INSTITUTO SUPERIOR DE ENGENHARIA DE LISBOA

Area Departamental de Engenharia de Electrénica e Telecomunicacdes e de
Computadores

Bioinformatic pipeline specification language and sharing

system

BRUNO MIGUEL DAS NEVES DANTAS

(Licenciado)

Projecto Final para obtencdo do Grau de Mestre
em Engenharia Informética e de Computadores

Orientadores : Doutora Catia Raquel Jesus Vaz

Doutor José Manuel de Campos Lages Garcia Simao

Juri:
Presidente: Doutor Carlos Jorge de Sousa Gongalves

Vogais: Doutor Nuno Miguel Soares Datia
Doutora Cétia Raquel Jesus Vaz

AGO, 2019

INSTITUTO SUPERIOR DE ENGENHARIA DE LISBOA

Area Departamental de Engenharia de Electrénica e Telecomunicacdes e de
Computadores

Bioinformatic pipeline specification language and sharing

system

BRUNO MIGUEL DAS NEVES DANTAS

(Licenciado)

Projecto Final para obtencdo do Grau de Mestre
em Engenharia Informética e de Computadores

Orientadores : Doutora Catia Raquel Jesus Vaz

Doutor José Manuel de Campos Lages Garcia Simao

Juri:
Presidente: Doutor Carlos Jorge de Sousa Gongalves

Vogais: Doutor Nuno Miguel Soares Datia
Doutora Cétia Raquel Jesus Vaz

AGO, 2019

Aos meus pais e irma

Acknowledgments

Aos meus orientadores, por todo o apoio e disponibilidade que sempre tiveram
ao longo da realizagdo desta dissertacdo. A todos os meus amigos que sempre me
motivaram para finalizar esta etapa. Em particular, um grande agradecimento

aos meus pais e irmd, sem eles nada disto seria possivel.

vii

Abstract

The project Infrastructure to support the execution of workflows for bioinformatics,
from now on referred to as NGSPipes, is a platform for creation and execution
of pipelines of NGS(INext Generations Sequencing) data. NGSPipes project[24] was
developed within final thesis of Computer Science degree at Instituto Superior de
Engenharia de Lisboa. The main goal of NGSPipes is to help scientific community
to develop and execute biological pipelines without the need for programming
knowledge.

The project Bioinformatic pipeline specification language and sharing system, is an ex-
tension of NGSPipes project. The main goal of this project is to extend NGSPipes
by adding essential features for the development and sharing of pipelines. To
achieve this extension, we compared NGSPipes against other systems and defined
a set of essential features to develop pipelines. After this comparison we defined a
new language specification keeping the advantages of previous NGSPipes version
and adding parallelism and argument definition primitives. To enable coopera-
tion between community members, it was developed a platform to allow users to

share tools and pipelines.

Keywords: NGSPipes; Workflow; Sharing; Domain Specific Language; Scientific
Workflow System.

ix

Resumo

O projeto Infraestrutura de suporte a execugdo de fluxos de trabalho para a bioinfor-
matica, daqui em diante designado NGSPipes, é uma ferramenta para criagdo e
execucdo de fluxos de execugdo de processamento e andlise em serie de dados
NGS(Next Generations Sequencing). O projeto NGSPipes[24] foi desenvolvido no
ambito da tese final de curso da Licenciatura em Engenharia Informatica e de
Computadores no Instituto Superior de Engenharia de Lisboa. O projeto NGS-
Pipes tem como principal objetivo, auxiliar a comunidade cientifica na criagéo e
execucdo de pipelines de cariz biolégica sem a necessidade de conhecimentos de
programacao.

O projeto Linguagens e modelos de partilha para fluxos de trabalho de ferramentas bi-
oinformaticas, é uma extensdo do projeto NGSPipes. Este projeto tem como prin-
cipal objetivo estender o NGSPipes adicionando funcionalidades essenciais para
o desenvolvimento e partilha de pipelines. Para realizar esta extensdo, o sistema
NGSPipes foi comparado com outros sistemas de modo a definir um conjunto de
caracteristicas essenciais ao desenvolvimentos de pipelines. Apds esta compara-
¢do, definimos uma nova linguagem de especificacdo mantendo as vantagens da
versao anterior do NGSPipes e adicionando primitivas de paralelismo e definigdo
de argumentos. Para permitir a cooperagdo entre membros da comunidade, foi
desenvolvida uma plataforma para que os utilizadores possam partilhar as suas
ferramentas e pipelines.

Palavras-chave: NGSPipes; Fluxo de trabalho; Partilha; Linguagem Especifica de
Dominio; Sistema de Fluxo de Trabalho Cientifico.

X1

List of Figures
List of Tables

Listing

Glossary

1 Introduction

1.1 Scientific Workflow System
12 NGSPipes
1.3 Thesis Statement
14 Outline

2 Case Study

21 Tools
2.2 Task Parallel Variant
2.3 Data Parallel Variant

3 Systems Comparison

3.1 Scientific Workflow Systems
311 NGSPipesV1l.
312 Nextflow

Contents

xvii

Xix

Xiv

313 CWL
314 Ruffus
315 Swift

3.2 Pipeline Specification Languages
321 Methodology
322 Syntaxo

3.3 Tools and Pipelines Sharing

4 Solution

41 Architecture oL
42 NGSPipesV2Language
42.1 Language Specification
422 Language Comparison
4.3 NGSPipes Share Platform
431 ShareCore

4.3.2 Tools and Pipelines Repository Servers

433 Share API
43.4 Repositories Facade
435 ShareClient

5 Conclusion

Bibliography

A Task Parallelism with NGSPipesV1
B Task Parallelism with Nextflow

C Task Parallelism with CWL

D Task Parallelism with Ruffus

E Task Parallelism with Swift

CONTENTS

iii

vii

xi

XV

CONTENTS XV

F Data Parallelism with Nextflow Xix
G Data Parallelism with CWL xxiii
H Data Parallelism with Ruffus Xxix
I Data Parallelism with Swift xxxiii
J NGSPipesV2 Antlr Grammar Definition XXXVii
K Task Parallelism with NGSPipesV2 xli
L Data Parallelism with NGSPipesV2 xlv
M Nested Pipeline with Nextflow xlix
N Nested Pipeline with CWL liii
O Nested Pipeline with Ruffus lvii
P Neste Pipeline with Swift Ixi

Q Nested Pipeline with NGSPipesV2 Ixv

1.1

21
2.2
2.3
24

3.1
3.2
3.3
34

4.1
4.2
4.3
44
4.5
4.6
4.7
4.8

List of Figures

Modules of NGSPipesV1, 3
Sequential pipeline schematic. 8
Chains pipeline schematic. 10
Task parallel pipeline schematic 11
Data parallel pipeline schematic 12
Chain t rimmomatic output with velveth input schematic. . .. 27
NGSPipesV2 strategy primitive 33
Nested pipeline schematic. 38
Recursive chain nested pipeline schematic. 40
Architecture and changes from previouswork 46
Architecture (modules distribution) 47
NGSPipes Share Platform architecture 60
UML entity model of NGSPipes Share Platform 61
IToolsRepositoryclassdiagram 62
IPipelinesRepository classdiagram 62
Interfaces of controllers implemented by Repository Facade server . 66
Publish pipeline. Click on Publish Pipeline button on top right

corner of Pipelines area (section A). 67

Xvii

XViil

49
4.10

411

412

4.13
4.14

LIST OF FIGURES

Select pipeline to publish. Select the . z1ip file containing the pipeline. 68

FirstStudyCase pipeline published. The published pipeline is

listed on Pipeline area (section A). 68

Repository to be published. This repository is a pre-existent repos-
itory, external to our NGSPipes Share Platform. The showed reposi-

tory contains one pipeline called FirstSutdyCase. 69
Define repository location. L. 69
Repository content. L 70

Configuration of MyRepository repository. 71

3.1
3.2

4.1
4.2
4.3

List of Tables

Languages Methodology comparison. 20

Languages Syntax comparison. 43

NGSPipesV1 and NGSPipesV2 language methodology comparison. 53
NGSPipesV1 and NGSPipesV2 language syntax comparison. 54
Controllers of Share APl module 64

XiX

3.1
3.2
3.3
34
3.5
3.6
3.7
3.8
3.9
3.10
3.11
3.12
3.13
3.14
3.15
3.16
3.17
3.18
3.19
3.20

Listing

LINQexample 15
JSONexample 16
Partial descriptior of trimmomatic tool on NGSPipesV1 18
Partial descriptior of trimmomatic toolon CWL 19
Step syntax on NGSPipesV1 20
Argument syntax on NGSPipesV1 20
Trimmomatic step on NGSPipesV1 21
Reuse tool scope on NGSPipesV1 21
Step syntaxon Nextflow 21
Trimmomaticstepon Nextflow 22
StepsyntaxonCWL 22
TrimmomaticsteponCWL 22
TrimmomaticsteponRuffus 23
StepsyntaxonSwift o 23
TrimmomaticsteponSwift 23
Nextflow global variable 24
CWLlocal variable 24
Ruffus global and local variable 24
Swift local variable o o o L 24
Swift global variable 24

XX1

xxil
3.21
3.22
3.23
3.24
3.25
3.26
3.27
3.28
3.29
3.30
3.31
3.32
3.33
3.34
3.35
3.36
3.37
3.38
3.39
3.40
341
3.42
3.43
3.44
3.45
3.46
3.47
3.48
3.49

LISTING

Argument usage on Nextflow 25
Argument definition on Nextflow 25
Argument declarationon CWL 25
Argumentusageon CWL. 25
Argument definitionon CWL 26
Argumentusageon Ruffus 26
Argument definitionon Ruffus 26
Argumentusageon Swift L 26
Argument definitionon Swift 0000 26
Chain inputs and outputs with NGSPipesV1 27
Chain inputs and outputs with Nextflow 28
Chain inputs and outputs with CWL 29
Chain inputs and outputs with Ruffus 29
Chain inputs and outputs with Swift 30
Dependency declarationon Ruffus 30
Dependency declaration on NGSPipesV1 31
Data parallelism pipelineon CWL 33
Data parallelism argumentson CWL 34
Data parallelism pipeline on Nextflow 35
Data parallelism arguments on Nextflow 35
Data parallelism pipeline on Ruffus 36
Data parallelism arguments on Ruffus 36
Data parallelism pipeline on Swift 37
Data parallelism arguments on Swift 37
Invoke velvet pipelineon CWL 39
Velvet pipeline outputs definitionon CWL 39
Chain with velvet pipeline outputon CWL 39
Invoke pipeline on Nextflow 41

Invoke pipelineon Ruffus 41

LISTING xxiii

3.50
4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
4.10
4.11
4.12
4.13
4.14
4.15
4.16
Al
A2

B.1
B.2

C1
C2
C3

D.1
D.2

Invoke pipelineon Swift o oo L 41
Hello world example with NGSPipesV2 49
NGSPipesV1 pipelineroot 50
Antlr grammar for Repositoriesscope. 50
Antlr grammar for Stepsscope. 51
Antlr grammar for Outputsscope. 53
Step on NGSPipesV2 55
Variable on NGSPipesV2 55
Argument on NGSPipesV2 56
Chain on NGSPipesV2 56
Chain on NGSPipesV2 56
Chain on NGSPipesV2 57
Chain on NGSPipesV2 57
Data parallelism on NGSPipesV2 58
Invoke pipeline on NGSPipesV2 58
Pipeline outputs definition on NGSPipesV2 58
Chain with pipeline output on NGSPipesV2 59
NGSPipesV1 task parallel pipeline for study case1. i
Command line to invoke NGSPipesV1 and execute task parallel

pipeline for study case1.o Lo L. ii
Nextflow task parallel pipeline for study case1.. iii
Command line to invoke Nextflow and execute task parallel pipeline

forstudycasel. \
CWL task parallel pipeline for study case 1. vii
CWL arguments file for task parallel pipeline for study case 1. X
Command line to invoke CWL and execute task parallel pipeline for

studycasel. X
Ruffus task parallel pipeline for study case1. xi

Command line to invoke Ruffus and execute task parallel pipeline
forstudycasel. Xiii

xxiv LISTING

E.1 Swift task parallel pipeline for study case1.. XV
E.2 Command line to invoke Swift and execute task parallel pipeline for
studycasel. L xvii
E1 Nextflow data parallel pipeline for study case1. xix
E2 Command line to invoke Nextflow and execute data parallel pipeline
forstudycasel.o xxi
G.1 CWL data parallel pipeline for study case1. xxiii
G.2 CWL arguments file for data parallel pipeline for study case 1. xxvi
G.3 Command line to invoke CWL and execute data parallel pipeline for
studycasel. XXVi
H.1 Ruffus data parallel pipeline for study case1. XXix
H.2 Command line to invoke Ruffus and execute data parallel pipeline
forstudycasel. xxxi
I.1 Swift data parallel pipeline for study case1. xxxiii

[2 Command line to invoke Swift and execute data parallel pipeline for

studycasel. XXXVi
J.1 NGSPipesV2 anltrl grammar definition. XXXVii
K.1 NGSPipesV2 task parallel pipeline for study case1. xli
L.1 NGSPipesV2 data parallel pipeline for study case1. xlv
M.1 Nextflow nested pipeline for study case 1. xlix
M.2 Velvet steps pipeline with Nextflow. li
N.1 CWL nested pipeline for study case1. liii
N.2 velvet stepspipelinewith CWL. v
O.1 Ruffus nested pipeline for study case1. lvii
0.2 velvet steps pipeline with Ruffus. lix
P1 Swift nested pipeline for study casel. Ixi
P2 velvet steps pipeline with Swift. Ixiii
Q.1 NGSPipesV2 nested pipeline for study case1.. Ixv

Q.2 Velvet steps pipeline with NGSPipesV2. Ixvii

Glossary XXV

Glossary

adapter Short DNA molecule that can be linked to the ends of other DNA molecules.
7

argument value supplied on invocation of a tool to configure its execution. 2
DNA deoxyribonucleic acid, is the hereditary material in humans. 1

epidemic surveillance practice in which the spread of disease is predicted, ob-
served and minimized. This practice also aims to increase knowledge about

which factors contribute to such circumstances. 5
genome genetic material of an organism. 7

NGS Next Generation Sequencing is a technique of determining the nucleic acid

sequence. 1

nucleotide organic molecules that serve as the monomer units for DNA and
RNA. 9

pathogen infectious agent, germ. 7

pipeline consists of an orchestrated set of steps. Each step invokes a command

line tool. 1
reads small sequences of DNA. 1
tool command line software. 1

workflow consists of an orchestrated set of steps. Each step invokes a command

line tool. 1

Introduction

In recent years, workflows gained more attention in scientific community[36][25]
to support scientists work. Generally scientific workflows are often adapted to a
particular application domain. In this context, workflows implement scientific sim-
ulations, experiments and computations typically dealing with huge amounts of
data. Scientists model, execute, monitor and analyse workflows. In this document,

scientific workflows will be approached in the field of bioinformatics.

Bioinformatics corresponds to the appliance of computer science techniques in bi-
ology and medicine areas, in order to help on data analysis. Experiments carried
out today, both at the research and industry level, use NGS (Next Generation Se-
quencing) techniques (e.g. Reproductive Health Research[22]) that produce small
pieces of sequencing of the original DNA (Deoxyribonucleic acid) sample known
as reads. These reads are further processed and refined by a series of interre-
lated computational analysis and visualization tasks, applied to large amounts of
biological data. These analysis, referred to as pipeline or workflow, start with bulky
raw text sequences and end with detailed, structural, functional and evolutionary
results. These pipelines involve the use of various software (tools) and resources,

with the result produced by one tool being transmitted as input to other tool.

The various industrial and scientific actors in these experiments want to be able

1

1. INTRODUCTION 1.1. Scientific Workflow System

to reuse the same data-processing logic (pipeline), with different inputs and differ-
ent concrete tools, with the only restriction of the data format being the same as
well as the signatures of the algorithms. This way it would be possible to repro-
duce the execution of these pipelines, in an automatic manner.

1.1 Scientific Workflow System

Bioinformatic analysis consist of applying series of transformations to huge data
files, commonly referred to as workflows or pipelines. To agile this process of
developing and executing pipelines, different Scientific Workflow System have
emerged.

A Scientific Workflow System (SWS) is a platform which permits users to develop

and execute pipelines composed of sequential and parallel steps.

There are multiple SWSs options such as Galaxy[30], Nextflow[32], Ruffus[34], NGS-
Pipes[33] among others. Since there are so many options, it’s not easy to decide
which SWS to work with. When selecting a SWS we should take in consideration

the following capabilities:

¢ Reproducibility - ability to repeat pipeline execution with the same or differ-
ent arguments. It shouldn’t be necessary to change pipeline itself in order to
change the execution arguments;

* Portability - it should be possible to run a pipeline obtaining same result
independently from the execution machine;

¢ Extensibility - ability to add new tools without recompiling previous code;

* Reusability - it should be possible to develop nested pipelines, meaning that
we could use other pipelines inside a pipeline

Commonly SWSs are composed of two main components: Language (to describe
pipelines) and Engine (to execute pipelines). This language can be either graphical
or textual. On this thesis we will be focused on SWSs with a textual language

component.

1. INTRODUCTION 1.2. NGSPipes

1.2 NGSPipes

NGSPipes is a Scientific Workflow System developed in the context of a computer
science degree thesis. From now on we will use the term NGSPipesV1, to refer
the previous version of NGSPipes, and NGSPipesV2 to refer the new version de-

veloped on the context of this thesis.

NGSPipesV1 was developed with three main goals:

* Help scientists to develop pipelines without the need for programming knowl-

edge;
¢ Help programmers developing biological pipelines;

¢ Simplify the execution of pipelines and the management of tools required to

run these pipelines

To answer to this three objectives, NGSPipesV1 has four modules: Repository,
DSL, Engineand Editor. On figure 1.1 we can observe how these modules relates

with each other.

Repository <

di Qo

2 |
LT

Programmer

Figure 1.1: Modules of NGSPipesV1

NGSPipesV1 offers a language specification to define pipelines (DSL module). These
pipelines could be written directly (by programmers) or produced through the

3

1. INTRODUCTION 1.3. Thesis Statement

Editor (by biologists) and consumed by the Engine. This language specification,
differently from other SWSs, is based on descriptors which are files that store
tools meta-data. This meta-data is consumed by the Engine in order to build the
command line to be executed. DSL and Editor use Repository to obtain the

meta-data associated to the tools used within a pipeline.

NGSPipesV1, when compared with other state of the art SWSs, lacks some ca-
pabilities such as parallelism and nested pipelines. Although these limitations,
NGSPipesV1 has some advantages with its tools meta-data approach. By hav-
ing meta-data associated with tools, NGSPipesV1 permits to developers to have
a unique syntax when defining arguments and also validate these arguments in-
tegrity. It is important to extend NGSPipesV1 keeping its advantages and solving

its limitations.

1.3 Thesis Statement

The aim of this thesis is to extend NGSPipesV1 by proposing a language specifi-
cation and a pipeline sharing platform to fulfil basic requirements of a SWS. The
language specification must accommodate features such as argument definition
and task/data parallelism.

The first step is to evaluate the state of the art and compare NGSPipesV1 against
different systems. After collecting NGSPipesV'1’s limitations, our goal is to extend
NGSPipesV1 and solve these limitations. Along with this project is being devel-
oped another project thesis, Parallel execution of workflows using bioinformatics tools

[26], which complements this thesis by implementing Engine module.

We defined the following objectives for the new language specification:

* Add the ability do produce task or data parallel pipelines (sections 3.2.2.5
and 3.2.2.6);

* Allow users to define pipelines logic without concrete data (section 3.2.2.2);
¢ Allow the ability to invoke another pipeline on a pipeline’s step (section 3.2.2.7);
¢ Use multiple repositories on a pipeline definition;

¢ Keep meta-data concept;

1. INTRODUCTION 1.4. Outline

¢ Keep repository concept
We defined the following objectives for the sharing platform:

¢ Publish repositories external to our platform;
¢ Create new repositories;

¢ Edit repositories content (add/delete tools and pipelines)

To test our solution, a case study based on epidemic surveillance was developed.
This case study results in a pipeline which represents a normal flow to process
NGS data. We can see this case study in detail on Chapter 2.

1.4 OQutline

This document is organized into five chapters. This first chapter introduces the
context in which this thesis surged and the origin of NGSPipesV1. On second
chapter we will cover the developed case study and its variants. On third chap-
ter we will compare NGSPipesV1 with other SWSs through a set of features. On
fourth chapter we will discuss NGSPipesV2 and how limitations found on previ-
ous chapter were solved. On fifth chapter we have final remarks and some goals

to be achieved as future work.

Case Study

To evaluate different SWSs it was elaborated a case study based on epidemio-
logical surveillance. The data used on this case study comes from the applica-
tion of NGS(Next Generation Sequence) techniques to the genomes of pathogens
like Streptococcus pneumoniae. By applying a processing pipeline to this data, it is
possible to identify strains, the antibiotic resistance profile and the presence of

virulence determinants.

2.1 Tools

The developed pipeline uses the following tools:

e Trimmomatic [3] based on FASTQ [29] files (reads containers or small
DNA sequences) allows the extraction of adapters and reads with low
quality;

¢ Velvet [4] based on FASTQ files, generally with low quality reads already
tiltered, obtains the genome schema which is composed of long DNA se-

quences resultant of multiple reads(contigs);

¢ Blast [2] based on cont igs obtained from Velvet, allows to determine genes

sequences and annotate them by comparison with multiple databases

7

2. CASE STUDY 2.1. Tools

In figure 2.1 we can observe the sequential steps of the developed pipeline.

= pipeline makeblastdb_ trimmomatic trimmomatic
R in _input _illuminaclip
] file T o o
‘. step [P st et et | e i o e | O e e e
I
& argument |
. | . . ™\
¢ execution flow | (trimmomatic |
| N /
+ output | ¢
I s
| | velveth)
| .
I
I
! ™
| i\ velvetg J
| . i
I
| P .
I | makeblastdb)
I N Y
| |
| v
|
rd _"
I . blastx I
I 4
|
I
out
o

Figure 2.1: Sequential pipeline schematic.

This pipeline is composed of 5 steps:

¢ trimmomatic receives a . fastq file and removes reads with low quality;

¢ velveth receivesa . fastqfile filtered by t rimmomat ic step and constructs

a dataset;

2. CASE STUDY 2.1. Tools

¢ velvetg based on the velveth’s output creates the genome schema;

* makeblastdb builds a database to be used by blastx step;

* blastx uses makeblastdb’s database and velvetg outputs to translate a
nucleotide query and searches it against protein subject sequences or a pro-

tein database.

This pipeline receives 3 arguments:

* trimmomatic_input - a . fastq file which will be passed to input_file

input of trimmomatic step;

¢ trimmomatic_illuminaclip - a . fa file which will be passed to 111umina-

clip_file inputof trimmomatic step;

* makeblastdb_in - a .pro file which will be passed to in input of make-
blastdb step

This pipeline produces 1 output:

* out - out output from blastx step

The order given by the arrows representing the execution flow, are inferred from
the chain dependencies between step’s inputs and outputs. On figure 2.2 we can

see all dependencies between steps.

2. CASE STUDY 2.1. Tools

1
ipeline f . .
| PP (trimmomatic]

I
‘ fileName

‘ —

(velveth)
. y,

-

‘ output_directory I

b step

'. chain (output —> input)

:I output
R input

Y
,"-
— velvetg

.'/-- \
(makeblastdb]
\.\.-- J(J’

out

_____'__/-"'_"‘-H

db
quer\,f_ e + ™,
" L blastx |
_.- /,.-’

L - - -]

Figure 2.2: Chains pipeline schematic.

This pipeline contains 4 chains:

¢ outputFile -> fileName - the out putFile output from t rimmomatic step

is passed to £ileName input of velveth step;

¢ output_directory -> output_directory - the output_directory output
from velveth step is passed to output_directory input of velvetg
step;

10

2. CASE STUDY 2.2. Task Parallel Variant

¢ contigs_fa-> query - the contigs_fa output from velvetg step is passed
to query input of makeblastdb step;

* out -> db - the out output from makeblastdb step is passed to db input
of blastx step

In order to test parallel capabilities of different systems, two variants of this case

study were developed (task and data parallel variants).

2.2 Task Parallel Variant

The first variant is the same example but we will take steps dependencies in con-
sideration. If we analyse these dependencies we will realize that t rimmomatic
step and makeblastdb step are independent and can be executed in parallel as
it can be seen in figure 2.3.

== trimmomatic trimmomatic makeblastdb_
pipeline _input _illuminaclip n-
(— ut_ —
- file
—_— [N 1
) step | v I
* argument : -j\ trimmomatic) (makeblastdb | :
¢ execution flow | | I
I Y I
output . velveth) I
I A |
| |
| |
| - |
| i\ velvetg |
| . |
| Y |
| > blastx I
.
| |
| |
out

Figure 2.3: Task parallel pipeline schematic

11

2. CASE STUDY 2.3. Data Parallel Variant

2.3 Data Parallel Variant

The second variant mimics the previous example, but this time running makeblastdb
step against three different databases. Similarly to previous example, t rimmomatic
and the three makeblastdb steps can be executed in parallel. In figure 2.4 we

can observe a schematic for this variant.

makeblastdb
_ins

- = trimmomatic || trimmomatic
_illuminaclip

makeblastdb makeblastdb
_ins _ins

]

argument

(W makeblastdb C makeblastdb) C makeblastdb)
Y

I

I

v |
|

execution flow |
I

+ velveth I
|

|

I

I

|

I

I

output (
Y
velvetg

Figure 2.4: Data parallel pipeline schematic

12

Systems Comparison

In recent years multiple efforts[36][28] have been made in order to make the con-
struction and execution of data analysis pipelines an easier task. Different Scien-
tific Workflow Systems emerged with different approaches. In this chapter we
will see the state of the art among some of the most used SWSs. To evaluate the
state of the art we will compare these systems focusing on their pipeline language

specification and the available pipelines /tools sharing mechanisms.

3.1 Scientific Workflow Systems

There are multiple SWSs available. In order to study the state of the art, some sys-
tems were selected to be studied. The selected SWSs are: NGSPipesV1, Nextflow,
CWLI[31], Ruffus and Swift[35]. These systems were selected due to the acceptance
and usage among the community.

3.1.1 NGSPipesV1

NGSPipesV1 is a framework to design and execute pipelines, relying on state of the
art of cloud technologies to execute them without users need to configure, install
and manage tools.

NGSPipesV1 language was built with main purpose of users don’t need to know

13

3. SYSTEMS COMPARISON 3.2. Pipeline Specification Languages

the syntax to invoke a command line tool.

3.1.2 Nextflow

Nextflow is a language modelled around the UNIX][23] pipe concept. Nextflow
language was built to simplify writing portable, parallel and scalable pipelines.
Nextflow seats on top of Groovy[12].

3.1.3 CWL

CWL is a specification to describe command line tools and create pipelines by con-
necting tools through inputs and outputs. Since CWL is a specification, artifacts
described using CWL are portable across a variety of platforms that support the
CWL standard.

3.1.4 Ruffus

Ruffus is a open-source pipeline Python[18] library. Ruffus was designed to allow

data analysis to be automated with the least effort.

3.1.5 Swift

Swift is a open-source software which allows users to develop pipelines with an
implicitly parallel programming language. Swift helps to distribute program ex-
ecution across clusters, clouds, grids, and supercomputers.

3.2 Pipeline Specification Languages

In order to classify and compare each language and its syntax, a set of features

were defined, namely:

14

~ = 1 W) N

o

3. SYSTEMS COMPARISON 3.2. Pipeline Specification Languages

* Methodology - DSL, Command Invocation;

* Syntax - Variables, Arguments, Chain Input with Outputs, Step Depen-
dency, Task Parallelism, Data Parallelism, Nested Pipelines

All comparisons that involve NGSPipes, on this chapter, were made based on
NGSPipesV1 language.

3.2.1 Methodology

When defining a programming language, we can take different approaches by
implementing it on top of an existing programming language or develop a new
syntax directed to the context of a problem. In this chapter we classify each lan-

guage’s methodology.

3.2.1.1 DSL

Domain Specific Language (DSL)[27] is a language developed to turn the solution
of a problem with a specific domain simpler and more comprehensible. DSLs can
be divided in two types: internal or external. Internal DSLs are built on top of
a programming language, such as Java[15] or C#[7]. An example of an internal
DSL is LINQ[17], which is a C# library that allows developers to have a fluent
syntax to query data. On Listing 3.1 we can observe an example of LINQ. Exter-
nal DSLs define their own syntax instead of being built on top of a programming
language, meaning that they need a new interpreter. An example of an external
DSL is JSON[14], which has its own syntax to represent data. On Listing 3.2 we

can observe an example of [SON.

Listing 3.1: LINQ example

int[] numbers = new int([7] { O, 1, 2, 3, 4, 5, 6 };

var even =
from num in numbers
where (num % 2) == 0

select num;

foreach (int num in even)

Console.WriteLine (num) ;

15

3. SYSTEMS COMPARISON 3.2. Pipeline Specification Languages

Listing 3.2: JSON example

"name" :"John" ,

"car":"seat"

Based on this definition, Nextflow and Ruffus are considered internal DSLs, since
pipelines are written with Groovy and Python respectively. NGSPipesV1 and Swift
have no affiliation with other programming languages meaning that they are clas-
sified as external DSLs. CWL is an external DSL since it defines pipelines through
JSON/YAML[21] files.

In table 3.1 we can see a resume of DSL comparison.

3.2.1.2 Command Invocation

A pipeline is composed by a set of steps, in which a command line tool is invoked.
Scientific workflow systems offer DSLs which help users to build the command
line to invoke the tool and orchestrate these steps. There are two approaches
when defining how to declare the command line we want to execute:

* Meta-data, each tool has a description with its meta-data. Developer speci-
fies that on a step he wants to run a specific tool, but the command is built
by the Engine;

* Raw, there is no tool description concept. The command to be executed is

explicit on pipeline

As we can see on listings 3.10, 3.13 and 3.15, Nextflow, Ruffus and Swift specify the
command to be executed on step’s declaration. CWL and NGSPipesV1 instead of
declaring how a tool is executed, declares which tool is to be executed. When we
compare both approaches, we can be tempted to say that the meta-data approach
is worse because adds the overhead of having meta-data associated to each tool.
Although this overhead, this approach permits developers to have more abstrac-
tion and validation of tools usage. On this section we will be focused on meta-
data oriented DSLs and its tools descriptiors.

Meta-data oriented languages, use descriptor files to describe tools. This descrip-

tor is a file with tool meta-data usually including:

16

3. SYSTEMS COMPARISON 3.2. Pipeline Specification Languages

¢ name of program, which will be used to invoke program on command line
(ex:"echo");

parameters (name, type, syntax and others);

outputs (name, type and others);

tool description, author and others

These descriptors will be referenced on pipeline’s steps as you can see on listings
3.7 and 3.12. NGSPipesV1, differently from CWL, abstracts the origin of descriptor
files. This is why you can see the reference to file (Descriptors/trimmomatic.cwl)
on listing 3.12 and an id (trimmomatic) on listing 3.7. NGSPipesV1 Engine will use
this id to obtain the descriptor from the specified repository.

Scientific workflow systems use these descriptors to validate and create the com-
mand line to invoke the required tool. If for one hand there is the additional step
of having to create these descriptors on the other there are multiple advantages.
First, descriptors once created can be shared among users, this will be discussed
on section 3.3. Other advantage is that the Engine can use meta-data to check if
all mandatory arguments are present or if all defined arguments are compatible
with its type before invoking the tool.

Since descriptors have meta-data to describe the syntax to invoke a tool, user
doesn’t have to know the syntax for all used tools. Let’s imagine that we want to
write a pipeline using three tools. Each of these tools have its own syntax to define
arguments:

e Command A — Name : Value (ex: java —jar xptoA.jar name:Paul

age:12);

e Command B — Name - Value (ex: java —jar xptoB.jar name-Paul

age—-12);

e Command C — Value (ex: java —jar xptoC.jar Paul 12)

Not only user has to know the syntax for arguments, but also (Command C) has
to know the order in which arguments have to be passed. Now imagine this for a
pipeline with ten tools, you would spend majority of the time reading tool’s APL
With descriptors, the engines can build the command to be executed, facilitating
users which will have a unique syntax to invoke tools and define their arguments.
From the analysed SWSs, CWL and NGSPipesV1 are the only meta-data oriented

17

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

3. SYSTEMS COMPARISON 3.2. Pipeline Specification Languages

languages.

In NGSPipesV1, descriptors are [SON files with an hierarquical structure. This
structure is composed by a tool which is the root of the file. A tool contains
commands (ex: Velvet tool contains the commands velveth and velvetg). A single

command contains outputs and inputs (arguments).

In listing 3.3 we can observe how descriptor for trimmomatic tool looks like on
NGSPipesV1.

Listing 3.3: Partial descriptior of trimmomatic tool on NGSPipesV1

"name" : "Trimmomatic",
"commands" : [
{
"name" : "trimmomatic",
"command" : "Jjava —-jar /trimmomatic-0.33.jar",
"arguments" : [
{
"name" : "mode",
"argumentType" : "string",
}
] 4
"outputs" : [
{
"name" : "outputFile",
"argument_name" : "outputFile"

Descriptors files on CWL are YAML files and have their root on NGSPipesV1’s
command. While on NGSPipesV1, velvet descriptor is a single file which contains
two commands (velveth and velvetg), on CWL there are two descriptor files, one

for velveth and other for velvetg.

In listing 3.4 we can observe how descriptor for trimmomatic tool looks like on

18

10

11

12

13

15

16

17

18

19

20

21

3. SYSTEMS COMPARISON 3.2. Pipeline Specification Languages

CWL.

Listing 3.4: Partial descriptior of trimmomatic tool on CWL

class: CommandLineTool

baseCommand: [java, —jar]
arguments:
- valueFrom: |
${
var trimmomaticDir = "/home/dantas/trimmomatic-0.32.jar";

return trimmomaticDir;

}

inputs:
- id: mode

type: string

outputs:
- id: output
type: File

CWL through run property(see listing 3.12) receives the path for tool’s descrip-
tor. NGSPipesV1 abstracts this descriptor location with Repository concept. If
we look to NGSPipesV1 pipeline root(see attachment A), we will realize that after
primitive Pipeline there are two strings (“Github” and Github’s[9] uri). These
two strings indicate to NGSPipesV1 Engine where descriptors are. This way when
user defines tools and commands scopes, just needs to reference these artefacts

through an id. Repository concept will be covered on section 3.3.

Both approaches have limitations. CWL forces that all descriptors need to be
stored locally on the execution machine. NGSPipesV1 forces that all tools used
within a pipeline must be stored on a single repository.

In table 3.1 we can see a resume of meta-data comparison.

3.2.1.3 Methodology Summary

On table 3.1 we can see a resume of methodology of all SWS’s languages.

19

—_

3. SYSTEMS COMPARISON 3.2. Pipeline Specification Languages

Table 3.1: Languages Methodology comparison.

DSL Command Invocation
NGSPipesV1 | External Metadata
Nextflow Internal Raw
CWL External Metadata
Ruffus Internal Raw
Swift External Raw

3.2.2 Syntax

A pipeline is composed by a set of steps, in which a command line tool is invoked
with a set of inputs. In this section we will see how a step and its inputs are de-
clared on different SWSs. All examples presented on this chapter were extracted
from the pipelines specifications defined to test each SWS mentioned before. You

can find the complete pipelines on attachments.

NGSPipesV1 has a hierarchy of tool and command scopes. To define a step, with
NGSPipesV1, user has to define two scopes(tool and command) with the syntax

seen in listing 3.5.

Listing 3.5: Step syntax on NGSPipesV1

tool "[ToolId]" "[ExecutionContextId]"{
command " [CommandId]"{

}

ToolId and CommandId is how user indicates to NGSPipesV1 Engine that wants
to run a certain command from a certain tool. As we already saw, these ids will
be used to obtain the tools descriptors from repository. To define arguments there

is argument primitive with the syntax seen in listing 3.6

Listing 3.6: Argument syntax on NGSPipesV1

n n

argument " [argumentName] [argumentValue]"

If user wants to use a different command from same tool sequentially, t ool scope
can be reused (listing 3.8). On listing 3.7 we can see how trimmomatic command

is invoked with its argument mode with value SE.

20

3. SYSTEMS COMPARISON 3.2. Pipeline Specification Languages

Listing 3.7: Trimmomat ic step on NGSPipesV1

1| tool "Trimmomatic" "DockerConfig" ({
2 command "trimmomatic" {
3 argument "mode" "SE"

Listing 3.8: Reuse t ool scope on NGSPipesV1

1 tool "Velvet" "DockerConfig" {

2 command "velveth" {

4 }

5 command "velvetg" {

To define a step on Nextflow there is the process primitive. Process primitive has

the syntax seen in listing 3.9.

Listing 3.9: Step syntax on Nextflow

1| process "stepId" {

mmonw

3 command to be executed

nmmwn

Inside process scope, differently from NGSPipesV'1, user defines the command to
be executed. On listing 3.10 we can see how trimmomatic command is invoked
with Nextflow.

21

3. SYSTEMS COMPARISON 3.2. Pipeline Specification Languages

Listing 3.10: Trimmomat ic step on Nextflow

1| process trimmomatic {

mmn

5 java —jar $trimmomaticDir \

6 SE

nwn
8

On CWL, to define a step, user has to define a YAML object inside st eps property.
To define arguments, user can define step’s property in as we can see in listing
3.11.

Listing 3.11: Step syntax on CWL

il — id: "[stepId]"

2 run: " [descriptorPath]"

3 in:

4 - id: "[argumentName]"

5 valueFrom: "[argumentValue]"

Similarly to NGSPipesV1 the property run which receives a descriptor file path,
it’s used to declare which command user wants to run. Listing 3.12 contains the

invocation of command trimmomatic with CWL.

Listing 3.12: Trimmomatic step on CWL

1 - 1id: trimmomatic

2 run: Descriptions/trimmomatic.cwl
3 in:

4 - id: mode

5 valueFrom: "SE"

Ruffus, as a Python library, doesn’t require a step to be a command invoked on
command line. Steps with Ruffus are Python methods which can be annotated
with Python’s decorators. On listing 3.13 we can see a Ruffus step invoking trim-

momatic.

22

3. SYSTEMS COMPARISON 3.2. Pipeline Specification Languages

Listing 3.13: Trimmomatic step on Ruffus

1| def trimmomatic (input, output, illuminaclipFile):
2 command = "Jjava —Jar " + trimmomaticDir + " " +\
3 "SE "

4

5

6 run (command)

Swift has the app primitive to declare a step. Similarly to Nextflow, the command
to be executed on command line is defined inside app scope which has the syntax
we can see in listing 3.14.

Listing 3.14: Step syntax on Swift

1| app ([outputTypel] [outputName]) [stepId] ([inputType] [inputName])
2| |
3 [command to be executed]

4 ’

On listing 3.15 we can observe how trimmomatic invocation looks like on Swift.

Listing 3.15: Trimmomatic step on Swift

[

app (file output) trimmomatic (file input, file illuminaclipFile)
{

3 java "—-jar" trimmomaticDir

4 "SE"

N

Now lets focus on how different features are solved in each SWS.

3.2.2.1 Variables

Variables can make code cleaner, more readable and reusable. There are two types
of variables:

* Global - variables that can be used anywhere on the pipeline;

* Local - variables that can be used inside a specific scope or context

23

-

=

[

[

3. SYSTEMS COMPARISON 3.2. Pipeline Specification Languages

Nextflow supports global variables with the following syntax: [variableName]
= [variableValue]. In listing 3.16 we can see a global variable declared on

Nextflow. This declaration example was extracted from attachment B.

Listing 3.16: Nextflow global variable

trimmomaticDir = "/home/dantas/trimmomatic-0.32.jar"

CWL doesn’t support variables directly. Through some properties like inputBinding

and arguments, which supports JavaScript[16] expressions, we can declare local
variables inside these blocks. We can see an example extracted from attachment
Cin listing 3.17.

Listing 3.17: CWL local variable

var trimmomaticDir = "/home/dantas/trimmomatic-0.32.jar";

In Ruffus, since a pipeline is a Python file, this framework inherits global and lo-
cal variables from Python. Both types have same syntax ([variableName] =
[variableValue]) as shown in listing 3.18 extracted from attachment D.

Listing 3.18: Ruffus global and local variable

trimmomaticDir = "/home/dantas/trimmomatic-0.32.jar";

Swift can also support both types of variables. By being a strongly typed lan-
guage, Swift variables declaration also implies the variable type ([variableType]
[variableName] = [varialbleValue]). Tomake a variable accessible glob-
ally, the key word global must be added as first term of the declaration. We can
see both types of variables declared in listings 3.19 and 3.20 which were extracted

from attachment E.

Listing 3.19: Swift local variable

string velvetDir = arg("publish_dir") + "/velvetDir";

Listing 3.20: Swift global variable

global string trimmomaticDir = "/home/dantas/trimmomatic-0.32.jar";

In table 3.2 we can see a resume of variables comparison.

24

3. SYSTEMS COMPARISON 3.2. Pipeline Specification Languages

3.2.2.2 Arguments

A pipeline should be reusable, meaning that users should be able to run it mul-
tiple times with different arguments without having to change the pipeline itself.
In order to achieve it, users must be able to define arguments outside the pipeline,
either on a config file or through the command line when invoking the Engine.

On Nextflow’s pipeline definition user can access arguments through params ob-
ject. This object can contain default values which can be overriden when in-
voking Nextflow Engine. We can see params usage and definition of argument
trimmomatic_input in listings 3.21 and 3.22 respectivly. The whole pipeline

with more arguments can be seen on attachment B.

Listing 3.21: Argument usage on Nextflow

${params.trimmomatic_input}

Listing 3.22: Argument definition on Nextflow

——trimmomatic_input /home/dantas/Desktop/SharedFolder/_Common_/
inputs/minimalInputs/ERR406040.fastqg

CWL uses config files to achieve reusability. On pipeline definition, user can de-
fine an array called inputs in which declares the arguments required for that
pipeline. These arguments can be defined on a config file which is given to CWL
Engine at runtime. We can see in listings 3.23, 3.24 and 3.25 the declaration, usage
and definition of argument t rimmomat ic_input. The whole pipeline with more

arguments can be seen on attachment C.

Listing 3.23: Argument declaration on CWL

inputs:
- id: trimmomatic_input

type: File

Listing 3.24: Argument usage on CWL

in:
- 1id: input_file

source: "#trimmomatic_input"

25

w

3. SYSTEMS COMPARISON 3.2. Pipeline Specification Languages

Listing 3.25: Argument definition on CWL

trimmomatic_input:
class: File
path: /home/dantas/Desktop/SharedFolder/_Common_/inputs/
minimalInputs/ERR406040.fastqg

Ruffus allows to define arguments through comand line arguments when invok-
ing the pipeline. For this, Ruffus offers a Python module (cmdline) which allows
user to declare and parse pipeline arguments. In listings 3.26 and 3.27 we can
observe the declaration of argument t rimmomatic_input and its definition as
comand line argument respectivly. The whole pipeline with more arguments can
be seen on attachment D.

Listing 3.26: Argument usage on Ruffus

parser = cmdline.get_argparse ()

parser.add_argument ("-—-trimmomatic_input")

@files (params.trimmomatic_input, ...)

Listing 3.27: Argument definition on Ruffus

——trimmomatic_input /home/dantas/Desktop/SharedFolder/_Common_/inputs
/minimalInputs/ERR406040.fastqg

Swift also uses command line arguments to define arguments. To access argu-
ments, user can use the method called arg which receives the name of the argu-
ment and returns the matching value. In listings 3.28 and 3.29 there is an example
of this mechanism, extracted from attachment E.

Listing 3.28: Argument usage on Swift

arg("trimmomatic_input")

Listing 3.29: Argument definition on Swift

—trimmomatic_input=/home/dantas/Desktop/SharedFolder/_Common_/inputs/
minimalInputs/ERR406040.fastqg

In table 3.2 we can see a resume of arguments comparison.

26

3. SYSTEMS COMPARISON 3.2. Pipeline Specification Languages

3.2.2.3 Chain Outputs with Inputs

Pipelines are composed of multiple steps in which a command line tool is exe-
cuted. As result of this execution the tool produces multiple outputs which will
be used as inputs to other tools (invoked on other steps). Users can chain this
outputs and inputs using files paths but since some SWSs run each step on a
temporary and individual directory, it is necessary to have a mechanism to chain
them. On figure 3.1 we can see a schematic in which the output outputFile,

from t rimmomatic, is chained with the input £ilename from velveth.

outputFile
(trimmomatic output)

trimmomatic > velveth
filename

(velveth input)

Figure 3.1: Chain t rimmomat ic output with velveth input schematic.

NGSPipesV1 uses chain directive inside a command scope which has the follow-
ing syntax: chain [currCommandArgumentName] [prevCommandOutputName].
Chain directive passes the path of an output from the previous command as ar-
gument to the current command. There are some other variants of chain to
chain outputs from further commands. In listing 3.30 we can observe a chain ex-
ample on NGSPipesV1 where t rimmomatic output file, called outputfile, is
chainned with velveth filename input. The whole pipeline with more chain

examples can be seen on attachment A.

Listing 3.30: Chain inputs and outputs with NGSPipesV1

command "trimmomatic" {

argument "outputFile" "ERR406040.filtered.fastqg"

command "velveth" {

chain "filename" "outputFile"

27

10

11

12

13

14

15

16

17

3. SYSTEMS COMPARISON 3.2. Pipeline Specification Languages

Nextflow uses channel concept to deal with chain mechanism. In each step user
can define that the current step produces some outputs into a specific channel.
This channel can be consumed by other steps to receive its inputs. Multiple out-
puts can be sent to a single channel but this channel can only be consumed by
a single step. In listing 3.31 we can observe a chain example on Nextflow where
trimmomatic output file is chainned as velveth input. The whole pipeline with

more chain examples can be seen on attachment B.

Listing 3.31: Chain inputs and outputs with Nextflow

process trimmomatic {
output:

file params.trimmomatic_output into trimVelvChannel

process velveth {
input:

file velvetInput from trimVelvChannel

nmmn

velveth \

$velvetInput

mmn

CWL lets user to define the outputs produced for each step. Every output de-
clared needs an id, unique inside step’s scope. This id in conjuntion with step's id
is used when user wants to chain that output with an input of other step. The con-

junction of ids from step and output has the following syntax: # [stepId]/ [outputId].

In listing 3.32 we can observe a chain example on CWL where t rimmomat ic out-
put is chainned as velveth input. The whole pipeline with more chain examples

can be seen on attachment C.

28

10

3. SYSTEMS COMPARISON 3.2. Pipeline Specification Languages

Listing 3.32: Chain inputs and outputs with CWL

- id: trimmomatic

out:

- id: output
- id: wvelveth
in:

- id: file

source: "ftrimmomatic/output"

Ruffus offers Python decorators (transform and originate) which help users
to process files and transform them originating new files. This mechanism helps
to create data transformation pipelines but it doesn’t suits chain idea. To chain
outputs with inputs, users have to deal directly with files paths, meaning that
users must specify a location for the output of a step and then pass that path
to other step. In listing 3.33 we can observe a chain example on Ruffus where
trimmomatic output is chainned as velveth input. The whole pipeline with
more chain examples can be seen on attachment D.

Listing 3.33: Chain inputs and outputs with Ruffus

@files (params.trimmomatic_input, params.publish_dir + "/" + params.
trimmomatic_output, params.trimmomatic_illuminaclip + ":2:30:10")

def trimmomatic (input, output, illuminaclipFile):

@files (params.publish_dir + "/" + params.trimmomatic_output, "
velvetDir")

def velveth (input, output) :

Swift allows chain mechanism with a syntax similar to what we usually see on
object oriented languages like Java and C#. By declaring a variable, users can use
this variable with three purposes:

¢ supply output location to the step which produces it;
¢ indentify which step produces it;

® use it as input to a consumer step

29

3. SYSTEMS COMPARISON 3.2. Pipeline Specification Languages

In listing 3.34 we can observe a chain example on Swift where t rimmomat ic out-
put is chainned as velveth input. The whole pipeline with more chain examples
can be seen on attachment E.

Listing 3.34: Chain inputs and outputs with Swift

file trimOutput<single_file_mapper; file=arg("publish_dir")+"/"+arg ("
trimmomatic_output")>;

trimOutput = trimmomatic (trimInput, illuminaclipFile);

velvetHOutputs = velveth (trimOutput, velvetDir);

In table 3.2 we can see a resume of chain inputs and outputs comparison.

3.2.2.4 Steps Dependency

With steps producing multiple outputs to be consumed by different steps, a pipeline
can easily become a giant nest. A step that depends from an output of other step
must wait until the first finishes its job to run. In order to orchestrate these execu-
tions, the Engine must analyse step’s dependencies from each other and stipulate
an execution order to run each step. We can define two kinds of dependency
declaration:

e Implicit, Engine can find out the order through declaration of chains be-

tween outputs and inputs;

¢ Explicit, user must declare on pipeline that a specific step depends from an-
other

From the analysed SWSs, NGSPipesV1 and Ruffus are the only systems that took
explicit aproach, all the remainig systems use implicit declaration.
In listing 3.35 we can see how is declared that velveh depends from t rimmomatic

on Ruffus pipeline. This example was extracted from attachment D.

Listing 3.35: Dependency declaration on Ruffus

@follows (trimmomatic)

def velveth (input, output):

30

3. SYSTEMS COMPARISON 3.2. Pipeline Specification Languages

NGSPipesV1 runs steps with the same order of declaration, meaning that one step
only runs after all steps declared before him have already finished. In listing
3.36 we can see how is declared that velveh depends from trimmomatic on
NGSPipesV1 pipeline. This example was extracted from attachment A.

Listing 3.36: Dependency declaration on NGSPipesV1

tool "Trimmomatic" "DockerConfig" ({

command "trimmomatic" {

}
tool "Velvet" "DockerConfig" {

command "velveth" {

}

In table 3.2 we can see a resume of dependency declaration comparison.

3.2.2.5 Task Parallelism

After analysing the dependency graph and define an execution order, there may
be cases where multiple steps can have same order. If a step doesn’t depend from
another and both have their inputs available, these two steps should be able to
execute in parallel. We can have two approaches to define the execution order:

* Sequential, steps run sequentially;

e Parallel, multiple steps run concurrently

Based on case study, since t rimmomatic and makeblatdb don’t depend from
any other step, both can run concurrently. In figures 2.3 and 2.1 we can see the
execution order from both approaches, parallel and sequential, respectively. On
sequential execution, makeblastdb could run in any position, but always before
blastx.

From the analysed SWSs, NGSPipesV1 it’s the only with sequential execution. All
SWSs with parallel execution, don’t require any declaration from the user since
this parallel execution can be inferred from chain mechanism. In table 3.2 we can

see a resume of task parallelism comparison.

31

3. SYSTEMS COMPARISON 3.2. Pipeline Specification Languages

3.2.2.6 Data Parallelism

Data files processed by SWSs are commonly huge (tens or even hundreds of gi-
gabytes). To expedite the execution, these files can be split in smaller chunks and
processed concurrently, taking advantage of available CPUs. In order to make
this task easier, SWSs should supply some mechanism/primitives to split, pro-
cess and join data files. Excluding NGSPipesV1, all SWSs support this idea.

To test this feature, it was made a derivation of the first case study in which the
genome obtained from velvetg is compared against three data bases instead
of a single one. To achieve this, makeblastdb step will be executed three times
with different allrefs files, consequently blastx step will also run three times,
once for each data base. In figure 2.4 we can see a diagram of this case study

derivation.

In listing 3.37 we can observe how makeblastdb step is defined with CWL. If
you compare this step, with the same step of variant 1 of the case study (attach-
ment C), you will realise that is really similar. The only difference between both
is the scatter property. Since at runtime the value of in and title will be
arrays, as it can be seen on listing 3.38, scatther property indicates to CWL En-
gine that these arrays have to be scattered into different executions.

Since we have two inputs (in and tit1le), to be scattered in different executions,
the Engine has to know how to combine them either on a one_to_one combina-
tion or one_to_many. The answer for this problem relies on scatterMethod
property which, in this case, has the value dotproduct, which will result in a

one to one combination. You can see the whole pipeline in attachment G.

On figure 3.2 we can see how one_to_one and one_to_many strategies work.

32

10

11

12

. SYSTEMS COMPARISON

3.2. Pipeline Specification Languages

One to One

inputA:

inputB:

one_to one(inputA, inputB) =
{{a1, B1}, {A2, B2}, {A3, B3}}

One to Many

inputA:

inputB:

one to many(inputA, inputB) =
{{A1, B1}, {A1, B2}, {A1, B3},
{A2, B1}, {A2, B2}, {A2, B3},
{A3, B1}, {A3, B2}, {A3, B3}}

Figure 3.2: NGSPipesV2 st rategy primitive

Listing 3.37: Data parallelism pipeline on CWL

id: makeblastdb

run:

scatter: [in, title]

scatterMethod: dotproduct

in:

source:

source:

id: in

id: title

id: dbtype

valueFrom: "prot"

out:

[output, phr]

"#makeblastdb_ins"

"#makeblastdb_titles"

Descriptions/makeblastdb.cwl

33

3. SYSTEMS COMPARISON 3.2. Pipeline Specification Languages

Listing 3.38: Data parallelism arguments on CWL

makeblastdb_ins:

- class: File

path: /home/dantas/Desktop/SharedFolder/ Common_/inputs/minimalInputs
/allrefs.fnaA.pro

— class: File

path: /home/dantas/Desktop/SharedFolder/_Common_/inputs/minimalInputs
/allrefs.fnaB.pro

— class: File

path: /home/dantas/Desktop/SharedFolder/_Common_/inputs/minimalInputs
/allrefs.fnaC.pro

makeblastdb_titles: [allrefsA, allrefsB, allrefsC]

As we already saw (section 3.2.2.3), a step in Nextflow can receive arguments
through Nextflow’s channel concept. When there are multiple values passing
through the channel, Nextflow runs the steps that consume this channel once for

each value. These multiple executions are made in parallel.

As we can see on listing 3.39 (line 6), makeblastdb step, will consume through
a channel the value returned by method fromPath. This method returns all files
compliant with a certain glob pattern [11]. Once fromPath method will return
multiple files for the value seen on listing 3.40 (line 2), makeblastdb step will
be executed in parallel for each of those files. You can see the whole pipeline in

attachment F.

34

10

11

12

13

14

16

17

18

3. SYSTEMS COMPARISON 3.2. Pipeline Specification Languages

Listing 3.39: Data parallelism pipeline on Nextflow

process makeblastdb {

publishDir params.publish_dir, mode: ’'copy’, overwrite: true

input:
val title from Channel.from(params.makeblastdb_titles.split(’,’))

file inFile from Channel.fromPath (params.makeblastdb_ins)

output:
file "${title}.*" into makeBlastBlastXChannel

nmmon

makeblastdb \
—out='§{title}’ \
—dbtype=prot \
—-in="${inFile}’ \
-title=’${title}’

nmmwn

Listing 3.40: Data parallelism arguments on Nextflow

--makeblastdb_ins /home/dantas/Desktop/SharedFolder/_Common_/inputs/
minimalInputs/allrefs.fna{A,B,C}.pro

——-makeblastdb_titles allrefsA,allrefsB,allrefsC

—--blastx_outs blastA.out,blastB.out,blastC.out

Ruffus achieves data parallelism through files decorator. This decorator re-
ceives a list of objects, each object contains the arguments for one execution of
current step. This way, declaring three objects with different allrefs files, Ruf-
fus Engine will run makeblastdb step three times parallely. In listing 3.41 we can
observe makeblastdb step for this case study. You can see the whole pipeline in
attachment H. Similarly to Nextflow example, we take advantage of glob patterns
in order to specify the allrefs files. On listing 3.42 (line 2) we can see the
glob pattern used for argument makeblastdb_ins which will be consumed by
glob method (listing 3.41 lines 2, 3 and 4). This method has the same signature
of Nextflow’s fromPath.

35

10

11

12

13

3. SYSTEMS COMPARISON 3.2. Pipeline Specification Languages

Listing 3.41: Data parallelism pipeline on Ruffus

@files ([
[glob.glob (params.makeblastdb_ins) [0], None, params.publish_dir + "/"
+ params.makeblastdb_titles.split (", ") [0], params.makeblastdb_
titles.split (", ") [011,
[glob.glob (params.makeblastdb_ins) [1], None, params.publish_dir + "/"
+ params.makeblastdb_titles.split(",")[1l], params.makeblastdb_
titles.split(",")[1]1],
[glob.glob (params.makeblastdb_ins) [2], None, params.publish_dir + "/"
+ params.makeblastdb_titles.split(",")[2], params.makeblastdb_
titles.split (", ") [2]]
1)
def makeblastdb (input, output, outputDir, title):
command = "makeblastdb " +\
"—out=" 4+ outputDir + " " +\
"—dbtype=prot " +\
"—in=" + input + " " +\
"-title=" + title

run (command)

Listing 3.42: Data parallelism arguments on Ruffus

—--makeblastdb_ins /home/dantas/Desktop/SharedFolder/_Common_/inputs/
minimalInputs/allrefs.fna\?.pro

—--makeblastdb_titles allrefsA,allrefsB,allrefsC

—-blastx_outs blastA.out,blastB.out,blastC.out

Swift language has foreach loops. The iterations of foreach loops are paral-
lel. This way, to solve our problem we just need to iterate over an array con-
taining the allrefs files as we can see in listing 3.43. You can see the whole
pipeline in attachment I. Once again we use a glob pattern to define the argument
makeblastdb_ins (listing 3.44 line 2). This argument is used on definition of

allrefs array as we can see on listing 3.43 (line 14).

36

10

11

12

13

3. SYSTEMS COMPARISON 3.2. Pipeline Specification Languages

Listing 3.43: Data parallelism pipeline on Swift

app (file o[]) makeblastdb (string outDir, file allrefs, string title
)

{

makeblastdb

"—out=" + outDir

"—-dbtype=prot"

"—-in=" 4+ filename (allrefs)
"_title=" + title;

}

string inFilesPattern;

(inFilesLocation, inFilesPattern) = splitMakeBlastDBIn (arg ("

makeblastdb_ins"));
file allrefs[]<filesys_mapper; location=inFilesLocation, pattern=

inFilesPattern>;

foreach inFile, idx in allrefs {
string title = titles[idx];
makeBlastDBOutputs[idx] = makeblastdb (arg("publish_dir")+"/"+title,
inFile, title);

Listing 3.44: Data parallelism arguments on Swift

-makeblastdb_ins=/home/dantas/Desktop/SharedFolder/_Common_/inputs/
minimalInputs/allrefs.fna?.pro

-makeblastdb _titles=allrefsA,allrefsB,allrefsC

-blastx_outs=blastA.out,blastB.out,blastC.out

Table 3.2 resumes data parallelism approaches discussed in this section.

3.2.2.7 Nested Pipelines

In our context a nested pipeline is implemented as a pipeline which can define
steps that execute other pipelines. This way users can incorporate in their pipelines,
pipelines developed by others expediting development process and reusing code.
To support nested pipelines the language must allow user to deal with the pipeline

as a whole without having to deal with its steps. On figure 3.3 we can see the

37

3. SYSTEMS COMPARISON 3.2. Pipeline Specification Languages

schematic for a nested pipeline. On this schematic, the main pipeline has a step,
velvet, which will run another pipeline that contains two steps, velvetg and

velveth.
Main pipeline Velvet pipeline
trimmomatic
- l ”””” } velveth
| I
i velvet :r— ——————————— >
I | l
| I

makeblastdb

v

blastx

velvetg

Figure 3.3: Nested pipeline schematic.

From all analysed systems, CWL is the only which supports nested pipelines. Al-
though some SWSs such as Ruffus and Swift have an import primitive which
allows to import all steps defined on another pipeline, this mechanism doesn’t
allow users to see this pipeline as a whole and have to deal with its steps.

A nested pipeline step, on CWL, has the same structure of a normal step which
invokes a tool, but this time on the run primitive instead of defining the path to
a tool description we supply the path to a pipeline definition. On listing 3.45 we
can observe velvet step that invokes the pipeline (velvet.cwl) that runs velveth

and velvetg steps. The complete pipelines can be seen on attachment N.

38

10

[

3. SYSTEMS COMPARISON 3.2. Pipeline Specification Languages

Listing 3.45: Invoke velvet pipeline on CWL

- id: wvelvet
run: velvet.cwl
in:
- id: velvet_output_dir
source: "#velvet_output_dir"
- id: trimmomatic_output
source: "#trimmomatic/output"
out:
- id: velvetgOutput
- id: velvetgContigs

Listing 3.46: Ve lvet pipeline outputs definition on CWL

outputs:
- id: velvetgOutput
type: Directory
outputSource: velvetg/output
- id: velvetgContigs
type: File

outputSource: velvetg/contigs

Listing 3.47: Chain with velvet pipeline output on CWL

- id: blastx
run: Descriptions/blastx.cwl
in:
- id: query

source: "#velvet/velvetgContigs"

When dealing with chain mechanism for nested pipelines steps, we can face a re-
cursion problem. In order to understand this problem, we will take in considera-
tion the schematic seen on figure 3.4. This schematic shows an example where we
have three pipelines which through nested pipelines steps, depend from each other.
In order to chain, on Pipelinea, an output from PipelineC, we would have
to define the whole path to output, something like: PipelineB /step inside
PipelineB/ PipelineC / step inside PipelineC / output. Thissce-
nario can get worse if we add more nesting levels.

In order to solve this problem, CWL allows users to define the outputs produced

by a pipeline through Outputs primitive. With this approach the responsibility

39

3. SYSTEMS COMPARISON 3.2. Pipeline Specification Languages

is distributed by all pipelines which have to declare their outputs. This way we
only need to specify the output with one level of nesting. On listings 3.46 and
3.47 we can see the definition of pipelines’s outputs and pipeline output chaining

mechanism respectively.

PipelineA PipelineB PipelineC
stepA stepB
{ { stepC
I T S E— (RN 2 S

Figure 3.4: Recursive chain nested pipeline schematic.

On listings 3.48, 3.49 and 3.50, we can observe how we can define a step which
invokes another pipeline with Nextflow, Ruffus and Swift respectively. The com-
plete pipelines can be seen on attachments M, O and P. As you can conclude these
steps are not more then regular steps which invoke any generic tool but this time

invoking the Engine to run other pipeline.

40

10

11

12

13

14

10

3. SYSTEMS COMPARISON

3.2. Pipeline Specification Languages

Listing 3.48: Invoke pipeline on Nextflow

process velvet ({
input:

file velvetInput from trimVelvChannel

publishDir params.publish dir, mode: ’'copy’, overwrite: true

output:
file "${params.velvet_output_dir}" into velvetOutputsChannel
file "${params.velvet_output_dir}/contigs.fa" into
velvGBlastXChannel

nmmn

nextflow /home/dantas/Desktop/velvet.nf —-publish_dir \$PWD —-—
trimmomatic_output ’${params.publish_dir}/$velvetInput’ --velvet

_output_dir ${params.velvet_output_dir}

Listing 3.49: Invoke pipeline on Ruffus

@follows (trimmomatic)
@files (params.publish_dir + "/" + params.trimmomatic_output, params.
velvet_output_dir)
def velvet (input, output):
command = "python " +\
"velvet.py " +\
"——publish_dir " + params.publish_dir + " " +\
"——trimmomatic_output " + input + " " +\

"—-—velvet_output_dir " + output

run (command)

Listing 3.50: Invoke pipeline on Swift

app (file velvetOutputFiles[]) velvet (file trimOutput)
{
"/home/dantas/swift-0.96.2/bin/swift"
"/home/dantas/Desktop/velvet.swift"
"-publish_dir=" + arg("publish_dir")
"—trimmomatic_output=" + filename (trimOutput)

"-velvet_output_dir=" + arg("velvet_output_dir");

41

3. SYSTEMS COMPARISON 3.3. Tools and Pipelines Sharing

3.2.2.8 Syntax Summary

On table 3.2 we can see a resume of syntax of all SWS’s languages.

3.3 Tools and Pipelines Sharing

Sharing is an important concept in any development. In science, sharing knowl-
edge is essential for the development of the area. We can look to SWSs from the
same perspective and say that all users would benefit if there was a community
that shares their tools and pipelines.

From all studied systems, there is not a huge share community. Nextflow and CWL
are the only systems in which we can find some sharing groups. These groups
normally publish their tools and pipelines on Git[8] repositories such as Github and
Bitbucket[6]. Due to this fact Nextflow supports the execution of pipelines stored on
these repositories (Github and Bitbutcket).

With this sharing concept in mind, NGSPipesV1 introduced repositories concept.
As we already saw, the root of a NGSPipesV1’s pipeline is composed by the type
and the location of a repository. This allows users to publish their tools to a sup-
ported repository (ex: Github) which allows other users to use it. This language
support to access repositories directly it is only possible because NGSPipesV1
repositories have a well defined structure. This structure enables the Engine to
consult these repositories, which doesn’t happen with the other analysed SWSs.

Despite these repositories there is no official platform were users can find all ex-
istent pipelines. This scenario is not ideal because all the artefacts are spread all
over the place. It would be more advantageous to have a unique platform to
share artefacts. Centralizing all available resources would make the search for

tools and pipelines an easier task.

42

3.3. Tools and Pipelines Sharing

3. SYSTEMS COMPARISON

X , , yordury , /, [e207 / [eqO[D Yimg

X , , yordxg X , [e207 / [eqO[D snyyny

, , Vs yordug , , [e207] TMD

X Vs Vs yordurg Vs , [eqoro MOPIXON

X X X yordxg Vs X - TASAIISON
s | e | s | e | o | quaniy | soese

-uostredwod xejudg sadengue :g'¢ a[qer,

43

Solution

As seen on previous chapter, when compared with other systems, NGSPipesV'1
has some limitations on parallelism and nesting pipelines which are essential fea-
tures for pipeline development. Although some limitations, NGSPipesV1 also has
some advantages such as repository and descriptors concept. While developing

this solution one of our main goals was to keep the advantages of NGSPipesV1.
To develop this solution there were three main tasks to be developed:

¢ Extend NGSPipesV1 modules in order to add support for new features;

* Develop a new language specification;

* Develop a sharing platform

Throughout next sections we will discuss each of these tasks and the solutions
for the mentioned problems.

4.1 Architecture

This section presents the initial architecture of NGSPipesV1 and the transforma-
tions made with the development of NGSPipesV2. Figure 4.1 shows a macro visu-
alization of modules within the approach and how they communicate with each
other.

45

4. SOLUTION 4.1. Architecture

NGSPipesV2 Architecture

I
Pipeline Specifications Repository l
Pipeline
. . p .. Pipeline
-pipes -pipes «<— Specification |« . m
Engine
Interpreter
k\
Tool metadata annotations Repository \
Tool Metadata .
Tooll Tool2 . Sharing
«— Annotation
System
Mapper
NGSPipesV2 modules Connections between modules
|:| Completely new » Uses — Input
|:| Modified and Extendend «—» Read/Write + Referenced

Figure 4.1: Architecture and changes from previous work

Follows a brief description:

1. Pipeline Specifications Repository- represents the physical repositories con-
taining pipelines specification files (ex: Github);

2. Pipeline Specifications Interpreter- converts pipeline specifications, based on
NGSPipesV2 DSL, to Java objects;

3. Pipeline Engine- executes pipelines;

4. Tool metadata annotations repository- represents the physical repositories con-
taining tools metadata annotation files (ex: Github);

5. Tool metadata annotations mapper- maps tools metadata annotations, based
on JSON format, into Java objects;

6. Sharing System- supplies a WEB application which permits NGSPipesV2’s
users to share pipelines and tools.

46

4. SOLUTION 4.2. NGSPipesV2 Language

In conjunction with this project is being developed another project thesis (Par-
allel execution of pipelines using bioinformatics tools by Calmenelias Fleitas), which
is responsible for the development of modules Pipeline Engine and Tool Metadata
Annotation Mapper. Figure 4.2 presents all modules within NGSPipesV2 solution,
as well as the project that is responsible for each module.

NGSPipesV2 Architecture

Pipeline Specifications Repository
¥
-pipes -pipes P"??I'm." Pipeline
<« Specification « .
Engine
Interpreter
..\
Tool metadata annotations repository "
v .
Tool Metadata Shari
Tooll Tool2 «—> Annotation aring
Mapper System
F Y
Developed by Connections between modules
D Other thesis > Uses — Input
[[] This thesis <«—> Read/Write » Referenced

Figure 4.2: Architecture (modules distribution)

The following sections describe with more detail each part of the solution, namely
the new and extended components — pipeline sharing platform and pipeline specifi-
cation language.

4.2 NGSPipesV2 Language

As we saw in chapter 3, NGSPipesV1 language has some limitations such as
task parallelism, data parallelism among others. In addition to these limitations,

NGSPipesV1 has some syntax issues such as:

47

4. SOLUTION 4.2. NGSPipesV2 Language

* NGSPipesV1 language was developed taking in consideration that all tools
used within a pipeline were on a single repository. Due to this assumption,
the root of a pipeline only supported the definition of one repository. As we
saw one of our goals was to enable users to use multiple repositories on a

pipeline definition;

¢ As we saw on section 3.2.2.3, in other to reference a specific step, on chain
mechanism, users have to indicate the index in which the step appear. This
happens because the syntax didn’t support the definition of an id for each
step;

¢ Since users can reuse tool scope for different commands, the definition of

what is a step is not intuitive

Due to these limitations, we decided to define a new language specification. This
section will discuss NGSPipesV2 and its features comparing, when possible, with
NGSPipesV1.

4.2.1 Language Specification

NGSPipesV2 language is composed by three main primitives:

* Repositories;
¢ Outputs;

* Steps

There is a fourth optional primitive, called Properties. Properties can in-
clude some meta-data like author of pipeline, version of pipeline among others.

Since this is not relevant for our scenario, let’s put it aside for now.

Throughout next sections we will discuss these primitives. In order to do it we

will take in consideration an Hello World example (listing 4.1).

48

10

11

12

13

14

16

17

18

19

4. SOLUTION 4.2. NGSPipesV2 Language

Listing 4.1: Hello world example with NGSPipesV2

Repositories: [
ToolRepository repo: {
location: "/home/dantas/Desktop/Repository"

Outputs: {

result: Write[out]

Steps: [
Step Write: {
exec: repol[cmd] [echo]
inputs: {
text: "Hello World!"
file: "hello_world.txt"

Hello World example has a single step (Write) and assumes that there is a
repository of tools located at /home /dantas/Desktop/Repository. This repos-
itory contains the cmd tool with echo command. echo command has two inputs:

* text - text to be written;

e file - output file

Our goalis to run the command: echo “Hello World!” “hello_world.txt”.

4.2.1.1 Repositories

As we already discussed, NGSPipesV1 abstracts the source from where the tools
descriptors came from with repository concept. In order to declare the repository
for all tools used within a pipeline, on NGSPipesV1, the root of pipeline (listing 4.2)
was defined with primitive Pipeline followed by two string. These two strings

are type and location respectively.

49

[

10

11

4. SOLUTION 4.2. NGSPipesV2 Language

Listing 4.2: NGSPipesV1 pipeline root

Pipeline "Local" "/home/dantas/Desktop/Repository" ({

This approach imposes that all used tools has to be on a single repository. This
limitation is not practical neither coherent with a platform which wants to con-
verge for a sharing system where users share tools descriptors and pipelines. Tak-
ing this in consideration, one of the main goals of NGSPipesV2 language was to
allow the usage of multiple repositories on pipeline.

NGSPipesV2 language has the Repositories scope in which user must define
all used repositories, indicating for each an id and its location. Later on Steps
scope, user will reference these repositories through their id and index them with
tool’s id. In listing 4.3 we can see an extract of Antlr[1] grammar definition for

Repositories scope. The entire grammar definition can be seen in attachment

J.

Listing 4.3: Antlr grammar for Repositories scope.

repositories: ’'Repositories’ ’:’ ' [’ repository (repository)* '1’;

repository: toolRepository | pipelineRepository;

toolRepository: ’'ToolRepository’ repositoryId ":’ ' {’
locationProperty configProperty? "}’;

pipelineRepository: ’'PipelineRepository’ repositoryId ":’ 7 {’
locationProperty configProperty? ’}’;

repositoryId: ID;

locationProperty: ’location’ ’:’ locationValue;

locationValue: STRING;

configProperty: ’"config’” ’:’ ' {’ configx "}’;

config: configName ’:’ configValue;

configName: ID;

configValue: value;

You may have noticed that a repository (listing 4.3 line 2) can be either a tool
repository (ToolRepository) or a pipeline repository (PipelineRepository).
To implement a nested pipeline pattern, users need to define the location of the
pipeline that they want to execute. To implement this feature, we took the same
approach that NGSPipesV1 has for tool’s meta-data and introduced repositories

of pipelines. With this abstraction, when defining nested pipelines, users only need

50

10

11

12

13

14

16

17

18

19

20

21

22

4. SOLUTION 4.2. NGSPipesV2 Language

to reference the pipeline though its id (similarly to tools). This nested pipeline pat-
tern will be covered on subsection 4.2.2.2.

If we look back to listing 4.1, we can now interpret it and say that, this pipeline
uses one repository of tools (ToolRepository) which has the id repo.

4.2.1.2 Steps

Since a pipeline is a composition of multiple steps, this was translated directly
to NGSPipesV2. This is reflected by Steps scope in which user can define all
pipelines’s steps. The same approach can be found in CWL. In listing 4.4 we can

see an Antlr grammar definition for Steps scope.

Listing 4.4: Antlr grammar for Steps scope.

steps: ’Steps’ ":’ [’ step (step)*x ']’;

step: ’Step’ stepId ':’ ' {’ execProperty executionContextProperty?
inputsProperty? spreadProperty? ’'}’;

stepId: ID;

execProperty: ’'exec’ ’:’ (commandReference | pipelineReference);

commandReference: repositoryId ’ [’ toolName ']’ 7 [’ commandName ’']’;

toolName: ID;

commandName: ID;

pipelineReference: repositoryId ' [’ pipelineName ’']’;

pipelineName: ID;

executionContextProperty: ’execution_context’ ’:’ value;

inputsProperty: ’inputs’ ’:’ '{’ inputProperty* ’}’;

inputProperty: inputName ’:’ inputValue;

inputName: ID;

inputValue: value | chain;

chain: stepId ’ [’ outputName ’']’;

spreadProperty: ’spread’ ’':’ '"{’ spreadInputsToSpreadProperty
spreadStrategyProperty?’ }’;

spreadStrategyProperty: ’strategy’ ’:’ combineStrategy;

strategyValue: combineStrategy | inputName;

combineStrategy: oneToOneStrategy | oneToManyStrategy;

oneToOneStrategy: 'one_to_one’ ' ('’ strategyValue ’',’ strategyValue ')

7.
14

oneToManyStrategy: ’"one_to_many’ ' (" strategyValue ’,’ strategyValue
’) 14 ;
spreadInputsToSpreadProperty: ’inputs_to_spread’” ’':’ ' [’ inputName (’

,” inputName)* ']’;

51

4. SOLUTION 4.2. NGSPipesV2 Language

Steps scope contains primitives that allow users to:

¢ declare which tool/pipeline they want to execute (exec);
* declare values for the inputs of tool/pipeline (inputs);

¢ orchestrate parallel executions (spread)

All these primitives will be analysed on section 4.2.2.

Let’s look to Hello World example (listing 4.1) and interpret it. This pipeline
has a single step called Write. Write step will execute the command echo from
tool cmd which will be obtained from repo repository. echo command will be
executed with the following inputs:

® text =Hello world;

o file=hello_world.txt

4.2.1.3 Outputs

Outputs scope appears to resolve two problems: reference an output when deal-
ing with nested pipelines and the wasted time to transfer pipeline’s outputs when

executing pipelines on a cloud platform.

As result of execution, the outputs produced by a pipeline can be huge. When exe-
cuting a pipeline on a cloud platform there is a time overload to collect all outputs
and transfer them to the local machine. To minimize this time overload, users
should be able to specify which outputs should be collected after pipeline’s execu-

tion.

As we already discussed, when we need to chain into an input, an output coming
from a step which invoked a pipeline (nested pipeline), the syntax can become quite
complex. To keep the chain syntax simple, NGSPipesV2 just allows users to chain
outputs which are declared on respective pipelines. This way the syntax for chain
mechanism is always: [inputName]: [stepId] [outputName], regardless of
the step’s type (tool or pipeline). As we saw on section 3.2.2.7, CWL has a similar
approach. On pipeline definition, user can define through outputs primitive, the
outputs produced by pipeline.

52

4. SOLUTION 4.2. NGSPipesV2 Language

Within Outputs scope, user can declare the outputs produced by pipeline. An
output is defined by an id (which will be used on chain mechanism), the stepId
(which produces it) and out putName (defined on tool’s descriptor). In listing 4.5
we can see an extract of Antlr grammar definition for Outputs scope. The entire
grammar definition can be seen in Attachment J.

Listing 4.5: Antlr grammar for Outputs scope.

outputs: ’"Outputs’” ’":" 7 {’ outputx "}’;
output: outputId ’:’ outputValue;
outputId: ID;

outputValue: stepId ’ [’ outputName ’']’;
outputName: ID;

Let’s look to Hello World example (listing 4.1) and interpret it. This pipeline
has a single output called result. result output is the out output produced
by Write step.

4.2.2 Language Comparison

On this section we will discuss how the features analysed on chapter 3 were
solved on NGSPipesV2.

On tables 4.1 and 4.2 we can see a resume comparing NGSPipesV1 and NGSPipesV?2
language specification. Through next sections we will analyse each column of
these tables.

Table 4.1: NGSPipesV1 and NGSPipesV2 language methodology comparison.
DSL ‘ Command Invocation

NGSPipesV1 | External Metadata
NGSPipesV2 | External Metadata

4.2.21 Methodology

DSL Although NGSPipesV2 language specification is totally new and not com-
patible with NGSPipesV1, we kept the same approach and developed an external
DSL. This decision was made because DSLs can be designed for a specific domain

and are not limited by other languages syntax limitations.

53

4.2. NGSPipesV2 Language

Table 4.2: NGSPipesV1 and NGSPipesV2 language syntax comparison.

4. SOLUTION

. . Step Task Data Nested
Variables | Arguments | Chain Dependency | Parallelism | Parallelism | Pipelines
NGSPipesV1 - X 4 Explicit X X X
NGSPipesV2 | Global v v Implicit v/ v/ v/

54

4. SOLUTION 4.2. NGSPipesV2 Language

Command Invocation One advantage of NGSPipesV1 was the usage of tool de-
scriptors to store tool’s meta-data. This meta-data simplifies the definition of the
pipeline but also enables the Engine to validate the pipeline. For this reason on

NGSPipesV2 language we decided to keep the same approach.

4.2.2.2 Syntax

On listing 4.6 we can see the definition of t rimmomat ic step on NGSPipesV2.

Listing 4.6: Step on NGSPipesV?2

Step trimmomatic: {

exec: repo[Trimmomatic] [trimmomatic]

execution_ context: "DockerConfig"
inputs: {
mode: "SE"

Variables On NGSPipesV2 we decided to support global variables. To declare
a variable, user can define it anywhere in the document, outside the four main
scopes (Properties, Repositories, Steps, Outputs). The variable defini-
tion has the syntax: name : value. On listing 4.7 we can see how we declare

the variable repoLocation to use it latter on 1location property.

Listing 4.7: Variable on NGSPipesV2

repolocation = "https://github.com/ngspipes2/tools_support"

Repositories: [
ToolRepository repo: {

location: repoLocation

Arguments As we saw on section 3.2.2.2, arguments, are essential when we
want to develop a pipeline and abstract it from the concrete data. To deal with ar-
guments, we decided to take the same approach as Nextflow (section 3.2.2.2). User
can access arguments through object params. On listing 4.8 we can see the usage

of argument t rimmomatic_input to define the value of input inputFile of

55

4. SOLUTION 4.2. NGSPipesV2 Language

step t rimmomat ic. The full pipeline with more arguments can be seen on attach-

ment K.

Listing 4.8: Argument on NGSPipesV?2

Step trimmomatic: {

inputs: {

inputFile: params.trimmomatic_input

Chain Outputs with Inputs On NGSPipesV1 language the definition of inputs
had two main problems. Firstly users had to use argument or chain primitives
depending if the value was static or an output from another step. Secondly since
there was no id to reference a certain step, user had to specify though numbers
the index from which step the output, to chain, came from. To simplify the defini-
tion of inputs, on NGSPipesV2, users only have the syntax: name : value. Chain

is a special case where value has the syntax: stepId[outputName].

On listings 4.9 (line 3) and 4.10 (line 4), we can see how the static input (out)
looks like on NGSPipesV1 and NGSPipesV2 respectively. Realize that regardless
the type of input (static or chain), the syntax of input definition, on NGSPipesV2,
is the same.

Listing 4.10: Chain on NGSPipesV2

Listing 4.9: Chain on NGSPipesV2

. 1 Step blastx: {
tool "Blast" "DockerConfig" {
2
command "blastx" {
3 inputs: {
argument "-out" "blast.out"
4 out: "blast.out"

On listings 4.11 (line 3) and 4.12 (line 4), we can see how we chain query in-
put from blastx step with the contigs_fa output from velvetg step, on
NGSPipesV1 and NGSPipesV2 respectively. The full pipelines can be seen on at-
tachment A and K.

56

4. SOLUTION 4.2. NGSPipesV2 Language

Listing 4.12: Chain on NGSPipesV2

Listing 4.11: Chain on NGSPipesV?2

] 1| Step blastx: {
tool "Blast" "DockerConfig" {

command "blastx" {)
chain "-query" "Velvet" " ’ inputs:
4 query: velvetg[contigs_fa]l

n n

velvetg contigs_fa"

Steps Dependency On NGSPipesV1 language, steps execution was sequential,
meaning that steps would run in the same order of its definition. On NGSPipesV2
language, the dependency of steps is inferred from the chain mechanism, similar
to what happen on all analysed systems as we saw on section 3.2.2.4. This allows

users to write steps in any order and organize the pipeline in the most logical way.

Task Parallelism As already mentioned, NGSPipesV1 language had a sequen-
tial execution. Being able to execute steps in parallel is an essential feature for
any SWS. On NGSPipesV2, the execution of a pipeline parallels steps when there is
no dependency between them. For this users don’t need any special declaration
since the Engine infers dependencies through chain mechanism. This approach is
common among all analysed SWS.

Data Parallelism To run a step in parallel with different data, user must pass an
array of values to an input. If an input is declared, on tool’s descriptor, as being of
type St ring then the value passed must be and array of St ring. Then through
spread.inputs_to_spread user must declare which inputs the Engine must
spread in parallel executions. In order to define how to combine the inputs user
must group them into pairs with property spread.strategy. The strategy
property enables users to combine the inputs in one to one (one_to_one) or one to
many (one_to_many) strategy. spread property is similar to scatter approach
of CWL. On listing 4.13 we can see how to write data parallelism variant of case
study seen on chapter 2. The full pipeline can be seen on attachment L. Keep in
mind that out, title and in are declared, on makeblastdb descriptor, as being of

type String, String and File respectively.

57

[

10

11

12

[

[

4. SOLUTION 4.2. NGSPipesV2 Language

Listing 4.13: Data parallelism on NGSPipesV?2

Step makeblastdb: {

inputs: {

out: ["allrefs", "allrefsB", "allrefsC"]
title: ["allrefs", "allrefsB", "allrefsC"]
in: ["E:\...\allrefs.fna.pro", "E:\...\allrefs.fnaB.pro","E:\...\

allrefs.fnaC.pro"]
}
spread:
inputs_to_spread: [in, out, title]

strategy: one_to_one(in, one_to_one (out, title))

Nested Pipelines A nested pipeline step, on NGSPipesV2, has the same struc-
ture of a normal step which invokes a tool. The difference between a normal and
a nested pipeline step is that the exec primitive instead of indexing a tool repos-
itory, indexes a pipeline repository. On listing 4.14 we can observe velvet step
that invokes the velvet pipeline which runs velveth and velvetg steps. The

full pipeline can be seen on attachment Q.

Listing 4.14: Invoke pipeline on NGSPipesV?2

Step velvet: {
exec: pipelines|[velvet]
inputs: {
trimmomatic_output: trimmomatic[outputFile]

velvet_output_dir: "velvetDir"

Listing 4.15: Pipeline outputs definition on NGSPipesV?2

Outputs: {
outputl: trimmomatic[outputFile]

output2: blastx[out]

58

W N =

1

4. SOLUTION 4.3. NGSPipes Share Platform

Listing 4.16: Chain with pipeline output on NGSPipesV2

Step blastx: {

inputs: {

query: velvet[contigs]

}

Aswe already saw, to solve the problem of chaining outputs from a nested pipeline
step, we took the same approach of CWL. Users can define the outputs produced
by a pipeline on the pipeline’s definition through Outputs primitive. On listings
4.15 and 4.16 we can see the definition of pipelines’s outputs and pipeline output

chaining mechanism.

When we compare listings 4.14, 4.15 and 4.16 with the same example that has no
nested pipelines, we will realize that the syntax is the same. This makes the syntax

simpler for the user and easy to get used to.

4.3 NGSPipes Share Platform

As we saw on chapter 3, NGSPipesV1 language didn’t support neither the usage
of multiple repositories nor nested pipelines. With NGSPipesV2 language these
problems were solved and we can build our pipelines reusing components imple-
mented by others. This is helpful but it doesn’t solve all problems we detected on
chapter 3, since we do not offer any solution in order to share our pipelines and
tools.

One possible solution it would be to have an official Git repository were users
would publish their artefacts. This solution would lead us to another problem
with pipelines and tools already existent on other repositories. This way we would
force users copy their artefacts into this repository which is inconvenient and cre-
ates duplicates. To solve these problems, NGSPipes Share Platform was developed.
NGSPipes Share Platform has the following main goals:

¢ allow creation of tools and pipelines repositories dynamically;
¢ allow publication of already existent repositories;

59

4. SOLUTION 4.3. NGSPipes Share Platform

¢ allow to edit repositories content

On figure 4.3 we can see the NGSPipes Share Platform architecture. During next
sections we will discuss each module of this architecture.

NGSPipes Share Platform
Share Core
‘ Repositories
Facade
Tools Pipelines
Repository Repository Share API
Server Server

i | ‘

| |

| |

| |

| |

| |

| |

| | Share Client
| |

| |

: !

'. i

| |

| |

Engine

Figure 4.3: NGSPipes Share Platform architecture

4.3.1 Share Core

Share Core module has the entity model and services to support all Repository
Server and Share API operations. On figure 4.4 we can see a UML[20] diagram of
the entity model of NGSPipes Share Platform.

60

4. SOLUTION 4.3. NGSPipes Share Platform

<<enumeration>>
EntityType
TOOLS
PIPELINES
Repositoryinfo
- <
<<enumeration=>
LocationType
) . INTERNAL
(E Repository J\ Repository l EXTERNAL
RepositoryUserMember RepositoryGroupMember
)
-
=
o]
fu o
[1b] 3
w o
= 0]
User Group
Cwner
_0
e
—
@
I o o
= 2 S
8] =] 5]
AccessToken GroupMember
_0

Figure 4.4: UML entity model of NGSPipes Share Platform

From the diagram seen on figure 4.4 we can highlight the following entities:

* RepositoryInfo - represents all repositories existent on the platform.
These repositories can be either of tools or pipelines. Repositories can be in-
ternal or external. Internal repositories are repositories created by the plat-
form. External repositories are repositories that were created outside the
platform (ex: Github) but the owner wants to share it with the community;

* User - represents all users of the platform. Users can create/publish and
edit repositories or they can be on the platform only to access repositories

of others;

* Group - represents a group of users. This entity helps users to define who
has access to their repositories. If a group is member of a repository, then

all its users will have access to the repository

61

4. SOLUTION 4.3. NGSPipes Share Platform

4.3.2 Tools and Pipelines Repository Servers

On NGSPipesV2 architecture there are two modules (ToolMetadataMapper and Pipeline-
SpecificationInterpreter) responsible for defining the interfaces of repositories to ac-
cess tools and pipelines. On figures 4.5 and 4.6 we can observe these interfaces and

the supported implementations.

==|nterface>>
IToolsRepository

+geiToolsNames() : Collection<String=
+getAll() - Collection=IToolDescriptor=
+gef(tooiName - String) : IToolDescriptor
——————————— | +insert(tool : IToolDescriptor) KF---—---——-——-
+update(tool : IToolDescriptor)
+delete({toolName : String)

Ay
! I

I
I

I
I

I
I

I
I

I
I

I
I

I
I

I
I

I
I

I
I

I
I

I
I

|

?

GithubToolsRepository ServerToolsRepository LocalToolsRepository

Figure 4.5: IToolsRepository class diagram

==Interface>>
IPipelinesRepository

+getPipelinesNames() : Colleclion=String=
+getAll{) - Collection=IPipelineDescriptor=
““““ 1> +get{pipelineMame : String) : IPipelineDescriptor <t-------
+insert({pipeline - IPipelineDescriptor)

+ypdate(pipeline : IPipelineDescriptor)
+delete(pipelineMame : String)

A

b
|
|
|
|
|
|
|
|
|
|
|
|
|

[
|
|
|
1
|
1
|
1
|
|
|
|
|
|

GithubPipelinesRepository ServerPipelinesRepository LocalPipelinesRepository

Figure 4.6: IPipelinesRepository class diagram

In order to allow users to publish their tools and pipelines, NGSPipes Share Platform
needs to supply a solution compatible with one of the supported implementa-

tions. Since local implementations don’t fit our needs to share artefacts with other

62

4. SOLUTION 4.3. NGSPipes Share Platform

users, we have to choose between Github or Server implementations. Both im-
plementations are based on http requests, GithubRepository uses the Github
API [10] and ServerRepository has a set of predefined routes. The solution
adopted was to implement a server compatible with ServerToolsRepository
and ServerPipelinesRepository. This solution gives to the platform the
ability to change where it stores tools and pipelines, without changing the way
users interact with the server. If we had opted for Github, users would have to
change their logic to access the artefacts, when the platform decided to stop using
Github.

Tools Repository Server is the module responsible for implementing the interface
of IToolsRepository. Pipelines Repository Server has the same responsibility of
Tools Repository Server but dealing with pipelines instead of tools.

As we saw on section 4.2, users can use on their pipelines, repositories of tools and
pipelines by declaring then on Repositories scope. Let’s imagine now, the fol-
lowing scenario. If we had our IToolsRepository and IPipelinesReposi-
tory interfaces implemented for the same server and for some reason this server
fails, all pipelines which depends from our repository implementations wouldn’t
run. In order to have a decoupled solution and to be more fault tolerant these
two modules were implemented on different servers. This way if one of the sys-
tems fails, for example Tools Repository Server, the pipelines depending only from
Pipelines Repository Server will run.

4.3.3 Share API

Share API module contains an API with all operations required by the Share Client.
This API is built with Spring[19] framework. On table 4.3 we can se all controllers
of Share API module.

63

4. SOLUTION

4.3. NGSPipes Share Platform

Table 4.3: Controllers of Share API module

Controller Entity Description
Sessi . . .
cosion - Contains the login operation
Controller
route.
A Tok .
coessToken AccessToken Contains routes for CRUD oper-
Controller ‘ .
ations for AccessToken entity.
User .
User Contains routes for CRUD oper-
Controller ‘ ‘
ations for User entity.
G .
roup Group Contains routes for CRUD oper-
Controller ‘ ‘
ations for Group entity.
G Memb .
roupember GroupMember Contains routes for CRUD oper-
Controller . .
ations for GroupMember entity.
R itoryInf . .
CPOSTOLYTIO RepositoryInfo Contains routes for CRUD op-
Controller)
erations for RepositoryInfo
entity.
Repository
GroupMember | RepositoryGroupMember | Contains routes for
Controller CRUD operations for
RepositoryGroupMember
entity.
Repository
UserMember | RepositoryUserMember | Contains routes for
Controller CRUD operations for
RepositoryUserMember
entity.
E t .
*Por . Contains routes to export tools
Controller o)
and pipelines to . zip file.
I t . .
mpor - Contains routes to import tools
Controller

The documentation of this API can be found at https://ngspipes—share—

api.herokuapp.com/swagger—ui.html.

64

and pipelines from . zip file.

https://ngspipes-share-api.herokuapp.com/swagger-ui.html
https://ngspipes-share-api.herokuapp.com/swagger-ui.html

4. SOLUTION 4.3. NGSPipes Share Platform

4.3.4 Repositories Facade

One of main goals of Share Client is to edit the content of tools and pipelines repos-
itories. As we discussed on section 4.3.2 there are multiple implementations of
repositories. Since these implementations have their own logic implemented in
our Java library and Share Client is implemented with JavaScript, we would have
to repeat all this logic in JavaScript in order to access all types of repositories. To
solve this problem, Repository Facade module has a server which its only job is
to implement repositories facades and call the concrete implementation of repos-
itory. Figure 4.7 shows the interfaces implemented by Repository Facade mod-
ule. This interfaces are equal to the ones seen on figures 4.5 and 4.6, the only
difference is that each method receives an object of type DataWrapper. This
DataWrapper contains the data relative to which repository we want to com-
municate with. Repository Facade module uses this data object to instantiate a
concrete implementation of repository and invokes the desired operation. This
way when we add a new implementation of repository to our Java library, Share

Client will also be compatible with it without changes on its code.

65

4. SOLUTION 4.3. NGSPipes Share Platform

<<|nterface>>
IPipelinesRepositoryServerController

+getPipelinesNames(data . DataWrapper<Void=) : Collection<String=
+getAll(data - DataWrapper=Void=) : Collection<IPipelineDescriptor=
+get(data . DataWrapper<String=) - IPipelineDescriptor

+insert(data : Data\WWrapper<IPipelineDescriptor=)

+Update(data - Data\Wrapper=IPipelineDescriptor=)

+delete(data ;. DataWrapper=5String=)

Y
DataWrapper<T=>
+repositoryLocation : String
+repositoryConfig : Map=String, Object=
+data: T

<<Interface>>
IToolsRepositoryServerController

+getToolsNames(data : DataWrapper<Void=) . Collection=5tring=
+getAllidata - DataWrapper<Void=) . Collection=|ToolDescriptor=
+get(data : DataWrapper<5tring=) : [ToolDescriptor

+insert(data - DataWrapper=|ToolDescriptor=)

+update(data . DataWrapper<|ToolDescriptor=)

+delete(data : DataWrapper=String=)

Figure 4.7: Interfaces of controllers implemented by Repository Facade server

66

4. SOLUTION 4.3. NGSPipes Share Platform

4.3.5 Share Client

Share Client module is a web client developed in Angular[5]. This client allows

users to:

Create new pipeline repositories;

Publish existent pipeline repositories;

Create new tool repositories;

Publish existent tool repositories;

Edit content of repositories

This client is hosted on Heroku[13] and accessible through: https://ngspipes—

client.herokuapp.com.

From figure 4.8 to 4.10 we can see how to publish a pipeline on Share Client. Notice
that FirstStudyCase pipeline is listed on section A of figure 4.10.

< NGSPipes Share

€ Profile

RepositoryName: OtherRepository

Type: Internal Pipelines Repasitory

Creation Date: March 12, 2019 6:30 PM

Owner: Test

Location: https://ngspipes-pipelines-server.herokuap... 8

Is Public:)

b Description:

2% Members

MemberName

X /7= im aH

Figure 4.8: Publish pipeline. Click on Publish Pipeline button on top right
corner of Pipelines area (section A).

67

https://ngspipes-client.herokuapp.com
https://ngspipes-client.herokuapp.com

4. SOLUTION 4.3. NGSPipes Share Platform

< NGSPipes Share ewen . a 2 Tt

€ Profile

< v 4 > EstePC » Downloads > ngspipes v ol | P e £

Organizar v+ Nove pasta

RepositoryName: OtherRepository "
S Acesso Réido Nome Data de modificagio Tipa Tamanho

Type: Internal Pipelines Repositor FirstStudyCase.i 12/03/2019 18:30 WinRAR ZIP archive 2K
B 2 G0y 9 Ambiente detaboln = 2 s

Creation Date: March 12, 2019 6:30 PM
Owner: Test

Location: https://ngspipes-pipelines-server.herokuap... §

1s Public: “@) P

b Description:

save

< >
Nome de ficheiro: |FirststudyCaseaip | [Todos os icheiros () v
S
MemberName
» Vd 2 o
2 Teet R E S

Figure 4.9: Select pipeline to publish. Select the . z1ip file containing the pipeline.

< NGSPipes Share

€ Profile |

RepositoryName: OtherRepository

Type: Internal Pipelines Repository

Creation Date: March 12, 2019 6:30 PM

Owner: Test

B FirstStudyCase s/ TO0R
, Location: https://ngspipes-pipelines-server her... 8
Is Public: <@ A
Description:

Change

Save

-

&% Members

Figure 4.10: FirstStudyCase pipeline published. The published pipeline is listed
on Pipeline area (section A).

From figure 4.11 to 4.13 we can see how to publish an existent repository on client.
On this example we are publishing an existent repository located at https://
github.com/ngspipes2/pipelines_support. Take alook at figure4.11 and
see that the FirstStudyCase pipeline, existent on this repository, is listed on

68

https://github.com/ngspipes2/pipelines_support
https://github.com/ngspipes2/pipelines_support

4. SOLUTION 4.3. NGSPipes Share Platform

section A of figure 4.13.

O Pull requests Issues Marketplace Explore A +- @)
[ngspipes2 / pipelines_support @Unwatch~ | 2 sar 0 YFork 0
¢ Code (D)lssues 0 Pull requests 0 Projects 0 Wiki nsights Settings
No description, website, or topics provided. Edit

Manage topics
D582 commits Y1branch © 0 releases 282 contributors o GPL-3.0

NGSPipesShare Creating Latest commit 4eaeefa on 16 Jan

B FirstStudyCase Create Descriptor.pipes 8 months ago
[LICENSE nitial commit 8 months ago
B Logopng Creating file Logo.png 2 months ago
Help people interested in this repository understand your project by adding a README.
©2019 GitHub Inc. Terms Privacy Securty Status Help ContactGithub Pricing AP Training Blog About

Figure 4.11: Repository to be published. This repository is a pre-existent repos-
itory, external to our NGSPipes Share Platform. The showed repository contains
one pipeline called FirstSutdyCase.

< NGSPipes Share

&% My Groups + v

9, My Tools Repositories T+ v

B My Pipelines Repositories oAy

Insert repository’s location

' https:/github.com/ngspip

13

Figure 4.12: Define repository location.

69

4. SOLUTION 4.3. NGSPipes Share Platform

< NGSPipes Share searcl

€ Profile

RepositoryName: TestRepository
Type: External Pipelines Repository

Publication Date: March 12, 2019 6:23 PM @ B FirstStudyCase

Publisher: ~ Test

Location: https://github.com/ngspipes2/pipelines_su... B J L
Is Public: 1D A

’ Description:

Change

Figure 4.13: Repository content.

We can see more examples of how to use Share Client at https://github.com/

ngspipes2/share_share_client/wiki.

In order to access any repository content, we need to supply the required config-
uration. For example, if we need to access a repository which needs credentials,
like Github, we need to configure these credentials on Share Client. To navigate
to Repository Config page click on username at top right corner of screen and se-
lect the option Repository Config. On section A of figure 4.14 we can see the
configuration to access a repository called MyRepository which is an external
repository hosted on Github. This configuration is composed of two properties
(username and token). This configuration is sent to Repository Facade which
will be used in order to communicate with the respective repository.

70

https://github.com/ngspipes2/share_share_client/wiki
https://github.com/ngspipes2/share_share_client/wiki

4. SOLUTION 4.3. NGSPipes Share Platform

Search

< NGSPipes Share MyRepotory

£ Repositories Config +

RepositoryName

MyRepository

’ Name

usiie
username NGSPipesshare @

Name Vae
token 2878123002035 @

Figure 4.14: Configuration of MyRepository repository.

71

Conclusion

The aim of this thesis was to extend NGSPipesV1 by proposing a language speci-
fication and a pipeline sharing platform to fulfil basic requirements of a SWS.

After comparing different SWSs languages against a set of features, we could de-
fine the advantages and disadvantages of NGSPipesV1. We also detected the lack
of a sharing system in all SWSs.

With NGSPipesV2’s language specification we fulfil the weaknesses discussed on
chapter 3 on parallelism and arguments features. While developing the NGSPipesV2
language specification we wanted keep the advantages of NGSPipesV1 namely:
meta-data and repository concept. Firstly, having repository concept solves the
requirement of not force users to have all required tools meta-data locally when
running the pipeline. Secondly, tools meta-data permits a level of abstraction
where users will be focused on what they want to do without having to know
the details of tools execution.

With NGSPipes Share Platform, we achieved our goal of having a platform where
users can share their tools and pipelines with the community. To develop this

system, two important decisions were made:

* Develop a platform were users can create repositories dynamically;

73

5. CONCLUSION

¢ Develop a platform were users can publish external repositories

Creating repositories dynamically enables users to have their repositories orga-
nized with a well defined target. By allowing to publish external repositories on

our platform we centralize all pieces spread on a single place.

We extended NGSPipesV1 and added support to parallelism, argument definition
and developed a share mechanism but a lot more can be done as future work.

From all the possible extensions we can highlight the following:
¢ Tools support repository - develop a repository of utilitarian tools capable
of split data files or download files from a remote location;

* Development platform - integrate NGSPipes Share Platform with another
platform which allows users to create tools and pipelines with a visual rep-

resentation through drag and drop;

¢ CWL mapper - develop a mapper to convert CWL’s descriptors into NGSPi-

pesV2’s descriptors and vice-versa in order to add interoperability

74

Bibliography

[1] Antlr, JUN 2018. URL https://github.com/antlr/antlr4/blob/
master/doc/index.md. (p. 50)

[2] Blast: Basic local alignment search tool, JAN 2018. URL http://
blast.ncbi.nlmnih.gov/Blast.cgi. (p.7)

[3] usadellab - trimmomatic: A flexible read trimming tool for illumina
ngs data, JAN 2018. URL http://www.usadellab.org/cms/?page=

trimmomatic. (p.7)

[4] Velvet: a sequence assembler for very short reads, JAN 2018. URL https:
//www.ebi.ac.uk/~zerbino/velvet/. (p.7)

[5] Angular, JAN 2019. URL https://angular.io/. (p. 67)

[6] Bitbucket, JAN 2019. URL https://confluence.atlassian.com/
bitbucket. (p. 42)

[7] C# guide, JAN 2019. URL https://docs.microsoft.com/en-us/
dotnet/csharp/. (p. 15)

[8] Git, FEV 2019. URL https://git-scm.com/. (p.42)
[9] Github guides, JAN 2019. URL https://guides.github.com/. (p. 19)

[10] Github api v3, FEV 2019. URL https://developer.github.com/v3/.
(p- 63)

[11] Glob linux manual page, FEV 2019. URL http://man7.0rg/linux/man-
pages/man7/glob.7.html. (p. 34)

75

https://github.com/antlr/antlr4/blob/master/doc/index.md
https://github.com/antlr/antlr4/blob/master/doc/index.md
http://blast.ncbi.nlm.nih.gov/Blast.cgi
http://blast.ncbi.nlm.nih.gov/Blast.cgi
http://www.usadellab.org/cms/?page=trimmomatic
http://www.usadellab.org/cms/?page=trimmomatic
https://www.ebi.ac.uk/~zerbino/velvet/
https://www.ebi.ac.uk/~zerbino/velvet/
https://angular.io/
https://confluence.atlassian.com/bitbucket
https://confluence.atlassian.com/bitbucket
https://docs.microsoft.com/en-us/dotnet/csharp/
https://docs.microsoft.com/en-us/dotnet/csharp/
https://git-scm.com/
https://guides.github.com/
https://developer.github.com/v3/
http://man7.org/linux/man-pages/man7/glob.7.html
http://man7.org/linux/man-pages/man7/glob.7.html

BIBLIOGRAPHY

[12] The apache groovy, JAN 2019. URL http://groovy-lang.org/. (p. 14)

[13] Heroku dev center, FEV 2019. URL https://devcenter.heroku.com/.
(p. 67)

[14] Json, JAN 2019. URL http://json.org/json-pt.html. (p. 15)

[15] Java platform, JAN 2019. URL https://docs.oracle.com/javase/8/
docs/. (p. 15)

[16] Javascript, JAN 2019. URL https://developer.mozilla.org/pt-PT/
docs/Web/JavaScript. (p. 24)

[17] Java ling, JAN 2019. URL https://docs.microsoft.com/en-us/
dotnet/standard/using-1ling. (p. 15)

[18] Python, JAN 2019. URL https://www.python.org/. (p. 14)
[19] Spring, FEV 2019. URL https://spring.io/. (p. 63)

[20] The unified modeling language, FEV 2019. URL https://www.uml-
diagrams.org/. (p. 60)

[21] The official yaml, JAN 2019. URL https://yaml.org/. (p. 16)

[22] Preimplantation genetic screening by ion torrent - pt, JUL 2019. URL
https://www.thermofisher.com/pt/en/home/life-science/
sequencing/dna-sequencing/preimplantation—-genetic-

screening.html. (p. 1)

[23] The unix standard, JAN 2019. URL https://www.opengroup.org/
membership/forums/platform/unix. (p.14)

[24] Bruno Dantas and Calmenelias Fleitas. Infraestrutura de suporte a exe-
cucdo de fluxos de trabalho para a bioinformatica, 2015. URL https://
drive.google.com/file/d/liae7ANoSSbTAwAcLpczlT6h0g78F fg-
5/view. (pp.ix and xi)

[25] Johan Tordsson Erik Elmroth, Francisco Hernandez. Three fundamental di-
mensions of scientific workflow interoperability: Model of computation, lan-

guage and execution environment. UMINF, 2005. (p. 1)

[26] Calmenelias Pino Fleitas. Parallel execution of workflows using bioinfor-

matics tools. December 2018. (p. 4)

76

http://groovy-lang.org/
https://devcenter.heroku.com/
http://json.org/json-pt.html
https://docs.oracle.com/javase/8/docs/
https://docs.oracle.com/javase/8/docs/
https://developer.mozilla.org/pt-PT/docs/Web/JavaScript
https://developer.mozilla.org/pt-PT/docs/Web/JavaScript
https://docs.microsoft.com/en-us/dotnet/standard/using-linq
https://docs.microsoft.com/en-us/dotnet/standard/using-linq
https://www.python.org/
https://spring.io/
https://www.uml-diagrams.org/
https://www.uml-diagrams.org/
https://yaml.org/
https://www.thermofisher.com/pt/en/home/life-science/sequencing/dna-sequencing/preimplantation-genetic-screening.html
https://www.thermofisher.com/pt/en/home/life-science/sequencing/dna-sequencing/preimplantation-genetic-screening.html
https://www.thermofisher.com/pt/en/home/life-science/sequencing/dna-sequencing/preimplantation-genetic-screening.html
https://www.opengroup.org/membership/forums/platform/unix
https://www.opengroup.org/membership/forums/platform/unix
https://drive.google.com/file/d/1iae7ANoSSbTAwAcLpczlT6h0q78Ffq-5/view
https://drive.google.com/file/d/1iae7ANoSSbTAwAcLpczlT6h0q78Ffq-5/view
https://drive.google.com/file/d/1iae7ANoSSbTAwAcLpczlT6h0q78Ffq-5/view

BIBLIOGRAPHY

[27] Martin Fowler. Domain-Specific Languages. Addison-Wesley Professional,
2010. (p. 15)

[28] Jeremy Leipzig. A review of bioinformatic pipeline frameworks. Briefings in
Bioinformatics, 2016. (p. 13)

[29] Naohisa Goto Michael L. Heuer Peter J. A. Cock, Christopher J. Fields and
Peter M. Rice. The sanger fastq file format for sequences with quality scores,
and the solexa/illumina fastq variants. Oxford University Press, 2010. (p. 7)

[30] Galaxy Project. Galaxy project @ONLINE, January 2019. URL https://
galaxyproject.org/. (p.2)

[31] CWL team. Cwl documentation @ONLINE, October 2017. URL http://

www.commonwl.org/user_guide/. (p. 13)

[32] Nextflow team. Nextflow documentation @ONLINE, October 2017. URL
https://www.nextflow.io/docs/latest/getstarted.html. (p.2)

[33] NGSPipes team. Ngspipes documentation @ONLINE, October 2017. URL
http://ngspipes.readthedocs.io/en/latest/. (p.2)

[34] Ruffus team. Ruffus documentation @ONLINE, October 2017. URL http:
//www.ruffus.org.uk/. (p. 2)

[35] Swift team. Swift documentation @ ONLINE, November 2017. URL http:
//swift-lang.org/docs/index.php. (p. 13)

[36] Lars H. Hansen Samuel Jacquiod Soren J. Sorensen Zhuofei Xu, Martin
Asser Hansen. Bioinformatic approaches reveal metagenomic characteriza-
tion of soil microbial community. PLoS One, 2014. (pp. 1 and 13)

77

https://galaxyproject.org/
https://galaxyproject.org/
http://www.commonwl.org/user_guide/
http://www.commonwl.org/user_guide/
https://www.nextflow.io/docs/latest/getstarted.html
http://ngspipes.readthedocs.io/en/latest/
http://www.ruffus.org.uk/
http://www.ruffus.org.uk/
http://swift-lang.org/docs/index.php
http://swift-lang.org/docs/index.php

-

©w

10

12

13

14

15

16

17

18

20

21

22

23

24

Task Parallelism with NGSPipesV1

Listing A.1: NGSPipesV1 task parallel pipeline for study case 1.

Pipeline "Github" "https://github.com/ngspipes/tools" {

tool "Trimmomatic" "DockerConfig" ({
command "trimmomatic" {
argument "mode" "SE"
argument "quality" "-phred33"
argument "inputFile" "ERR406040.fastg"
argument "outputFile" "ERR406040.filtered.fastqg"
argument "fastaWithAdaptersEtc" "TruSeqg3-SE.fa"
argument "seed mismatches™ "2"
argument "palindrome clip threshold" "30"
argument "simple clip threshold" "10"
argument "windowSize" "4"
argument "requiredQuality" "15"
argument "leading quality™ "3"
argument "trailing quality" "3"

argument "minlen length" "36"

}
tool "Velvet" "DockerConfig" {
command "velveth" {
argument "output_directory" "velvetdir"
argument "hash_length" "21"
argument "file format" "-fastqg"

chain "filename" "outputFile"

25

26

27

28

29

30

32

33

34

35

36

37

38

39

40

41

42

43

44

[

A. TASK PARALLELISM WITH NGSPipesV1

}
command "velvetg" {
argument "output_directory" "velvetdir"

argument "-cov_cutoff" "5"

}
tool "Blast" "DockerConfig" ({
command "makeblastdb" {

argument "-dbtype" "prot"

argument "-out" "allrefs"
argument "-title" "allrefs"
argument "-in" "allrefs.fna.pro"

}

command "blastx" {

chain "-db" "-out"
chain "-query" "Velvet" "velvetg" "contigs_fa"
argument "-out" "blast.out"

Listing A.2: Command line to invoke NGSPipesV1 and execute task parallel
pipeline for study case 1.

./bin/engine -in /home/dantas/Desktop/SharedFolder/_Common_/inputs/
minimalInputs —-out /home/dantas/Desktop/SharedFolder/NGSPipes/
FirstExample/Outputs/minimalOutputs —-pipes /home/dantas/Desktop/
pipeline.pipes

ii

10

12

13

14

15

16

17

18

19

20

21

22

23

24

Task Parallelism with Nextflow

Listing B.1: Nextflow task parallel pipeline for study case 1.

trimmomaticDir = "/home/dantas/trimmomatic-0.32.jar"

process trimmomatic {

publishDir params.publish_dir, mode: ’'copy’, overwrite: true

output:

file params.trimmomatic_output into trimVelvChannel

wnnn

java —jar S$trimmomaticDir \

SE \

-phred33 \

"${params.trimmomatic_input}’ \
"${params.trimmomatic_output}’ \

ILLUMINACLIP:’ ${params.trimmomatic_illuminaclip}’:2:30:10 \
SLIDINGWINDOW:4:15 \

LEADING:3 \

TRAILING:3 \

MINLEN: 36

wnn

process velveth ({

input:

iii

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

61

62

63

64

65

66

67

68

69

B. TASK PARALLELISM WITH Nextflow

file velvetInput from trimVelvChannel

publishDir params.publish_dir, mode: ’'copy’, overwrite:

output:

file "velvetDir" into velvhVelvgChannel

velveth \
velvetDir \
21\

-fastg \
$velvetInput

process velvetg ({
input:

file velvetGInput from velvhVelvgChannel

publishDir params.publish_dir, mode: ’'copy’, overwrite:

output:
file "$velvetGInput" into velvgOutputsChannel
file "$velvetGInput/contigs.fa" into velvGBlastXChannel

nnn

velvetg \
$velvetGInput \

—-cov_cutoff 5

process makeblastdb {

publishDir params.publish_dir, mode: ’'copy’, overwrite:

output:
file "allrefs.*" into makeBlastBlastXChannel

makeblastdb \
—out=allrefs \
—dbtype=prot \

—-in='${params.makeblastdb_in}’ \

iv

true

true

true

71

72

73

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

B. TASK PARALLELISM WITH Nextflow

-title=allrefs

mmn

process blastx {
input:
file blastDir from makeBlastBlastXChannel
file query from velvGBlastXChannel

publishDir params.publish_dir, mode: ’'copy’, overwrite: true

output:

file params.blastx_out

mmn

blastx \

—out=’${params.blastx_out}’ \
—db='${params.publish_dir}’/allrefs \
—query=$query

Listing B.2: Command line to invoke Nextflow and execute task parallel pipeline
for study case 1.

nextflow ./pipeline.nf —--publish_dir /home/dantas/Desktop/SharedFolder/
Nextflow/FirstExample/Outputs/minimalOutputs ——-trimmomatic_input /
home/dantas/Desktop/SharedFolder/_Common_/inputs/minimalInputs/
ERR406040.fastq ——trimmomatic_illuminaclip /home/dantas/Desktop/
SharedFolder/_Common_/inputs/minimalInputs/TruSeq3-SE.fa —-
trimmomatic_output ERR406040.filtered.fastqg ——makeblastdb_in /home/
dantas/Desktop/SharedFolder/_Common_/inputs/minimalInputs/allrefs.
fna.pro —--blastx_out blast.out

-

©w

12

13

14

15

16

17

19

20

21

22

23

24

Task Parallelism with CWL

Listing C.1: CWL task parallel pipeline for study case 1.

#!/usr/bin/env cwl-runner

cwlVersion: cwl:v1.0

class: Workflow

requirements:
— class: SteplInputExpressionRequirement

— class: InlineJavascriptRequirement

inputs:

- id: trimmomatic_input
type: File

- id: trimmomatic_illuminaclip
type: File

- id: trimmomatic_output
type: string

— id: makeblastdb_in
type: File

- id: blastx_out
type: string

outputs:
- id: trimmomaticOutput

type: File

vii

25

26

27

28

29

30

31

32

33

34

35

36

37

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

C. TASK PARALLELISM WITH CWL

outputSource: trimmomatic/output
- id: velvetgOutput
type: Directory
outputSource: velvetg/output
- id: makeBOutput
type:
type: array
items: File
outputSource: makeblastdb/output
- id: blastOutput
type: File
outputSource: blastx/output

steps:
- id: trimmomatic
run: Descriptions/trimmomatic.cwl
in:
- id: mode
valueFrom: "SE"
- id: quality
valueFrom: "-phred33"
- id: input_file
source: "#trimmomatic_input"
- id: output_file
source: "#trimmomatic_output"
- id: SLIDINGWINDOW
valueFrom: "4:15"
- id: LEADING
valueFrom: "3"
- id: TRAILING
valueFrom: "3"
- id: MINLEN
valueFrom: "36"
- id: illuminaclip_file
source: "#trimmomatic_illuminaclip"
- id: ILLUMINACLIP
valueFrom: ${ return inputs.illuminaclip_file.location.replace ("
file://", "™) + ":2:30:10";}
out:

- id: output

- id: wvelveth
run: Descriptions/velveth.cwl
in:

- id: output_directory

viii

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

C. TASK PARALLELISM WITH CWL

valueFrom: "velvetDir"
- id: hash_length
default: 21

- id: file_format

valueFrom: "-fastqg"

- id: file

source: "#trimmomatic/output"
out:

- id: output

- id: velvetg
run: Descriptions/velvetg.cwl
in:
— id: output_directory
source: "#velveth/output"
- 1id: cov_cutoff
default: 5
out:
- id: output

- id: contigs

- id: makeblastdb
run: Descriptions/makeblastdb.cwl
in:
- id: in
source: "#makeblastdb_in"
- 1id: title
valueFrom: "allrefs"
- id: dbtype
valueFrom: "prot"

out: [output, phr]

- id: blastx
run: Descriptions/blastx.cwl
in:
- 1id: out
source: "#blastx_out"
- 1id: phrFile
source: "#makeblastdb/phr"

- id: db
valueFrom: ${return inputs.phrFile["location"].replace("file://",
"").replace (" .phr", "");}
- id: query
source: "#velvetg/contigs"
out:

ix

113

10

11

12

13

C. TASK PARALLELISM WITH CWL

— id: output

Listing C.2: CWL arguments file for task parallel pipeline for study case 1.

trimmomatic_input:
class: File
path: /home/dantas/Desktop/SharedFolder/ Common_/inputs/minimalInputs
/ERR406040.fastqg
trimmomatic_illuminaclip:
class: File
path: /home/dantas/Desktop/SharedFolder/_Common_/inputs/minimalInputs
/TruSeqg3-SE. fa
trimmomatic_output: ERR406040.filtered.fastqg

makeblastdb_in:
class: File
path: /home/dantas/Desktop/SharedFolder/_Common_/inputs/minimalInputs
/allrefs.fna.pro

blastx_out: blast.out

Listing C.3: Command line to invoke CWL and execute task parallel pipeline for
study case 1.

cwl-runner --outdir ./SharedFolder/CWL/FirstExample/Outputs/

minimalOutputs pipeline.cwl inputs.yml

10

12

13

14

15

16

17

18

19

20

21

22

23

Task Parallelism with Ruffus

Listing D.1: Ruffus task parallel pipeline for study case 1.

from ruffus import =

import os

parser = cmdline.get_argparse ()
parser.add_argument ("--publish_dir")
parser.add_argument ("--trimmomatic_input™)
parser.add_argument ("-—-trimmomatic_illuminaclip")
"——makeblastdb_in")

"-—-pblastx_out")

(
(
parser.add_argument ("-—-trimmomatic_output")
parser.add_argument (
parser.add_argument (

params = parser.parse_args()
trimmomaticDir = "/home/dantas/trimmomatic-0.32.jar"

def run (command) :
print ("::RUNNING:" + command)

os.system (command)

@files (params.trimmomatic_input, params.publish_dir + "/" + params.
trimmomatic_output, params.trimmomatic_illuminaclip + ":2:30:10")
def trimmomatic (input, output, illuminaclipFile):
command = "java -Jjar " + trimmomaticDir + " " +\
"SE " 4\
"-phred33 " +\

xi

24

25

26

27

28

29

30

31

32

33

38

39

40

41

42

43

45

46

47

48

49

53

54

55

56

57

58

59

60

61

62

65

66

67

D. TASK PARALLELISM WITH Ruffus

input + " " +\
output + " " +\
"ILLUMINACLIP:" 4+ illuminaclipFile + " " +\

"SLIDINGWINDOW:4:15 " +\
"LEADING:3 " +\
"TRAILING:3 " +\
"MINLEN:36"

run (command)

@follows (trimmomatic)

@mkdir ("velvetDir")

@files (params.publish_dir + "/" + params.trimmomatic_output, "velvetDir
H)

def velveth (input, output):

command = "velveth " +\
output + " " +\

"o +\

"—fastg " +\

input

run (command)

command = "cp —-a " + output + " " + params.publish_dir

run (command)

@follows (velveth)

@files ("velvetDir", None)
def velvetg(input, output):
command = "velvetg " +\

input + " " +\

"—cov_cutoff 5"

run (command)

command = "cp -a " + input + " " + params.publish_dir

run (command)
@files (params.makeblastdb_in, None, params.publish dir + "/allrefs")
def makeblastdb (input, output, outputDir):

command = "makeblastdb " +\

"—out=" + outputDir + " " +\

"—dbtype=prot " +\

xii

68

69

70

71

72

78

79

80

81

82

83

84

85

86

-

D. TASK PARALLELISM WITH Ruffus

"-in=" + input + " " +\

"-title=allrefs"

run (command)

@follows (velvetq)

@follows (makeblastdb)

@files (None, params.publish_dir + "/" + params.blastx_out, params.
publish_dir + "/allrefs", params.publish dir + "/velvetDir/contigs.
fam)

def blastx (input, output, db, faFile):

command = "blastx " +\
"—out=" + output + " " +\
"_db=" 4+ db + " " +\

"—query=" + faFile

run (command)

pipeline_run([blastx])

Listing D.2: Command line to invoke Ruffus and execute task parallel pipeline for
study case 1.

/home/dantas/swift-0.96.2/bin/swift pipeline.swift —-publish_dir=/home/
dantas/Desktop/SharedFolder/Swift/FirstExample/Outputs/
minimalOutputs —trimmomatic_input=/home/dantas/Desktop/SharedFolder
/_Common_/inputs/minimalInputs/ERR406040.fastg —-trimmomatic_
illuminaclip=/home/dantas/Desktop/SharedFolder/_Common_/inputs/
minimalInputs/TruSeg3-SE.fa —-trimmomatic_output=ERR406040.filtered.
fastg —-makeblastdb_in=/home/dantas/Desktop/SharedFolder/_Common_/

inputs/minimalInputs/allrefs.fna.pro -blastx_out=blast.out

xiii

-

10

12

13

14

15

16

17

18

19

20

21

22

23

Task Parallelism with Swift

Listing E.1: Swift task parallel pipeline for study case 1.

type file;

global string trimmomaticDir = "/home/dantas/trimmomatic—-0.32.jar";

app (file output) trimmomatic (file input, file illuminaclipFile)

{

java "-jar" trimmomaticDir
n SE n
"-phred33"

filename (input)

filename (output)

"ILLUMINACLIP:" + filename(illuminaclipFile) + ":2:30:10"
"SLIDINGWINDOW:4:15"

"LEADING:3"

"TRAILING:3"

"MINLEN:36";

app (file velvetHOutputFiles[]) velveth (file trimOutput, string

velvetDir)

velveth

XV

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

E. TASK PARALLELISM WITH Swift

" root_ " + velvetDir
"21"
"—-fastg"

filename (trimOutput) ;

(file velvetGOutputFiles|[])

string velvetDir)

app

velvetg
" root_ " + velvetDir
"—cov_cutoff"

"5“’.

app (file o[]) makeblastdb (string

{
makeblastdb
"—out=" 4+ outDir

"—-dbtype=prot"

"-in=" 4+ filename(allrefs)
"—title=" 4+ title;
}
app blastx (file makeBlastDBOutputs|[],
out, string db, file query)
{
blastx
"—out=" + out
"—db=" + db

"—query=" + filename (query) ;

file illuminaclipFile<single_file_mapper;

illuminaclip")>;
file trimInput<single_ file mapper;
file trimOutput<single_ file mapper;

trimmomatic_output")>;

trimOutput trimmomatic (trimInput,

string velvetDir

string velvetHFiles/[]

velvetDir+"/Sequences"];

velvetg

arg("publish_dir")

[velvetDir+"/Log",

(file velvetHOutputFiles|[],

outDir, file allrefs, string title)

file velvetGOutputs([], string

file=arg ("trimmomatic_

file=arg("trimmomatic_input")>;

file=arg ("publish_dir")+"/"+arg ("

illuminaclipFile);

+ "/velvetDir";

velvetDir+"/Roadmaps",

Xvi

64

65

66

67

68

69

70

71

72

73

74

75

76

77

[

E. TASK PARALLELISM WITH Swift

file velvetHOutputs[] <array_mapper; files=velvetHFiles>;

velvetHOutputs = velveth (trimOutput, velvetDir);

string velvetGFiles[] = [velvetDir+"/contigs.fa", velvetDir+"/Graph",
velvetDir+"/LastGraph", velvetDir+"/PreGraph", velvetDir+"/stats.
txt"];

file velvetGOutputs[] <array_mapper; files=velvetGFiles>;

velvetGOutputs = velvetg(velvetHOutputs, velvetDir);

file allrefs<single file mapper; file=arg("makeblastdb_in")>;

file makeBlastDBOutputs[] <filesys_mapper; location=arg("publish_dir"),
pattern="allrefsx">;

makeBlastDBOutputs = makeblastdb (arg("publish_dir")+"/allrefs", allrefs

"allrefs");

string blastOut = arg("publish_dir") + "/" + arg("blastx_out");

string blastDB = arg("publish_dir") + "/allrefs";

blastx (makeBlastDBOutputs, wvelvetGOutputs, blastOut, blastDB,
velvetGOutputs[0]);

Listing E.2: Command line to invoke Swift and execute task parallel pipeline for
study case 1.

/home/dantas/swift-0.96.2/bin/swift pipeline.swift —-publish_dir=/home/
dantas/Desktop/SharedFolder/Swift/FirstExample/Outputs/
minimalOutputs —-trimmomatic_input=/home/dantas/Desktop/SharedFolder
/_Common_/inputs/minimalInputs/ERR406040.fastqg —trimmomatic_
illuminaclip=/home/dantas/Desktop/SharedFolder/_Common_/inputs/
minimalInputs/TruSeg3-SE.fa —-trimmomatic_output=ERR406040.filtered.
fastq -makeblastdb_in=/home/dantas/Desktop/SharedFolder/_Common_/

inputs/minimalInputs/allrefs.fna.pro -blastx_out=blast.out

XVii

10

12

13

14

15

16

17

18

19

20

21

22

23

24

Data Parallelism with Nextflow

Listing F.1: Nextflow data parallel pipeline for study case 1.

trimmomaticDir = "/home/dantas/trimmomatic-0.32.jar"

process trimmomatic {

publishDir params.publish_dir, mode: ’'copy’, overwrite: true

output:

file params.trimmomatic_output into trimVelvChannel

wnnn

java —jar S$trimmomaticDir \

SE \

-phred33 \

"${params.trimmomatic_input}’ \
"${params.trimmomatic_output}’ \

ILLUMINACLIP:’ ${params.trimmomatic_illuminaclip}’:2:30:10 \
SLIDINGWINDOW:4:15 \

LEADING:3 \

TRAILING:3 \

MINLEN: 36

wnn

process velveth ({

input:

Xix

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

60

61

62

63

64

65

66

67

68

69

F. DATA PARALLELISM WITH Nextflow

file velvetInput from trimVelvChannel

publishDir params.publish_dir, mode: ’'copy’, overwrite: true

output:

file "${params.velvet_output_dir}" into velvhVelvgChannel

velveth \
"${params.velvet_output_dir}’ \
21\

-fastg \

$velvetInput

process velvetg {
input:

file velvetGInput from velvhVelvgChannel

publishDir params.publish_dir, mode: ’'copy’, overwrite: true

output:
file "$velvetGInput" into velvgOutputsChannel
file "$velvetGInput/contigs.fa" into velvGBlastXChannel

nmnmn

velvetg \
$velvetGInput \

—-cov_cutoff 5

process makeblastdb {

publishDir params.publish_dir, mode: ’'copy’, overwrite: true

input:
val title from Channel.from(params.makeblastdb_titles.split (/

file inFile from Channel.fromPath (params.makeblastdb_ins)

output:
file "${title}.*" into makeBlastBlastXChannel

mnmnn

makeblastdb \

XX

70

71

72

73

74

75

76

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

-

F. DATA PARALLELISM WITH Nextflow

—out='${title}’ \
—dbtype=prot \

—in='$§{inFile}’ \
-title="${title}’

mmnmn

process blastx {
input:
val out from Channel.from(params.blastx_outs.split(’,’))
val title from Channel.from(params.makeblastdb_titles.split(’,’))
file blastDir from makeBlastBlastXChannel
file query from velvGBlastXChannel

publishDir params.publish_dir, mode: ’'copy’, overwrite: true

output:
file "${out}"

blastx \

—out="${out}’ \
—-db='${params.publish_dir}/${title}’ \
—query=$query

Listing F.2: Command line to invoke Nextflow and execute data parallel pipeline
for study case 1.

nextflow ./pipeline.nf —-publish_dir /home/dantas/Desktop/SharedFolder/

Nextflow/DataParallelism/Outputs/minimalOutputs —-—-trimmomatic_input
/home/dantas/Desktop/SharedFolder/_Common_/inputs/minimalInputs/

ERR406040.fastqg ——trimmomatic_illuminaclip /home/dantas/Desktop/
SharedFolder/_Common_/inputs/minimalInputs/TruSeq3-SE.fa —-
trimmomatic_output ERR406040.filtered.fastqg —--velvet_output_dir
velvetDir —--makeblastdb_ins /home/dantas/Desktop/SharedFolder/_
Common_/inputs/minimalInputs/allrefs.fna{A,B,C}.pro ——makeblastdb_
titles allrefsA,allrefsB,allrefsC ——-blastx outs blastA.out,blastB.

out,blastC.out 2>&l1 | tee ./execution.out

xxi

-

©w

14

15

16

17

18

19

20

21

22

23

24

Data Parallelism with CWL

Listing G.1: CWL data parallel pipeline for study case 1.

#1/usr/bin/env cwl-runner

cwlVersion: cwl:v1.0

class: Workflow

requirements:
— class: SteplInputExpressionRequirement
— class: InlineJavascriptRequirement

— class: ScatterFeatureRequirement

inputs:

- id: trimmomatic_input
type: File

- id: trimmomatic_illuminaclip
type: File

- id: trimmomatic_output
type: string

- id: velvet_output_dir
type: string

— id: makeblastdb_ins
type: Filel]

— 1d: makeblastdb_titles
type: stringl]

- 1d: blastx_outs

xxiii

25

26

28

29

31

32

34

35

36

37

38

39

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

G. DATA PARALLELISM WITH CWL

type: stringl[]

outputs:
- id: trimmomaticOutput
type: File
outputSource: trimmomatic/output
- 1id: velvetgOutput
type: Directory
outputSource: velvetg/output
- 1id: makeBOutput
type:
type: array
items:
type: array
items: File
outputSource: makeblastdb/output
- 1d: blastOutput
type: File[]
outputSource: blastx/output

steps:
- id: trimmomatic
run: Descriptions/trimmomatic.cwl
in:
- 1d: mode
valueFrom: "SE"
- id: quality
valueFrom: "-phred33"
- id: input_file
source: "#trimmomatic_input"
- 1d: output_file
source: "#trimmomatic_output"
- id: SLIDINGWINDOW
valueFrom: "4:15"
- id: LEADING
valueFrom: "3"
- id: TRAILING
valueFrom: "3"
- id: MINLEN
valueFrom: "36"
- 1d: illuminaclip_file
source: "#trimmomatic_illuminaclip"
- id: ILLUMINACLIP
valueFrom: ${ return inputs.illuminaclip_file
file://", "") 4+ ":2:30:10";}

XXiv

.location.replace ("

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

G. DATA PARALLELISM WITH CWL

out:

- id: output

- id: velveth
run: Descriptions/velveth.cwl
in:
- 1d: output_directory
source: "#velvet_output_dir"
— id: hash_length
default: 21

- id: file_format

valueFrom: "—-fastqg"
- id: file
source: "#trimmomatic/output"
out:
- id: output

- 1id: velvetg
run: Descriptions/velvetg.cwl
in:
- 1id: output_directory
source: "#velveth/output"
- 1id: cov_cutoff
default: 5
out:
- id: output

- 1id: contigs

- id: makeblastdb
run: Descriptions/makeblastdb.cwl
scatter: [in, title]
scatterMethod: dotproduct
in:
- id: in
source: "#makeblastdb_ins"
- 1id: title
source: "#makeblastdb_titles"
- id: dbtype
valueFrom: "prot"

out: [output, phr]

- 1d: blastx
run: Descriptions/blastx.cwl
scatter: [out, phrFile]
scatterMethod: dotproduct

XXV

114

115

116

117

118

119

120

121

122

123

124

10

12

13

14

15

16

17

18

19

G. DATA PARALLELISM WITH CWL

in:
- 1id: out
source: "#blastx_outs"
- 1d: phrFile
source: "#makeblastdb/phr"

- id: db
valueFrom: ${return inputs.phrFile["location"].replace("file://",
"").replace (" .phr", "");}
- id: query
source: "#velvetg/contigs"

out:

- id: output

Listing G.2: CWL arguments file for data parallel pipeline for study case 1.

trimmomatic_input:
class: File
path: /home/dantas/Desktop/SharedFolder/_Common_/inputs/minimalInputs
/ERR406040.fastqg
trimmomatic_illuminaclip:
class: File
path: /home/dantas/Desktop/SharedFolder/_Common_/inputs/minimalInputs
/TruSeqg3-SE. fa
trimmomatic_output: ERR406040.filtered.fastqg

velvet_output_dir: velvetDir

makeblastdb_ins:

- class: File

path: /home/dantas/Desktop/SharedFolder/_Common_/inputs/minimalInputs
/allrefs.fnaA.pro

— class: File

path: /home/dantas/Desktop/SharedFolder/_Common_/inputs/minimalInputs
/allrefs.fnaB.pro

- class: File

path: /home/dantas/Desktop/SharedFolder/_Common_/inputs/minimalInputs
/allrefs.fnaC.pro

makeblastdb_titles: [allrefsA, allrefsB, allrefsC]

blastx_outs: [blastA.out, blastB.out, blastC.out]

Listing G.3: Command line to invoke CWL and execute data parallel pipeline for

XXVvi

G. DATA PARALLELISM WITH CWL

study case 1.

cwl-runner —--outdir ./SharedFolder/CWL/DataParallelism/Outputs/

minimalOutputs pipeline.cwl inputs.yml 2>&l1 | tee ./execution.out

XXvii

10

12

13

14

15

16

17

18

19

20

21

22

23

Data Parallelism with Ruffus

Listing H.1: Ruffus data parallel pipeline for study case 1.

from ruffus import =

import os

import multiprocessing

import glob

parser = cmdline.get_argparse ()
parser.add_argument ("-—-publish_dir")
parser.add_argument ("-—-trimmomatic_input")
parser.add_argument ("-—-trimmomatic_illuminaclip")
parser.add_argument ("--trimmomatic_output")
parser.add_argument ("--velvet_output_dir")
parser.add_argument ("--makeblastdb_ins")
parser.add_argument ("--makeblastdb_titles")
parser.add_argument ("--blastx_outs")

params = parser.parse_args|()

trimmomaticDir = "/home/dantas/trimmomatic-0.32.jar"

def run (command) :

print (": :RUNNING:" + command)

os.system (command)

@files (params.trimmomatic_input, params.publish_dir + "/" + params.

trimmomatic_output, params.trimmomatic_illuminaclip + ":2:30:10")

XX1X

25

26

27

28

29

30

31

32

33

34

35

36

37

41

42

43

44

45

46

47

48

52

53

54

55

56

57

H. DATA PARALLELISM WITH Ruffus

def trimmomatic (input, output, illuminaclipFile):

command = "Jjava -jar " + trimmomaticDir + " " +\
"SE " +\
"-phred33 " +\
input + " " +\
output + " " +\
"ILLUMINACLIP:" + illuminaclipFile + " " +\

"SLIDINGWINDOW:4:15 " +\
"LEADING:3 " +\
"TRAILING:3 " +\
"MINLEN:36"

run (command)

@follows (trimmomatic)
@files (params.publish_dir + "/" + params.trimmomatic_output, params.
publish_dir + "/" + params.velvet_output_dir)

def velveth (input, output):

command = "velveth " +\
output + " " +\
n21 n +\
"—fastg " +\
input

run (command)

@Qfollows (velveth)
@files (params.publish_dir + "/" + params.velvet_output_dir, None)
def velvetg (input, output):
command = "velvetg " +\
input + " " +\

"—-cov_cutoff 5"

run (command)

@files ([

[glob.glob (params.makeblastdb_ins) [0], None, params.publish_dir + "/" +
params.makeblastdb_titles.split (", ") [0], params.makeblastdb_titles
.split (", ") [0]11,

[glob.glob (params.makeblastdb_ins) [1], None, params.publish dir + "/" +
params.makeblastdb_titles.split (", ") [1], params.makeblastdb_titles
.split (", ") [11],

[glob.glob (params.makeblastdb_ins) [2], None, params.publish_dir + "/" +
params.makeblastdb_titles.split (", ") [2], params.makeblastdb_titles
.split (", ") [2]]

XXX

62

63

64

65

66

67

68

69

78

80

81

82

83

84

85

86

87

88

89

H. DATA PARALLELISM WITH Ruffus

1)
def makeblastdb (input, output, outputDir, title):
command = "makeblastdb " +\
"—out=" + outputDir + " " +\
"—-dbtype=prot " +\
"—-in=" + input + " " +\

"-title=" + title

run (command)

@follows (velvetq)

@follows (makeblastdb)

@Qfiles ([

[None, params.publish dir + "/" + params.blastx_outs.split(",") [0],
params.publish_dir + "/" + params.makeblastdb_titles.split(",")[0],
params.publish_dir + "/" + params.velvet_output_dir + "/contigs.fa
"1,

[None, params.publish_dir + "/" + params.blastx_outs.split(",")[1],
params.publish_dir + "/" + params.makeblastdb_titles.split(",")[1],
params.publish_dir + "/" + params.velvet_output_dir + "/contigs.fa
"1,

[None, params.publish_dir + "/" + params.blastx_outs.split(",")[2],
params.publish_dir + "/" + params.makeblastdb_titles.split(",")[2],
params.publish_dir + "/" + params.velvet_ output_dir + "/contigs.fa
"]

1)

def blastx (input, output, db, faFile):

command = "blastx " +\
"—out=" + output + " " +\
Al _db: n + db _I_ n n + \

"—query=" + faFile

run (command)

pipeline_run([blastx], multiprocess=multiprocessing.cpu_count ())

Listing H.2: Command line to invoke Ruffus and execute data parallel pipeline for
study case 1.

T

XXX1

-

H. DATA PARALLELISM WITH Ruffus

python pipeline.py —--publish_dir /home/dantas/Desktop/SharedFolder/
Ruffus/DataParallelism/Outputs/minimalOutputs —-—-trimmomatic_input /
home/dantas/Desktop/SharedFolder/ Common_/inputs/minimalInputs/
ERR406040.fastq ——trimmomatic_illuminaclip /home/dantas/Desktop/
SharedFolder/_Common_/inputs/minimalInputs/TruSeq3-SE.fa —-
trimmomatic_output ERR406040.filtered.fastg —--velvet_output_dir
velvetDir —--makeblastdb_ins /home/dantas/Desktop/SharedFolder/_
Common_/inputs/minimalInputs/allrefs.fna\?.pro —-makeblastdb_titles
allrefsA,allrefsB,allrefsC —--blastx_outs blastA.out,blastB.out,

blastC.out 2>&1 | tee ./execution.out

XXX1i

-

10

12

13

14

15

16

17

18

19

20

21

22

23

Data Parallelism with Swift

Listing I.1: Swift data parallel pipeline for study case 1.

type file;

global string trimmomaticDir = "/home/dantas/trimmomatic—-0.32.jar";

app (file output) trimmomatic (file input, file illuminaclipFile)

{

java "-jar" trimmomaticDir
n SE n
"-phred33"

filename (input)

filename (output)

"ILLUMINACLIP:" + filename(illuminaclipFile) + ":2:30:10"
"SLIDINGWINDOW:4:15"

"LEADING:3"

"TRAILING:3"

"MINLEN:36";

app (file velvetHOutputFiles[]) velveth (file trimOutput, string

velvetDir)

velveth

XXX1i1

24

25

26

27

28

29

31

32

33

34

35

36

37

39

40

41

42

43

44

45

46

48

49

50

51

52

53

54

56

57

58

59

60

61

62

63

64

65

66

I. DATA PARALLELISM WITH Swift

" root_ " + velvetDir
"21"
"—-fastg"

filename (trimOutput) ;

(file velvetGOutputFiles|[])

string velvetDir)

app

velvetg
" root_ " + velvetDir

"—cov_cutoff"

ngn,
}
app (file o[]) makeblastdb
{

makeblastdb

"—out=" + outDir

"—-dbtype=prot"

"-in=" 4+ filename(allrefs)
"—title=" + title;
}
app blastx (file makeBlastDBOutputs|[],
out, string db, file query)
{
blastx
"—out=" + out
"—db=" + db
"—query=" + filename (query) ;

(string location,

{
string pathl]

string pattern)

strsplit (arg,

pattern path[length (path)-17];

string locationAux/[];

foreach directory,
if (idx != length(path)-1) {

locationAux [idx]

idx in path {

directory;

velvetg

(string outDir,

(file velvetHOutputFiles|[],

file allrefs,

string title)

file velvetGOutputs|],

string

splitMakeBlastDBIn (string arqg)

"/"),.

XXX1V

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

1. DATA PARALLELISM WITH Swift

location = strjoin(locationAux, "/");

file illuminaclipFile<single_file_mapper; file=arg("trimmomatic_
illuminaclip")>;

file trimInput<single_ file mapper; file=arg("trimmomatic_input")>;

file trimOutput<single_file mapper; file=arg("publish_dir")+"/"+arg("
trimmomatic_output")>;

trimOutput = trimmomatic (trimInput, illuminaclipFile);

string velvetDir = arg("publish_dir") + "/" + arg("velvet_output_dir");

string velvetHFiles[] = [velvetDir+"/Log", velvetDir+"/Roadmaps",
velvetDir+"/Sequences"];
file velvetHOutputs[] <array_mapper; files=velvetHFiles>;

velvetHOutputs = velveth (trimOutput, velvetDir);

string velvetGFiles[] = [velvetDir+"/contigs.fa", velvetDir+"/Graph",
velvetDir+"/LastGraph", velvetDir+"/PreGraph", velvetDir+"/stats.
txt"];

file velvetGOutputs[] <array_mapper; files=velvetGFiles>;

velvetGOutputs = velvetg(velvetHOutputs, velvetDir);

string inFilesLocation;

string inFilesPattern;

(inFilesLocation, inFilesPattern) = splitMakeBlastDBIn (arg("makeblastdb
_ins"));

file allrefs[]<filesys_mapper; location=inFilesLocation, pattern=

inFilesPattern>;
string titles[] = strsplit (arg("makeblastdb_titles"), ",");
file makeBlastDBOutputs[][];

foreach inFile, idx in allrefs {
string title = titles[idx];
makeBlastDBOutputs[idx] = makeblastdb(arg("publish_dir")+"/"+title,
inFile, title);

string blastOuts[] = strsplit(arg("blastx_outs"), ",");
foreach makeBlastDBOutput, idx in makeBlastDBOutputs {

string title = titles[idx];

string blastDB = arg("publish_dir"™) + "/" + title;

string blastOut = arg("publish_dir") + "/" + blastOuts[idx];

XXXV

I. DATA PARALLELISM WITH Swift

13| blastx(makeBlastDBOutput, velvetGOutputs, blastOut, blastDB,
velvetGOutputs[0]);

104 }

Listing 1.2: Command line to invoke Swift and execute data parallel pipeline for

study case 1.

[

/home/dantas/swift-0.96.2/bin/swift pipeline.swift -publish_dir=/home/
dantas/Desktop/SharedFolder/Swift/DataParallelism/Outputs/
minimalOutputs —trimmomatic_input=/home/dantas/Desktop/SharedFolder
/_Common_/inputs/minimalInputs/ERR406040.fastg —trimmomatic_
illuminaclip=/home/dantas/Desktop/SharedFolder/_Common_/inputs/
minimalInputs/TruSeg3-SE.fa —-trimmomatic_output=ERR406040.filtered.
fastqg -velvet_output_dir=velvetDir -makeblastdb_ins=/home/dantas/
Desktop/SharedFolder/_Common_/inputs/minimalInputs/allrefs.fna?.pro

-makeblastdb_titles=allrefsA,allrefsB,allrefsC -blastx outs=blastA

.out,blastB.out,blastC.out 2>&1 | tee ./execution.out

XXXV1

~

@

el

10

11

12

13

14

15

16

18

NGSPipesV2 Antlr Grammar

Definition

Listing J.1: NGSPipesV2 anltrl grammar definition.

grammar Pipes;

root: valueDeclarationx properties? valueDeclaration* repositories

valueDeclaration* outputs? valueDeclarationx steps EOF;

valueDeclaration: parameterDeclaration | variableDeclaration;
parameterDeclaration: parameterName ’'=’ parameterValue;
parameterName: ’'params.’ ID;

parameterValue: directValue;

variableDeclaration: variableName ’'=’ variableValue;
variableName: ID;

variableValue: directValue;

properties: 'Properties’ ’:’ ' {’ authorProperty? descriptionProperty?
versionProperty? documentationProperty? '}’;

authorProperty: "author’” ’:’ STRING;

descriptionProperty: ’'description’ ’:’ STRING;

versionProperty: ’'version’ ' :’ STRING;

documentationProperty: ’'documentation’ ’:’ ' [’ STRING? (’,’ STRING)=* ']

r .
4

XXXVii

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

J. NGSPipesV2 ANTLR GRAMMAR DEFINITION

repositories: ’'Repositories’ ’:’ ' [’ repository (r

repository: toolRepository | pipelineRepository;

toolRepository: 'ToolRepository’ repositoryId 7 :’
configProperty? ’'}’;

pipelineRepository: ’'PipelineRepository’ repositor
locationProperty configProperty? ’}’;

repositoryId: ID;

locationProperty: ’'location’ ’:’ locationValue;

locationValue: STRING;

configProperty: ’'config’ ’:’ ' {’ configx ’"}’;

config: configName ’:’ configValue;

configName: ID;

configValue: value;

outputs: ’Outputs’ ’7:” ' {’ output* "}’;
output: outputId ’:’ outputValue;
outputId: ID;

outputValue: stepId ' [’ outputName "]’;
outputName: ID;

steps: ’'Steps’ ":7 [’ step (step)*x "]7;

step: ’Step’ stepId ':’ ' {’ execProperty execution
inputsProperty? spreadProperty? '}’;

stepId: ID;

execProperty: ’'exec’ ’':’ (commandReference | pipel

commandReference: repositoryId ' [’ toolName ']’ ' [

toolName: ID;

commandName: ID;

pipelineReference: repositoryId ' [’ pipelineName '

pipelineName: ID;

executionContextProperty: ’'execution_context’ 7 :’

inputsProperty: ’'inputs’ ’:’ ' {’ inputPropertyx '}

inputProperty: inputName ’:’ inputValue;

inputName: ID;

inputValue: value | chain;

chain: stepId ' [’ outputName ’']’;

spreadProperty: ’spread’ ':’ ' {’ spreadInputsToSpr
spreadStrategyProperty?’ }’;

spreadStrategyProperty: ’'strategy’ ’':’ combineStra

strategyValue: combineStrategy | inputName;

combineStrategy: oneToOneStrategy | oneToManyStrat

oneToOneStrategy: ’"one_to_one’ ' ('’ strategyValue '/

oneToManyStrategy: ’"one_to_many’ ' (' strategyValue

[
4

XXXV1iil

epository)x "1,

"{’ locationProperty

yId I:/ V{I

ContextProperty?

ineReference) ;

" commandName ’]';

173

value;

7.
4

eadProperty

tegy;

€gy;

,’ strategyValue ")’;

",’ strategyValue

")

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

J. NGSPipesV2 ANTLR GRAMMAR DEFINITION

spreadInputsToSpreadProperty: ’inputs_to_spread’ ’':’ ' [’ inputName

inputName)* "]’ ;

value: directValue | indirectValue;
indirectValue: parameterName | variableName;
directValue: STRING | NUMBER | BOOLEAN | array;

array: ' [’ directValue (’,’ directvalue)x "1’ | "[’ 7]1";
ID: (’a’..'Z’l’A’..’Z'l' I) (Ial..lzllfAl"IZI‘IOV..I9I|I I)*;
STRING: "’/ (I\\HI | .)*? !"I;

BOOLEAN: ("true’” | "false’);
NUMBER: -’72 INT ('.” [0-9] +)7?;

fragment INT: 0" | [1-9] [0-9]%;

COMMENT: ' /%’ .%*? "%/’ -> skip; // .*? matches anything until the
*x/

Ws: [\t\r\nl+ -> skip; // skip spaces, tabs, newlines

(S

first

XXXIX

13

14

15

16

20

21

22

23

Task Parallelism with NGSPipesV2

Listing K.1: NGSPipesV2 task parallel pipeline for study case 1.

Properties: {

author: "NGSPipes Team"

description: "Study case 1"
version: "1.0"
documentation: ["http://ngspipes.readthedocs.io/en/latest/

RunningExamples.html"]

repoLocation = "https://github.com/ngspipes2/tools_support"

Repositories: [
ToolRepository repo: {

location: repoLocation

Outputs: {
outputl: trimmomatic[outputFile]
output2: blastx[out]

Steps: [

Step trimmomatic: {

xli

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

K. TASK PARALLELISM WITH NGSPipesV2

exec: repo[Trimmomatic] [trimmomatic]
execution_context: "DockerConfig"
inputs: {
mode: "SE"
quality: "phred33"
inputFile: params.trimmomatic_input
outputFile: params.trimmomatic_output
fastaWithAdaptersEtc: params.trimmomatic_illuminaclip
seed_mismatches: 2
palindrome_clip_threshold: 30
simple_clip_threshold: 10
windowSize: 4
requiredQuality: 15
leading_quality: 3
trailing quality: 3
minlen_length: 36

}
Step blastx: {
exec: repo[Blast] [blastx]
execution context: "DockerConfig"
inputs: {
db: makeblastdb[out]
query: velvetglcontigs_fa]

out: params.blastx_out

}
Step velveth: {
exec: repo[Velvet] [velveth]
execution_context: "DockerConfig"
inputs: {
output_directory: "velvetdir"
hash_length: 21
file_format: "fastg"

filename: trimmomatic[outputFile]

}
Step velvetg: {
exec: repo[Velvet] [velvetqg]
execution_context: "DockerConfig"
inputs: {
output_directory: velveth[output_directory]

cov_cutoff: 5

xlii

69

70

71

72

73

74

75

76

77

78

79

K. TASK PARALLELISM WITH NGSPipesV2

Step makeblastdb: {
exec: repo[Blast] [makeblastdb]
execution_ context: "DockerConfig"
inputs: {
dbtype: "prot"
out: "allrefs"
title: "allrefs"

in: params.makeblastdb_in

xliii

11

12

13

14

15

16

17

18

19

20

21

22

Data Parallelism with NGSPipesV2

Listing L.1: NGSPipesV2 data parallel pipeline for study case 1.

Properties: {

author: "NGSPipes Team"

description: "Study case 1"
version: "1.0"
documentation: ["http://ngspipes.readthedocs.io/en/latest/

RunningExamples.html"]

Repositories: [
ToolRepository repo: {
location: "E:\\Work\\NGSPipes\\ngspipes2\\main\\engine\\engine_core\\

src\\test\\resources\\tools_support"

Outputs: {

outputl: trimmomatic[outputFile]
output2: blastx[outFile]

}

Steps: [
Step trimmomatic: {

exec: repo[Trimmomatic] [trimmomatic]

xlv

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

L. DATA PARALLELISM WITH NGSPipesV2

execution_context: "DockerConfig"
inputs: {
mode: "SE"
quality: "phred33"
inputFilel: params.trimmomatic_input
output: trimmomatic_output
fastaWithAdaptersEtc: params.trimmomatic_illuminaclip
seedMismatches: 2
palindromeClipThreshold: 30
simpleClipThreshold: 10
windowSize: 4
requiredQuality: 15
leadingQuality: 3
trailingQuality: 3
minlenLength: 36

}
Step velveth: {
exec: repo[Velvet] [velveth]
execution_context: "DockerConfig"
inputs: {
outputDirectory: "velvetdir"
hashLength: 21
fileFormat: "fastg"

filename: trimmomatic[outputFile]

}
Step velvetg: {
exec: repo[Velvet] [velvetqg]
execution_context: "DockerConfig"
inputs: {
outputDirectory: velveth[outDir]
covCutoff: 5

}
Step makeblastdb: {
exec: repo[Blast] [makeblastdb]
execution context: "DockerConfig"
inputs: {
dbtype: "prot"
out: ["allrefs", "allrefsB", "allrefsC"]
title: ["allrefs", "allrefsB", "allrefsC"]

xlvi

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

L. DATA PARALLELISM WITH NGSPipesV2

in: ["E:\\Desktop\\NGSPipesTeam\\Demo\\Inputs\\caseStudylMinimal\\
allrefs.fna.pro", "E:\\Desktop\\NGSPipesTeam\\Demo\\Inputs\\
caseStudylMinimal\\allrefs.fnaB.pro","E:\\Desktop\\NGSPipesTeam
\\Demo\\Inputs\\caseStudylMinimal\\allrefs.fnaC.pro"]
}
spread: {
inputs_to_spread: [in, out, title]

strategy: one_to_one(in, one_to_one (out, title))

}
Step blastx: {
exec: repo[Blast] [blastx]
execution_context: "DockerConfig"
inputs: {
db: makeblastdb[outFileName]
query: velvetg[contigsFa]
out: ["blast.out", "blastB.out", "blastC.out"]
}
spread: {
inputs_to_spread: [db, out]

strategy: one_to_one (db, out)

xlvii

10

12

13

14

15

16

17

18

19

20

21

22

23

24

Nested Pipeline with Nextflow

Listing M.1: Nextflow nested pipeline for study case 1.

trimmomaticDir = "/home/dantas/trimmomatic-0.32.jar"

process trimmomatic {

publishDir params.publish_dir, mode: ’'copy’, overwrite: true

output:

file params.trimmomatic_output into trimVelvChannel

wnn

java —jar S$trimmomaticDir \

SE \

-phred33 \

"${params.trimmomatic_input}’ \
’${params.trimmomatic_output}’ \

ILLUMINACLIP:’ ${params.trimmomatic_illuminaclip}’:2:30:10 \
SLIDINGWINDOW:4:15 \

LEADING:3 \

TRAILING:3 \

MINLEN:36

wnn

process velvet ({

xlix

25

26

27

28

29

30

31

32

33

34

35

36

37

38

40

41

42

43

45

46

47

48

49

50

51

52

53

56

57

58

59

60

61

62

63

64

65

66

M. NESTED Pipeline WITH Nextflow

input:

file velvetInput from trimVelvChannel

publishDir params.publish_dir, mode: ’'copy’, overwrite: true

output:
file "${params.velvet_output_dir}" into velvetOutputsChannel
file "${params.velvet_output_dir}/contigs.fa" into

velvGBlastXChannel

mnmnn

nextflow /home/dantas/Desktop/velvet.nf —-publish_dir \$PWD —-—
trimmomatic_output ’${params.publish_dir}/$velvetInput’ --velvet_

output_dir ${params.velvet_output_dir}

process makeblastdb {

publishDir params.publish_dir, mode: ’'copy’, overwrite: true

output:
file "${params.makeblastdb_title}.*" into makeBlastBlastXChannel

makeblastdb \
—out='${params.makeblastdb_title}’ \
-dbtype=prot \
—-in=’'${params.makeblastdb_in}’ \

-title=’${params.makeblastdb_title}’

process blastx {
input:
file blastDir from makeBlastBlastXChannel
file query from velvGBlastXChannel

publishDir params.publish_dir, mode: ’'copy’, overwrite: true

output:

file params.blastx_out

blastx \

—out='${params.blastx_out}’ \

67

68

69

70

10

11

12

13

14

15

19

20

21

22

23

24

25

26

27

28

29

30

31

M. NESTED Pipeline WITH Nextflow

—-db='${params.publish_dir}/${params.makeblastdb_title}’ \
—query=$query

Listing M.2: Velvet steps pipeline with Nextflow.

process velveth ({

publishDir params.publish_dir, mode: ’'copy’, overwrite: true

output:

file "${params.velvet_output_dir}" into velvhVelvgChannel

velveth \
"${params.velvet_output_dir}’ \
21\

-fastg \

"${params.trimmomatic_output}’

process velvetg {
input:

file velvetGInput from velvhVelvgChannel

publishDir params.publish _dir, mode: ’copy’, overwrite: true

output:
file "$velvetGInput"
file "$velvetGInput/contigs.fa"

wnn

velvetg \
$velvetGInput \

—cov_cutoff 5

mmnmn

li

-

©w

14

15

16

17

18

19

20

21

22

23

24

Nested Pipeline with CWL

Listing N.1: CWL nested pipeline for study case 1.

#1/usr/bin/env cwl-runner

cwlVersion: cwl:v1.0

class: Workflow

requirements:
— class: SteplInputExpressionRequirement
— class: InlineJavascriptRequirement

- class: SubworkflowFeatureRequirement

inputs:

- id: trimmomatic_input
type: File

- id: trimmomatic_illuminaclip
type: File

- id: trimmomatic_output
type: string

- id: velvet_output_dir
type: string

— id: makeblastdb _in
type: File

- id: makeblastdb_title
type: string

— 1id: blastx out

liii

25

26

28

29

31

32

34

35

36

37

38

39

40

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

N. NESTED Pipeline WITH CWL

type: string

outputs:
- id: trimmomaticOutput
type: File
outputSource: trimmomatic/output
- id: velvetgOutput
type: Directory
outputSource: velvet/velvetgOutput
- id: makeBOutput
type:
type: array
items: File
outputSource: makeblastdb/output
- id: blastOutput
type: File
outputSource: blastx/output

steps:
- id: trimmomatic
run: Descriptions/trimmomatic.cwl
in:
- id: mode
valueFrom: "SE"
- id: quality
valueFrom: "-phred33"
- 1id: input_file
source: "#trimmomatic_input"
- id: output_file
source: "#trimmomatic_output”
- id: SLIDINGWINDOW
valueFrom: "4:15"
- id: LEADING
valueFrom: "3"
— id: TRAILING
valueFrom: "3"
- id: MINLEN
valueFrom: "36"
- id: illuminaclip_file
source: "#trimmomatic_illuminaclip"
- id: ILLUMINACLIP
valueFrom: ${ return inputs.illuminaclip_file.location.replace ("
file://", "™) + ":2:30:10";}
out:

- id: output

liv

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

3

4

N. NESTED Pipeline WITH CWL

- id: velvet
run: velvet.cwl
in:
- id: velvet_output_dir
source: "#velvet_output_dir"
— id: trimmomatic_output
source: "ftrimmomatic/output"
out:
- id: velvetgOutput
- 1id: velvetgContigs

- id: makeblastdb
run: Descriptions/makeblastdb.cwl
in:
- id: in
source: "#makeblastdb_in"
- id: title
source: "#makeblastdb_title"
- id: dbtype
valueFrom: "prot"

out: [output, phr]

- id: blastx
run: Descriptions/blastx.cwl
in:
- 1id: out
source: "#blastx_out"
— id: phrFile
source: "#makeblastdb/phr"
- id: db

valueFrom: ${return inputs.phrFile["location"].replace("file://",

"").replace (".phr", "");}
- id: query
source: "#velvet/velvetgContigs"
out:

- id: output

Listing N.2: Velvet steps pipeline with CWL.

#1/usr/bin/env cwl-runner

cwlVersion: cwl:v1.0

class: Workflow

Iv

11

12

13

14

15

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

N. NESTED Pipeline WITH CWL

requirements:
— class: StepInputExpressionRequirement

— class: InlineJavascriptRequirement

inputs:
- id: velvet_output_dir
type: string
- id: trimmomatic_output

type: File

outputs:
- id: velvetgOutput
type: Directory
outputSource: velvetg/output
- id: velvetgContigs
type: File

outputSource: velvetg/contigs

steps:
- id: wvelveth
run: Descriptions/velveth.cwl
in:
- id: output_directory
source: "#velvet_output_dir"
— id: hash_length
default: 21

- id: file_format

valueFrom: "—-fastqg"
- id: file
source: "#trimmomatic_output"
out:

- id: output

- id: velvetg
run: Descriptions/velvetg.cwl
in:
— id: output_directory
source: "#velveth/output"
- 1id: cov_cutoff
default: 5
out:
- id: output

- id: contigs

Ivi

10

12

13

14

15

16

17

18

19

20

21

22

23

Nested Pipeline with Ruffus

Listing O.1: Ruffus nested pipeline for study case 1.

from ruffus import =*

import os

import multiprocessing

parser = cmdline.get_argparse ()
parser.add_argument ("--publish_dir")
parser.add_argument ("-—-trimmomatic_input")
parser.add_argument ("-—-trimmomatic_illuminaclip")
parser.add_argument ("-—-trimmomatic_output")
parser.add_argument ("--velvet_output_dir")
parser.add_argument ("--makeblastdb_in")
parser.add_argument ("--makeblastdb_title")
parser.add_argument ("--blastx_out")

params = parser.parse_args()

trimmomaticDir = "/home/dantas/trimmomatic-0.32.jar"

def run (command) :

print ("::RUNNING:" + command)

O0s.system (command)

@files (params.trimmomatic_input,

trimmomatic_output,

params.publish_dir + "/"

params.trimmomatic_illuminaclip +

def trimmomatic (input, output, illuminaclipFile):

lvii

+ params.
":2:30:10")

24

25

26

27

28

29

30

31

32

33

34

35

36

40

41

42

43

44

45

46

47

50

51

52

53

54

55

56

57

62

63

64

O. NESTED Pipeline WITH Ruffus

command = "java —-jar " + trimmomaticDir + " " +\
"SE " +\

"-phred33 " +\

input + " " +\

output + " " +\

"ILLUMINACLIP:" + illuminaclipFile + " " +\

"SLIDINGWINDOW:4:15 " +\
"LEADING:3 " +\
"TRAILING:3 " +\
"MINLEN:36"

run (command)

@follows (trimmomatic)
@files (params.publish_dir + "/" + params.trimmomatic_output, params.
velvet_output_dir)
def velvet (input, output):
command = "python " +\
"velvet.py " +\
"——publish_dir " + params.publish_dir + " " +\
"——trimmomatic_output " + input + " " +\

"-—velvet_output_dir " + output

run (command)

@files (params.makeblastdb_in, None, params.publish_dir + "/" + params.
makeblastdb_title)
def makeblastdb (input, output, outputDir):
command = "makeblastdb " +\
"—out=" + outputDir + " " +\
"—dbtype=prot " +\
"—in=" + input + " " +\
"-title=" + params.makeblastdb_title

run (command)

@follows (velvet)

@follows (makeblastdb)

@files (None, params.publish_dir + "/" + params.blastx_out, params.
publish_dir + "/" + params.makeblastdb_title, params.publish_dir +
"/" + params.velvet_output_dir + "/contigs.fa")

def blastx(input, output, db, faFile):

command = "blastx " +\
"—out=" + output + " " +\
n _db: " + db + n " + \

lviii

65

66

67

68

69

70

N

©w

1

17

18

19

20

21

22

23

24

25

26

27

28

29

30

32

33

O. NESTED Pipeline WITH Ruffus

"—query=" + faFile

run (command)

pipeline_run([blastx], multiprocess=multiprocessing.cpu_count ())

Listing O.2: Velvet steps pipeline with Ruffus.

from ruffus import =
import os

import multiprocessing

parser = cmdline.get_argparse ()
parser.add_argument ("-—-publish_dir")
parser.add_argument ("-—-trimmomatic_output")
parser.add_argument ("--velvet_output_dir")
params = parser.parse_args|()

def run (command) :
print ("::RUNNING:" + command)

O0s.system (command)

@files (params.trimmomatic_output, params.publish_dir + "/" + params.
velvet_output_dir)

def velveth (input, output):

command = "velveth " +\
output + " " +\

"21 " N\

"—fastg " +\

input

run (command)

@follows (velveth)
@files (params.publish_dir + "/" + params.velvet_output_dir, None)
def velvetg (input, output):

command = "velvetg " +\

input + " " +\

"—-cov_cutoff 5"

run (command)

lix

O. NESTED Pipeline WITH Ruffus

34
35

36| pipeline_run([velvetg], multiprocess=multiprocessing.cpu_count ())

Ix

-

10

12

13

14

15

16

17

18

19

20

21

22

23

24

Neste Pipeline with Swift

Listing P.1: Swift nested pipeline for study case 1.

type file;

global string trimmomaticDir = "/home/dantas/trimmomatic—-0.32.jar";

app (file output) trimmomatic (file input, file illuminaclipFile)

{

java "-jar" trimmomaticDir
n SE n
"-phred33"

filename (input)

filename (output)

"ILLUMINACLIP:" + filename(illuminaclipFile) + ":2:30:10"
"SLIDINGWINDOW:4:15"

"LEADING:3"

"TRAILING:3"

"MINLEN:36";

app (file velvetOutputFiles[]) velvet (file trimOutput)

{
"/home/dantas/swift-0.96.2/bin/swift"
"/home/dantas/Desktop/velvet.swift"

Ixi

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

P. NESTE Pipeline WITH Swift

"-publish_dir=" + arg("publish_dir")
"—trimmomatic_output=" 4+ filename (trimOutput)

"-velvet_output_dir=" + arg("velvet_output_dir");

app (file o[]) makeblastdb (string outDir, file allrefs, string title)
{

makeblastdb

"—out=" + outDir

"—-dbtype=prot"
"-in=" + filename (allrefs)
"-title=" + title;

app blastx (file makeBlastDBOutputs[], file velvetGOutputs[], string
out, string db, file query)

blastx
"—out=" + out
"—db=" + db

"—query=" + filename (query);

file illuminaclipFile<single_ file mapper; file=arg("trimmomatic__
illuminaclip")>;

file trimInput<single_file mapper; file=arg("trimmomatic_input")>;

file trimOutput<single_file_mapper; file=arg("publish_dir")+"/"+arg ("
trimmomatic_output")>;

trimOutput = trimmomatic (trimInput, illuminaclipFile);

string velvetDir = arg("publish_dir") + "/" + arg("velvet_output_dir");

string velvetFiles[] = [velvetDir+"/Log", velvetDir+"/Roadmaps",
velvetDir+"/Sequences"];

file velvetOutputs|[] <array_mapper; files=velvetFiles>;

velvetOutputs = velvet (trimOutput) ;

file allrefs<single_ file mapper; file=arg("makeblastdb_in")>;

file makeBlastDBOutputs[] <filesys_mapper; location=arg("publish_dir"),
pattern=arg ("makeblastdb_title")+"x">;

makeBlastDBOutputs = makeblastdb (arg ("publish_dir")+"/"+arg ("
makeblastdb_title"), allrefs, arg("makeblastdb_title"));

string blastOut = arg("publish_dir") + "/" 4+ arg("blastx_out");

Ixii

64| string blastDB = arg("publish_dir") + "/" + arg("makeblastdb_title");

P. NESTE Pipeline WITH Swift

65| blastx (makeBlastDBOutputs, velvetOutputs, blastOut, blastDB,

10

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

velvetOutputs([0]);

Listing P.2: Velvet steps pipeline with Swift.

type file;

app (file velvetHOutputFiles[]) velveth (string trimOutput, string

velvetDir)

velveth

" root_ " + velvetDir
"21"

Hifastq"

trimOutput;

app (file velvetGOutputFiles[]) velvetg (file velvetHOutputFiles[],

string velvetDir)

velvetg
" root__ " + velvetDir
"—cov_cutoff"

"5".
4

string dir = arg("publish_dir"™) + "/" + arg("velvet_output_dir");

string velvetHFiles[] = [dir+"/Log", dir+"/Roadmaps", dir+"/Sequences"
1i

file velvetHOutputs|[] <array_mapper; files=velvetHFiles>;

velvetHOutputs = velveth (arg("trimmomatic_output"), dir);

string velvetGFiles[] = [dir+"/contigs.fa", dir+"/Graph", dir+"/

LastGraph", dir+"/PreGraph", dir+"/stats.txt"];
file velvetGOutputs[] <array_mapper; files=velvetGFiles>;

velvetGOutputs = velvetg(velvetHOutputs, dir);

Ixiii

-

©w

13

14

15

16

20

21

22

23

Nested Pipeline with NGSPipesV2

Listing Q.1: NGSPipesV2 nested pipeline for study case 1.

Properties: {

author: "NGSPipes Team"

description: "Study case 1"
version: "1.0"
documentation: ["http://ngspipes.readthedocs.io/en/latest/

RunningExamples.html"]

Repositories: [
ToolRepository repo: {
location: "https://github.com/ngspipes2/tools_support"
}
PipelineRepository pipelines: {

location: "https://github.com/ngspipes2/tools_support"

Outputs: {
outputl: trimmomatic[outputFile]
output2: blastx[out]

Steps: [

Step trimmomatic: {

Ixv

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

Q. NESTED Pipeline WITH NGSPipesV2

exec: repo[Trimmomatic] [trimmomatic]
execution_context: "DockerConfig"
inputs: {
mode: "SE"
quality: "phred33"
inputFile: "ERR406040.fastg"
outputFile: "ERR406040.filtered.fastqg"
fastaWithAdaptersEtc: "TruSeg3-SE.fa"
seed_mismatches: 2
palindrome_clip_threshold: 30
simple_clip_threshold: 10
windowSize: 4
requiredQuality: 15
leading_quality: 3
trailing quality: 3
minlen_length: 36

}
Step blastx: {
exec: repo[Blast] [blastx]
execution context: "DockerConfig"
inputs: {
db: makeblastdb[out]
query: velvet [contigs]

out: params.blastx_out

}
Step velvet: {
exec: pipelines|[velvet]

inputs: {

trimmomatic_output: trimmomatic[outputFile]

velvet_output_dir: "velvetDir"

}
Step makeblastdb: {
exec: repo[Blast] [makeblastdb]
execution_context: "DockerConfig"
inputs: {
dbtype: "prot"
out: "allrefs"
title: "allrefs"

in: "allrefs.fna.pro"

Ixvi

-

@

10

11

12

13

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

Q. NESTED Pipeline WITH NGSPipesV2

Listing Q.2: Velvet steps pipeline with NGSPipesV2.

Properties: {

author: "NGSPipes Team"

description: "Study case 1"
version: "1.0"
documentation: ["http://ngspipes.readthedocs.io/en/latest/

RunningExamples.html"]

Repositories: [

ToolRepository repo: {

location: "https://github.com/ngspipes2/tools_support"

Outputs: {

contigs: velveth[contigs_fa]

Steps: [

Step velveth: {
exec: repo[Velvet] [velveth]
execution_context: "DockerConfig"
inputs: {
output_directory: params.velvet_output_dir
hash_length: 21
file _format: "fastg"

filename: params.trimmomatic_output

}
Step velvetg: {
exec: repo[Velvet] [velvetqg]
execution_context: "DockerConfig"
inputs: {
output_directory: velveth[output_directory]

cov_cutoff: 5

Ixvii

	Contents
	List of Figures
	List of Tables
	Listing
	Glossary

	Introduction
	Scientific Workflow System
	NGSPipes
	Thesis Statement
	Outline

	Case Study
	Tools
	Task Parallel Variant
	Data Parallel Variant

	Systems Comparison
	Scientific Workflow Systems
	NGSPipesV1
	Nextflow
	CWL
	Ruffus
	Swift

	Pipeline Specification Languages
	Methodology
	Syntax

	Tools and Pipelines Sharing

	Solution
	Architecture
	NGSPipesV2 Language
	Language Specification
	Language Comparison

	NGSPipes Share Platform
	Share Core
	Tools and Pipelines Repository Servers
	Share API
	Repositories Facade
	Share Client

	Conclusion
	Bibliography
	Task Parallelism with NGSPipesV1
	Task Parallelism with Nextflow
	Task Parallelism with CWL
	Task Parallelism with Ruffus
	Task Parallelism with Swift
	Data Parallelism with Nextflow
	Data Parallelism with CWL
	Data Parallelism with Ruffus
	Data Parallelism with Swift
	NGSPipesV2 Antlr Grammar Definition
	Task Parallelism with NGSPipesV2
	Data Parallelism with NGSPipesV2
	Nested Pipeline with Nextflow
	Nested Pipeline with CWL
	Nested Pipeline with Ruffus
	Neste Pipeline with Swift
	Nested Pipeline with NGSPipesV2

