requirements, which, in turn, necessitates a way to identify the most significant software
characteristics for a piece of software [47]. Thus, several quality models have been developed
and published. One of those models is the FURPS quality model, which was first introduced
by Robert Grady at Hewlett-Packard in 1992 and later improved to be known as FURPS+
by IBM. FURPS relates to functionality, usability, reliability, performance, and supportability
and the extension (+) allows the specification of constraints such as design, implementation,
interface, and physical constraints.

In this section, elicitation and gathering of functional and non-functional requirements are
described. In the functional requirements subsection, the list of all gathered requirements
is presented and in the non-functional requirements section is presented a list of quality
attributed segmented accordingly to the FURPS+ model.

4.2.1 Functional Requirements

According to Sommerville [48], the requirements engineering phase consists of four main
activities, namely: discovery through elicitation, analysis and negotiation, documentation,
and, finally, validation. In the discovery phase, requirements are gathered which consist of
the essential characteristics of a system and conditions related to the development process.

Elicitation has the main objective of discovering the purpose of the system under devel-
opment. In this phase, requirements are discovered through the application of elicitation
techniques. Even though dozen of techniques are available, only a few are thoroughly ex-
plored and proven to work effectively [45]. Midst these techniques are the ones used in the

4.2. Requirements Engineering 43

requirements gathering for the current project. These techniques consisted of traditional
techniques, through interviews and meetings with the CTO and group elicitation tech-
niques which were conducted with the UXA department in order to gather the requirements
needed for the forms used in the educational content related issues. This last technique is
useful in the sense that it allows stakeholders to communicate requirements more willingly
through brainstorming ideas.

When putting into practice the elicitation techniques described above, the following require-
ments were gathered and which are described in the Figure 4.5.

Figure 4.5: Use Cases diagram

As observable in the previous figure, two actors were identified during the requirements
gathering phase:

• Reporter: consists in the user that reports the issues, it can be any collaborator inside
E-goi that has permissions to do so;

• SRE Officer: represents the Site Reliability Engineering department officer, which has,
among other responsibilities, the creation of the release post with all the information
related to the issue corrections that were made in the current release.

After the requirements gathering with the CTO and prior analysis, it was possible to create
a list of functional requirements to be included in the final solution. These requirements will
be described in the format of user stories for each one of them in the Table 4.8.

Table 4.8: Functional requirements list resultant from elicitation

Functional Require-
ment

Description Actor

FR01-Submit New Re-
port

As a reporter, I want to be able to create a
new issue report. I want to be able to fill in
the necessary data for the type of issue I want
to report.

Reporter

44 Chapter 4. Analysis

Functional Require-
ment

Description Actor

FR02-Search Issues As a reporter, I want to be able to search for
issues that are not only reported by me but
also all the available issues that aren’t in a
"Done" state.

Reporter

RF03-Add New Case As a reporter, I want to be able to add a new
case to an existing issue. A new case con-
sists of a similar issue that occurred or that
was reported by a client and that is related to
an already created issue. This action should
increase the visibility of the issue to the man-
agers.

Reporter

FR04-Add Comment As a reporter, I want to be able to add a
new comment to an issue plus add any at-
tachments that are deemed to be relevant to
the comment.

Reporter

FR05-Edit Customer
Values

As a reporter, I want to be able to edit the
customer values referent to a specific issue in
order to update or correct eventual mistakes
to these fields made during issue reporting.
These fields consist on Business Value, Cus-
tomer Impact and Customer Satisfaction.

Reporter

FR06-Ask For Reopen As a reporter, I want to be able to ask to re-
open an issue that, after further analysis/tests
or client feedback, was deemed to not be prop-
erly resolved. This action should increase the
visibility of the issue to the managers.

Reporter

FR07-Ask Estimation As a reporter, I want to be able to ask for an
estimation on the average time for the issue
to be resolved. This will later be responded by
the issue assignee, product manager or CTO.
This action should increase the visibility of the
issue to the managers.

Reporter

FR08-Watch Issue As a reporter, I want to be able to watch an
issue, which means I want to be able to receive
notification whenever the issue changes status
or resolution, basically whenever an issue is
updated.

Reporter

FR09-Get Status &
Resolution Information

As a reporter, I want to be able to see the in-
formation related to issue status (description,
current owner/responsible and maximum time
in the correspondent status) and issue resolu-
tions (description)

Reporter

4.3. Summary 45

Functional Require-
ment

Description Actor

FR10-Create Release
Post

As a SRE Officer, I want to be able to create
a release post in Bitrix with all the issues that
are currently in for the new release. The in-
formation to be included must be enough to
identify the issues, what they resolved, and
how they were resolved.

SRE Of-
ficer

4.2.2 Non-Functional Requirements

The relation between functional and non-functional requirements is that the latter should
reflect how the system should behave, unlike functional requirements which reflect what the
system should do.

In order to capture these requirements, the FURPS+ model was used. This model takes
into account various vectors of non-functional requirements for better categorization. These
categories are composed by: Functionality, Usability, Reliability, Performance, Supportability
and the extension (+).

According to the acquired elements only a few was captured. Regarding the usability, the
user interface must be easy to use, in order to be used by low experienced tech users. On
the other hand in the Supportability, the application must be prepared to include new types
of reports or functionalities with minimal impact on already developed features. In the same
way, it must support integration with other external systems (Bitrix24 and LiveAgent) and
must log the request in order to detect possible errors in processing. On the other hand, in
what concerns the extension, the following items were retrieved:

• Design Constraints: Must follow good practices in software development such as the
adoption of the SOLID 1 and General Responsibility Assignment Software Patterns
(GRASP) patterns;

• Implementation Constraints: Must be developed using technology present in the
company tech stack.

4.3 Summary

In this chapter both a research on the final value of the solution and the presentation of the
elicited requirements was conducted. Regarding the value analysis, by applying the methods
presented enabled one to conclude that, from all the various solutions, the most appropriate
would be to create a custom-made solution that could aggregate the various systems and
provide the means for the users to have an easy access to the created issues, the ability to
add similar cases and thus, enable the use of buzz-points to aid in the prioritization system
and the ability to create standardized issue reports.

In the next section, is presented the design of the envisioned solution which consists in the
next logical step to perform in order to create a robust solution that can take into account
the elicited functional and non-functional requirements.

1Created acronym that relates to the five principles of object oriented programming

47

Chapter 5

Design

This chapter’s objective is to provide a clear view of the overall system architecture, taking
into account the requirements gathered previously. The Unified Modeling Language (UML)
diagrams presented in this chapter allow a deeper understanding of the main relationships
between the components, as well as all the decisions made during software development.

5.1 Components

The component diagram allows the designer to show the relationship between the different
components in a system. It is a module of classes that represent independent systems that
have the ability to interface with the rest of the system. A generalized view of the compo-
nents’ interactions is presented and described in this section. The components diagram for
the final solution is presented in Figure 5.1.

Figure 5.1: Components diagram

According to the figure, the component of the Issue Creator, which presents the user
interface to be accessed by the browser, consumes via a REST API the API used to format
the requests, provide business rules and forward the requests to the other services integrated
within the solution. The API, on the other hand, provides an internal component responsible
for the authentication in the external services that it consumes - Jira and Bitrix24.

48 Chapter 5. Design

An API provides a secure way to access data, enables data sharing homogeneity in the
requests, and facilitates the integration of different platforms that can provide access to
resources using various protocols, so it becomes necessary to implement an API to separate
the user interface from the remaining platforms. In the same way, the use of an API also
offers a way to implement a solution envisioning the implementation of the Separation of
Concerns principle, by passing the responsibility of dealing with authentication and autho-
rization and data formatting to a single component. Thus, the application responsible for
the presentation layer is segregated into another component - the Issue Creator component.

5.2 Deployment

Regarding deployment, a deployment diagram provides a way to visualize the topology of the
physical components of a system, how and where the software components are deployed.
Regarding the project deployment, it is described in the Figure 5.2.

Figure 5.2: Deployment diagram

According to the figure, the physical devices that constitute the system are as follows:

• Computer: corresponds to the client physical device that uses a browser in order to
access the platform;

• issue-creator.e-goi.com: domain responsible for the deployment API;

• issue-creator.egoiapp.com: the domain responsible for the deployment of the web
application - the Issue Creator component;

• jira.-egoi.com: the domain responsible for the deployment of the Jira platform;

• bitrix.e-goi.com: the domain responsible for the deployment of the Bitrix24 platform.

It is relevant to point out that all the domains represented were already implemented. In
this case, the only domain that was newly created was the one where the web application
should reside.

5.3. Use Cases 49

5.3 Use Cases

With the architecture defined, it becomes possible to analyze all the requirements in order
to specify how they are to be implemented. This will enable one to specify how they should
work and for what. In this section, a description of the design and constraints of each one
of the requirements is described and the flow of the messages between the components is
presented with the use of sequence diagrams, designed using UML.

5.3.1 FR01-Submit New Report

This requirement relates to the submission of a new report of a determinate issue type. The
sequence of actions to be performed by the actor (reporter) is presented in Figure 5.3.

Figure 5.3: Submit new report sequence diagram

The reporter begins the requirements by selecting the type of issue that he wants to submit.
After selecting the required issue type from the four available - bug, feature, improvement
or educational (more information below), the reporter can fill in the fields of the form and
ultimately submit the report.

In response to a stakeholder request, before submission (during the writing of the report),
to aid in the detection of issue duplications, Continuous Querying can be implemented as
described in the literature review section (Section 3.2). When the user inputs the summary

50 Chapter 5. Design

(short description of the issue), after a short delay, the API can be queried to retrieve similar
issues that contain similar statements in both the description and the summary. It then falls
to the responsibility of the reporter of the issue report to verify each one of the retrieved
issues (10 maximum) and check if it has already been reported. In case an already reported
issue is found, the user should instead open a new case for that issue - requirement FR003.

After everything is filled out properly, the reporter submits the issue, in which case, a request
is sent to the API and then to the Jira tool via REST. The URL paths demonstrated in the
picture correspond to actual paths to the Jira REST platform.

Regarding the information that should be presented to the user for any of the issue types,
these must follow the rules presented in the Section 3.1. Bellow is a description of all of the
issue report types that must be implemented. Regarding the educational type, the contents
of this report are in accordance with the specifications gathered when interviewing the UXA
team.

Bug

A bug represents a problem that impairs or prevents the functions of the product. In the
case of bug reporting, the information that must be provided by the reporter must be
straightforward and complete. This is in order to help the developer to understand the
problem at hand. Thus, the information that must be included in the form is:

• Summary: a brief description of the issue. Must be direct and concise to describe the
issue. This field is mandatory;

• Component: Relates to the software component responsible for that issue. This is
used to automatically assign the issue to the corresponding team manager for re-
view. Jira handles this internally since the users have already been assigned to each
component. This field is mandatory;

• Client Information: corresponds to additional information regarding the information
gathered from the reporter client. This includes fields such as client ID, support ticket
ID, campaign ID, etc. This information is optional but necessary;

• Current Behavior: the current behavior of the action performed. This field is manda-
tory;

• Supposed Behavior: what was supposed to happen when performing the use case.
This field is mandatory;

• Steps to Reproduce: what actions can be taken to reproduce the issue. This field is
mandatory;

• Workaround: what steps were taken in order to solve the problem temporally;

• Additional Information: any additional information that can help to analyze the
problem, this includes attachments;

• Customer Values: values used in order to apply the MoSCoW prioritization method
(described in Subsection 2.4.2);

New Feature

A new feature is a component or feature of the product that has not yet been developed.
The fields to be included in this section are similar to the ones present in the bug report but

5.3. Use Cases 51

instead of the supposed behavior, actual behavior, steps to reproduce and workaround, two
mandatory fields are implemented: desired behavior (what should be implemented) and goal
(why it should be implemented).

Improvement

An improvement is an enhancement to an existing feature or task. Similar to the new feature
report, this report should include three different fields: current behavior, desired behavior
and problems to solve.

Educational

The educational content issue type reports correspond to an update or creation of an article
in the Knowledge Base that needs to be performed by the UXA team.

According to the user feedback gathered in the presence of the UXA team, this form must
take information according to the four types of requirements of the team. This can be
achieved with a dynamic form that is generated when choosing from a number of alternatives
such as knowledge base information update, new feature documentation, customer doubts
and other requirements.

An update of information must include a link to the knowledge base, the test account, the
outdated information, and the information to update. In the case of new feature documen-
tation, the fields test account, feature description and feature flow must be described.
There are two fields in the customer doubts form: ticket ID and client questions. This form
is used in order to identify which information seems to be unclear or missing in the knowledge
base so that it can be further investigated. Lastly, the other cases need only a simple issue
description.

For all the issue types and in all the fields, a short description of what and how to write
must be presented to the user. This will guide the filling of the different fields and prevent
misinformation. This includes a short statement in the summary of the good and bad
examples of issue summaries.

5.3.2 FR02-Search Issues

The objective of this requirement is to search issues in order to be able to easily access the
other functionalities related to the prior selection of the issue to act upon - FR03 to FR08.
A sequence diagram for this action is shown in the Figure 5.4.

Figure 5.4: Search issues sequence diagram

52 Chapter 5. Design

The user interaction with the platform is very simple and straightforward. The user starts
by querying the issue that he wants to find. The request is sent to the API and forwarded
to the Jira platform trough REST, the results are then shown to the user where he can
visualize the information and perform the various actions. In order to improve the search
functionality, filtering options are to be implemented to filter issue types and to show the
reporter submitted issues.

Jira REST API search feature allows both the GET and POST methods, however, according
to their documentation, the later one is more efficient and allows and more comprehensible
understanding and organization on the sent parameters. The queries performed to retrieve
the issues from Jira use the language Jira Query Language (JQL), which represents the
query language used by Jira to make searches for issues.

5.3.3 FR03-Add New Case

The objective of this requirement is to allow the reporter to report an issue that has already
been reported but that has also been experienced by another customer. This is done through
feedback. Figure 5.5 represents the action sequence diagram for this requirement.

Figure 5.5: Add new case, sequence diagram

According to the figure, the reporter, when adding a new case, fills in the mandatory fields
and submits the request. The request is then sent to the API, where the buzz points are
calculated and the request is forwarded to Jira. In this case the PUT method is used because
Jira allows the attachment of comments when updating the issues information. This allows
the appending of a new comment with the information regarding the description provided
by the reporter.

A new case can be submitted by providing a description, attachments, and most importantly,
the customer values. By adding a new case, the reporter presents the new customer values
for that case found and, if the values are superior (more relevant) than the ones originally
in the issue, then these values must be updated with an attached note.

5.3. Use Cases 53

Regarding the constraint of increasing the visibility of the issue, the term Buzz Points
comes into play. This is an integer value that is incremented whenever an action is required
to make an issue stand out from the rest. This requirement, along with FR06 and FR07,
should increase this value.

The addition of the Buzz Points allows an issue to have a bigger priority than others that
are in the same MoSCoW priority range. This gives them more visibility to the managers
that are responsible for analyzing them.

5.3.4 FR04-Add Comment

This requirement allows the reporter to add a new comment to an existing issue. The
addition of comments is used as a means of communication between the reporter and the
current issue assignee to add extra information or to discuss other matters.

The fields that must be present in this form are the comment which is mandatory and
additional information which is optional and also includes the ability to send attachments.
The sequence flow of this requirement is similar to that of adding a new case (FR03).

5.3.5 FR05-Edit Customer Values

The aim of this requirement is to allow the reporter to edit the customer values due to
an error committed when submitting the issue or simply to increase the priority of the
issue. According to the data, in addition to editing the values, the reporter must also add a
justification for altering them.

Table 5.1, describes all the values that the customer values can take and their priorities.
The priorities are evaluated from 0 to 5, with zero being the minimum priority.

Table 5.1: Customer Values description

Group Value Priority

Business Value

Unknown / NA 0

Trial / Free 1

Starter 2

Pro / Pay as you go / Internal Customer 3

Corporate 4

Top Corporate 5

Customer Impact

Unknown / NA 0

It does not have a big impact on the client’s
tasks in E-goi. Nice to have

1

It has some impact, but there is a simple
workaround

2

54 Chapter 5. Design

Group Value Priority

The impact is medium, causing some discom-
fort to the customer

3

High impact, the workaround for client activity
in E-goi is complex

4

It is a blocker for client activity in E-goi 5

Customer Satisfaction

Unknown / NA 0

Very Satisfied 1

Satisfied 2

Indifferent 3

Lack of Confidence 4

Churn Imminence / Conversion Loss 5

5.3.6 FR06-Ask For Reopen

Asking for a reopen of an issue occurs when the reporter decides, upon extensive analysis,
that the issue that was once closed with a specific resolution was not properly implemented
and the resolution was not satisfactory. As a consequence, the reporter can ask for a
reopening of the issue, which would consist of increasing the Buzz Points and adding a new
comment.

The sequence of the actions and transactions between components is similar to Figure 5.5.

5.3.7 FR07-Ask Estimation

Using the ask estimation action, the reporter can add a new comment to an issue to request
an estimate of resolution time for developing or closing the issue.

This requirement takes no fields as it just adds a comment to the issue with the name of the
reporter asking for an estimation. In essence, this action follows the same steps as FR03
and should add up to the current Buzz Points of the issue.

5.3.8 FR08-Watch Issue

The goal of this requirement is to allow the reporter to watch an issue. This allows him to
receive notifications whenever an issue is updated, whether it be by adding a new comment
or status and resolution changes. This also facilitates the reporter in finding issues when
using the search feature.

Similar to the requirement FR07, this action takes no fields as it is a direct request to the
Jira API trough the watchers route, passing the id of the issue and the reporter id.

5.4. Alternative 55

5.3.9 FR09-Get Status & Resolution Information

The objective of this requirement is to provide reporters with information about the status
and resolution of issues and their meaning - Table 2.2 and Table 2.3 in Subsection 2.5.2,
respectively.

The information regarding the items (description, title, owner and maximum time) is re-
trieved dynamically from the Jira component and then formatted and returned by the API.
The routes used to retrieve the information from Jira are "status" and "resolution".

5.3.10 FR10-Create Release Post

When creating the new product release, the SRE Officer has the need to create a post
in Bitrix24 in order to announce a new product version to the entire company, along with
the issues that were resolved along with their respective information such as issue ID, issue
type, component, summary, resolution and priority score. This action is to be triggered from
GitLab or through a terminal, which means that a route for this action is to be developed
in the API in order to integrate into the GitLab Webhooks.

Figure 5.6: Create release post sequence diagram

In order to create a release post, the SRE Officer must provide the release version. In the API,
the issues that concern that version are retrieved. These issues then need to be formatted
in order to create the post message and to match the Bitrix24 required request data in the
POST method. After the formatting, the request is sent to the Bitrix24 component and
the response is retrieved.

5.4 Alternative

Despite the fact that the solution chosen to prevent duplicate issues serves its purpose and
meets the stakeholders’ requirements. In terms of performance this might not be the best

56 Chapter 5. Design

applicable scenario. In fact, this is one of the main constraints of the chosen algorithm as
stated in [16].

An alternative that could in fact be applied to solve the performance issue would be to
use a duplicate prevention approach. This means detecting the duplicate after submitting
the issue. The algorithm applied could be the same, however the issue submitted would be
processed in a later phase. However, one thing to consider here was that the user would
most likely not be more resultant to search for similar issues in order to submit a new case
instead of simply creating a new issue report.

For this alternative, Figure 5.7 presents the sequence diagram of overall envisioned solution.
At first all the issues present in Jira would have to be indexed in Elastic Search, an open-
source search engine that provides a REST API and the scalability and performance for
indexing and retrieving unstructured documents almost in real-time [49]. This engine would
be used in order to not be dependent on Jira limitations when querying for all the issues.

Figure 5.7: Alternative solution sequence diagram

According to the figure, the reporter submits a new issue and the request is passed on to
the API. The data is validated and the issue is created in Jira with a new state for example
- Unprocessed.

Next, a new message is sent to the message queue, an engine that allows for asynchronous
service-to-service communication, in which messages are stored until they are processed by
a consumer (or worker). This method helps to reduce the workload by enabling the scaling
of more workers if needed in order to decouple heavyweight processing.

After that, the worker consumes the message and starts processing it. In a general overview,
what it does is communicate with the Artificial Intelligence (AI) engine. This engine, in turn
communicates with the Elastic Search engine in order to retrieve the issues to compare
to. The AI engine processes the issues, finds the top-n duplicates in order of matching
percentage and passes the information to the worker. Here, the next step is to check if
the percentage of the first matching issue is high enough (for example above 90%). If the
retrieved issue passes the condition then a request is sent to the Jira platform in order to

5.5. Summary 57

pass the issue to a Processed state, link the found duplicate to the issue and add the label
Duplicate.

After this entire process, the worker must finally create a new indexation on the Elastic
Search engine in order to include the newly created issue.

Even though this solution could bring better performance and scalability for the envisioned
application, the fact is it would not reflect the requirements of the stakeholder. This solution
however could be implemented in a later phase when considering enabling the E-goi clients
to submit their own issues, since the volume of data would increase and a more consistent
deduplication solution would have to exist. Due to the fact that the organization already
uses these engines, it would only be a matter of implementing communication between them.

5.5 Summary

In this chapter, was presented the design of the final solution taking into account all of the
requirements. Here, were presented all the technical aspects of the system (architecture,
communication, deployment, and functional requirements logical flow). Additionally, alter-
native solutions were included, in case performance becomes an issue for further application
scalability.

Next, comes the implementation of the system, taking into consideration all the planning
performed in the present chapter.

59

Chapter 6

Implementation

After the study, planning and analysis phases, the implementation phase of the idealized
solution is now performed. In this chapter, the most relevant elements of the implementation
of the Issue Creator will be presented.

This chapter presents the technologies used, the development methodology and the imple-
mentation of the front-end and back-end (API) of the platform.

6.1 Technological Environment

For the development of this project, the Angular 1 framework was used for the development
of the front-end and the Python 2 language with the Falcon framework 3 and Gensim 4 for
the development of the REST API (back-end).

For the development of the two types of tests in the Angular project (unit and integration),
other two frameworks were used. These will be mentioned in Subsection 7.1.1. In the next
paragraphs each of these technologies will be briefly mentioned. It is important to mention
that both of these technologies were used since they are part of the technological stack of
E-goi.

Angular

Angular consists of an open-source, front-end framework developed by Google that aims to
provide an improved typed version (through Typescript) of its predecessor - AngularJS.

This platform includes various advantages such as component-based development that fo-
ments re-usability and maintainability, out-of-the-box tools that allow routing management,
external communication and forms management, and a set of features that facilitate the
development and testing [50].

Python

Python is a high-level, object-oriented, modular, open-source programming language that
supports not only rapid learning thanks to a straightforward syntax, but also allows for fast
development and maintenance of code in large projects.

1https://angular.io
2https://www.python.org
3https://falcon.readthedocs.io
4https://radimrehurek.com/gensim

60 Chapter 6. Implementation

One of its most attractive aspects is the fact that it provides a vast number of native and
third-party libraries, making it very popular and useful in a large multitude of sectors, such
as web development, data analysis and machine learning.

Regarding the most significant frameworks used in the project, we can highlight two of them
- Falcon, that allows the creation of REST API’s and microservices with a major focus on
reliability and performance [51], and Gensim, that corresponds to a library that allows the
processing of various documents and their comparison through their prior transformation
into vectors and subsequent application of machine learning algorithms [52].

Regarding the Gensim library, in order to be able to use it, some core concepts must be
understood such as:

• Document - represents the text we want to parse in order to create the vectors and
train the model;

• Corpus - represents the collection of all the documents submitted for training the
topic model;

• Vector - representation of each Corpus in a structure that enables it to be manipulated
mathematically;

• Model - refers to a transformation between one document representation to another.

6.2 Development Methodology

Despite the project being carried out by just one person (in general), in order to develop
this project, the adoption of the development methodologies implemented by E-goi took
place. This methodology allows the various teams to work in an environment that fosters a
continuous integration continuous delivery approach.

In this regard, continuous integration corresponds to a widely established practice in which
the team members integrate and merge developed code frequently and continuous delivery
corresponds aims at ensuring that an project is constantly production-ready by running
automated actions every time a project is merged [53].

E-goi uses the platform GitLab 5 as a Git tool for version control for all its projects. This
tool allows the integration with other platforms such as continuous integration tools.

Both for Issue Creator and for the other projects present in E-goi, in terms of versioning,
there are three branches - one for development, one for carrying out the different tests and
the last one for production. When developing a new functionality, the development process
must pass through the three branches.

In order to automate the process of continuous integration and make available any func-
tionality developed for the end user, or, in other words, in order to automate the process
of code verification, test execution, project building and deployment for both the test and
production environments, the Jenkins tool is used 6. This tool is integrated with GitLab and
allows the management of continuous integration pipelines. Whenever new code is sent to
the test branch, the configured pipeline for the project (and that branch) is triggered and
the various actions are performed.

5https://about.gitlab.com
6https://www.jenkins.io

6.3. Front-End Development 61

The pipeline for the Issue Creator project contains the following actions - branch checkout,
project build, test execution, verification of the code, and, finally, deployment to staging.
Regarding the production pipeline, the process is the same but, in this case, the code can
only be sent to the master branch once the feature merge request is approved by the SRE
team.

Applying this methodology will ensure that there will be a significant improvement in the
management of developed applications as it will ensure that the release of a new version of
the application will pass through all the necessary checks to detect any bugs or improper
programming practices.

6.3 Front-End Development

As explicit in the Section 6.1, the front-end application was built using Angular. The web
application was developed with an eye toward maintaining its structure and the easy addition
and removal of any of the functionalities or types of reports. In terms of component-based
structure, a component was created for all the report types. Even though it might not be
the preferred practice in terms of modularity, it compensates in terms of project structure
management and code readability. On the other hand, in terms of core domain classes, these
were developed by using a high level of abstraction and by using the builder pattern. This
pattern allows the construction of complex objects step by step. Figure 6.1 shows the class
diagram for the main classes for the forms in the web application. In this case, the factory
pattern could also be applied. However, the chosen pattern offers a more readable syntax
and allows validation of the various steps of constructing the final form. This includes the
generation of the issue description which must be generated by passing multiple form input
values for the final value.

Figure 6.1: Issue Creator web app class diagram

According to Figure 6.1, each form (may it be a bug, improvement, feature or educational
form) extends an AbstractBaseForm which consists of a summary, a description, labels,
an IssueType, multiple Components, a Reporter and a Project. A form might also im-
plement (or not depending on the fields a specific form contains) multiple interfaces such

62 Chapter 6. Implementation

as IFormWithCV, IFormWithElements and an interface with the form-specific fields -
IBugForm.

In the same way, each form contains a form builder, in this case a BugFormBuilder extends
an AbstractBaseFormBuilder. Each builder contains a function buildDescription() that is
responsible for building the description of the issue dynamically (in markdown format) based
on the input fields that are filled at the time of submission.

Figure 6.2: Issue Creator issues search page

In terms of UI development, Figure 6.2 presents the main page of the platform. In the
representation we can see the various use cases implemented by the following color scheme:

• Yellow - menu with the action that represents the functional requirements FR04,
FR05 and FR03;

• Purple - the button used to create a new issue - FR01;

• Orange, Blue and green - represents the requirement FR02. The lateral view allows
the filtering of the various issues, with the ability to display only the issues reported
by the logged reporter. The green search bar allows one to search issues by various
parameters such as: issue id, summary, description, reporter, component, etc.

Regarding the functional requirement FR01, Figure 6.3 represents the presentation to the
reporter of the top 10 issues that might be related to the issue being written based on the
keywords provided in the summary. In this section, the reporter has the ability to check each
one of the suggested issues and check if any of them is related to the one that he/she is
about to submit.

6.4. Back-End Development 63

Figure 6.3: Issue Creator similar issues shown when filling a new report

6.4 Back-End Development

The REST API, was developed to provide a bridge between the web application and the Jira
and Bitrix24 API’s. As stated in Section 6.1, this API was developed in Python and uses the
Falcon framework to easily serve the various endpoints consumed by the web application and
the Gensim library to perform the document analysis for identification of the most similar.

In order to better comprehend the structure of this API, in the Figure 6.4 is represented a
components diagram with the various components present in the application. According to
the figure, the different components present are:

• Jira Service - responsible for the communication with the Jira REST API;

• Bitrix Service - responsible for the communication with the Bitrix REST API;

• Auth - responsible for the authentication in the Jira and Bitrix platforms. The au-
thentication in these platforms is made by authentication token;

• SearchBuilder - uses the builder pattern to create and validate the query to be per-
formed to search for the issues. This builder takes into account the various filters used
to filter the issues when searching and builds the query in JQL language;

• ContinuousQuery - component responsible for performing the evaluation of the doc-
uments retrieved from Jira and applying the algorithms to return the top 10 most
similar ones;

• Resources - component where the necessary endpoints reside. This component is re-
sponsible for receiving the requests and sending out the response to the web application
and dispatching the webhook response.

In regard of the algorithm used to search for similar issues, the developed solution follows
the technique Continuous Querying proposed by [16] (referenced in Section 3.2) in order to
provide feedback to the user when filling the new report.

64 Chapter 6. Implementation

Figure 6.4: Issue Creator API component diagram

In order to implement the solution the same library and algorithm used in the article were
implemented. The algorithm used was TF-IDF (Term Frequency-Inverse Document Fre-
quency), which is the algorithm most commonly applied by search engines and consists of
transforming a set of words into a vector space where the frequency counts are weighted
according to the relative rarity of each work in the corpus.

In other words, term frequency results in calculating the number of times a term appears in
a document. On the other hand terms such as the most common words ("the", "of", "a",
"as", etc) cannot accurately determine the relevance of a document, thus inverse document
frequency, is introduced in order to solve this problem. Thus, the inverse of the frequency
of the terms is used in order to reduce the weight of the terms that occur more frequently.
This is done by increasing the weight of the terms that occur rarely.

The library used, offers a simple and straightforward implementation of this algorithm in order
to identify the top 10 articles with the highest probability of being duplicates. In Figure 6.5,
is represented the code used in order to find the similarity of the queried terms against a
group of retrieved issues. In order to implement this method, we first have to retrieve a
small amount of issues from Jira (configured to 50) in which the summary corresponds to
the queried terms and then we apply the algorithm.

From the piece of code extracted early, we first create the corpus that consists of the
concatenation of each issue summary with the description (1) and create a set of frequent
words (2) in order to be able to remove them from each document (after splitting each
document by white spaces - 4) . We then filter the words in order to keep only those that
appear more than once (5) and build the dictionary (6). After that, we convert the corpus
(each one of the documents) into a list of vectors (7).

Finally, we train the corpus with the TF-IDF algorithm (8) and perform a query with the
search terms (9). It is pertinent to note that this model can be discarded or saved in order
to be posteriorly trained with the help of another corpus. The last step is to return the list

6.5. Summary 65

Figure 6.5: Continuous querying component algorithm

of similarities ordered by similarity. After the return the only step left is to return the top
10 similar documents.

Finally, when it comes to the FR07 in creating the release post, this only consists of a
webhook that queries the Jira platform REST API to grab all the issues corresponding to
the main product project and to the version specified. The issues are then parsed in order
to generate the Bitrix post content and a request is made to Bitrix in order to create a new
post.

6.5 Summary

The chapter explains all the steps of solution development, including both the development
methodologies used and the technical aspects to be considered when programming the
system. In the first section of this chapter, an overview of the implementation of the web
application and the organization of the UI was discussed. As part of the second section,
is presented the implementation of the backend of the system - the API, along with the
algorithms used to implement continuous querying.

66 Chapter 6. Implementation

The following chapter will present the evaluation of the developed solution. As a result, it
becomes important to show evidence that the work done resulted in an approach that is
valid and has the expected quality.

67

Chapter 7

Experimentation & Evaluation

Once the implementation is complete, the next step is to evaluate it. This is to determine
if the product developed is able to fill in the gaps identified when the problem was analyzed.
It also becomes essential to check if the developed solution provides enough quality to its
final users.

Several forms of evaluation should be performed when developing software. This is because
the development process is incremental and takes into account the feedback given by the
stakeholders when partial solutions are presented. There are, however, some evaluation
parameters that can only be measured when the final (or almost final) version is developed
and deployed.

With this chapter, the main objective is to evaluate the final developed solution both in
terms of its technical implementation and its inherent quality as perceived by stakeholders.
To achieve this, several steps must be taken into account such as the problem definition,
the objectives definition, the hypothesis specification, the identification of the indicators and
sources of information, and, finally, the methodology used in each of the hypotheses.

The problem and the objective were already identified in the Sections 1.2 and 1.3, respec-
tively. The remaining items are described in this section.

7.1 Evaluation Indicators

To be able to evaluate the developed solution, the following evaluation indicators were
identified:

• Functional and non-functional requirements implementation;

• Quality of the system;

• Product usability;

• Development process efficiency;

• Solution performance;

The first indicator corresponds to the full implementation of the functional and non-functional
requirements. The second aims to identify the overall quality of the system as expected by
the stakeholders.

The third, system usability, relates to the measurement of how the end-user can interact with
the product to achieve a defined goal effectively, efficiently, and satisfactorily. Finally, the

68 Chapter 7. Experimentation & Evaluation

fourth indicator is intended to measure how the development process, from the perspective
of the product manager, has become more efficient during the phase of analyzing the issues.

Once the evaluation indicators are determined, the hypotheses can be formulated. In the
following subsections, the hypotheses formulated, that directly correlate with each of the
indicators, are enunciated along with the methodology used to evaluate the respective hy-
pothesis.

7.1.1 Hypothesis One

This hypothesis corresponds to the evaluation of whether or not the elicited requirements
were fully implemented in technical terms, as described by the stakeholder.

Methodology

To evaluate this hypothesis, software tests must be implemented. The purpose of these
tests is to validate that the system is operating as specified by the requirements.

To be implemented are not only unit tests to validate the proper operation of each com-
ponent of the application, but also integration tests to verify the integration of the various
components and systems. In the end, the main result here to consider is to have a code
coverage of at least 90% to guarantee that the majority of the application is properly tested.

Results

In order to evaluate the quality of the requirements, two tools were used. For the front
end project the frameworks Karma 1 and Jasmine 2 in order to perform both integration
and unit tests in the Angular application. In this application, each component and service
generated has a spec file associated that allows the developer to easily test each component
individually.

Angular provides these testing frameworks out of the box. It enables the user to run these
with a single command, making it ideal for use in a continuous integration pipeline.

Figure F.1 in Appendix F, represents the results of the tests performed in the front end
application. As can be seen, this amounts to a total of 45 tests. During these tests,
services were the main focus.

On the other hand, for the API the tools used to perform the tests to the various endpoints
was the Postman 3 for integration tests and pytest 4 for the unit tests. Postman is a platform
that provides many tools to perform tests and to generate mock servers.

In order to perform the tests in this tool, the developer must create a collection with all
the HTTP requests that he wants to test in the API and then, for each request, write the
assertions to be evaluated as we can see in Figure F.3, present in Appendix F.

The tests written follow an intuitive language that allows both programmers and non-
programmers to seamlessly understand what is being tested. This platform becomes ideal to
use when applying both Behavior Driven Development (BDD) and Test Driven Development
(TDD). Table 7.1, represents the summary of the tests run along with the type and the final
coverage of those tests.

1https://karma-runner.github.io
2https://jasmine.github.io
3https://www.postman.com
4https://docs.pytest.org

7.1. Evaluation Indicators 69

Table 7.1: Implemented tests summary

Project Test Type Framework Number of
test cases

Coverage

API (Python) Unit Pytest 23 95%

API (Python) Integration Postman 36 100%

Web App (Angu-
lar)

Unit + Integration Karma + Jas-
mine

45 92%

To test the presence and correctness of the different data that should be present in each
response, multiple tests were written for each endpoint of the project. In Figure F.2, in
Appendix F, is presented a test run of the collection created for the project.

In the end, and by analyzing the Table 7.1, we can verify that the overall code coverage
on both the projects (Web app and API) are above the established minimum of 90%.
In both cases, the coverage didn’t reach the maximum percentage since the tests would
depend on testing basic implementation that are built in into the application. Regarding the
coverage of the integration tests with Postman, these are calculated taking into account
the number of API resources multiplied by the number of expected response types from each
resource/endpoint.

7.1.2 Hypothesis Two

This hypothesis aims to evaluate the overall quality of the system by taking into account
both the functional and non-functional requirements. In this case, the objective is that the
final solution provides a quality level of 100%.

Methodology

To evaluate this hypothesis in particular, the model used corresponds to the Quantitative
Evaluation Framework (QEF) model. First proposed in 2006 by Paula Escudeiro and José
Bidarra [54], the QEF model represents an evaluation model that allows the improvement
of the quality of the software, whilst allowing the detection and improvement of any flaws
that can occur [55].

This model is based on a quality space consisting of three dimensions. Each dimension takes
into account a set of factors that, in turn, group a set of requirements. Each requirement
corresponds to a weight (importance), in that specific factor, which can take any even value
from 0 to 10, with 10 being the highest relevance.

To evaluate the fulfillment of each requirement, a metric evaluation must be defined for
each of them along with a description of its fulfillment. This must be achieved to meet that
requirement. Related to each factor, there is also a correspondent relevance value that is
calculated by the division of the sum of the weights of the requirements of that factor by
the sum of the weights of the requirements of that dimension.

When calculating the global quality of a system, one must consider two concepts: the system
ideal solution (when the system reaches its maximum quality) and the system real solution
(when the system actually reaches its actual quality). By minimizing the Euclidean distance

70 Chapter 7. Experimentation & Evaluation

between the ideal system and the real system, we are maximizing the real quality of the
solution.

For the developed project, the dimensions, factors and requirements that were defined are
presented in the Table 7.2, and the application of the model is presented in the Appendix
B, with the correspondent references and descriptions of each of the requirements.

Table 7.2: Dimensions, factors and requirements of the QEF model

Dimension Factors Requirements References

Functionality
Reporter (Actor) FF01, FF02, FF03, FF04, FF05, FF06, FF07,

FF08, FF09

SRE Officer (Ac-
tor)

FSREO10

Supportability

Testability ST01, ST02

Scalability SS01, SS02

Maintainability SM01, SM02, SM03, SM04, SM05

Usability

Content Quality UQ01, UQ02, UQ03

User Interaction UU01, UU02, UU03, UU04, UU05, UU06

Interface UI01, UI02

Results

After the implementation of the solution, each one of the items mentioned in the QEF
model were revisited in order to check if they were all implemented. A final model with all
the values of the requirement fulfillment is shown in Appendix B. The final score for the
overall solution was 100 percent.

For the functionality dimension, each one of the elicited requirements was implemented as
well as the supportability dimension, with the successful implementation of integration and
unit tests (as per Subsection 7.1.1), the implementation of development patterns such as
builder to allow maintainability, documentation of the code and the use of linters in the front
end project in order to maintain code readability. Logs in the API were also implemented to
detect possible errors that might not have been detected in the tests.

As for the Usability dimension, the following was taken into consideration, among others:

• The use of appropriate language in the messages (popups and submission);

• All the forms present additional information in order to guide the user on what to input
in each field;

• The interface is intuitive, this was proven with the final usability test score presented
in the Subsection 7.1.3;

• All the actions that require a request to external resources (API) have a visual indicator
of the processing of the action;

• Forms that allow the upload of attachments have the drag & drop functionality;

7.1. Evaluation Indicators 71

By achieving a total score of 100%, we can conclude that the implemented application
exhibits the maximum degree of quality since it meets all the requirements.

7.1.3 Hypothesis Three

This hypothesis relates to the evaluation of the overall usability of the system. Usability can
be described as the ease of use and acceptability of a product for a particular group of users
that carry out a specific task in a specific environment [56].

The objective of this hypothesis is to determine if the overall usability of the solution is in
line with the expectations of the user.

Methodology

To perform this evaluation, usability questionnaires can be applied. To conduct these surveys,
a set of tasks that the user must perform must be carefully planned to focus on the objective
of the usability study. Then, a questionnaire is presented to the user with a set of questions
regarding the tasks at hand. These questions can be of a qualitative (open answer) and
quantitative (closed answer - scale) nature.

Regarding the set of questions asked, these correspond to ten questions presented in the
System Usability Scale (SUS) questionnaire, which was firstly introduced in 1984 by John
Brooke to measure people’s perceived usability in computer systems [57]. In terms of re-
sponse scale, since they are closed questions, the Likert scale is used since they provide more
reliable information than single-item scores [57]. SUS represents a single number yielding a
composite measure of the overall usability of the system or product, bringing this scale from
0 to 100. Figure 7.1, shows the SUS score associated with the adjectives and acceptability
scores.

Figure 7.1: Adjectives and acceptability associated with raw SUS scores.
Adapted from [58]

The model for the questionnaires conducted is presented in the Appendix C. In this question-
naire, both quantitative and qualitative answers were requested. However, the qualitative
answer was optional and used mainly to gather any additional input from the interviewer.
This input could be used in order to improve the platform.

Results

As stated in the methodology, the data for this hypothesis was retrieved using usability ques-
tionnaires as per Appendix C. The questionnaires were unsupervised and delivered through

72 Chapter 7. Experimentation & Evaluation

the Google Forms 5 service and the results can be found in the Appendix E. The total number
of responses collected was 24, however four of them were discarded since the interviewers
stated that they had never had contact with the platform before. This left 20 total valid
answers.

In order to calculate the SUS value, the following method must be applied:

1. Convert the scale into points, by following the rule:

• Strongly Disagree: 1 point

• Disagree: 2 points

• Neutral: 3 points

• Agree: 4 points

• Strongly Agree: 5 points

2. Calculate the SUS value by using the formula for each one of the responses:

RawSUS = (Y +X) ∗ 2, 5

,where X = sum the points of all odd-numbered questions and subtracted by 5 and Y
= 25 minus the sum of all the points of the even-numbered questions.

3. Calculate the average of all the raw SUS values for all the responses.

The first and second items are calculated in Appendix E. By calculating the third item (the
average of the final SUS scores of all the responses) we end up with the average SUS score
of 83. By comparing this value with the Figure 7.1, we can conclude that the usability score
is in the Excellent or Acceptable range.

By calculating the same values for the two main departments - SAC and Product, we end
up with scores of 86 and 88 respectively, which are also in the same quality range. As a
result, we can conclude that the platform meets the expectations of the users by enabling
them to use it easily.

Regarding the open question of suggestions and improvements, the following input was
received:

• "It’s much better and more intuitive";

• "Despite being able to improve from an aesthetic point of view, creating issues is
simple, follows a logical path and does not present major obstacles.";

This last point was used in order to improve the visual aspects mentioned in the original
answer.

7.1.4 Hypothesis Four

To evaluate whether the issue analysis performance of product managers increased during
software development. This translates into the satisfaction of the users as they assess the
solution’s results, which, in this case, involves the diminishing of duplicate issues as well as

5https://docs.google.com/forms

7.1. Evaluation Indicators 73

the quality of the submitted issues. The objective here is to evaluate if the efficiency of the
product managers improved when analyzing the reported issues.

Methodology

To evaluate this parameter, questionnaires can also be used, in this case, to access the
overall satisfaction of the product managers with the output of the developed solution. In
the same way as the usability questionnaires, the scale employed in this one is also the Likert
scale. Here, both qualitative and quantitative questions were evaluated. The questionnaire
used is in the Appendix D.

Results

In order to obtain data for this hypothesis, the same method as in the Subsection 7.1.3 was
used, by sending the questionnaire to all the PM through the Google Forms service. A total
of five responses were collected.

Since the amount of data is too small, it becomes unpractical to perform statistical analysis
on them. However, since they have been reduced, one may be able to draw some conclusions
directly from them. Below is a chart with the responses to each of the questions.

In Figure 7.2, we can see that, in the perception of the product managers, the ability to see
similar issues when in the process of writing the summary of an issue, contributed to the
reduction of similar issues written and, consequently, their posterior analysis by the PM’s.

Figure 7.2: Answers for the question - Do you consider that the amount of
duplicate issues has lowered over time?

In the same way, if we analyze the Figures 7.3, 7.4 and 7.5 we can conclude that both the
amount of information that is included in the issue reports as well as the structure of the
information has improved. This is the result of the structure enforcement imposed when
writing a new issue report by the reporter.

In fact, the results from the previous Figures (7.3, 7.4 and 7.5) can be used to explain the
results of the Figure 7.6, where all the product managers agree that, with the implementation
of the new system the task of reviewing the issues has improved.

Regarding the open questions (comments and suggestions) from the interviewers, the fol-
lowing arguments were stated:

• "Its easy to use and helps in the processing of the information";

• "Could use an bit of improvement in the visual aspect (...), but the overall structure
of the information is clear and straightforward"

74 Chapter 7. Experimentation & Evaluation

Figure 7.3: Answers for the question - Do you consider that the structure of
the information improves the task of issue reviewing?

Figure 7.4: Answers for the question - Do you consider that the amount of
information gathered improves the task of issue reviewing?

Figure 7.5: Answers for the question - Do you consider that the information
in the issue description is malformed and causes confusion?

Regarding the last statement, the feedback was noted and an analysis was made in order
to identify the stated problems and make the corrections in the application, similar to what
was made in the previous subsection, with the feedback from the usability questionnaires.

In conclusion, upon evaluating the responses given by the product managers to the ques-
tionnaire, we can consider that, in general, the implemented solution fulfilled the objective
of improving the performance of the PM’s in the task of reviewing and categorizing the
different issue reports.

By enforcing the need of more accurate and complete information when writing the issue
reports, it helps both the PM’s and developers to have all the data needed to solve the

7.1. Evaluation Indicators 75

Figure 7.6: Answers for the question - Do you consider that the overall
performance in issue reviewing has increased with the implementation of the

new system?

Figure 7.7: Answers for the question - Do you consider that the addition of
buzz points helps in the management of the visibility of the issues?

Figure 7.8: Answers for the question - Do you consider that the structure of
the comments helps in the identification of the different types of comment

request?

issue without the need of asking for additional clarification to the reporter. This impacts
positively on the performance of the development cycle itself.

7.1.5 Hypothesis Five

In this hypothesis, the objective is to measure the performance of the API responsible for
providing similar issues when using a continuous querying algorithm. It becomes pertinent
to assess the amount of requests and their timeliness. This will enable one to evaluate

76 Chapter 7. Experimentation & Evaluation

if the chosen solution is scalable enough to support a high number of concurrent users.
Because one of the company’s objectives is to serve the application not only to company
collaborators, but also to their clients (in a future version), this analysis is essential.

Methodology

In order to evaluate the developed solution in terms of API response times for the endpoint
used to retrieve duplicate issue reports, stress tests were performed. The main objective of
this test is to determine the maximum capacity of the system under test in terms of response
throughput, response times and API breaking point. The main metrics here are that the
API should withstand at least the number of collaborators in E-goi (150) concurrently and
the response times should not be superior to 2 seconds.

In order to conduct this test, many frameworks can be used like Jmeter 6 for example, how-
ever the K6 7 tool was used instead since it provides a straightforward implementation and
has also a very comprehensive documentation base. This tool is capable of performing sev-
eral parallel requests simulating several concurrent users accessing the platform per second
and saving both the responses (if needed) and the statistical data that enables the user to
evaluate the overall performance of the system.

Results

As defined in the previous subsection, the data needed in order to test this hypothesis was
gathered using the K6 tool. The global test scenario consisted of several scenarios, each
with a ramp up time of 30 seconds (the time taken for the number of concurrent virtual users
to reach the maximum), a set number of virtual users (virtual threads) and a continuously
stream of requests for another 30 seconds in order to simulate a continuous request stream
as well. Table 7.3 contains all the six test sub-scenarios conducted and the associated
number of virtual users, ramp up length and total test phase duration.

Table 7.3: Stress testing scenarios

Scenario Virtual Users Ramp Up Length (s) Test Duration (s)

#1 60 30s 1m02s

#2 90 30s 1m07s

#3 120 30s 1m14s

#4 150 30s 1m18s

#5 180 30s 1m20s

#6 210 30s 1m22s

The tests performed were only directed towards testing a single endpoint and checking if it
returned a "200 OK" (no evaluation of the response was made in terms of results shown).
The script written enables the use of randomly generated strings in order to reproduce the
search for actual terms to compare to. In terms of requests load, the script also took into
consideration the gradual increase of the number of users instead of injecting a load spike.

6https://jmeter.apache.org
7https://k6.io

7.2. Summary 77

This simulated a more realistic traffic increase. Table 7.4 contains all the data gathered
after executing the test plan.

Table 7.4: Stress testing scenarios results

Parameters/Scenario #1 #2 #3 #4 #5 #6

Number of Requests 799 486 553 586 617 628

Error Requests (%) 0% 0% 0% 0% 0% 2.5%

Min. Response Time (ms) 125ms 125ms 145ms 142ms 144ms 145ms

Avg. Response Time (ms) 2.43s 5.06s 10.29s 12.93s 14.9s 17.38s

90% Response Time (ms) 3.28s 14.08s 30.31s 37.79s 39.92s 51.92s

Throughput (req/ms) 6.5/s 7.2/s 7.4/s 7.5/s 7.6/s 7.6/s

From analyzing the results, we can see that the REST API is able to handle successfully the
overload of having 150 concurrent users performing requests, however the response times
are extremely far from ideal. This performance issue can be explained by multiple factors
such as the request being dependent on the performance and availability of the Jira server,
when retrieving the issues list, and the fact that the production hardware specification only
count on a single-core processor with 512Mb of Random Access Memory (RAM).

For the first problem, an implementation would have to incorporate a system that could
speed up the process of retrieving the list of available issue reports such as indexing them in
Elastic Search. For the second problem, the developed REST API is already built taking into
consideration the deployment of more instances which can then be load-balanced evenly.

7.2 Summary

In this chapter, it is evident that the development has been validated to demonstrate that
it can solve the problems identified by the analysis. This validation will serve as evidence of
the claim. In conducting evaluations and tests, one can assess the results of the research
and draw conclusions regarding limitations and successes. These conclusions can also be
used to outline future work.

Various indicators were evaluated here to validate both the quality of the development, with
the implementation of software tests and the use of the QEF model. Also the benefits in
the improvement of the product development cycle with the use of usability tests and the
use of questionnaires proposed to the product managers were evaluated.

In the end, all the evaluations passed their projected metrics with the exception of the
performance of the algorithm. This was in fact a characteristic that could have been expected
with the adoption of the suggested approach. Nonetheless, this provided a platform for
building a more robust solution that could be scaled if the need to expand the platform to
clients arose.

79

Chapter 8

Conclusions

The proposal in the project includes various processes starting with the definition of objectives
according to the identified problems, followed by the research of state-of-the-art technologies
to create a valid solution, and finally the development and implementation of a final solution
that would not only incorporate the technologies researched but also achieve each and
every objective. All these steps culminated in the final planning and testing of various
hypotheses that could demonstrate that the software created met the identified objectives
and requirements.

8.1 Achievements

In the initial phase of the project, several objectives were identified that were in need of
solving. To determine whether the development of the project resulted in a satisfactory so-
lution, these objectives were identified. According to Section 1.3, the developed application
should give a response to the following items:

1. Create a uniform structure for the information gathered in the issue reports;

2. Reduce the amount of duplicated issues;

3. Allow the distinction between issue types and provide work priority and visibility of the
created issues, throughout the company;

4. Provide integration with other services present in E-goi.

Each of these items had as its main objective easing and increasing performance on the task
of reviewing issues, not only by the PMs but also by developers. In order to develop this
application a prior study of, not only the E-goi internal development process, Chapter 2 as
well as the state of the art in terms of issue standardization, issue deduplication methods
and other relevant terms (Chapter 3) were conducted.

After the acquisition of the necessary information, it was possible to perform the analysis of
the problem not only in terms of the value that this solution would ultimately bring to the
organization but also of the functional and non-functional requirements gathered during the
elicitation phase, as per Chapter 4.

The following phase, the design phase, allowed for creating the overall structure of the appli-
cation taking into account the functional requirements and envisioning alternative solutions
that could be used to compare solutions and decide which is the most appropriate one to
use - Chapter 5.

80 Chapter 8. Conclusions

The implementation process took into account the best practices in terms of software de-
velopment as well as in terms of patterns, project maintenance (with the development of
tests), and the processes of continuous integration contained within E-goi.

Finally, after developing the solution, we were able to create distinct metrics that could allow
the correct evaluation of the objectives proposed in a set of hypotheses and conclusions.
With this, the following evaluation indicators were applied:

1. Correctness of the implementation of the functional and non-functional requirements;

2. Overal quality of the product;

3. Usability of the system;

4. Efficiency level in the development process;

5. Performance of the requests in conjunction with the issue detection algorithm.

For the first indicator, unit and integration tests were implemented in order to validate that
both the business rules as well as the requirements elicited by the stakeholder were correctly
implemented and that any change that could occur in the system could be automatically
verified to check for eventual bugs. In the end all the services and functions were vali-
dated giving a satisfactory result in terms of code coverage of 92 percent. This concludes
that the majority of the services and components were tested and their logic followed the
specifications of the stakeholder.

In order to assess the overall quality of the product, the QEF model was used to evaluate
the product on three fronts - Functionality, Supportability and Usability. The final score for
all three components was 100/100, concluding that the quality gate for the application is
very high.

For both the usability and performance evaluations, questionnaires were developed and de-
livered to the entire company (for the usability) and to all of the PM’s for the performance.
In the first case, a final average SUS score of 83 which is considered to be in the Acceptable
or Excellent range.

Both structured (short answer questions) and unstructured (free text questions) information
was collected from the PMs. Since most of the responses were within the optimal range, it
turns out that the implementation provided what was proposed to solve, especially when it
comes to questions regarding the structure and amount of information when submitting a
new issue.

Last, but not least, the final evaluation metric was to check if the application was able to
ensure that it could provide timely responses when used by the entire company. This last
metric allowed us to reach the conclusion that the application can, in fact, be used by the
entire company (in terms of concurrent requests) however performance is a major issue.

Even though this could have a multitude of factors from hardware limitations, in terms of
CPU and memory usage, (that could be surpassed by increasing the server capabilities) to
implementation issues since the API is dependent on the performance of the Jira service to
retrieve the multitude of issues present (in which another solution would be to index all the
issues in Elastic Search to increase the performance of document retrieval).

This last one has proven to be a major limitation of the application, however, if the provided
solutions do not improve the performance, the alternative solution envisioned in Section

8.2. Future Work 81

5.4 could be applied, where the evaluation of the duplicate nature of the reported issues is
performed after they have been submitted.

AS a final remark, and since the majority of the evaluate metrics passed their test, one
can conclude that the implemented solution does in fact provide a solution to the analyzed
problem and takes into consideration all the requirements proposed by the stakeholder.

8.2 Future Work

To date, the application is in use by the company in all departments. This has led to more
than 300 issues being created with the platform in a relatively short time span. It became
visible that the issue resolution had an overall improvement specially in the analysis of the
information present in the issues reports by the product managers. In fact, when questioned
about the utility of the platform to a product manager, the following input was received:

"The issue creator helps us in the creation and analysis of the issues in a global
way, because the ones that create new issues have a better perception of the
quantity and quality of the information that is delivered and those who analyze
it receive the information already organized"

The overall success of the project has been achieved, but there is still room for improvement,
and the E-goi clients have to play a more active role in the detection and resolution of
problems and improvements.

As part of our discussions with the CTO, one of the main goals in the future is to enable
E-goi clients to submit and track their issues. Naturally, this would require an additional
persistence layer and communication with other internal services. It would also lead to an
exponential creation of duplicates, which would have to be taken into consideration and
implement a more robust solution to the detection of such (the alternative solution present
in the design chapter, Chapter 5, could be a suitable candidate).

Lastly, other improvements that were also in the making and are planned for the future, is
the creation of new report types such as incidents and tasks among others. This could allow
a more precise control over the finality of each one of them.

83

Bibliography

[1] Jiehui Ju et al. “Research on key technology in SaaS”. In: Proceedings - 2010 Interna-
tional Conference on Intelligent Computing and Cognitive Informatics, ICICCI 2010.
2010, pp. 384–387. isbn: 9780769540146. doi: 10.1109/ICICCI.2010.120.

[2] IIBA. Guide to the Business Analysis Body of Knowledge (BABOK). 2015, p. 514.
isbn: 9781927584033.

[3] Gurpreet Singh Matharu et al. “Empirical Study of Agile Software Development Method-
ologies”. In: ACM SIGSOFT Software Engineering Notes 40.1 (Feb. 2015), pp. 1–6.
issn: 0163-5948. doi: 10.1145/2693208.2693233.

[4] Atlassian. What are issue types ? 2020. url: https://support.atlassian.com/
jira-cloud-administration/docs/what-are-issue-types/ (visited on 01/31/2022).

[5] Tommaso Dal Sasso, Andrea Mocci, and Michele Lanza. “What Makes a Satisficing
Bug Report?” In: Proceedings - 2016 IEEE International Conference on Software
Quality, Reliability and Security, QRS 2016. 2016, pp. 164–174. isbn: 9781509041275.
doi: 10.1109/QRS.2016.28.

[6] Thomas Zimmermann et al. “What makes a good bug report?” In: IEEE Transactions
on Software Engineering 36.5 (2010), pp. 618–643. issn: 00985589. doi: 10.1109/
TSE.2010.63.

[7] Mozhan Soltani, Felienne Hermans, and Thomas Bäck. “The significance of bug re-
port elements”. In: Empirical Software Engineering 25.6 (2020), pp. 5255–5294. issn:
15737616. doi: 10.1007/s10664-020-09882-z.

[8] Steven Davies and Marc Roper. “What’s in a bug report?” In: International Symposium
on Empirical Software Engineering and Measurement. 2014. isbn: 9781450327749.
doi: 10.1145/2652524.2652541.

[9] Md Rejaul Karim. “Key features recommendation to improve bug reporting”. In: Pro-
ceedings - 2019 IEEE/ACM International Conference on Software and System Pro-
cesses, ICSSP 2019. Institute of Electrical and Electronics Engineers Inc., May 2019,
pp. 1–4. isbn: 9781728133935. doi: 10.1109/ICSSP.2019.00010.

[10] Md Rejaul Karim et al. “ Identifying and predicting key features to support bug re-
porting”. In: Journal of Software: Evolution and Process 31.12 (Dec. 2019). issn:
20477481. doi: 10.1002/smr.2184.

[11] Petra Heck and Andy Zaidman. “A framework for quality assessment of just-in-time
requirements: the case of open source feature requests”. In: Requirements Engineering
22.4 (Nov. 2017), pp. 453–473. issn: 1432010X. doi: 10.1007/s00766-016-0247-5.

[12] Yguaratã Cerqueira Cavalcanti et al. “The bug report duplication problem: An ex-
ploratory study”. In: Software Quality Journal 21.1 (2013), pp. 39–66. issn: 15731367.
doi: 10.1007/s11219-011-9164-5.

84 Bibliography

[13] Som Gupta and Sanjai Kumar Gupta. “A Systematic Study of Duplicate Bug Report
Detection”. In: International Journal of Advanced Computer Science and Applications
12.1 (2021), pp. 578–589. issn: 21565570. doi: 10.14569/IJACSA.2021.0120167.

[14] Yguaratã Cerqueira Cavalcanti et al. “One step more to understand the bug report
duplication problem”. In: Proceedings - 24th Brazilian Symposium on Software Engi-
neering, SBES 2010. 2010, pp. 148–157. isbn: 9780769542737. doi: 10.1109/SBES.
2010.12.

[15] Nicolas Bettenburg et al. “Duplicate bug reports considered harmful... Really?” In:
IEEE International Conference on Software Maintenance, ICSM. 2008, pp. 337–345.
isbn: 9781424426140. doi: 10.1109/ICSM.2008.4658082.

[16] Abram Hindle and Curtis Onuczko. “Preventing duplicate bug reports by continuously
querying bug reports”. In: Empirical Software Engineering 24.2 (2019), pp. 902–936.
issn: 15737616. doi: 10.1007/s10664-018-9643-4.

[17] Zahra Aminoroaya, Behzad Soleimani Neysiani, and Mohammad Hossein Nadimi Shahraki.
“Detecting Duplicate Bug Reports Techniques”. In: Research Journal of Applied Sci-
ences 13.9 (2019), pp. 522–531. issn: 1815932X. doi: 10.36478/rjasci.2018.522.
531.

[18] Olga Baysal, Reid Holmes, and Michael W Godfrey. “Situational awareness: Personal-
izing issue tracking systems”. In: Proceedings - International Conference on Software
Engineering. 2013, pp. 1185–1188. isbn: 9781467330763. doi: 10.1109/ICSE.2013.
6606674.

[19] Davide Falessi, Freddy Hernandez, and Foaad Khosmood. “Issue tracking systems:
What developers want and use”. In: ICSOFT 2018 - Proceedings of the 13th Interna-
tional Conference on Software Technologies. 2019, pp. 543–548. isbn: 9789897583209.
doi: 10.5220/0006818405430548.

[20] Dane Bertram et al. “Communication, collaboration, and bugs: The social nature
of issue tracking in small, collocated teams”. In: Proceedings of the ACM Confer-
ence on Computer Supported Cooperative Work, CSCW. 2010, pp. 291–300. isbn:
9781605589879. doi: 10.1145/1718918.1718972.

[21] Jira. url: https://www.atlassian.com/software/jira (visited on 02/01/2022).

[22] Redmine. url: https://www.redmine.org/ (visited on 02/01/2022).

[23] Bugzilla. url: https://www.bugzilla.org/ (visited on 02/01/2022).

[24] Mohamed Sami Rakha et al. “Revisiting the performance of automated approaches for
the retrieval of duplicate reports in issue tracking systems that perform just-in-time
duplicate retrieval”. In: 23 (2018), pp. 2597–2621. doi: 10.1007/s10664-017-9590-
5.

[25] Aniruddha Prakash Kshirsagar and Pankaj R Chandre. “Issue Tracking System with
Duplicate Issue Detection”. In: (2015). doi: 10.1145/2818567.2818575.

[26] Fangwen Mu et al. “NERO: A Text-based Tool for Content Annotation and Detection
of Smells in Feature Requests”. In: Proceedings of the IEEE International Conference
on Requirements Engineering 2020-Augus (2020), pp. 400–403. issn: 23326441. doi:
10.1109/RE48521.2020.00056.

Bibliography 85

[27] Iosif Alvertis et al. “User Involvement in Software Development Processes”. In: Proce-
dia Computer Science. Vol. 97. 2016, pp. 73–83. doi: 10.1016/j.procs.2016.08.
282.

[28] Pilar Carbonell, Ana I. Rodríguez-Escudero, and Devashish Pujari. “Customer involve-
ment in new service development: An examination of antecedents and outcomes”.
In: Journal of Product Innovation Management 26.5 (2009), pp. 536–550. issn:
07376782. doi: 10.1111/j.1540-5885.2009.00679.x.

[29] Rashina Hoda, James Noble, and Stuart Marshall. “The impact of inadequate customer
collaboration on self-organizing Agile teams”. In: Information and Software Technol-
ogy. Vol. 53. 5. Elsevier, May 2011, pp. 521–534. doi: 10.1016/j.infsof.2010.
10.009.

[30] Michele Chinosi and Alberto Trombetta. “BPMN: An introduction to the standard”.
In: Computer Standards and Interfaces 34.1 (2012), pp. 124–134. issn: 09205489.
doi: 10.1016/j.csi.2011.06.002.

[31] Gustav Aagesen and John Krogstie. “Analysis and Design of Business Processes Using
BPMN”. In: Handbook on Business Process Management 1. Springer Berlin Heidel-
berg, 2010, pp. 213–235. doi: 10.1007/978-3-642-00416-2_10.

[32] Lawrences D. Miles. Technique of Value Analysis and Engineering. Jan. 1989.

[33] Marjan Leber et al. “Value analysis as an integral part of new product development”.
In: Procedia Engineering. Vol. 69. 2014, pp. 90–98. doi: 10.1016/j.proeng.2014.
02.207.

[34] Hamid Tohidi and Mohammad Mehdi Jabbari. “The important of Innovation and its
Crucial Role in Growth, Survival and Success of Organizations”. In: Procedia Technol-
ogy 1 (2012), pp. 535–538. issn: 22120173. doi: 10.1016/j.protcy.2012.02.116.

[35] Buraj Patrakosol and David L Olson. “How interfirm collaboration benefits IT innova-
tion”. In: Information and Management 44.1 (2007), pp. 53–62. issn: 03787206. doi:
10.1016/j.im.2006.10.003.

[36] PA Koen et al. Fuzzy front end: Effective methods, tools, and techniques. 2002.

[37] Cornelius Herstatt and Birgit Verworn. “The ‘Fuzzy Front End’ of Innovation”. In:
Bringing Technology and Innovation into the Boardroom. Palgrave Macmillan UK,
2004, pp. 347–372. doi: 10.1057/9780230512771_16.

[38] Peter Koen et al. “Providing clarity and a common language to the "fuzzy front end"”.
In: Research Technology Management 44.2 (2001), pp. 46–55. issn: 08956308. doi:
10.1080/08956308.2001.11671418.

[39] Abdelrahman E. M. Ezzat and Hesham S Hamoud. “Analytic hierarchy process as
module for productivity evaluation and decision-making of the operation theater”. In:
Avicenna Journal of Medicine 06.01 (2016), pp. 3–7. issn: 2231-0770. doi: 10.4103/
2231-0770.173579.

[40] Omkarprasad S. Vaidya and Sushil Kumar. “Analytic hierarchy process: An overview of
applications”. In: European Journal of Operational Research 169.1 (2006), pp. 1–29.
issn: 03772217. doi: 10.1016/j.ejor.2004.04.028.

86 Bibliography

[41] David P. Lepak, Ken G. Smith, and M. Susan Taylor. Value creation and value capture:
A multilevel perspective. 2007. doi: 10.5465/AMR.2007.23464011.

[42] Constantinos Coursaris, Khaled Hassanein, and Milena Head. “Mobile technologies
and the value chain: Participants, activities and value creation”. In: International Con-
ference on Mobile Business, ICMB 2006. 2006, p. 8. isbn: 0769525954. doi: 10.1109/
ICMB.2006.35.

[43] Almoatazbillah Hassan. “The Value Proposition Concept in Marketing: How Cus-
tomers Perceive the Value Delivered by Firms– A Study of Customer Perspectives
on Supermarkets in Southampton in the United Kingdom”. In: International Journal
of Marketing Studies 4.3 (2012). issn: 1918-719X. doi: 10.5539/ijms.v4n3p68.

[44] Gillian Pritchett. “Value Proposition Design: How to Create Products and Services
Customers Want”. In: Central European Business Review 3.4 (2014), pp. 52–52. issn:
18054854. doi: 10.18267/j.cebr.104.

[45] Lachana Ramingwong. “A review of requirements engineering processes, problems and
models.” In: International Journal of Engineering Science and Technology 4 (6 2012).

[46] Saad Alsaleh and Haryani Haron. “The Most Important Functional and Non-Functional
Requirements of Knowledge Sharing System at Public Academic Institutions: A Case
Study”. In: Lecture Notes on Software Engineering 4 (2 2016). issn: 23013559. doi:
10.7763/lnse.2016.v4.242.

[47] Sulaiman Aljarallah and Russell Lock. “A Comparison of Software Quality Character-
istics and Software Sustainability Characteristics”. In: ACM International Conference
Proceeding Series (Sept. 2019). doi: 10.1145/3386164.3389078.

[48] Ian Sommerville. Software engineering / Ian Sommerville. – 9th ed. Vol. 9. 2011.

[49] ElasticSearch. url: https://www.elastic.co/what-is/elasticsearch.

[50] Angular. url: https://angular.io/guide/what-is-angular/.

[51] The Falcon Web Framework. url: https://falcon.readthedocs.io/en/stable/.

[52] Gensim. url: https://radimrehurek.com/gensim/.

[53] Mojtaba Shahin, Muhammad Ali Babar, and Liming Zhu. “Continuous Integration,
Delivery and Deployment: A Systematic Review on Approaches, Tools, Challenges
and Practices”. In: IEEE Access 5 (2017). issn: 21693536. doi: 10.1109/ACCESS.
2017.2685629.

[54] Paula Escudeiro and José Bidarra. “X-TEC: Techno-didactical extension for instruc-
tion/learning based on computer: A new development model for Educational Soft-
ware”. In: WEBIST 2006 - 2nd International Conference on Web Information Sys-
tems and Technologies, Proceedings. Vol. SEBEG. EL/-. 2006, pp. 325–331. isbn:
9789728865474. doi: 10.5220/0001247503250331.

[55] Paula Escudeiro and José Bidarra. “Quantitative Evaluation Framework (QEF)”. In:
Revista Ibérica de Sistemas e Tecnologias de Informação Volume 1 (2008).

[56] James R Lewis. “Usability Testing”. In: (2006).

Bibliography 87

[57] James R. Lewis. “The System Usability Scale: Past, Present, and Future”. In: Inter-
national Journal of Human-Computer Interaction 34 (7 2018). issn: 15327590. doi:
10.1080/10447318.2018.1455307.

[58] Aaron Bangor, Philip T. Kortum, and James T. Miller. “An empirical evaluation of
the system usability scale”. In: International Journal of Human-Computer Interaction
24 (6 Aug. 2008), pp. 574–594. issn: 10447318. doi: 10.1080/10447310802205776.

89

Appendix A

Software Development Process
Sub-Processes

Figure A.1: Necessities prioritization sub-process

90 Appendix A. Software Development Process Sub-Processes

Figure A.2: Perform usability tests sub-process

Figure A.3: Perform code review sub-process

Appendix A. Software Development Process Sub-Processes 91

Figure A.4: Pre-release sub-process

Figure A.5: Internal communication sub-process

93

Appendix B

QEF Model

Figure B.1: QEF overall picture with dimensions, factors and requirements

94 Appendix B. QEF Model

Figure B.2: Evaluation Indicators for the factors of the functionality dimen-
sion

Figure B.3: Evaluation Indicators for the factors of the supportability dimen-
sion

Appendix B. QEF Model 95

Figure B.4: Evaluation Indicators for the factors of the usability dimension

97

Appendix C

Usability Questionnaire

Objective

The current usability test has the objective of understanding the main strengths and weak-
nesses of the current issue creation system.

Participant Characterization

Name:

Department:

Have you ever reported any issue? (Y/N):

Session Explanation

As part of the test, participants are expected to communicate their doubts and lines of
thought. This will ensure they are completing the test in a fluent manner and not by trial
and error. Additionally, the moderator is expected not to assist the participant during the
task and to answer any questions from the participant.

Session Structure

Objectives explanation: 3 minutes

Session explanation: 5 minutes

Tasks development: 30 minutes

Questionnaire: 15 minutes

Total: 53 minutes

Tasks

1. Select the option to create a new issue, and fill in the summary. Confirm that similar
issues are presented and click any of them to visualize them;

2. Create a new issue, fill in all fields, attach any attachments, and submit it.

3. Search for the issue that you just submitted;

4. Verify that the issue is presented along with a set of actions to take;

5. Select each one of the actions and fill in the appropriate fields;

6. On the issue that you just submitted and searched, select it to be forwarded to the actual
issue in Jira and verify the alterations made;

98 Appendix C. Usability Questionnaire

7. Select the area for information and verify that you are familiar with the content presented.

Questionnaire

Please rate your level of agreement with the following statements. There are 5 levels of
agreement:

1-Strongly Disagree | 2-Disagree | 3-Not Certain | 4-Agree | 5-Strongly Agree

Please mark the corresponding box with your level of agreement in each statement.

Question Answer

1 2 3 4 5

1- I think that I would like to use this system frequently.

2- I found the system unnecessarily complex.

3- I thought the system was easy to use.

4- I think that I would need the support of a technical person to
be able to use this system.

5- I found the various functions in this system were well inte-
grated.

6- I thought there was too much inconsistency in this system.

7- I would imagine that most people would learn to use this
system very quickly.

8- I found the system very cumbersome to use.

9- I felt very confident using the system.

10- I needed to learn a lot of things before I could get familiar
with this system.

Comments / Additional Suggestions:

99

Appendix D

Satisfaction Questionnaire

Please rate your level of agreement with the following statements. There are 5 levels of
agreement:

1-Strongly Disagree | 2-Disagree | 3-Not Certain | 4-Agree | 5-Strongly Agree

Please mark the corresponding box with your level of agreement in each statement.

Question Answer

1 2 3 4 5

1- Do you consider that the amount of duplicate issues has low-
ered over time?

2- Do you consider that the structure of the information improves
the task of issue reviewing?

3- Do you consider that the amount of information gathered
improves the task of issue reviewing?

4- Do you consider that the overall performance in issue reviewing
as increased with the implementation of the new system?

5- Do you consider that the addition of buzz points helps in the
management of the visibility of the issues?

6- Do you consider that the structure of the comments helps in
the identification of the different types of comment request?

7- Do you consider that the information in the issue description
is malformed and causes confusion?

Comments / Additional Suggestions:

101

Appendix E

Satisfaction Questionnaire Responses

Results of the Usability Questionnaire. Description: 1-Strongly Disagree | 2-Disagree |
3-Not Certain | 4-Agree | 5-Strongly Agree

Department
Question

Final SUS Score
1 2 3 4 5 6 7 8 9 10

Product 5 1 5 1 2 2 5 1 5 1 90

I&D 5 1 5 1 5 1 5 1 5 1 100

Product 5 1 5 1 5 1 5 1 5 1 100

Marketing 3 4 1 3 3 3 3 4 3 3 40

Product 5 2 4 2 4 2 4 2 5 1 82,5

Product 3 3 4 1 3 2 4 2 4 2 70

Product 5 1 5 1 4 1 5 1 5 1 97,5

CEO 4 2 4 1 5 1 4 1 5 1 90

Product 4 2 4 1 4 2 4 1 4 1 82,5

Product 5 1 5 1 5 1 5 1 5 1 100

Product 4 1 4 2 5 1 5 2 4 2 85

SAC 5 2 4 1 4 1 5 2 4 1 87,5

EDS 3 4 3 2 3 2 2 3 4 2 55

Product 5 2 4 3 3 2 5 2 5 1 80

EDS 5 5 4 1 2 2 3 3 4 1 65

Marketing 1 2 4 1 4 1 5 2 4 1 77,5

I&D 5 1 4 1 5 1 4 1 5 1 95

SAC 5 2 5 3 4 1 5 1 4 2 85

Product 5 1 4 1 4 1 5 1 5 1 95

103

Appendix F

Hypothesis Two - Integration Tests
Results

Figure F.1: Integration and unit tests results

104 Appendix F. Hypothesis Two - Integration Tests Results

Figure F.2: Integration and unit tests results

Figure F.3: Postman integration test implementation

