

Security in Data

Aggregation for

Eventually

Consistent

Systems
Pedro Miguel de Jesus Jorge
Mestrado em Segurança Informática
Departamento de Ciência de Computadores

2022

Orientador
Bernardo Luís Fernandes Portela, Professor Auxiliar, Faculdade de

Ciências da Universidade do Porto

Coorientador
Manuel Bernardo Martins Barbosa, Professor Associado, Faculdade de

Ciências da Universidade do Porto

Todas as correções determinadas

pelo júri, e só essas, foram efetuadas.

O Presidente do Júri,

Porto, / /

Abstract

The ever growing globalization of the modern world requires online applications to maintain high
levels of availability that are only achieved through replication, while applications’ functionality
often does not require strong levels of consistency. Conflict-free Replicated Data Types (CRDTs)
are abstract data types that provide eventual consistency guarantees in distributed systems,
automatically dealing with concurrent operations with no need for synchronization. Society
concerns about security and privacy are also on the rise, but despite the extensive study of
CRDTs in literature and their use in the industry, very little development exists in relation to
privacy-preserving CRDT solutions. Existing work requires each construction to be designed
specifically on a per-case basis.

I present an approach to privacy-preserving CRDTs that leverages Multi-Party Computation
(MPC) in order to lift any CRDT construction to its secure variant. The proposed system
maps each replica in the CRDT network to a group of MPC parties that are responsible for
all computation over secret values, while being agnostic to the network topology and to the
multi-party protocols inner workings.

I build on this approach by proposing designs for register, counter, maximum value and
set CRDTs. These designs are experimentally validated with an implementation that uses
Sharemind MPC protocols, exhibiting the impact each construction has on performance through
an evaluation of latency and throughput for each operation.

i

Resumo

A crescente globalização do mundo moderno requer que aplicações online mantenham altos níveis
de disponibilidade que apenas são atingíveis com recurso a replicação, enquanto que frequente-
mente a funcionalidade dessas aplicações não exige consistência forte. Conflict-free Replicated
Data Types (CRDTs) são um tipo abstrato de dados que fornece garantias de consistência
eventual e, sistemas distribuídos, lidando automaticamente com operações concorrentes sem
necessitar de sincronização. A preocupação da sociedade com segurança e privacidade tem vindo
também a crescer, mas apesar do extenso estudo de CRDTs na literatura e o seu uso na indústria,
existe muito pouco desenvolvimento no que toca a soluções de CRDTs que preservem privacidade.
O trabalho existente requer que cada construção seja desenhada especificamente para cada caso
de uso.

Apresento uma abordagem a CRDTs privados que se baseia em Multi-Party Computation
(MPC) para elevar qualquer construção de CRDT à sua variante segura. O sistema proposto
mapeia cada réplcia na rede de CRDTs a um group de entidades MPC que são responsáveis por
todas as computações sobre valores secretos, sendo ao mesmo tempo agnóstica à topologia da
rede e às peculariedades dos protocolos de MPC usdos.

Desenvolvo esta abordagem propondo desenhos de CRDTs para registos, contadores, valor
máximo e conjuntos. Estes desenhos são validados eexperimentalmente com uma implementação
que utiliza os protocolos Sharemind para MPC, mostrando o impacto que cada construção tem
no desempanho através da avaliação da latência e débito para cada operação

iii

Declaração de Honra

Eu, Pedro Miguel de Jesus Jorge, inscrito no Mestrado em Segurança Informática da Faculdade
de Ciências da Universidade do Porto declaro, nos termos do disposto na alínea a) do artigo 14.º
do Código Ético de Conduta Académica da U.Porto, que o conteúdo da presente dissertação
reflete as perspetivas, o trabalho de investigação e as minhas interpretações no momento da sua
entrega.

Ao entregar esta dissertação, declaro, ainda, que a mesma é resultado do meu próprio trabalho
de investigação e contém contributos que não foram utilizados previamente noutros trabalhos
apresentados a esta ou outra instituição.

Mais declaro que todas as referências a outros autores respeitam escrupulosamente as regras
da atribuição, encontrando-se devidamente citadas no corpo do texto e identificadas na secção
de referências bibliográficas. Não são divulgados na presente dissertação quaisquer conteúdos
cuja reprodução esteja vedada por direitos de autor.

Tenho consciência de que a prática de plágio e auto-plágio constitui um ilícito académico.

Pedro Miguel de Jesus Jorge

Porto, 30 de setembro de 2022

v

Agradecimentos

Em primeiro lugar agradeço ao Professor Bernardo Portela por todo o acompanhamento e tutela
ao longo deste trabalho. A sua acessibilidade e profissionalismo foram essenciais para a criação
de um ambiente de trabalho apelativo e eficiente.

Quero agradecer ao Rogério Pontes pela sua disponibilidade em partilhar comigo o seu
conhecimento e experiência profissional. Esta partilha e o seu apoio, acima de tudo no
desenvolvimento e validação experimental do trabalho, foram indispensáveis e contribuíram
largamente para a elevação da qualidade do mesmo.

Agradeço também ao Professor Hugo Pacheco pela sua contribuição para a discussão sobre o
desenho das construções propostas.

Expresso a minha gratidão para com a minha família pelo apoio e aconselhamento ao longo
de toda a minha vida, e por me darem a oportunidade de prosseguir a minha educação. O seu
amor e dedicação fizeram de mim quem sou hoje.

Por último quero agradecer a todos os amigos e colegas que tornaram este percurso não só
produtivo mas divertido e memorável.

Este trabalho foi financiado pelo projeto THEIA - POCI-01-0247-FEDER-047264.

vii

Contents

Abstract i

Resumo iii

Declaração de Honra v

Agradecimentos vii

Contents xi

List of Tables xiii

List of Figures xv

List of Algorithms xvii

Acronyms xix

1 Introduction 1

2 Background 5

2.1 Security . 5

2.1.1 Cryptographic mechanisms for security 6

2.1.2 Secure multi-party computation . 7

2.1.3 Secret sharing . 8

2.1.4 Adversary behavior . 9

ix

2.2 Conflict-free Replicated Data Types . 10

2.2.1 Operations . 10

2.2.2 Examples . 12

2.2.3 CRDT Security . 13

3 State of the Art 17

3.1 Related Work . 17

3.2 Practical Solutions and Frameworks . 18

3.2.1 For CRDTs . 18

3.2.2 For MPC . 19

4 MPC-based Conflict-free Replicated Data Types 23

4.1 System design . 23

4.2 Secure CRDT constructions . 25

4.2.1 Register . 26

4.2.2 Grow-only Counter . 27

4.2.3 PN-Counter . 28

4.2.4 Maximum Value . 29

4.2.5 Bounded Counter . 31

4.2.6 Set . 33

5 Implementation and Experimental Validation 37

5.1 System Implementation . 37

5.2 Experimental Setup . 38

5.2.1 Procedure and Workloads . 38

5.2.2 Results . 40

5.3 Discussion . 41

6 Conclusions 43

6.1 Future Work . 43

x

Bibliography 45

xi

List of Tables

5.1 Average throughput of update and query operations for the baseline and secure
CRDTs for 64 clients. 40

5.2 Average throughput of update and query operations for the baseline and secure
SET CRDT with a fixed set sizes from 8 to 64. 41

xiii

List of Figures

2.1 CIA Triad . 5

2.2 Overview of simple MPC procedure . 8

2.3 State-based CRDT . 11

2.4 Operation-based CRDT . 12

2.5 State-based CRDT . 14

3.1 Summary of MPC frameworks . 20

4.1 System overview . 24

4.2 Replica architecture . 25

5.1 Average throughput of the update operation for the secure Register, GCounter
and PNCounter CRDT. 39

5.2 Average Latency of increment and decrement operations on secure MinBounded-
Counter. 41

xv

List of Algorithms

1 MPC multiplication protocol, adapted from [11] 9
2 State-based Increment-only Counter . 12
3 Operation-based Increment-only Counter . 13
4 Register CRDT . 27
5 Grow-only Counter CRDT . 29
6 PN Counter CRDT . 30
7 Maximum Value CRDT . 31
8 Minimum Bounded Counter CRDT . 33
9 Ever-growing Set CRDT . 35
10 Leakage Set CRDT . 36

xvii

Acronyms

AES Advanced Encryption Standard

CRDT Conflict-free Replicated Data Type

DCC Departamento de Ciência de
Computadores

FCUP Faculdade de Ciências da
Universidade do Porto

LWW Last-Writer-Wins

MAC Message Authentication Code

MPC Multi-Party Computation

SHA Secure Hash Algorithm

SMPC Secure Multi-Party Computation

xix

Chapter 1

Introduction

As modern technology adapts in order to better serve an ever more globalized world, large-
scale distributed systems are becoming more and more prevalent [15, 16, 23]. Replication and
consistency are thus essential features of any such system. One popular class of distributed
applications are replicated stores: systems composed of several computers that act as replicas,
often geo-replicated, that maintain multiple copies of shared information and routinely perform
exchanges to stay synchronized, while clients can interact with data from any of these replicas at
any given time. Consider, for example, online applications that may combine cloud-deployed
replicas with on-device replicas in order to support offline use.

These types of systems require special attention to the balance between consistency (the
property that says that every replica in the system has the same view of data at a given point
in time) and availability (the property that says a system will respond to any request in an
acceptable time interval). The standard approach of strong consistency serializes updates in a
global total order. However, this approach, which requires permanent synchronization betwen
all replicas, often results in availability problems and limits performance and scalability. An
alternative is to provide eventual consistency: updates happen locally at any given replica,
without synchronization, and are later sent to other replicas. Eventually, if all updates cease and
enough propagation operations have been executed, every update takes effect on all replicas. As
these updates do not follow a global total order, concurrent updates may generate conflicts, which
often require manual arbitration and even rolling back updates. Although eventual consistency
is enough for a myriad of applications, conflict resolution may prove to be troublesome. Some
ad-libitum solutions such as Dynamo, Amazon’s highly available key-value store [16], are prone
to concurrency anomalies.

Conflict-free Replicated Data Types (CRDTs) [34] are a class of distributed data structures
that provide eventual consistency. These structures leverage mathematical properties such as
commutativity and monotonicity in order to guarantee that replicas that have received the same
updates have the same state, automatically merging conflicting updates without synchronization.
Some examples of systems built using CRDTs include collaborative text editors [26], geo-replicated
databases [1] and chat systems for world-wide online video games [31].

1

2 Chapter 1. Introduction

This widespread adoption of cloud-based systems has increased awareness about privacy, and
this concern extends to CRDT-based systems. European data protection policies state [3]:

(...) the controller shall, both at the time of the determination of the means for
processing and at the time of the processing itself, implement appropriate technical
and organisational measures, (...), which are designed to implement data-protection
principles (...).

Ensuring data protection in a CRDT-based system is not easily achieved through standard
encryption techniques, as it would require computations over encrypted data on the replica’s
side of the system in order to perform propagation which is exactly what these techniques are
designed to avoid, in order to provide integrity guarantees. Barbosa et al. [6] present the first
theoretically sound proposal to secure CRDTs, defining tailor made constructions for registers,
sets and counters. Each construction is carefully designed in order to perform the necessary
computations over encrypted data.

Much of the literature on CRDTs [19, 33, 34] is focused on the design of new structures with
slightly different behaviors, to suit different application requirements. The above-mentioned
approach to security has no answer this constant expansion of available CRDT constructions, as
each construction would have to be given special attention, which is not an efficient process. An
interesting development would be the ability to directly lift any CRDT construction to its secure
variant. The approach used in [6] does not allow this, as computations over encrypted data have
limited expressiveness and the behavior of each CRDT would need to be manually determined.

MPC denotes a collection of cryptographic protocols that enable multiple untrusted parties
to compute a function on joint input while not disclosing their private data. These techniques
are well suited for privacy-preserving operations in a distributed system. The theory behind
this technique is fairly well developed, and recent practical advances have prompted a myriad of
MPC frameworks [18] for easily writing distributed MPC protocols over partitioned secret data.

Using MPC to enable the necessary computations in CRDT systems would be ideal. This
approach was even considered in [6], but discarded:

Intuitively, privacy-preserving CRDT operations is realisable using (...) general secure
multi-party computation. However, [MPC] solutions (...) would require sharing secret
data between multiple nodes, which goes against the purpose of CRDTs in the first
place.

At first sight, CRDT and MPC might seem two antagonistic concepts if each CRDT replica
is mapped to an MPC party. On the other hand, this is in fact not the case if each CRDT replica
is mapped to a group of MPC parties that communicate between each other in order to compute
its functionality. As an example, a system could be composed of several geo-replicated replicas,
each of which comprised of several MPC parties deployed in separate cloud providers, at the
replica’s location. In this work I study this possibility.

3

My contributions. This dissertation presents the following contributions:

• I propose an approach to CRDT security that leverages Multi-Party Computation (MPC)
to directly transpose CRDT construction to their secure variant, while not limited by
functionality;

• I present detailed secure CRDT constructions for a register, grow-only counter, pn-counter,
maxvalue, boundedcounter and grow-only set;

• I provide an open-source implementation of these protocols, and their experimental
validation.

After this introduction, Chapter 2 starts by providing a background knowledge on several
essential security concepts such as confidentiality and adversary models, MPC and CRDTs.
Chapter 3 covers the related literature and details the current state of the art, concerning
distributed storage, CRDTs and multi-party computation. Chapter 4 introduces the design of
the proposed system, as well as developed specifications for the following CRDT construction
archetypes: registers, counters, maximum value and sets. Chapter 5 details the implementation of
this system and its experimental validation. It presents the used methodology, the experimental
setup characteristics and the results, as well as discussion on the obtained results. Finally,
chapter 6 reiterates the problem, consolidates results and personal opinions and provides
potential approaches for future work.

Chapter 2

Background

This chapter presents in a concise manner all the background knowledge necessary to understand
the present work. It starts with an introduction to security concepts such as confidentiality
and availability. Then, it goes into Conflict-free Replicated Data Types (CRDTs), explaining
what they are, what problem they solve and how they can be constructed. Finally, it addresses
multi-party computation, some of its most known methods, and assesses its strengths and
weaknesses.

2.1 Security

Systems and information security measures are guided by and evaluated through the CIA triad, a
model composed by three factors: confidentiality, integrity and availability. A proper knowledge
of these factors is of extreme importance in order to understand what the problem is and what is
trying to be accomplished in any project that relates to systems and information security, and
thus the present chapter begins with this topic.

Co
nf
id
en

tia
lity Integrity

Availability

Figure 2.1: Confidentiality, integrity and availability triad

• Confidentiality refers to the guarantees that certain data remains secret or private. It
encompasses all efforts and measures taken to inhibit data from being accessed by anyone
other than the authorized entities. Taking this into account, confidentiality has two main

5

6 Chapter 2. Background

components: making sure that unauthorized entities have access to the information, and
making sure that authorized entities have that access whenever necessary. As mentioned
in the introductory section of this document, guarantees of confidentiality are the main
objective of the secure system proposed in this work, and so it is given the most attention
out of the three factors.

This guarantee can be achieved through several methods (usually combined), such as the
use of encryption, the implementation of an access control system based in authentication
and authorization mechanisms or the use of secure multi-party computation protocols.

• Integrity involves all methods to detect unauthorized data alterations. As the main focus
of this work is confidentiality, integrity is beyond its scope, it will not be developed further.

• Availability relates to the guarantee that the data can be accessed whenever necessary. It
holds a special place in relation to the two previously explained factors, as even confidential
data whose integrity has been assured is useless if it is not available. It includes not only if
the access to the data is possible, but also how quickly it is done. This factor is another also
important to the present work, as the main purpose of eventual consistency is to provide
better availability than strong consistency.

2.1.1 Cryptographic mechanisms for security

A multitude of cryptographic mechanisms and standards were created to provide guarantee for
the aforementioned security factors.

Confidentiality is achieved mainly through the use of encryption with standards such as
Advanced Encryption Standard (AES), which is a way of scrambling data so that only authorized
entities can understand the information. It requires the use of cryptographic keys, a set of
mathematical values that both the sender and recipient of an encrypted message agree on,
which can be symmetric (both users have the same key that is used for their communication)
or asymmetric (each user has a pair of keys: the public key can be used by any other user to
encrypt data so that it can only be decrypted by the former, with the use of its private key).
Encryption can be applied directly to information or to channels, such as in the SSL standard.

Integrity is usually achieved through the use of hashing mechanisms, such as Secure Hash
Algorithm (SHA), and Message Authentication Codes (MACs). Hashing mechanisms transform
any data into a usually short and fixed-length value, and this is a deterministic process (a certain
input will always result in the same output, if the hashing protocol and secret is constant). Given
that anyone (even a potential adversary) can compute the output of a secure Hash Function,
MACs are instead used: a secret key is hashed in conjunction with the data to send. This
allows the recipient to verify that a message comes from the intended sender and has not been
tampered with, as a potential attacker would not know the secret key, meaning he couldn’t
forge an authentic MAC. Combining hashes with asymmetric key cryptography results in digital
signatures, which also provide non-repudiation: an entity can use its own private key to encrypt

2.1. Security 7

the hash of a message. Any other entity with access to the first entity’s public key can use it to
verify that the message was sent by the first entity.

Availability can also be amplified through cryptographic mechanisms, but it has a more direct
relation with measures such as replication and redundancy.

These standard cryptographic mechanisms for confidentiality and integrity make it funda-
mentally impossible to perform computation over secure data. If we have two integers that are
encrypted it is not trivial to get the result of their multiplication without decryption. In order to
provide these desired guarantees while allowing computation over secure data, more advanced
security mechanisms are necessary. One example is secure multi-party computation.

2.1.2 Secure multi-party computation

Secure Multi-Party Computation (SMPC) is a generic cryptographic primitive that enables
distributed parties to jointly compute an arbitrary functionality without revealing their own
private inputs and outputs [4].

Informally, this means that two or more participants (which for simplicity are referred to
as "players") that hold private inputs want to perform some computation over these inputs and
receive the respective output. This must be accomplished while gaining no knowledge over each
other’s inputs, other than what can be inferred from the received output. This definition results
in a broad scope, as any cryptographic procedure that involves two or more participants may
be considered an SMPC procedure. SMPC considers one or more potential corrupt players
(participants that act maliciously), whose intent may be to discover other players; private
information or to cause errors in the procedure. MPC protocols involve some building blocks
such as secret sharing, garbled circuits, oblivious transfer, homomorphic encryption and / or
zero-knowledge proofs. Concretely, we will leverage secret sharing based MPC protocols.

MPC protocols allow for the computation ensuring properties such as:

• Correctness: the computation output must be correct

• Privacy: players must only be able to obtain their own outputs and no information about
other players’ inputs or outputs;

• Independence of input: inputs from a player must be independent from the inputs of other
players;

• Guarantee of output: corrupt players must not be able to stop honest players from receiving
their outputs;

• Fairness: corrupt players must receive their outputs if and only if honest players receive
their own.

8 Chapter 2. Background

2.1.3 Secret sharing

Secret sharing schemes distribute some private data among multiple players, so that the private
data is only accessible if a threshold of players gather their own data. An attacker that achieves
access to some of the shares must gain no information about the private data. Secret shares
possess homomorphic properties such as additive homomorphism, that enable the computations
serving as a base for these schemes. Figure 2.2 exemplifies how an arithmetic protocol that
takes advantage of this properties in a trivial way is implemented through secure multi-party
computation.

Figure 2.2: Overview of simple MPC procedure

Two individuals hold a secret number, and wish to know which one has the bigger number.
Each of them divides his number in three shares, and distribute this shares in three machines.
Each machine then calculates the difference between both values it received, and the subsequent
sum of these differences results in the overall difference between the two initial numbers, in a
way that none of the three machines has access to the initial numbers.

This addition protocol is represented in a simplified and visual way in order to facilitate a
quick understanding of secret sharing, but more complex protocols exist. Bogdanov et al. propose
a three-party multiplication protocol [11], also enabled by this additive homomorphism property,
that is quite more interesting as it requires communication between parties.

Specification 1 presents the multiplication protocol, which takes two secret values [[u]] and
[[v]] and returns a secret value [[w]] such that w = u× v. The protocol starts with a resharing of
both inputs, a simple protocol to generate fresh shares for each player, turning [[u]] and [[v]] to
[[u′]] and [[v′]], respectively, and each party Pi then sends their shares to the next party (P(i+1)%3).
Now that every party has access to two shares of each secret value, they calculate their result by

2.1. Security 9

Specification 1 MPC multiplication protocol, adapted from [11]
Input: Shared value [[u]] and [[v]]
Output: Shared value [[w′]] such that w′ = u× v

1: [[u′]]← reshare([[u]]) ▷ simple protocol to generate fresh shares for each player
2: [[v′]]← reshare([[v]])
3: P1 sends u′1 and v′1 to P2

4: P2 sends u′2 and v′2 to P3

5: P3 sends u′3 and v′3 to P1

6: P1 computes w1 ← u′1 × v′1 + u′1 × v′3 + u′3 × v′1
7: P2 computes w2 ← u′2 × v′2 + u′2 × v′1 + u′1 × v′2
8: P3 computes w3 ← u′3 × v′3 + u′3 × v′2 + u′2 × v′3
9: Return [[w′]]← reshare([[w]])

performing a matrix multiplication of the shares. Consider the following demonstration:

u = (u1 + u2 + u3)
v = (v1 + v2 + v3)

u1×v1+u1×v2+u1×v3+u2×v1+u2×v2+u2×v3+u3×v1+u3×v2+u3×v3 =
(u1 + u2 + u3) ∗ (v1 + v2 + v3) = u ∗ v

This result is then reshared, resulting in [[w′]] as the output of the protocol.

2.1.4 Adversary behavior

Threat models are representations of anything that may affects the security of a system or protocol.
Its objective is to improve security by identifying potential threats and defining countermeasures,
and thus the security of a system or protocol can only be discussed under a specific threat model.
Although there are several topics that fall under the threat modeling scope, one of the most
important for the current work is adversary behavior, which can be divided in two main types:

• Semi-honest adversary: Semi-honest adversaries, also known as honest-but-curious, are
those that have access to complete information on the internal status of the system but
may only use that knowledge according to the guidelines of the protocol. Although a weak
adversary model it applies to several real world scenarios: consider a protocol that implies
collaboration between companies, where these companies can not behave in a notoriously
dishonest way due to the potential reputation effect but may try to collect as much private
information about other participants as possible.

• Malicious adversary: Malicious adversaries are not limited to following the protocol as
intended. In order to be secure against this type of adversaries, protocols must be able
to detect manipulation of exchanged messages. As a stronger adversary model, it usually
comes with potentially severe losses in the performance department.

10 Chapter 2. Background

2.2 Conflict-free Replicated Data Types

One fundamental concept in the study of distributed systems is called replication: the practice
of keeping several copies of data in different places. Plenty of literature is focused on keeping a
global total order, and approach known as "strong consistency" [25]. This approach, although
necessary in some instances, has limited performance and scalability while also responding badly
to faults [17].

On the other hand, the approach known as "eventual consistency" delivers better availability
and performance in regards to networks which are tolerant to delays in the update of inform-
ation. [32, 36]. In networks that implement this approach, operations are executed locally at
any replica, with no synchronization mechanism, and is then propagated to other replicas in an
asynchronous manner. This means that, eventually, every update is received by every replica, in
no mandatory global order. Some work provides guidance on a theoretically-sound approach to
eventual consistency [33, 34], providing frameworks that leverage mathematical properties such
as commutativity to define some simple data types that can be used in this type of systems, also
known as Conflict-free Replicated Data Types.

Conflict-free Replicated Data Types are a popular class of distributed data structures that
present the desired characteristics: replicas that have received the same updates have the same
state, automatically merging conflicting updates without synchronization. In [33] is presented a
comprehensive portfolio of CRDT designs.

2.2.1 Operations

The environment in which these data types are employed consists of a distributed system with
finite number of processes interconnected by an asynchronous network. Processes can either be
replicas that comprise the CRDTs or unspecified clients that manage the input for the replicas.

CRDTs are composed by two phases that happen sequentially: the local phase, which
encompasses interactions between the client and an available replica, and the downstream phase
(also known as replication phase), which relates to interactions between different replicas. Each
phase is comprised of two functions, these being:

• For the local phase, update receives some value which may or may not change the state of
the replica, while query returns the current state of the replica. These operations are part
of the CRDT’s functional logic.

• For the downstream phase, propagate creates a copy of the replica’s state and sends it to
other replicas, while merge refers to the operation that receives an incoming state from a
different replica and assimilates it. These two operations define how replicas synchronize
their data.

2.2. Conflict-free Replicated Data Types 11

In the local phase, a client chooses a replica to interact with, ideally based on points such as
availability and closeness. The client can then execute an update operation that modifies the
state of that one replica. The procedure then advances to the downstream phase. Likewise, the
client can also execute a query operation, which retrieves the current state of the chosen replica.
As part of an eventually consistent system, the result returned by the query operation may not
be the most updated result at any given time.

Regarding the downstream phase, and based on communication and application requirements
two main models for CRDTs exist, which make different network assumptions on when and how
replication is executed: the state-based model and the operation-based model.

2.2.1.1 State-based replication

Figure 2.3: State-based CRDT, adapted from [34]

Figure 2.3 represents the overall idea behind a state-based CRDT. An update, marked as
s1.u(a) where a corresponds to the update payload, modifies the state of the local replica
it is applied to, as explained previously, in an atomic manner. The replica then occasionally
propagates its state to other replicas, as denoted by the black arrows. The receiving replicas
perform a merge operation, marked as s2.m(s1), where s2 corresponds to the replica sending its
state and s1 to the replica receiving the incoming state.

This approach is simple to understand and implement as all the required information to
perform synchronization is assimilated in the state, but may become troublesome for large states,
as it may require a large amount of available bandwidth. It lends itself well to container-style
objects and as such the state-based approach is used, for example, in Coda, a distributed file
system [20] and in Dynamo, Amazon’s distributed key-value store [16].

2.2.1.2 Operation-based replication

Figure 2.4 provides an insight into how an operation-based CRDT works. In relation to the
state-based approach, it disposes of the merge operation, and instead splits the update operation
into a two step process: a prepare-update operation, denoted in the figure as s1.p(a) where s1

12 Chapter 2. Background

Figure 2.4: Operation-based CRDT, adapted from [34]

stands for the initial state and a for the update payload, and an effect-update operation, denoted
in the figure as s1.e(a’) where a’ stands for the payload to send to other replicas. It may or
may nor be the case that a and a’ differ. The prepare-update operation executes locally in the
source replica, immediately followed by an effect-update operation that executes at all other
replicas. In literature, [34] provides proof that the operation-based CRDTs can be equivalent to
the state-based CRDTs.

This approach is more complex than the previous one, as it requires replicas to maintain
insight into its updates history. On the other hand, messages sent between replicas may be
lighter. It has been mainly used in distributed cooperative systems, such as XRay, a collaborative
text editor focused on high responsiveness for group editing [13] or TreeDoc, which achieves a
similar goal [30].

2.2.2 Examples

In this section I present some of the simplest CRDT constructions, in order to make it easier for
the reader to visualize what has been presented until this section of the document.

Specification 2 State-based Increment-only Counter
payload integer[n] P ▷ n: number of replicas

initial [0, 0, ..., 0]
update (integer v)

i← replicaID() ▷ i: source replica
P [i]← P [i] + v

query : integer v
v ←

∑n
i=0 P [i]

return v
propagate (X) : payload Y
∀i ∈ [0, n− 1] : Y.P [i]← X.P [i])
return Y

merge (X, payload Y)
∀i ∈ [0, n− 1] : X.P [i]← max(X.P [i], Y.P [i])

2.2. Conflict-free Replicated Data Types 13

Starting with a state-based construction for an increment-only counter, which can be found
in Specification 2, consider the state of a replica to be an array of integers, with size equal to the
number of replicas in the system and denoted as n. In order to perform an update operation,
the source replica adds v to the position that corresponds to itself in the array, with v being the
value to add to the counter. Performing a query operation means to return the sum of all the
positions in the array, and thus returning the sum of the updates that were made in each replica.
The propagate operation creates a payload, denoted as Y, with an array that is equal to the
present replica’s array. Lastly, a merge operation the replica receives a payload Y from other
replica, and for each position in the array it stores the max value between its own value and the
incoming value.

Specification 3 Operation-based Increment-only Counter
payload integer c

initial 0
update (integer v)

c← c + v

downstream (integer v)
query

return c

On the other hand, Specification 3 corresponds to an operation-based construction for the
same increment-only counter. Each replica simply stores an integer, denoted as c that portrays
the current local state of the counter. To perform a query operation is to simply return this
value. An update is split into two parts: firstly, the replica adds the incoming value, denoted as
v, to its own current value, and then, in the downstream phase, it sends the update value to
every other replica in the system.

This more concrete demonstration of the two approaches shows the main differences between
both of them, demonstrating that each approach has its own merits and disadvantages. It
also serves as a first approach to the language that is used in all specifications throughout this
document, which is explained in chapter 4.

2.2.3 CRDT Security

Based in its characteristics of high availability and scalability, CRDTs are used in several systems
for which confidentiality may be of high concern. Although the study of CRDTs has been going
on for more than a decade, there is very little formal treatment of CRDT security in literature.
In [7], Barbosa et al. propose the first notion in this field, which supports the following data
types: register, set, counter and bounded counter. It defines tailor-made examples of secure
CRDT constructions for these data types, which must be carefully designed to use dedicated
cryptographic techniques in order to perform computations over encrypted data.

This approach to CRDT security through encryption makes use of a layer of security between

14 Chapter 2. Background

clients writing and reading data, in a way that sensitive data is encrypted before entering an
untrusted network and must be decrypted when exiting the network, while being able to propagate
and merge between replicas in an encoded state. Figure 2.5, taken from [7], captures the stated
scenario. There is a setup phase where cryptographic keys are established by the clients, to be
used in the aforementioned security layer. The presented model attributes no preference to either
symmetric or asymmetric keys, as it is agnostic to this setup phase. Afterwards, an encryption
operation precedes every update (step 1). The server receives the encrypted data, and performs
the update (step 2), followed by several propagations and merges between replicas (step 3). This
step is at the core of the proposed model, as it is specific to each CRDT construction. Querying
a node for data is next (step 4), followed by a decryption of this data (step 5).

Figure 2.5: State-based CRDT, taken from [7]

In order to better understand this approach to CRDT security, let’s consider the simple
example of a register CRDT, a data structure holding a single value, which may be used as a
building block for more complex data structures. An update replaces the current value and a
query returns it. Merge operations for this CRDT are quite simple, as new data is in no way
related to previous data, meaning that there is no computation over encrypted values. The
update data is encrypted before being sent to a server, which simply substitutes its older value
by the new, to then be returned as plaintext when a query occurs.

The cryptographic overhead of this construction is minimal, as it is only affected by a key
generation progress, on encryption and one decryption. This is only the case because there is no
computation to be done over encrypted data, as the consistency mechanism is simply based on
metadata (the timestamps which allow the construction to decide on which data is new or old).

2.2. Conflict-free Replicated Data Types 15

The set CRDT requires equality comparison over encrypted data, in order to understand if a
certain value is either already in the set or is to be added. This is achieved with the use of a
deterministic encryption scheme, which assures that equality comparison over encrypted values
is as simple as it is over plaintext values, which maintains the low overhead seen in the previous
case. Unfortunately, this is not the case for every CRDT construction: the counter CRDT, a
numerical data structure which can be incremented and decremented, is proposed in this work
to be implemented as an aggregate of two simple grow-only counters (one for increments and one
for decrements). The model also uses a per-replica Lamport clock [24], stored in plaintext, to
establish partial order of events, and thus reducing the computations over encrypted data to an
addition. This is achieved with the use of additively homomorphic encryption scheme, which
imposes a higher performance overhead than the two previous constructions.

Directly transposing each CRDT implementation to its secure variation is not possible based
on this approach, as the computations that can be done over encrypted data are limited, and
each different scheme must be custom designed. Furthermore, complex constructions were shown
to incur in bigger latency without any growth in throughput, meaning that each operation
took longer and no increase in operations per second was seen. In order to lift general purpose
implementations of CRDTs to their secure variants, without limiting functionality, a possible
approach is the use of secure Multi-Party Computation (MPC).

Chapter 3

State of the Art

This chapter’s purpose is to provide an overview the current state of the art, mainly in relation
to Conflict-free Replicated Data Types (CRDTs) and Multi-Party Computation (MPC). It is
divided in two sections: the first one approaches the objective in a theoretic way, focusing on the
literature, while the second section gives an overview on the current universe of practical tools
and frameworks.

3.1 Related Work

This section succinctly describes the state of literature on several topics that are relevant to the
present work:

• Secure distributed storage: The storage of confidential data in the cloud environment has
been an extensive research topic, starting with the migration of in-premises storage to an
encrypted storage infrastructure in a single cloud provider [28]. More cloud native solutions
such as BlueSky [38] have emerged to provide strong consistency and availability. However,
cloud systems can also be affected by loss of availability and data corruption. DepSky [9]
overcame these limitations with a cloud-of-cloud system and a byzantine fault tolerance
protocol to recover from a cloud failure. DepSky also uses secret sharing to split sensitive
data over multiple parties. However, none of these systems provide neither confidential
computation nor eventual consistency.

• Eventual consistency and CRDTs: Eventual consistency has long been a focal point in
the research of highly-available and scalable asynchronous systems [32, 36]. DeCandia et
al. [16] provide Dynamo, a highly available key-value storage system that some of Amazon’s
core services use to provide an “always-on” experience. In contrast, Shapiro et al. [34]
study eventual consistency with a formal approach grounded on commutativity and semi
lattices, following their separate technical report [33] which serves as a comprehensive
portfolio of CRDT designs. Balegas et al. [6] present a prototype built on top of Riak

17

18 Chapter 3. State of the Art

for extending eventually consistent cloud databases for enforcing numeric invariants, from
where this document draws inspiration to build a maximum value CRDT. Riak is itself a
key-value store inspired in Dynamo [16] which is built using Riak_core [21] as the DHT
communication substrate.

• SMPC: Multi-party protocols have been used as a solution for private computation on
several systems. SDB [39] is a relational database that uses a two-party protocol suite
optimized fore relational queries. NoSQL operations can also be fully supported with
an acceptable performance and security trade-off as shown by d’Artagnan [29], the first
decentralized NoSQL confidential database. These protocols are also used in the commercial
Sharemind platform, which provides secure data analysis [10]. More recently, SMCQL [8]
and ConClave [37] have presented optimized systems for big data workloads in a honest-
but-curious model and a three party setting. Senate [27] has gone one step further and
presented a platform for collaborative analytics secure against an active adversary for any
number of parties. Multi-party protocols have also extended into machine learning with
Cerebro [40].

• Secure CRDTs: Secure CRDTs were first formalized by Barbosa et al. [7]. The authors
also presented multiple constructions for secure registers, counter and set CRDTs that
leverage deterministic encryption and partial homomorphic encryption schemes. Cachin et
al. [14] have proposed Authenticated Data Types (ADTs) for authenticated data outsourcing
in a singe-server/single-client setting. Snapdoc [22] presents a solution for collaborative
document edition with history-privacy. This solution ensures that the join operation of two
documents is authenticated and the privacy of a document’s edition history is preserved.
The work of Shoker et al. presents Byzec [35], a protocol designed to address the lack
of CRDTs resistant to byzantine faults. However, only the work of Barbosa et al., this
document and the adjacent paper consider the problem of secure CRDTs.

3.2 Practical Solutions and Frameworks

3.2.1 For CRDTs

Several frameworks exist that leverage CRDTs in order to provide eventually consistent distributed
systems with strong availability and fault-tolerance. In this subsection three relevant frameworks
are presented, in order to provide an overview of the current state of the art when it comes to
CRDT-based tools.

Automerge is a JavaScript library for data synchronization between mobile devices, which
enables users to interact with data while offline and then when online merges changes even if
made concurrently on different devices. Other similar services and applications are implemented
by storing a main copy in a centralized server, and while some allow the user to interact with
such data offline, others only work while online. The problem with this approach is that the

3.2. Practical Solutions and Frameworks 19

centralized server may be located far away from the devices, resulting in high latency even if two
devices in the system are besides each other. Automerge enables devices to swap data directly
via Bluetooth, a local network or peer-to-peer networks through optional end-to-end encryption,
and to synchronize the data it uses a JSON data model implemented as a CRDT. Although data
may be exchanged in an encrypted state between devices, it must be decrypted before merging
states, thus falling short of the goal of this work.

Yjs [26] is an open-source JavaScript implementation for peer-to-peer shared editing. In
relation to automerge, it offers better flexibility in the form of support for mutable objects,
as it was designed for rich text editing instead of fixed application states, and provides better
performance for most operations. It achieves this extra functionality by using an internal linked
list representation in the form of a CRDT and adding a garbage collector to reduce the number
of necessary operations for synchronization. Also in contrast to Automerge, it uses an operation-
based approach for CRDT propagation. As it provides no security features, it stands the case
that developments from this work could potentially be used to enhance Yjs’s functionality from
a privacy-preserving standpoint.

AntidoteDB [1] is a highly-available geo-replicated NoSQL database that uses CRDTs as the
data model. Similarly to both tools previously mentioned, it possesses no security mechanisms,
being developed from a purely functional standpoint. Barbosa et al. used their secure CRDT
constructions presented in [7] to implement a privacy-preserving version of AntidoteDB, that
ultimately faced the constraints described in the previous section.

3.2.2 For MPC

Protocols for secure computation have existed for decades, and in recent years a series of
compilers for executing multi-party computation on arbitrary functions have been developed.
These projects are evolving and changing at such a fast pace that it isn’t easy to be on par with
the various capabilities of every framework. in an attempt to help solve this problem, Hastings
et al. have surveyed several compilers for SMPC [18]. Their work considers eleven systems:
EMP-toolkit, Obliv-C, ObliVM, TinyGarble, SCALE-MAMBA (formerly SPDZ), Wysteria,
Sharemind, PICCO, ABY, Frigate and CBMC-GC. These systems are evaluated in language
expressibility, capabilities of the cryptographic back-end and accessibility. They also provide
a repository that contains a collection of sample programs for all these frameworks, set up in
Docker containers.

Figure 3.1 is presented in this works as a summary of each framework’s defining features and
documentation types. In order to fulfill the needs for the present work’s objectives, frameworks
to consider should support 3 parties and provide (at a minimum) semi-honest security. Good
documentation was also a highly prioritized feature, as would simplify and improve the quality
of the work. Of all the these frameworks, SCALE-MAMBA and Sharemind deserve special
consideration.

20 Chapter 3. State of the Art

Figure 3.1: Summary of MPC frameworks, taken from [18]

SCALE-MAMBA implements an hybrid protocol that is secure against malicious adversaries.
It is composed of two distinct parts: MAMBA is a language built on top of Python that can be
used to specify the MPC tasks, while SCALE implements the secure protocol. The framework
has extensive documentation covering installation and running instructions, as well as more
practical examples. Although it allows the definition of custom I/O classes, the framework
provides malicious security through a secure channel that requires users to produce an authority
certificate to run computation. This added layer of security inhibits the removal of shares in the
midst of a computation, which would be required in order to share the state between replicas in a
CRDT system. After a deep investigation into the framework’s documentation and direct contact
with its developers, it was discarded as changing its inner workings in order to accommodate the
desired use case would entail a significant overhead in development, which we considered to be
unjustified, given its alternatives.

Sharemind [10] is a framework for Secure Multi-Party Computation (SMPC) that uses additive
secret sharing and is secure in the honest-but-curious adversary model (explained in chapter 2).
Their traditional model, which is similar to the model used for each CRDT replica the present
work (explained in chapter 4), consists of three server participants and a client application that
orders computation, shares inputs and receives outputs. Although Sharemind is a commercial
framework, its protocols are well documented and open-source and have been implemented by
other projects, one of which is d’Artagnan [29].

d’Artagnan is an open-source multi-cloud NoSQL database that leverages these protocols
to process queries. This database has two main components, SafeClient and SafeServer. The
SafeServer is built on top of a high-level API of SMPC protocols (derived from Sharemind)

3.2. Practical Solutions and Frameworks 21

that is designed to abstract the details of the protocol’s implementation from the SafeServer,
which enables the integration of new protocols with no relation to the concepts of a database
but also the integration of the existing protocols in other projects, such as this one. The proper
documentation of the protocols and extreme simplicity of the SMPC library allowed certain
alterations to be made in order to facilitate the removal and introduction of shares from a state.
As a result, this open-source library was the chosen tool for the multi-party computation tasks
that would be necessary for the developed protocols.

Chapter 4

MPC-based Conflict-free Replicated
Data Types

As a follow up, this section presents my contribution. It aims to detail and reason about the
design of the proposed system, as well as developed specifications for the following CRDT
construction families: registers, counters, maximum value and sets. I consider a semi-honest
adversary model.

4.1 System design

My goal with this work is to propose and develop on the possibility to lift general-purpose
implementations of CRDTs to their secure variants using general secure multi-party computation.
As mentioned at the end of chapter 2, the idea that MPC and CRDTs are antagonistic if we map
each CRDT replica to a MPC party is understandable. Nonetheless, the intention is that data is
kept private while stored in the replicas and thus what is proposed is to map each CRDT replica
to a group of MPC parties, which are leveraged for secure computation inside a single replica.

Being successful with this approach for a series of "building-block CRDTs" opens the door
to the feasibility of achieving security for any other more complex CRDT that can use these
basic constructions in its own construction. In order to achieve this goal, the designed system is
modular and can be split into two parts: a CRDT-based network and a MPC service (figure 4.1).

The CRDT network is composed by multiple server replicas that routinely interact between
each other to share their current state, and multiple clients that interact with a single replica at
a time in order to perform updates or queries to the stored data. Each replica consists of three
different parties that can and should be run in different machines so as to provide the intended
level of security (if all three parties are run in the same machine and this is compromised, the
adversary can easily retrieve all three shares that compose a secret and reveal its content). For
a public cloud-based geo-replicated system, this would mean that CRDT replicas would be
distributed around different locations of the globe, and for each location the respective replica

23

24 Chapter 4. MPC-based Conflict-free Replicated Data Types

could have its three CRDT parties running on different cloud providers (for example, replicas
could have one party hosted on Google Cloud, one party hosted on Microsoft Azure and one
party hosted on Amazon Web Services).

Figure 4.1: System overview

Clients would then choose one replica to connect to, a choice that can be based on several
factors, mainly location proximity and latency, and perform the desired operation (update
or query). For an update, the client is responsible for splitting the secret payload into three
shares and sending each share to one of the replica’s CRDT parties accompanied by all the
necessary information to perform the update, such as operation identifiers, timestamps or other
information specific to the CRDT construction. Clients are also responsible, on query operations,
for receiving shares from each CRDT party and performing the necessary steps to recover the
information to a readable state. Each replica would then be responsible for propagating their
state to other replicas according to the implementation-specific constraints, and dealing with
incoming propagations from other replicas. This happens as a direct mapping between parties of
each replica (party 1 of replica A sends its state to party 1 of replica B, party 1 of replica A sends
its state to party 2 of replica B and party 3 of replica A sends its state to party 3 of replica B).

Performing update and merge operations over secret shares may require CRDT parties
to cooperate, which is done through the MPC service. The system may choose to have on
MPC service per replica or one MPC service for all replicas. In order to maintain the high
availability and low latency that is characteristic of CRDT systems, I chose to implement one
MPC service per replica, which means that each CRDT party is accompanied by an MPC
party. The CRDT parties communicate with their respective MPC parties through an interface,
creating an abstraction layer that allows different MPC implementations to be used on a near
plug-and-play basis. Figure 4.2 portrays an high-level view of the architecture of a single replica.

In order to guarantee freshness for all shares received by clients, when a query operation is
performed the SMPC layer is used to create new shares for the secret information, overriding

4.2. Secure CRDT constructions 25

MPC Player 0

CRDT Player 0

SMPC Interface Stored data

Communication
Server

Communication
Clients

SMPC Interface Stored data

Communication
Server

Communication
Clients

MPC Player 1

CRDT Player 1

SMPC Interface Stored data

Communication
Server

Communication
Clients

MPC Player 2

Incoming
operation

Outgoing
state

Incoming
operation

Incoming
operation

Outgoing
state

Outgoing
state

Figure 4.2: Replica architecture

existing data. This resharing process can also be set to happen periodically or at every propagation
operation. This ensures that if two different CRDT parties of the same replica are compromised
at different points in time, no secret information is divulged. Because this behavior is common
to all the proposed CRDT constructions, this step is omitted from the presented specifications in
order to simplify its reading.

4.2 Secure CRDT constructions

In alignment with the above-mentioned goal, CRDT constructions were designed in a interactive
functional MPC language that makes an explicit syntactic distinction between public and secret
data, and in which computations over private data are seen as calls to an underlying MPC
system, while computations over public data are processed normally. For our concrete protocols,
we assume that the MPC library supports operations for addition, multiplication, equality
verification and greater-or-equal-than verification.

This chapter presents the designed CRDT constructions for a register, three different counters,
a maximum value, and two different sets. This constructions detail the behavior of each and every
party that composes a replica in a CRDT system, as all three parties have the same behavior.
For each constructions I explain how it is often implemented as a normal, non-privacy-preserving
CRDT, and then detail the designed specification for a secure version. Each specification is
divided in 2 columns and comprised of three parts:

• The top side of the left column is where custom data types are defined. These types can be
public integers (denoted by Int), secret integers (denoted by SInt), strings of characters

26 Chapter 4. MPC-based Conflict-free Replicated Data Types

(denoted by two quotation marks with the string content in between), combinations of
these, or even arrays of combinations of these. As a quick example, specification 4’s left
column starts with the following:

Sr : SInt, Int

This line means that Sr is a custom type that is composed of a secret integer and a public
integer. For another example, we can look at the second line from specification 6:

OPu : "Inc", SInt, Int || "Dec", SInt, Int

This means that OPu is a custom type that is comprised of the string "Inc", a secret integer
and a public integer OR comprised of the string "Dec", a secret integer and a public integer.

• The top side of the right column is where function types are declared in a functional manner.
This section declares, for each function, what data types it takes and what is its output.
Let’s take, for example, the third line from the right column of specification 4:

query :: Π→ OPq → Sr → SInt

This line declares a function called query, which takes as input a replica id (denoted
throughout all specifications as Π), an object of the type OP1, an object of the type Sr

and returns as output a secret integer.

• Next is the pseudocode for the functions, spanning across both columns. In this section,
variables that represent a secret value have a line on top, while variables that represent a
public value do not (for example, a denotes a secret value while a would denote a public
value). This section is explained in text along the rest of the chapter and any further detail
that may not be so trivial will be mentioned in a comment at the end of the line, denoted
as follows:

▷ this is a comment

4.2.1 Register

The first construction is for a Last-Writer-Wins (LWW) Register, with specification 4. Registers
are data structures that maintain a general opaque value, being considered a container CRDT,
and thus can be directly made to hold secure elements. Its operations perform no secure
computations, because their behavior is agnostic to secret values, so the secure version of this
CRDT is extremely similar to the original proposal by Shapiro et al. [33]. The one change has to
do with the timestamps, where instead of using a now() operation to get the current timestamp,
I established that the client is expected to generate it and present it as an argument (as the
public integer that is part of OPu).

The new function initializes the CRDT with secret shares that represent the value 0 and also
the value 0 as timestamp. The update function takes an OPu object that includes the secret

4.2. Secure CRDT constructions 27

shares for the new value and a public timestamp; if the incoming timestamp is more recent than
the stored timestamp then the secret shares are updated. The query function simply returns the
stored secret shares. The function propagate returns the state of all the parties. The function
merge compares the timestamp of both the incoming state and the stored state, and keeps the
secret shares and timestamp that correspond to the more recent timestamp of the two.

When a party is compromised, the only leaked information is the most recent timestamp.

Specification 4 Register CRDT
Sr : SInt, Int
OPu : "Upd", SInt, Int
OPq : "Get"

new (id) ▷ id: replica number
s← new SInt(0)
A← (s, 0)
return A

update (id, op, A)
case (op = ”Upd”, v, t′)

(·, t)← A

if (t′ > t)
A← (v, t′)

return A

query (id, op, A)
case (op = ”Get”)

(s, ·)← A

return s

new :: Π→ Sr

update :: Π→ OPu → Sr → Sr

query :: Π→ OPq → Sr → SInt

propagate :: (Π, Π)→ Sr →Msgr

merge :: (Π, Π)→ Sr →Msgr → Sr

propagate ((idi, idj), A)
return A

merge ((idi, idj), A, A’)
(s, t)← A

(s′, t′)← A′

if (t′ > t)
A← (s′, t′)

return A

4.2.2 Grow-only Counter

Specification 5 portrays the secure construction for a grow-only counter CRDT. A grow-only
counter is a replicated integer that supports the operation to increment by an arbitrary integer.
I start with this limited-functionality counter in order to simplify the approach, as it can be used
as a basis for the next counter, a pn-counter. Shapiro et al. follow the same approach in [33]
when presenting their baseline non-secure constructions for a counter CRDT. Their proposed
state-based construction’s payload is a vector of integers, in which each replica is assigned a
position. The assumption that the number of replicas is known is quite acceptable. To increment
by an arbitrary integer a they add a to the position that corresponds to the local replica that
is performing the operation. Their implementation requires comparison over counter values in
order to check the max value to merge two states, which is an expensive secure operation because

28 Chapter 4. MPC-based Conflict-free Replicated Data Types

it requires communication between parties.Given the monotonic nature of the grow-only counter,
I avoid this secure operation by extending the state to include a per-replica public timestamp,
which works similarly to a Lamport clock. This guarantees that a greater timestamp corresponds
to a greater counter value.

The new function initializes the counter by creating an array of pairs (secret integer, public
integer) with the same size as the number of replicas in the system, where each position contains
the secret share of the value for all increments done by that replica (initialized as secret shares of
the value 0) and a the timestamp of the most recent increment done by said replica (initialized
as 0). The update function takes a secret share and a timestamp in the object OPu; it adds the
incoming secret share to the existing share in the correct position of the array, and substitutes the
old timestamp with the incoming one. A query function iterates through the array and returns
the sum of all secret shares. The function propagate simply returns all the state of the parties.
The mergefunction makes use of the timestamps in order to avoid the need for communication
with other parties; it iterates through the array, and for each position it stores the pair (secret
share, timestamp) with the most recent timestamp.

Leakage, or the information accessible to an attacker who might have compromised one of
the parties, can be summarized as the number of update operations performed at each replica.

4.2.3 PN-Counter

Supporting decrements in a counter with the previous representation is not as straightforward as
one would expect, but Shapiro et al. [33] provide an approach that is followed here. A counter
capable of both increments and decrements no longer displays a monotonic behavior, and thus
both the comparison used in [33] and the timestamps used by my design are no longer effective.
In order to circumvent this, the solution is to build a pn-counter (positive/negative counter)
combining two grow-only counters, where one is used to store increments, and the other is used
to store decrements. The value of the pn-counter corresponds then to the difference between the
two grow-only counters.

This construction is detailed in specification 6. Most pn-counter functions contain calls to
the grow-only counter functions mentioned above. The new function initializes two grow-only
counters. The update function now must check the string that comes in OPu, as there are now
two possible values: "Inc" for an increment operation and "Dec" for a decrement operation;
according to this value an update function is called on the corresponding grow-only counter.
The function query must perform the function of same name for each of the grow-only counters
and return the difference between their resulting secret shares. The function propagate simply
returns all the state of the parties. A merge function retrieves both grow-only counters from the
incoming state and performs a merge function on both the grow-only counters stored, using the
respective incoming state.

Leakage, similarly to the grow-only counter, can be summarized as the number of update

4.2. Secure CRDT constructions 29

Specification 5 Grow-only Counter CRDT
Sgc : [(SInt, Int)]
OPu : "Inc", SInt, Int
OPq : "Get"
Static n : Int

new (id) ▷ id: replica number
S ← []
for (i in [0..n− 1])

si ← new SInt(0)
A[i]← si, 0

return A

update (id, op, A)
case (op = ”Inc”, v, t′)

(si, t)← A[id]
A[id]← (si + v, t′)

return A

query (id, op A)
case (op = ”Get”)

for (i in [0..n− 1])
(si, ·)← A[i]
s← si + s

return s

new :: Π→ Sgc

update :: Π→ OPu → Sgc → Sgc

query :: Π→ OPq → Sgc → SInt

propagate :: (Π, Π)→ Sgc →Msggc

merge :: (Π, Π)→ Sgc →Msggc → Sgc

propagate ((idi, idj), A)
return A

merge ((idi, idj), A, A’)
for (i in [0..n− 1])

(si, t)← A[i]
(si

′, t′)← A′[i]
if (t′ > t)

A[i]← (s′, t′)
return A

operations performed at each replica.

4.2.4 Maximum Value

Specification 7 for a CRDT that stores a maximum value. It is similar to a register CRDT, but
the value it holds should be updated if and only if the new value is greater than the one stored,
regardless of how recent either one is. A non-privacy-preserving construction like this is trivial
to implement: there must only be one comparison between the old and new values.

Lifting such construction to a privacy-preserving one is not as simple. Although both
previously mentioned counter constructions make use of timestamps as a tactic to avoid
comparison over secret values, this is not always possible, as is the case in this CRDT. Calculating
the maximum between two secret values requires communication between parties, which makes
it an expectedly slower operation in relation to the the ones on previous constructions.

I propose performing this computation arithmetically combining multiplication, equality
comparison and greater-or-equal-than comparison over secret shares. Each of these is done as a

30 Chapter 4. MPC-based Conflict-free Replicated Data Types

Specification 6 PN Counter CRDT
Spnc : Sgc, Sgc

OPu : "Inc", SInt, Int || "Dec", SInt, Int
OPq : "Get"
Static n : Int

new (id) ▷ id: replica number
A← new SGC(id), new SGC(id)
return A

update (id, op, A)
(P, N)← A

case (op = ”Inc”, v, t′)
P ← P.update(id, (”Inc”, v, t′), P)

case (op = ”Dec”, v, t′)
N ← N.update(id, (”Inc”, v, t′), N)

A← (P, N)
return A

query (id, op A)
case (op = ”Get”)

(P, N)← A

Rp ← P.query(id, ”Get”, P)
Rn ← N.query(id, ”Get”, N)

return Rp −Rn

new :: Π→ Spnc

update :: Π→ OPu → Spnc → Spnc

query :: Π→ OPq → Spnc → SInt

propagate :: (Π, Π)→ Spnc →Msgpnc

merge :: (Π, Π)→ Spnc →Msgpnc → Spnc

propagate ((idi, idj), A)
return A

merge ((idi, idj), A, A’)
(P, N)← A

(P ′, N ′)← A′

P ← P.merge((idi, idj), P, P ′)
N ← N.merge((idi, idj), N, N ′)
A← (P, N)
return A

call to the underlying Secure Multi-Party Computation (SMPC) system. In order to calculate
the maximum between two values a and b using the above mentioned operations, the formula is
as follows:

max(a, b)← a× (a ≥ b) + b× (b ≥ a)− a× (a = b)

The new function initializes the CRDT state with secret shares corresponding to the value
0. An update performs the above-mentioned formula in order to keep in store the secret share
that corresponds to the maximum value. The query function returns the secret share currently
stored in the CRDT. The function propagate, simply returns the current state of each party.
Performing a merge function invokes an update function, as merging two states with a single
secret share is the same as simply updating one state with a new value (the relevant content of
both an update and a merge payloads is the same).

This CRDT construction for a maximum value has no leakage, as only one secret share is
kept at all times and its value changes on every single update and merge (even if the value of
the secret remains the same, its shares change).

4.2. Secure CRDT constructions 31

Specification 7 Maximum Value CRDT
Smv : SInt
OPu : "Upd", SInt
OPq : "Get"

new (id) ▷ id: replica number
s← new SInt(0)
A← s

return A

update (id, op, A)
case (op = ”Upd”, v)

s← A

A← s× (s ≥ v) + v × (v ≥ s)
− s× (v = s)

return A

query (id, op, A)
case (op = ”Get”)

s← A

return s

new :: Π→ Smv

update :: Π→ OPu → Smv → Smv

query :: Π→ OPq → Smv → SInt

propagate :: (Π, Π)→ Smv →Msgmv

merge :: (Π, Π)→ Smv →Msgmv → Smv

propagate ((idi, idj), A)
return A

merge ((idi, idj), A, A’)
u′ ← A′

A← A.update(idi, (”Upd”, u), A)
return A

4.2.5 Bounded Counter

It is notoriously difficult to preserve invariants while avoiding synchronization. The original
literature on CRDTs [33] does not present a proper construction for a baseline non-privacy-
preserving bounded counter, but it proposes the possible approach of enforcing a local invariant
that implies the global invariant (i.e., a replica can not generate more decrements than it has
generated increments). This approach is too strong, as it limits functionality that should be
present (a replica should be able to generate decrements if enough increments have been generated
by other replicas).

Balegas et al. show how to extend an eventually consistent cloud database for enforcing
numeric invariants [6] by using a system of rights that manage when a certain operation can be
executed; these rights may be transfered between replicas. They present a baseline, non-privacy-
preserving state-based construction for a bounded counter CRDT that can be incremented and
decremented while maintaining the invariant greater or equal to k. The state maintains the
limit value k and information about the rights each replica has. Considering a system with n

replicas, the state maintains a matrix R where R[i][j] holds the rights transferred from replica i

to replica j (which is a registry of all increment operations executed) and a vector U where U [i]
holds the rights consumed by replica i (which is a registry of all decrement operations executed).
Lifting this construction to a privacy-preserving alternative, shown in specification 8, means to

32 Chapter 4. MPC-based Conflict-free Replicated Data Types

simply represent every value (the limit k, every value in the matrix R and every value in the
vector U) as a pair (secret value, public value) that contains the secret share of the value and a
public timestamp of the last operation that updated the corresponding value. Similarly to the
grow-only counter, tiestamps are used in merge operations to maintain the most recent data, in
order to avoid unnecessary comparisons, which are computationally expensive.

The new function accepts a secret share that represents the limit value k and initializes both
the matrix R and the vector U with secret shares that represent the value 0 and timestamps also
set to 0. the update function supports three different operations:

• an increment gets the position of the matrix R corresponding to the local replica (R[id][id]),
adds the incoming share of the value to increment to the existing share of previous increments
and also increments the local timestamp for that position by 1.

• a decrement must first check if there are enough local rights to act, which is done through
the function localRights detailed soon; this verification, which is a comparison between the
number of existing rights and the incoming value to decrement, is done through the same
formula as the comparison in the maximum value CRDT - specification 7 - (in this case, a

and b correspond to the number of available rights and the sum between the number of
incoming decrements and the number of existing local decrements stored in U [id]).

• a transfer operation makes a similar verification to the decrement operation but applied
to R[id][to] instead of U [id]

The query operation iterates through the matrix R in order to get all the increments and
through the vector U in order to get all the decrements; then it returns the current value of
the replica which corresponds to the limit value added to the increments and subtracted the
decrements A propagate function returns all the state of the replica. A merge function iterates
through both the matrix R and the vector U and for each entry it keeps the one that has the
most recent timestamp, be it the incoming state or the existing state. The additional function
localRights iterates through the matrix R adding both the received rights (stored in R[i][id],
where i corresponds to the iteration lap) and the rights sent to other replicas (stored in R[id][i]);
it then gets the number of available rights by adding the number of local increments to the
number of received rights, subtracting the number of sent rights and subtracting the number of
locally consumed rights.

This construction may be reversed as a bounded counter with an upper limit by using the
matrix R to store decrements and the vector U to store increments. Similarly to creating a PN
counter from two grow-only counters, it can also be used for a bounded counter with upper and
lower limit by combining two of these bounded counters.

4.2. Secure CRDT constructions 33

Specification 8 Minimum Bounded Counter CRDT
Sbc : SInt, [[(SInt, Int)]], [(SInt, Int)]
OPu : "Inc", SInt || "Dec", SInt ||

"Transfer", SInt, Int
OPq : "Get"
Static n : Int

new (id, k) ▷ id: replica number
R← new (SInt, Int)[n][n]
U ← new (SInt, Int)[n]
for (i in [0..n− 1])

for (j in [0..n− 1])
v ← new SInt(0)
R[i][j]← (v, 0)

U [i]← (v, 0)
A← (k, R, U)
return A

update (id, op, A)
(k, R, U)← A

case (op = ”Inc”, v)
(s, t)← R[id][id]
R[id][id]← (s + v, t + 1)

case (op = ”Dec”, v)
(s, t)← U [id]
rights← localRights(id, A)
s′ ← s× (rights < v) + (s + v)×

(v < rights) + (s + v)×
(v = rights)

U [id]← (s′, t + 1)
case (op = ”T ransfer”, v, to)

(s, t)← R[id][to]
rights← localRights(id, A)
s′ ← s× (rights < v) + (s + v)×

(v < rights) + (s + v)×
(v = rights)

R[id][to]← (s′, t + 1)
A← (k, R, U)
return A

new :: Π→ SInt→ Sbc

update :: Π→ OPu → Sbc → Sbc

query :: Π→ OPq → Sbc → SInt

propagate :: (Π, Π)→ Sbc →Msgbc

merge :: (Π, Π)→ Sbc →Msgbc → Sbc

localRights :: Π→ Sbc → SInt

query (id, op, A)
case (op = ”Get”)

for (i in [0..n− 1])
(ri, ·)← A.R[i][i]
(ui, ·)← A.U [i]
r ← ri + r

u← ui + u

s← A.k + r − u

return s

propagate ((idi, idj), A)
return A

merge ((idi, idj), A, A’)
(k, R, U)← A

(k′
, R′, U ′)← A′

for (i in [0..n− 1])
for (j in [0..n− 1])

(r, t)← R[i][j]
(r′, t)′ ← R′[i][j]
if (t′ > t)

R[i][j]← (r′, t′)
(u, t)← U [i]
(u′, t′)← U ′[i]
if (t′ > t)

U [i]← (u′, t′)
A← (k, R, U)
return A

localRights (id, A)
for (i in [0..n− 1])

(r1, ·)← A.R[i][id]
(r2, ·)← A.R[id][i]
←−r1 ′ ←←−r1 +←−r1 ′

←−r2 ′ ←←−r2 +←−r2 ′

(r, ·)← A.R[id][id]
(u, ·)← A.U [id]
v ← r + r1′ − r2′ − u

return v

4.2.6 Set

Sets are one of the most basic data structures, which usually serve as building blocks for more
complex structures. Although basic, these structures can not be fully implemented as a CRDT,
because their two mutating operations (add and remove) do not commute. This means that a
CRDT can only try to behave close to a set. The simplest way to approximate the behavior of a
CRDT to a set is to consider only a grow-only set. Shapiro et al. [33] proposes a construction
that supports add and lookup operations. Its payload is a set, thus operations are similar to any

34 Chapter 4. MPC-based Conflict-free Replicated Data Types

mundane set outside of the literature on CRDTs: performing an add operation is to calculate
the union between two sets; performing a lookup for an element returns true if the element is in
the set and false otherwise.

I propose two different constructions for a grow-only set, both of which support the add

operation for updates and exists or getall operations for queries but deal with the add operation
in different ways: the first construction always adds an element even if it exists, while the second
constructions only adds an element if it does not exist. For simplicity, I encode the set’s payload
as a list, but order is not preserved.

Specification 9 represents the first construction for a grow-only set. In order to distinguish
both constructions, I call this one "Ever-growing set". The new function initializes an empty list
of secret shares. The update function, as discussed, always appends the incoming element to
the list. The query function, distinctively from all previous constructions, supports two very
different operations. getall returns all the elements in the list (which is the same as the propagate

function) exists takes a secret share as input and iterates through the list, calculating the sum
of the equalities between the element to lookup and the element on each entry of the list; this
will result in the shares of the value 1 if the element is in the list and 0 otherwise. Performing a
merge operation is iterating through every element of the incoming set and calling the update

function for each.

The second specification for a grow-only set - specification 10 - differs from the first one on the
way it deals with add operations. Instead of always adding new elements to the set CRDT, this
specification makes use of a SMPC operation that I call "unshare_internally". Every function
other than update is equal the previous specification, so I refrain from explaining them again.
For an update, this specification starts by iterating over all elements on the list and calculating
a sum of the equalities between the element to add and the elements in each entry of the list
(similarly to the query operation exists); then, the SMPC operation "unshare_internally", which
takes a secret value as input, decodes the value obtained with the sum so that every player knows
if the incoming element is already in the list or not; if the element is not in the list, then it is
appended.

While the first approach can become inefficient quite quickly, with new elements always being
added and passing the duty of checking for repeats to the client, it provides no leakage. On the
other hand, the second approach leaks information when any value is added, as the list only
grows if the set was not previously in the list.

With the overall system design explained and all the CRDT specifications presented, the next
chapter relates to the implementation of this system and subsequent experimental validation.

4.2. Secure CRDT constructions 35

Specification 9 Ever-growing Set CRDT
Segs : List <SInt>
OPu : "Add", SInt
OPq : "Getall" || "Exists", SInt
Regs : Segs || SInt

new (id) ▷ id: replica number
l← new List < SInt >

A← l

return A

update (id, op, A)
case (op = ”Add”, v)

l← A

l.append(v)
A← l

return A

query (id, op, A)
case (op = ”Getall”)

return A

case (op = ”Exists”, v)
l← A

u← new SInt(0)
for (s in l)

u← u + (s = v)
return u

new :: Π→ Segs

update :: Π→ OPu → Segs → Segss

query :: Π→ OPq → Segs → Regs

propagate :: (Π, Π)→ Segs →Msgegs

merge :: (Π, Π)→ Segs →Msgegs → Segs

propagate ((idi, idj), A)
return A

merge ((idi, idj), A, A’)
l′ ← A′

for (v in l′)
A← A.update(idi, (”Add”, v), A)

return A

36 Chapter 4. MPC-based Conflict-free Replicated Data Types

Specification 10 Leakage Set CRDT
Sls : List <SInt>
OPu : "Add", SInt
OPq : "Getall" || "Exists", SInt
Rls : Sls || SInt

new (id) ▷ id: replica number
l← new List < SInt >

A← l

return A

update (id, op, A)
case (op = ”Add”, v)

l← A, u← new SInt(0)
for (s in l)

u← u + (s = v)
res← unshare_internally(id, u)
if (res = 0)

l.append(v)
A← l

return A

query (id, op, A)
case (op = ”Getall”)

return A

case (op = ”Exists”, v)
l← A, u← new SInt(0)
for (s in l)

u← u + (s = v)
return u

new :: Π→ Sls

update :: Π→ OPu → Sls → Slss

query :: Π→ OPq → Sls → Rls

propagate :: (Π, Π)→ Sls →Msgls

merge :: (Π, Π)→ Sls →Msgls → Sls

propagate ((idi, idj), A)
return A

merge ((idi, idj), A, A’)
l′ ← A′

for (v in l′)
A← A.update(idi, (”Add”, v), A)

return A

Chapter 5

Implementation and Experimental Val-
idation

This section presents the implementation of the system detailed in section 4 and conduct an
experimental evaluation on the proposed constructions that demonstrates the following:

• Conflict-free Replicated Data Type (CRDT) constructions can be lifted to their privacy-
preserving variants efficiently;

• Secure Multi-Party Computation (SMPC) protocols are an efficient alternative to classical
privacy-preserving schemes schemes, frequently used in confidential databases;

• Secure CRDTs are inter-operable and can be reused as building blocks for other constructions
with minimal performance overhead.

5.1 System Implementation

The privacy-preserving CRDT system has been implemented as an open-source Java 8 project.
It is composed of two main parts: the client and replica.

In order to simplify testing and work within the constraints created by the available resources
(hardware and time), the client has been implemented so that it can simulate the behavior of the
CRDT network. This means that the client is not only responsible for generating payloads to
send to the replica for update operations and requesting query operations, but it also manages
the propagate and merge operations.

The replica can be divided in two conceptual objects:

• a CRDT Player that handles the operation requests sent from the client and follows the
CRDT constructions defined in chapter 4;

37

38 Chapter 5. Implementation and Experimental Validation

• a SMPC Player that supports several multi-party protocols over secret shares and exchanges
secrets with the two other SMPC Players of the replica.

My implementation is agnostic to both the underlying network topology as well as to the
SMPC protocols. For the purpose of experimental evaluation, the network is implemented as a
simple mesh network using TCP channels and the chosen SMPC framework is the d’Artagnan
library, an implementation of the Sharemind protocols written in Java. These protocols are
based on an additive secret sharing scheme and are optimized for a static three-party setting
with an honest-but curious adversary. As such, each CRDT replica is composed by three parties
(three CRDT Players and three SMPC players, one of each per party), each of one storing one of
the three sets of shares that compose the value stored in the replica.

5.2 Experimental Setup

The evaluation was conducted on a cluster of 4 machines, each with two Intel(R) Xeon(R) Silver
4210 CPU processores clocked at 2.20GHz and 265GB of RAM. The cluster consisted of a single
client and a single CRDT replica, composed of three independent parties. These 4 processes
communicated between machines using TCP. The network has an average latency of 200 µs
between hosts

In order to perform load testing on the system I used Locust [2], an easy to use, scriptable and
scalable python framework. It uses simple Python code to define tasks, that are then executed by
a defined number of users. It also provides a user friendly web interface that shows the progress
of tests in real time, although this feature is not necessary for this work’s sue case. Locust
interacts with applications either through HTTP or RPC protocols, meaning that a custom
HTTP interface had to be developed for the system. This tool was used with custom CRDT
workloads, which were made public and are explained in the following section.

5.2.1 Procedure and Workloads

For the experimental evaluation I measured the latency and throughput of all CRDT operations
defined in chapter 4 for all privacy-preserving CRDT constructions. The goal of the workloads is
to measure the performance of each operation in isolation and clearly understand the impact
of every different approach. As such, the workload’s requests differ based on the CRDT data
structure that they correspond to. I do not measure the performance of either propagate and
merger operations, as the former requires absolutely no computations (neither private nor public)
and the latter should have similar overhead to the update operation across all constructions.

• Register and Maximum Value CRDTs: the workloads start by initializing the replica with
a default random value. The evaluation of the update operation consists of the insertion of
a series of random values during the benchmark. The evaluation of the query operation is

5.2. Experimental Setup 39

2
6

10
14

0 10 20 30 40 50 60 70

T
hr

ou
gh

pu
t

(o
ps

/s
*

10
0) Register

2
6

10
14

0 10 20 30 40 50 60 70

Number of Clients

GCounter

2
6

10
14

0 10 20 30 40 50 60 70

PNCounter

Figure 5.1: Average throughput of the update operation for the secure Register, GCounter and
PNCounter CRDT.

straightforward, consisting of a series of requests from the client for the most recent value
stored in the replica. As these CRDT constructions do not use multi-party computation
protocols, it is expected that there is no significant performance overhead.

• Counter CRDTs: i implemented three workloads, one for each counter CRDT: the grow-only
counter, the pn-counter and the bounded counter. The workloads are mostly similar for
all operations across the three CRDTs. They all start by initializing the replica with a
counter set to 1 and for each update operation increment the counter by 1. The pn-counter
and bounded counter workloads differ slightly from the grow-only counter as they can also
decrement the counter. Additionally, each of these operations uses multi-party protocols
differently and as such have different expected performance overheads. To accurately
measure these differences, each operation is measured in isolation and the decrement

operation is measured by initially setting the counter to its highest possible value and then
decrementing by 1 per request. The evaluation of the query operation is straightforward,
consisting of a series of requests from the client for the most recent value stored in the
replica.

• Set CRDTs: the performance of CRDT operations on sets depends on the set size: as the
number of elements in a set increases, more multi-party computation protocols must be
executed. As such, while the workload for the update operation simply consists on starting
with an empty set and for each operation adding a random value, the query operation
differs. For this, I measure its overhead for different set sizes in an exponential scale, from
23 to 26 elements.

I have also implemented a baseline system for each CRDT evaluated. The baseline system
follows the state-of-the art definitions for CRDTs over plaintext, that were briefly mentioned in
4, without any secure multi-party protocols.

40 Chapter 5. Implementation and Experimental Validation

CRDT Operation Baseline SMPC

Register
Query 1387 1376

Update 1388 1385

MaxValue
Query 1388 1360

Update 1388 9

GCounter
Query 1388 1365

Update 1377 1385

PNCounter
Query 1388 1363

Update 1387 1385

Bounded Counter

Query 1387 1163

Increment 1387 1378

Decrement 1387 9

Table 5.1: Average throughput of update and query operations for the baseline and secure CRDTs
for 64 clients.

5.2.2 Results

For the benchmarks of Counter CRDTs, Register and MaxValue, I evaluated the update and
query workloads for an exponentially increasing number of clients, from a single client (20) to
64 clients (26). In Table 5.1 I show how my proposed secure CRDT constructions compares
to the baseline in terms of throughput. This table shows the maximum throughput reached
by my constructions with an average peak of 1388 ops/s for 64 concurrent clients across all
workloads. For a higher number of clients, the performance of the secure construction starts
to decrease due to the overhead of sharing and resharing data between three parties for every
request. Figure 5.1 show how the performance of my approach to secure CRDTs compares with
the baseline implementations as the number of concurrent client increases. More specifically, this
image shows how the throughput of the Register, GCounter and PNCounter update operation
scales from ∼ 24 ops/s for 1 client up to ∼ 1380 ops/s for 64 clients. Overall, the majority of the
CRDT operations presented in Table 5.1 have at maximum overhead of ∼ 2%.

It’s important to highlight the overhead of the update operation in the MaxValue counter.
This operation is ∼ 154 times slower than the baseline as shown in Table 5.1. This operation
stabilizes at ∼ 8 ops/s for 2 concurrent clients. For any number of concurrent clients greater
than 2, the request latency increases significantly. However, this overhead is expected, as the
update operation of the GCounter requires multiple SMPC protocols for equality comparison,
greater than or equal to comparison and integer multiplications. All of these SMPC

5.3. Discussion 41

Figure 5.2: Average Latency of increment and decrement operations on secure MinBounded-
Counter.

SET CRDT Operation Set Size

8 16 32 64

SMPC
Query 9.77 6.03 3.41 1.76

Update 9.02 5.80 3.45 2.08

Baseline
Query 24.04 24.05 23.89 23.66

Update 40.10 40.13 40.13 40.12

Table 5.2: Average throughput of update and query operations for the baseline and secure SET
CRDT with a fixed set sizes from 8 to 64.

protocols require multiple communication rounds between the parties and results in a significant
overhead. More specifically, the greater or equal than protocol has the highest communication
overhead whereas the multiplication protocol requires only a single communication round.

The update operation of the MinBoundedCounter also differs in performance to the other
Counters. Figure 5.2 shows that the increment operation has at most a throughput decrease
of ∼ 0.6% in comparison to the baseline as it does not require any SMPC protocol. However,
the decrement operation uses the equality and the greater than or equal to SMPC
protocols to ensure the counter does not decrease bellow it’s lower bound. As such, the decrement
operation has a maximum throughput of ∼ 9 ops/s which is reached with two concurrent users.

For the evaluation of the secure SET CRDT, I measure the throughput of a construction
that discloses some information. More specifically, it discloses when an element exists in the set
during the update operation. The query operation can retrieve a value from the set without any
information disclosure. This evaluation was done with a single client for different set sizes as
defined in the workload specification. In Table 5.2 I show how the throughput of update and
query operations of the secure SET compares to the baseline. Overall, the secure SET update
operation has a maximum throughput of ∼ 9 ops/s for the smallest set size, and decreases to
∼ 2 ops/s for a set size with 64 elements. The baseline CRDT has a consistent throughput of
∼ 40 ops/s for the update and ∼ 24 ops/s for the query operations.

5.3 Discussion

Overall, this experimental results show that the majority of secure CRDT construction have a
small overhead of ∼ 0, 26% for both update and query operations. The constructions with the

42 Chapter 5. Implementation and Experimental Validation

highest overhead are the the MaxValue update, Bounded Counter decrement and Set operations
which are at most ∼ 154× lower than the baseline. This overhead results from multiple factors,
including my preliminary implementation of the secure CRDTs that can be significantly optimized
and the underlying SMPC protocols.

Optimizing CRDT Constructions The current implementation of the secure CRDTs
constructions and the overall communication framework is only an initial prototype. These
implementations have several possible optimizations that can result in increased throughput. For
example, both the MaxValue update and Bounded Counter decrement operations use at least 3
SMPC protocols for secret comparison per operation. This number of operations can be reduced
at least to 2 and as such removing multiple communication rounds. Similarly, optimizations can
be done by designing specialized SMPC protocols for CRDTs, a topic not explored in this paper.

Multi-Party Protocols I can also improve the performance of my constructions by using
a different protocol suite. For this evaluation, I leveraged the Sharemind protocols which are
optimized for data analysis in the three-party setting, but my contributions as well as my
implementation are abstracted from the underlying protocols. The protocols can be replaced by
recent optimizations to the three-party model where they reduce the number of communication
rounds of the protocols [5] or by using a different class of protocols such as function secret sharing
that have a constant number of communication rounds [12].

The results of this experimental evaluation, even though preliminary, demonstrate the
practical applicability of my theoretical contributions. Secure CRDTs can have throughput
similar to a baseline system by minimizing the number of multiparty protocols and still ensure
the confidentially of the data.

Chapter 6

Conclusions

With the ever-growing use of distributed eventually consistent systems, which use Conflict-free
Replicated Data Types (CRDTs) as their core data structures, it’s important to provide a secure
way for data aggregation. The presented dissertation aims to prove the potential to directly
transpose any CRDT construction to its privacy-preserving variant, problem for which solutions
are currently inexistent in literature.

The proposed approach leverages Multi-Party Computation (MPC) to enable computations
over secret data that are not possible using standard encryption methods because of their limited
expressiveness. This new generalized approach allows for faster development of privacy-preserving
systems, as there is no need to carefully design each construction individually. The modularity
of the system with its agnosticism to both network topology and MPC protocols allows for
independent developments in either fields while maintaining an almost plug-and-play level of
compatibility. Another objective was to show that simple MPC-based CRDT constructions can
easily be used as building blocks for other more complex constructions with minor drawbacks,
which was proved by the use of two grow-only counter CRDTs to build a pn-counter CRDT.

The results from the experimental validation are overall on par with expectations, which
proves the feasibility for the use of MPC in the creation of secure CRDTs.

6.1 Future Work

Being the first work that uses MPC to build secure CRDT constructions, there are several
improvements that can be done. For example, the arithmetic formula used to privately
compute comparisons between secret values can be optimized in order to reduce the necessary
communication round-trips, something that was considered but not implemented for the lack of
time. More efficient set implementations can also be implemented, specially in relation to sets
with a limited universe of possible elements. The proposed approach can also easily be extended
to other more complex data types, either built from scratch or using the proposed constructions
as building elements.

43

Bibliography

[1] Antidotedb: A planet scale, highly available, transactional database.

[2] Locust: An open source load testing tool.

[3] General Data Protection Regulation, 2016.

[4] Secure multi-party computation: Theory, practice and applications. Information Sciences,
476:357–372, 2019. ISSN: 0020-0255.

[5] Toshinori Araki, Jun Furukawa, Yehuda Lindell, Ariel Nof, and Kazuma Ohara. High-
throughput semi-honest secure three-party computation with an honest majority. In
Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications
Security, CCS ’16, page 805–817, New York, NY, USA, 2016. Association for Computing
Machinery. ISBN: 9781450341394. doi:10.1145/2976749.2978331.

[6] Valter Balegas, Diogo Serra, Sérgio Duarte, Carla Ferreira, Marc Shapiro, Rodrigo Rodrigues,
and Nuno Preguiça. Extending eventually consistent cloud databases for enforcing numeric
invariants. In 2015 IEEE 34th Symposium on Reliable Distributed Systems (SRDS), pages
31–36, 2015.

[7] Manuel Barbosa, Bernardo Ferreira, João Marques, Bernardo Portela, and Nuno Preguiça.
Secure conflict-free replicated data types. Cryptology ePrint Archive, Paper 2020/944, 2020.

[8] Johes Bater, Gregory Elliott, Craig Eggen, Satyender Goel, Abel N. Kho, and Jennie Rogers.
Smcql: Secure querying for federated databases. arXiv: Databases, 2016.

[9] Alysson Neves Bessani, Miguel Pupo Correia, Bruno Quaresma, Fernando André, and Paulo
Sousa. Depsky: Dependable and secure storage in a cloud-of-clouds. ACM Trans. Storage,
9:12, 2013.

[10] Dan Bogdanov, Sven Laur, and Jan Willemson. Sharemind: A framework for fast privacy-
preserving computations. IACR Cryptol. ePrint Arch., 2008:289, 2008.

[11] Dan Bogdanov, Margus Niitsoo, Tomas Toft, and Jan Willemson. High-performance secure
multi-party computation for data mining applications. International Journal of Information
Security, 11:403–418, 2012.

45

https://www.antidotedb.eu/
https://locust.io/
https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32016R0679
http://dx.doi.org/10.1145/2976749.2978331
http://dx.doi.org/10.1145/2976749.2978331

46 Bibliography

[12] Elette Boyle, Niv Gilboa, and Yuval Ishai. Function secret sharing: Improvements and
extensions. Cryptology ePrint Archive, Paper 2018/707, 2018. https://eprint.iacr.org/2018/
707.

[13] Loïck Briot, Pascal Urso, and Marc Shapiro. High Responsiveness for Group Editing CRDTs.
In ACM International Conference on Supporting Group Work, Sanibel Island, FL, United
States, November 2016.

[14] Christian Cachin, Esha Ghosh, Dimitrios Papadopoulos, and Björn Tackmann. Stateful
Multi-client Verifiable Computation. In Applied Cryptography and Network Security - 16th
International Conference, ACNS 2018, Leuven, Belgium, July 2-4, 2018, Proceedings, volume
10892 of Lecture Notes in Computer Science, pages 637–656. Springer, 2018.

[15] Brian F. Cooper, Raghu Ramakrishnan, Utkarsh Srivastava, Adam Silberstein, Philip
Bohannon, Hans-Arno Jacobsen, Nick Puz, Daniel Weaver, and Ramana Yerneni. Pnuts:
Yahoo!’s hosted data serving platform. Proc. VLDB Endow., 1:1277–1288, 2008.

[16] Giuseppe DeCandia, Deniz Hastorun, Madan Jampani, Gunavardhan Kakulapati, Avinash
Lakshman, Alex Pilchin, Swaminathan Sivasubramanian, Peter Vosshall, and Werner Vogels.
Dynamo: Amazon’s highly available key-value store. volume 41, pages 205–220, 10 2007.

[17] Seth Gilbert and Nancy A. Lynch. Brewer’s conjecture and the feasibility of consistent,
available, partition-tolerant web services. SIGACT News, 33:51–59, 2002.

[18] Marcella Hastings, Brett Hemenway, Daniel Noble, and Steve Zdancewic. Sok: General
purpose compilers for secure multi-party computation. 2019 IEEE Symposium on Security
and Privacy (SP), pages 1220–1237, 2019.

[19] Gowtham Kaki, Swarn Priya, KC Sivaramakrishnan, and Suresh Jagannathan. Mergeable
replicated data types. 3(OOPSLA), oct 2019.

[20] James J. Kistler and Mahadev Satyanarayanan. Disconnected operation in the coda file
system. ACM Trans. Comput. Syst., 10:3–25, 1992.

[21] Rusty Klophaus. Riak core: building distributed applications without shared state. In
CUFP ’10, 2010.

[22] Stephan A. Kollmann, Martin Kleppmann, and Alastair R. Beresford. Snapdoc: Authentic-
ated snapshots with history privacy in peer-to-peer collaborative editing. Proceedings on
Privacy Enhancing Technologies, 2019:210 – 232, 2019.

[23] Avinash Lakshman and Prashant Malik. Cassandra: a decentralized structured storage
system. ACM SIGOPS Oper. Syst. Rev., 44:35–40, 2010.

[24] Leslie Lamport. Time, clocks, and the ordering of events in a distributed system. 21(7):
558–565, jul 1978.

https://eprint.iacr.org/2018/707
https://eprint.iacr.org/2018/707
https://eprint.iacr.org/2018/707
https://eprint.iacr.org/2018/707

Bibliography 47

[25] Leslie Lamport. Time, clocks and the ordering of events in a distributed system.
Communications of the ACM, pages 558–565, July 1978.

[26] Petru Nicolaescu, Kevin Jahns, Michael Derntl, and Ralf Klamma. Near real-time peer-
to-peer shared editing on extensible data types. In Proceedings of the 19th International
Conference on Supporting Group Work, pages 39–49, 2016.

[27] Rishabh Poddar, Sukrit Kalra, Avishay Yanai, Ryan Deng, Raluca Ada Popa, and Joseph M.
Hellerstein. Senate: A Maliciously-Secure MPC platform for collaborative analytics. In 30th
USENIX Security Symposium (USENIX Security 21), pages 2129–2146. USENIX Association,
2021.

[28] Rogério Pontes, Dorian Burihabwa, Francisco Maia, João Paulo, Valerio Schiavoni, Pascal
Felber, Hugues Mercier, and R. Oliveira. Safefs: a modular architecture for secure user-space
file systems: one fuse to rule them all. Proceedings of the 10th ACM International Systems
and Storage Conference, 2017.

[29] Rogério Pontes, Francisco Maia, Ricardo Manuel Pereira Vilaça, and Nuno Machado.
d’artagnan: A trusted nosql database on untrusted clouds. 2019 38th Symposium on Reliable
Distributed Systems (SRDS), pages 61–6109, 2019.

[30] Nuno Preguica, Joan Manuel Marques, Marc Shapiro, and Mihai Letia. A commutative
replicated data type for cooperative editing. In 2009 29th IEEE International Conference
on Distributed Computing Systems, pages 395–403, 2009. doi:10.1109/ICDCS.2009.20.

[31] Michal Ptaszek. Scaling lol chat to 70 million players., 2014.

[32] Yasushi Saito and Marc Shapiro. Optimistic replication. ACM Computing Surveys, 37:
42–81, March 2005.

[33] Marc Shapiro, Nuno M. Preguiça, Carlos Baquero, and Marek Zawirski. A comprehensive
study of convergent and commutative replicated data types. 2011.

[34] Marc Shapiro, Nuno M. Preguiça, Carlos Baquero, and Marek Zawirski. Conflict-free
replicated data types. In SSS, 2011.

[35] Ali Shoker, Houssam Yactine, and Carlos Baquero. As secure as possible eventual consistency:
Work in progress. Proceedings of the 3rd International Workshop on Principles and Practice
of Consistency for Distributed Data, 2017.

[36] Werner Vogels. Eventually consistent. Queue, 6:14–19, 2008.

[37] Nikolaj Volgushev, Malte Schwarzkopf, Ben Getchell, Mayank Varia, Andrei Lapets, and
Azer Bestavros. Conclave. Proceedings of the Fourteenth EuroSys Conference 2019, 2019.

[38] Michael Vrable, Stefan Savage, and Geoffrey M. Voelker. Bluesky: a cloud-backed file system
for the enterprise. In FAST, 2012.

http://dx.doi.org/10.1109/ICDCS.2009.20
http://dx.doi.org/10.1109/ICDCS.2009.20
https://www.slideshare.net/michalptaszek/strange-loop-presentation

48 Bibliography

[39] W. Wong, Ben Kao, David Wai-Lok Cheung, Rongbin Li, and Siu-Ming Yiu. Secure query
processing with data interoperability in a cloud database environment. Proceedings of the
2014 ACM SIGMOD International Conference on Management of Data, 2014.

[40] Wenting Zheng, Ryan Deng, Weikeng Chen, Raluca A. Popa, Aurojit Panda, and Ion Stoica.
Cerebro: A platform for multi-party cryptographic collaborative learning. In IACR Cryptol.
ePrint Arch., 2021.

	Abstract
	Resumo
	Declaração de Honra
	Agradecimentos
	Contents
	List of Tables
	List of Figures
	List of Algorithms
	Acronyms
	1 Introduction
	2 Background
	2.1 Security
	2.1.1 Cryptographic mechanisms for security
	2.1.2 Secure multi-party computation
	2.1.3 Secret sharing
	2.1.4 Adversary behavior

	2.2 Conflict-free Replicated Data Types
	2.2.1 Operations
	2.2.2 Examples
	2.2.3 CRDT Security

	3 State of the Art
	3.1 Related Work
	3.2 Practical Solutions and Frameworks
	3.2.1 For CRDTs
	3.2.2 For MPC

	4 MPC-based Conflict-free Replicated Data Types
	4.1 System design
	4.2 Secure CRDT constructions
	4.2.1 Register
	4.2.2 Grow-only Counter
	4.2.3 PN-Counter
	4.2.4 Maximum Value
	4.2.5 Bounded Counter
	4.2.6 Set

	5 Implementation and Experimental Validation
	5.1 System Implementation
	5.2 Experimental Setup
	5.2.1 Procedure and Workloads
	5.2.2 Results

	5.3 Discussion

	6 Conclusions
	6.1 Future Work

	Bibliography

