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Resumo 
 

O acompanhamento e adaptação aos desafios socioeconómicos e sociais globais 

exigem novas abordagens para a captura de dados espaciais, desenvolvimento de 

infraestruturas de dados espaciais, partilha de dados e descoberta de conhecimento. Neste 

sentido, as plataformas de Observação da Terra (EO) permitem recolher e processar 

grandes dados sobre as principais características estruturais e funcionais dos sistemas 

socio-ecológicos. O aumento exponencial da quantidade, diversidade e qualidade das 

bases de dados de referência e temáticas e, em especial, dos  produtos primários e 

secundários de OE, levou ao desenvolvimento de cubos de dados. Um cubo de dados de 

observação terrestre é uma matriz multidimensional de séries temporais padronizadas de 

dados de imagem.  Esta dissertação apresenta uma visão geral dos  desafios  e construção 

de cubos de dados, e possíveis áreas de aplicações, com especial atenção para  programas 

de monitorização/modelação ecológica. Utilizando exemplos já funcionais como o Cubo de 

Dados Suíço como prova de conceito, propomos então uma proposta inicial de plano de 

desenvolvimento do Cubo de Dados Português, com base na nossa própria prova de 

conceito.  Como resultado, obtivemos um protótipo de estrutura de cubos de dados, com 

dados de 10 anos para a área continental de Portugal, para 9 produtos primários e 4 

produtos secundários. Também produzimos um caso de estudo para demonstrar as 

capacidades do fluxo de trabalho e construímos um protótipo de interface visual para uso 

público. Os testes de desempenho foram realizados resultaram em tempos de computação 

aceitável, permitindo testes de escalabilidade e stress do cubo de dados. 

Palavras-chave: [Earth Observation, Satellite Imaging, Data Structures, Data Cubes, 

Ecological Monitoring] 
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Abstract 
 

Tracking and adapting to the global socio-ecological and societal challenges call for 

novel approaches to spatial data capture, spatial data infrastructure development, 

(meta)data sharing and knowledge discovery. In this regard, Earth Observation (EO) 

platforms allow to collect and process big data on key structural and functional features of 

socio-ecological systems. The exponentially increasing of quantity, diversity and quality of 

reference and thematic databases and especially of primary and secondary-EO products 

have led to the development of data cubes. An Earth Observation data cube is a multi-

dimensional array of standardized EO time series of image data. This dissertation presents 

an overview of the data cube challenges and construction, and possible applications areas, 

with a special regard for ecological monitoring/modelling programs. It then takes a dive into 

the use of OLAP such as data cubes as ways of dealing with the influx of “Big Data” from 

EO. Using already functional examples such as the Swiss Data Cube as proof of concept, 

we then propose an initial proposal of development plan of Portuguese Data Cube, building 

on our own proof-of-concept. As a result, we obtained a prototype data cube structure, with 

10-year data for the Portugal continental area, for 9 primary and 4 secondary products 

derived from the primary ones. We also produced a case study to demonstrate the 

capabilities of the workflow and built a prototype visual interface for public use. The 

performance tests ran returned a desirable computing time, allowing for the scalability and 

stress testing of the data cube. 

 

Keywords: [Earth Observation, Satellite Imaging, Data Structures, Data Cubes, 

Ecological Monitoring] 
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1. Introduction 
 

1.1. The challenge of ecological monitoring for global sustainability 
 

Present human sustainability and earth habitability in Anthropocene era implies 

developing spatially explicit digital data and knowledge management aiming systems and 

managing the complex, dynamic and adaptive socio-ecological systems[1]. The critical 

relevance of human activities in earth systems functioning poses special attention on the 

socio-economic impacts in natural conditions and resources as well as, in ecosystems 

functions and services[2]. 

These challenges promoted a (trans)disciplinary research and an increasing data 

intensive and open science development, namely associated to data management needs 

and advances of (spatial) information systems and global/national data infrastructures. 

Ecological and societal challenges call for infrastructure development, (meta)data sharing 

and knowledge discovery. In this regard, Earth Observation (EO) platforms allow the 

collection and processing of very large amounts of data on key ecological systems. The 

increasing quantity, diversity and quality of reference and thematic databases and especially 

of EO products have led to the development of “data cubes”. 

 Although focused on EO data dimensional arrays of standardized EO time series of 

image data, the concept’s flexibility of the approach allows other gridded data collections to 

be included and analyzed. Several initiatives have been developed for the analysis of rich 

EO data, such as the Open Data Cube (ODC), an open-source project specialized in the 

managing and analysis of large quantities of spatial data. In this project we will take different 

approach, using R as a base language and delineating a pipeline for the deployment of a 

data cube. 

 

 

1.2. Earth Observation 
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The development of a new era of data recovery and treatment, referred to as 

“Digital Earth”, a term coined in 1998 by Al Gore, the US vice-president, is the basis for the 

worldwide evolution in terms of technological and electronic developments in the human 

and ecological/natural sciences[3]. Amongst them are frameworks such as the Geographic 

Information System and geospatial data infrastructures, responsible for the recovery, 

processing, and deployment of products based on new and historical data, to magnify the 

extent of the world’s knowledge and a better prediction capacity of its sustainability (Figure 

1). 

Amongst the previously established advances, one of the main projects established 

was the Earth Observation, defined as the gathering of information and data about the Earth 

while using remote sensing techniques. These techniques can be separated according to 

the equipment or sensor types, such as optical, radar detection, LiDAR (Laser Imaging 

Detection and Ranging), multi or uni-spectral, and split according to the vehicle for sensing, 

such as satellites, UAV’s or aircraft-based sensing.  

The data images gathered from the remote sensing have four major components:  

1) spatial, the size of each recorded pixel; 

2) spectral, the wavelength of each recorded band;  

3) radiometric, the amount of different radiation intensities that the sensor can 

distinguish. 

4) temporal or time-scale resolution between sequential/regular data captures, 

responsible for the major development of time-series development and 

analysis[4]; 

 

Earth Observation and remote sensing techniques brought forth a computing 

bottleneck for the previously available infrastructures, assuming processing challenges 

considering data observations time-series. The diversity of remote sensors and vehicles 

used also brought a variety of measurements that was not dealt with before. This led Earth 

Observation into the age of “Big, Linked and Open Data”. 

The “Big Data” posed a need for improvement of processing/analyzing algorithms 

and storage availability. While the storage problem has been tackled with the evolution of 
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workstations and cloud computing, there is still permanent difficulty in analyzing data sets 

of huge size while still being able to make a logical claim of the results derived from them[5].  

In terms of Volume, the data obtained from satellites is usually in the terabytes range, 

which is not feasible for regular desktops or even workstations. In terms of Variety, with the 

improvement of the instruments/satellites, the improved resolutions and measurements will 

lead to more specific observations, which require crossing with previous archives to 

generate an on-going record[6], and the ability to process data that may not be aligned in 

format, semantics or structures, requiring the use of multiple programming languages or 

database queries(SQL as an example). 

Velocity, as with Volume, translates to the need of faster processing algorithms and 

software/hardware, due to the evolution of the data from images taken years apart to now 

being able to access images taken with hours of difference. In response, the research bodies 

and the EO research groups have used data warehouses and Online Analytical Processing 

(OLAP), such as data cubes, to tackle these problems. 

This led to the creation of international guidelines and directories, most of the times 

government led, which indicate the need for a transition into making all the “Big Data” 

obtained from Earth Observation freely and openly accessible. Amongst these, mention 

goes to the Inspire Directive, the Open GeoSpatial Consortium and Data Cube Programs 

such as the Open Data Cube initiative. 

While the definition of “data cubes” is still variable across the literature, as described 

by the Open Data Cube, Data Cubes are defined as time series multidimensional stack of 

spatially aligned analysis ready data. Geospatially, this allows for a time-series analysis of 

a predetermined space vector in the data cube (Figure 3 and 4). Despite their name, these 

data warehouses are a n-dimensional structure, not exclusive to n=3, where regular EO data 

series presents a critical and central role. 

Data Cubes, as spatial data infrastructures, are mostly comprised of five different 

stages/components:  

1) the metadata and data services component, related to the data modeling and 

interoperability;  

2) the technological (Software and Hardware, Back and Front end) component, 

defining the structure which supports the Data Cube;  
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3) the user component, both internal users/developers and the external or “end-

product” users, and their relations with procedures and responsibility;  

4) standards component, related to data, technology, and user´s norms;  

5) the policy component, referring to the utilization made from the data cube, 

regarding strategic option and governance decision; 

In recent years, there has been a tendency into making the general idea of data cube 

transition into a spatial data cube. This comes from the notion that every set of a data can 

be defined by having a spatial feature or dimension [7] 

In the EO context, data cubes tackle the processing and analysis problems brought 

by the new data, in the 20TB per day magnitude [8] . The major development brought by the 

data cubes is a transition from a spatial dimension storage model, as the traditional methods 

did, to the ability to order the imported data as a non-spatial axis, most commonly time-

series, in addition to the set spatial axis. This makes it so the storage method is oriented to 

an easy access tailored to the user’s needs, including data management and analysis [9].  

 

Figure 1  Abstract visualization of a temporal data cube ( taken from the ArcGis documentation). 
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1.3. Representation of the Data Set in a Data Cube  
 

The datasets in data warehouses are functionally a representation of both a domain 

and co-domain and the function of which transforms the former in the latter. In a geospatial 

representation, the “coverage” domain (space and time recorded) is mapped into a 

“coverage” co-domain (the set of parameters of interest to the goal). Theoretically and in a 

global application, both the domain and codomain can in and of itself be multi-dimensional, 

with set values (integer, real, complex numbers). 

As an example, when taking data from EO satellites, if we take a set of observation 

from two different instruments (i), in two different timeframes (t), and focus on the soil-

temperature (ST) and pressure (P), “I” and “t” would be a pair of coordinates forming a 

domain, and “ST” and “P” would be a pair of coordinates forming a co-domain, directly 

dependent on the other two. This could be represented by a function such as:  

f: I × T → P × ST                                                            (1) 

Alternatively, it is noted that generally, the parameters can be moved from the 

domain to the co-domain (not the other way around unless its relation its bijective). In this 

case, assuming we have n measurements from an instrument/time pair (Say, Satellite X on 

the day Y), we can represent that measurement (in range of n) by a tuple of Pressure, Soil 

Temperature, Instrument and Time.  

This hypercube could now be represented by the following function: 

                                       f’’[1, n] -> P x ST x I x T                                                          (2) 

 

1.4. The major concern and EO data cubes principles.  
 

Data Cubes should apply what is formally known as dimension neutrality, which 

means that the query made to the dataset and its complexity, should in no way be dependent 

on which dimensions are involved in said query. In the second hypercube described above, 

the dimension neutrality is in theory maintained, with all the parameters being treated the 
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same. Asides from this major point, when designing a Data Cube in the EO domain, there 

are four critical principles that should be considered [10].   

1) The Data-Cube must act as a digital system to manage data hypercubes and data 

analytics of said hypercubes.  

2) Data-Cube must be able to manage N-dimensional hypercubes, and one of said 

dimensions must imperatively represent a geospatial location.  

3) The Data-Cube system must be easily accessible and interoperable at a 

programmatically level, on the front-end of the system.  

4) As with any digital system, there must be a governance mechanism. 

 

1.5. Data cubes of Earth observation data for ecological monitoring 
 

With the recognition of data cubes as valid and useful data structures, we saw a 

development of a specific type of data cubes as a response to the Earth Observation 

demands for Satellite Imaging, known as Spatial Data Cubes, holding 3 dimensions at his 

core concept, Longitude/Latitude/Time. As science and programming mechanism 

developed, at an institutional and public level, a 4th dimension was introduced and 

generalized, representing any given set of spectral layers present in a dataset of satellite 

imaging.[11] 

Figure 2 Four different multispectral geospatial data cubes 
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1.6. From Global to National Data Cubes 
 

On a global level, the Open Data Cube initiative was founded and supported by the 

Committee on Earth Observation Satellites (CEOS) as a program meant to tackle the need 

for spread out availability of Analysis Ready Earth Observation Data.  

Since then, it has released an open-source toolkit which helps develop analysis 

ready data and a subsequently derived data cube. Ever since, four data cubes are fully 

operational at a national level, in Colombia, Switzerland, Taiwan, and Australia (the first data 

cube on a national scale). In addition to those, in 2018 the African Regional Data Cube 

(ARDC) was launched, based in Nairobi, covering Kenya, Tanzania, Sierra Leone, Ghana 

and Senegal.  

The ODC expects for 22 more national data cubes to be fully operational in 2022. 

Asides from the ODC, since then the European Union has funded the EarthServer project, 

which also deals with remote sensing data, using the RASMADAN technology for array 

databases[12]. In Brazil, another technique, the SciDB array method, has helped develop a 

data-cube used to produce land classification over large areas[13]. 

 

1.7. Australian Data Cube 
 

The AGDC (Australian GeoScience Data Cube) was developed across multiple 

years with the mindset of using the Land Surface Imaging available since the first 

participation by Australia in the Landsat Program in 1979. The AGDC is set upon a “digital 

earth” view, composed of Earth Observations obtained by mostly remote sensing, with the 

support of land sensors and calibrations, duly processed and stored in a high-performance 

computing, allowing for the end-user to use that ARD in order to monitor, study and project 

the state of Planet Earth[6]. 

This was at the time the first fully operational EO National Data Cube and so it has 

become the staple on how to obtain and process the data and create a final product easily 
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accessible to the end-user. It introduced the concept of large-scale geospatial data cubes 

as a valid and tested data structures for Earth Observation at a national level. 

 

 

1.8. Swiss Data Cube  
 

 

 The Swiss Data Cube has since been founded, developed, and maintained by the 

GRID-Geneva. The SDC serves as support to the Swiss government for 

monitoring/reporting, and for Swiss institutions to use it as a motor to a better knowledge 

and study of the surrounding environment [14]. 

Figure 3 Idealization of the Australian GeoSpatial Datacube [6] 
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The SDC faced a major problem in its development, the general lack of efficiency in 

the pipeline Ancillary Data to Final Product. This, helped by the multiple sources of data, 

posted a necessity to create a unified/standardized procedure to obtain the data, process it 

to an ARD point, and subsequently deposit it the Data Cube. 

As the Swiss landmass was the only point of interest for the SDC, a Python script 

was written to obtain the scene ID’s available in the repositories (GEE, AWS, USGS) for a 

predetermined coverage area. Between 1984 and 2017, the total amounted to 3368 scenes, 

with a total size 867.5 GB of data. The SDC is based on the LiMES framework, which 

massively improved the efficiency of the whole pipeline.  

Temporally speaking, what were hours of manual requests, the LiMES framework 

transformed into an automized pipeline of discovering the scenes, downloading, pre-process 

them to an ARD threshold, index them and finally ingest them into the Data Cube in the span 

of four minutes per scene. As of the testing phase, finished in 2016, the whole process was 

being ran in a infrastructure composed of: Processors Intel Xeon E5-2660 v2 @ 2.2 GHz; 8 

CPUs (6CPUs used for processing, 2CPUs for system and UI); 50 Gb RAM; 2 TB Hard 

Drive; Linux Ubuntu 16.04 [14]. 

 On the processing stage, the six processes are executed in parallel, while the 

indexation and ingestion phase must not be running separately. To facilitate this, the scenes 

were split into groups and inputted. The whole dataset of scenes was processed, indexed, 

and ingested in a 9-day span. 

 

1.9. Environmental monitoring and remote sensing 
 

The advancements in Data Cubes projects and technologies brought a new realm of 

possibilities for the use of geospatial data. The larger processing capacity and storage 

abilities allowed us to gather information at a broader and deeper scale, as well as 

introducing concepts of predictive models[15]. 

Even though the output of the data cubes might be the bigger role in this symbiose 

relation, there is also a side of input by these programs, which provide in-situ data not 

available from the EO and remote sensing techniques, while also serving as calibration 

mechanisms for them. 
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EO data cubes can be used to analyze and monitor environmental spatio-temporal 

patterns, namely changes and their impacts on biodiversity at national and regional scales. 

In particular, we wish to explore how sensed EO data, together with advanced data analysis 

and modeling ed to support biodiversity modeling pipelines fed by structural (e.g. land cover, 

vegetation extension) and functional (e.g. productivity, water balance, soil temperature) 

spatiotemporal datasets. 

Group on Earth Observation (GEO) is global network interconnecting governments, 

academic and research institutions, data providers and businesses. The global collaboration 

and communication helped identify gaps and reduce duplication of efforts in the areas of 

sustainable development and sound environmental management, leading to a bigger 

progress in the areas. The crown jewel of the GEO consortium is the Global Earth 

Observation System of Systems (GEOSS), which aims to integrate observing systems and 

obtained data to a better efficiency, inter-operability and accessibility.  

One of the main reasons behind the GEOSS formation are of course the financial 

benefits behind a better understanding of our planet, and better projections of how it may 

act. One simple example are the droughts, which could be better predicted with a better 

understanding of the impact of agriculture output on the soil, and that in the US alone 

produces around 6 to 8 billion dollars of damage[16]. 

The entire new industry/academic field is supported by the huge amount of growth 

in Satellite Imaging in both spatio-temporal, radiometric and spectral resolutions, volume of 

data and availability since the turn of the millennia. In 1999, with the launch of Terra, NASA 

propelled the first satellite-based observation system of Earth and its inherent processes. 

While minor personal satellites are also widespread, between NASA and ESA alone there 

are around forty different satellites continuously providing data, from the Sentinel and 

Landsat Missions ( https://www.copernicus.eu/en/about-copernicus ). Maximizing the use 

and cross-reference of data of all the available sources is a goal and requirement of any 

project in the study field. 

 

 

 

https://www.copernicus.eu/en/about-copernicus
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1.10. Thesis Aims, Challenges and Motivation 
 

 As the social and environmental pressure exacerbated on country increase, having 

a comprehensive understanding of the biodiversity and land composing our country, as well 

as its interconnection and relations is a priority and of critical interest [5]. 

With Satellite Imaging becoming widespread and correctly, the current rate of growth 

in the availability of satellite data is only bound to increase, with the CEOS reporting an 

increase from twelve in 1980 to over sixty-nine operational EOS missions in 2014, to one 

hundred and ninety-seven operational EOS missions as of 2022 [17]. While an accurate 

prediction of how large the data availability will be on a national level long term is a tough 

task at this day and age, we must prepare ourselves for the inevitable need for bigger and 

more efficient pipelines of work to deal with it. It is also expected that for any amount of raw 

data obtained from satellite imaging, the processed data derived from it would lead to a 3 to 

5-fold increase in needed storage space, consistent with the work done by Overpeck - et al. 

[18]. 

To tackle this, we aim on a larger scale to create a verified, assessed and evaluated 

work pipeline for obtaining, processing, storage and finally make satellite data available to 

the public. With this larger scope and aim in mind, we decided to explore the creation of a 

data cube including data from the entire continental portion of Portugal. One of the big 

motivations behind our work was also making sure the entirety of the process, from the 

images selected to the processing stage was made with the aim of full open source and free 

availability, which was considered in multiple steps of our work.  

As a proof-of-concept of this broader scale national data cube and the objectives 

behind it, we created a smaller scale data cube and front-end visual interface hosted on a 

permanent 24-hour cycle, also creating a set of predetermined exercises of his utility, such 

as spectral indexes computation across diminished timelines, variable statistics across 

space and/or time spans and the ability to correlate those to unlikely or special events, in 

this care forest fires. 

We also compare it to already used workflows using other methods of data stacking 

(namely rasterStacks) to also cross check the processing speeds and memory usage of 

both workflows to help consider the hardware needs of the final product and data cube. 
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The entirety of the project (as well as the support network behind it) was designed 

prepared and made under the scope of the SeverusPT project ( https://severus.pt/ ) with 

direct links to the PorBiota project ( https://www.porbiota.pt/ ). 

  

https://severus.pt/
https://www.porbiota.pt/
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2. Methods 
 

2.1. Overview of the methodology/workflow 
 

In this section we will go over the 2 main phases of construction of the data cube, 

the pipeline that handles the download of metadata and image data from the MODIS 

servers, and then a primarily local coding phase which proceeds to ingesting those same 

primary level data products into the data cube, as well as creating secondary level ones 

for the same purpose. 

 

2.2. Image transfer 
   

Figure 4 Complete Data Cube building pipeline. 
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 Satellite Imaging as of 2022 can be obtained from multiple core providers. The first 

distinction and choice to be made in the project and in a larger scope building and 

maintenance of a National Data Cube is which products we are aiming to maintain and 

process/ingest into the Cube. At this time and as model raw data for our proof-of-concept 

outputs, we decided to use three different LANDSAT products, MODIS11A2 (8-day 

composite of Land Surface Temperature values), MODIS09A1 (8-day composite of Land 

Surface Reflectance values) and MCD84A1 (MODIS product with monthly burned areas).  

The download and pipeline were automated off a self-written R script based on the 

MODIStsp R package. This package was built and has been sustained since 2015, 

becoming the prime package for MODIS products downloads. Allowing for geometric, 

temporal, radiometric processing, it is the foundation of the first part of the pipeline towards 

this Data Cube, while being completely open source.   

 

 

While lengthier and more straight forward ways of using their GUI are available to 

the user if needed, we developed three distinct .json files that have written the entirety of the 

Figure 5 Designed download pipeline for any MODIS product. 



FCUP| Towards a National Data Cube of satellite Earth Observation data for ecological 
modeling and monitoring 

 

26 
 

options available within the package, to obtain the desired products ready for storage. These 

files contain geometric, temporal, and radiometric/band-selection processing options.  

Geometrically speaking, there is a defined option for the Spatial Extent, which we 

defined as a bounding box of the Portuguese continental extent, the output projection of the 

output Geo Tiff files, which we specified by using the standardized ESPG Portuguese code, 

3763, and resampling the pixel size to 500 m per pixel, using the nearest neighbor’s method. 

This resampling was literature and logic based, as other known and usable resampling 

methods, like cubic or linear, are not usable on quality-based variable (Pixel Quality Layers 

are involved in our products) and aren’t recommended on continuous variables such as 

surface reflectance, causing contamination of high-quality pixels with values from low-quality 

pixels (Figure 3). 

 As far as Radiometrically processing options, we can select which of the available 

bands in each product we want to store, which may help with the partitioning of storage 

space in possibly less than ideal hardware components for future use of smaller end users 

of this pipeline/workflow.  

2.3. Temporal extension and resolution 
 

As far as temporal definition goes, there were two different scopes to be dealt with. 

At a first level, for the current project and initial version of the prototype, we decided to use 

a set length of 20 years for the three products in question. This takes the data structure from 

January 1st 2001, to January 1st 2021. This encapsulates enough of a timespan that it allows 

for the initial creation of sizable time-series as required, with enough base data for statistical 

relevance. 

Subsequently, there was a need for some sort of real-time API possibility. In order 

to achieve this, we used both the MODIStsp package and the TaskScheduleR package, a 

R based packaged which uses administrator authorization and privileges to the Windows 

Task Scheduler properties to create set scheduled tasks of R scripts. With this possibility 

and framework in our mind, we created a R script which iterates over the 3 different ingestion 

files previously referred with the end_date argument set as the current system date. This 

will make it so whenever the scheduled task is run, the underlying MODIStsp package will 

search for the newly available products not yet downloaded (table1).  
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 As it currently stands, the script and scheduled task script are defined to run on a 

weekly basis, meaning every Sunday the system would run both, obtaining all (if available) 

new scenes for the defined hyperparameters of the pipeline (geometrical and radiometric). 

This second set of scripts is to be used in addition to the User Interface prototype referred 

to in a posterior phase of this work. As a note, while we set the previous end-date at a future 

date so that the script may function as a real-time API with success (until the 2030 date), 

efforts were and are being made so that the options file associated with the scheduled task 

script is passed a sys.date() argument, which returns the current date and time of the 

OS(Operating System) reading a code snippet. Unfortunately, as of this time, and with JSON 

as an extension that acts only as a transportation format, we cannot pass arguments with 

logic inherently behind it, such as the sys.date() one. 

Table 1 Code loop of the download pipeline  

 

 

 Alternatively, and since HTTPS and credential secured servers inherently produce 

some errors on some scripts, especially if authorizations requirements are updated and the 

R package in use isn’t updated/stops being maintained, we produced an alternative 

download script for the MODIS products. This script works as a shell command line, which 

opts_files <- c(file.path("C:\\Users\\nunoe\\OneDrive\\Ambiente de 

Trabalho\\MODIS09A1\\MODIStsp_MODIS09A1.json"),  

                file.path("C:\\Users\\nunoe\\OneDrive\\Ambiente de 

Trabalho\\MODIS11A2\\MODIStsp_MODIS11A2.json"), 

                file.path("C:\\Users\\nunoe\\OneDrive\\Ambiente de 

Trabalho\\MODIS14A2\\MODIStsp_MODIS14A2.json")) 

  

for (opts_file in opts_files) { 

  MODIStsp(gui = FALSE, opts_file = opts_file, verbose = TRUE, parallel = TRUE) 

} 

# MODIS09A1 outputs 

out_fold <- file.path("C:\Users\nunoe\OneDrive\Ambiente de Trabalho\Outputs\MODIS09A1")  

  

# MOD11A2 outputs 

out_fold <- file.path("C:\Users\nunoe\OneDrive\Ambiente de Trabalho\Outputs\MODIS11A2")  

  

#MCD64A1 outputs 

out_fold <- file.path("C:\Users\nunoe\OneDrive\Ambiente de Trabalho\Outputs\MODIS14A2")  
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runs either on the base command line in LINUX or in a command line simulator in Windows. 

In this work we used Cygwin, a Windows focused GNU and OpenSource functionality 

emulator, allowing for a Linux based shell approach. The scripts were written for the 3 

products. An attempt on building a pseudo-API approach as provided for the R script version 

was also developed for further publishing. 

 In any of the ways, the output .HDF files obtained from the LP DAAC Data Pool 

Landsat database are always processed under MODIStsp, either simultaneously with the 

download, in the R script model, or at a local level post-download, with the Shell Script 

model. Both produce the desired products ready for data cube ingestion. The Shell Script is 

provided in the attachments section of the dissertation. 

 

2.4. Data Cube building 
 

As we went over in previous sections of this work, we aim to build a n-dimensional 

data structure known as Data Cube. On a first note, while there are multiple Data Cubes 

providers and developers, most functioning large scale data cubes and correspondent 

pipelines are maintained in HPCs, high performance computing systems, either with the use 

of super computers or the use of high performing clusters and grids. While we do believe 

that at some point in the future our base project can and should be moved to a similar 

hardware structure, both the proof-of-concept data cubes and image downloading were 

made on more modest desktops and servers.  

As such, and after review, we built our data cubes using a set of personally written 

scripts using the gdalcubes R package as the basis for our work. This ensured that the entire 

pipeline of our work, from downloading, processing, data cube building, data ingestion, 

analysis and UI building were all made under a single programming language, providing a 

simple and clear-cut stream of syntax and logical code, easily interchangeable and adapted 

to different needs and aims, while also using peer-reviewed packages and code[11], [19]. 

The Data Cube building process consists of several consequent steps which we will 

demonstrate using the MODIS09A1 product, the 8-day composite of Land Surface 

Reflectance values. This product consists of pixel values for eight different spectral bands 

with each pixel representing 500 m area, as well as a Quality Assurance layer. For every 
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sequential eight days, the highest quality value for each of the pixel is chosen amongst the 

eight-day sample. The original provided MODIS products are also already corrected to 

compensate for atmospheric conditions, such as aerosols and gasses[20]. 

Table 2 Ingestion of the MODIS products towards the data cube 

 

The gdalcubes package works with a first step of creating an image collection, a set 

of n images corresponding to a determined spatial extent, with each image containing m 

band values (table 2). In some data products like Sentinel mission ones, image data may 

come from different files. In MODIS products, the raw .HDF contains data for all layers. To 

create an image collection, we must pass an ingestion script to the package, which tells the 

package source code how to read both the file folder and the file names and the file itself.  

After making sure the package has the correct product raw files folder and extension 

type, we need to make sure it can read the files. While the base package has the ingestion 

files for some of the available MODIS products, we also wrote from scratch the ingestion file 

for a few of our desired ones, MODIS09A1 included. The code writing for both this and the 

MODIStsp option files referred to in the previous section was made using IntelliJ, a 

JavaScript IDE with a .JSON plugin, and both are annexed in the final section of the 

dissertation. 

Using the source book on the MODIS product, which gives us the band-names, the 

regular expressions needed to read the filename in the folders, to read them in a temporal 

timeline and assign dates to each as well as  the fill values and no data values. The argument 

“pattern” refers to the name attributed to the bands/date and time in the raw .HDF file 

obtained from the download pipeline.  

Files = list.files(paste(wdir,”MODIS09A1”,sep=“”), pattern = ".hdf", recursive = TRUE, 

full.names = TRUE) 

Files1 = list.files(paste(wdir,”MODIS11A2”,sep=“”) pattern = ".hdf", recursive = TRUE, 

full.names = TRUE)  

Files2 = list.files(paste(wdir,”MODIS11A2”,sep=“”) pattern = ".hdf", recursive = TRUE, 

full.names = TRUE))  

LSR.col <- create_image_collection(Files, "MODIS09A1", "MxD09A1.db")  

LST.col <- create_image_collection(Files1, "MxD11A2", "MOD11A2.db")  

Fire.col <- create_image_collection(Files2, "MxD14A2", "MOD14A2.db") 
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As of this step, we have the image collection with the band value for the date and 

time extent we required. The next phase involves the creation of the geometric delimitation 

of our data cube, which involves the spatio-temporal extent definition, the temporal and 

spatial extent of each cube cell (resolution), and the resampling methods when values from 

multiple images occupy the same cell in the cube. By default, we used the nearest neighbor’s 

method for both resampling methods, product of the data volume in question, considering 

the processing times that would ensue. Specific resampling methods may prove the best 

option depending on the final purpose of the user of the data cube. In this case we used a 

bounding box to describe an approximation of Portugal, including all of Portugal’s landmass, 

projected with standardized ESPG code for Portugal[21],defined the idealized one-year 

timespan and set a spatial resolution of 5km per pixel (table3).  

Table 3 Geographical, temporal and resolution definition of the data cube. 

We can now head onto two different paths, depending on the purpose behind it. 

Gdalcubes, as platforms like Google Earth Engine, uses a “lazy” approach to the data cubes, 

with the users making their own analysis and inputs and only after said inputs is the 

processing done, while all the way up to the final input, proxy objects are created, 

maximizing the memory usage and processing times. Instead of recreating a cube with every 

parameter passed, only the final function call, usually plot() or animate() , returns a complete 

object.  

2.5. Complete process and notes for further interoperability 

As such, if we discuss the use of this package and code structure on a national data 

cube, if we can assume and assure the use of an appropriately built base server, the optimal 

setup is to create and merge (code for this already made and set up) the data cubes for 

each MODIS Product, creating one final structure containing the layers of each MODIS 

product for the spatial and temporal extent defined. At that point, the only final requirement 

is for the analysis to be input upon said cube, where the code would run the necessary 

queries and return the final objects. If we aim to just create the Data Cube itself with intention 

to use it on another pipeline, we can choose to simply write it as a .NetCDF file, a self-

describing, machine-independent data format that supports the creation, access, and 

sharing of array-oriented scientific data. This is the international standard for the Open 

V.Portugal = cube_view(srs="EPSG:3763", extent=list(left = -121000, right= 164000, 

bottom = -301000, top = 278000,  t0 = "2016-06-01", t1 = "2020-01-01"), dx=500, dy = 

500, dt="P8D") 
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GeoSpatial Consortium. The major benefit stems from its exportability towards other 

languages, with CDF formats being already readable and accessible/writable in classical 

languages as C, C++, Python and R, as well as newer more advanced languages as Pearl, 

Ruby and Octave. 

Table 4 Complete pipeline of creation of a data cube. 

             As such, and regarding the base structure of the main Data Cube, we go from 

creating an image collection with the metadata, to creating the geometric delineation of the 

data cube pretended to merging both, creating the super-intended version of our end data 

cube. From here on now, we either run the queries on the base version data cube, or, if we 

know à-priori that we will run a single pipeline of work regarding only specific bands, one 

specific timeline or one specific spatial extent of the data, we can write out a specific data 

cube, to use in this same work pipeline, or in another format to be used on a different 

software(table 4).  

For purposes of evaluation of method and comparison against other used workflows 

and work pipelines, we created three smaller data cubes, with the same 3 MODIS products 

and a one-year length using the same satellite tile extent. This allowed for processing speed 

library(gdalcubes) 

library(dplyr) 

#See base package supported sattelite products 

collection_formats() 

#Adding the created ingestion .json file to the package to allow for MODIS09A1 product 

ingestion 

add_collection_format("https://raw.githubusercontent.com/NunoFilipeSousa/Thesis/main/MO

DIS09A1.json", name = NULL) 

  

#Path to the file lists and making sure it only reads the .hdf files 

Files = list.files( paste(wdir,”MODIS09A1”,sep=“”) pattern = ".hdf", recursive = TRUE, 

full.names = TRUE) 

#creating the image collection and delimitate cube 

M.col = create_image_collection(Files, format = "MODIS09A1", "MxD09A1.db") 

v = cube_view(srs="EPSG:3763", extent=M.col, dx=5000, dt="P8D", aggregation = "mean", 

resampling = "average") 

Final_MODIS09A1_Cube = raster_cube(M.col, v, mask=image_mask(band = "QC_500m", bits = 

0:1, values=c(0,1), invert = TRUE)) 

#write out the data cube in a cross-language format 

write_ncdf(Final_MODIS09A1_Cube) 



FCUP| Towards a National Data Cube of satellite Earth Observation data for ecological 
modeling and monitoring 

 

32 
 

evaluation, memory allocation evaluation and scalability purpose evaluation of the workflow. 

The code for both versions (the smaller evaluation cubes and the first stage prototype of the 

Portuguese Data Cube) is completed, with the latter ready for deployment, pending approval 

and delineation of the overarching coordination, organization, and management questions. 

2.6. Performance Evaluation Methods 
 

As with any new process or pipeline for data management and processing, it is 

important to take notice of its computing performance. Unfortunately, R as a language does 

not have immense third-party support for performance testing, neither on the form of 

packages designed for this purpose, nor in the academical form, with guidelines or papers 

over the subject. Instead, we chose to evaluate the process over a more streamlined 

performance test, applicable and studied on a general setting, not specific to R[22].  

As such, we focused on the CPU usage and impact and the time performance of the 

scripts, as both at a local level, it is the most important variable to measure, and in an 

eventuality of use of cloud-services, said time performance also directly impact cost of server 

rental/allocation. We focused on evaluating the scalability and stress performance testing of 

the pipeline, as this aspect of the whole project and Data Cube is the one predicted to be 

strained the furthest as it develops.  

For a better understanding of the capabilities of the code, we measured the 

processing speeds of the queries, and then also evaluated the impact of the resolution of 

the data cube pixels. RAM Memory usage in R is inherently locked to the max available 

memory usage of the PC in the x64 bits version, and as such we refrained from altering such 

variable with any kind of third-party software. For all purposes of this process, we had 16 

Gigabytes available RAM memory, at 3200 Mhz speed. At no point during the process of 

requesting queries or building the data cube did the R process use over 800 MB of RAM 

memory. As far as CPU usage goes, while the code can be defined to run on any number 

of CPU cores, core numbers < 4 led to instability of the process, resulting in multiple crashes 

of the R sessions during the performance tests. As most currently commercially available 

machines, from the low-end laptops to higher end servers all present at the very least 4 and 

in most cases at least 8 cores, we decided to leave CPU influence from a side as a complete 

evaluation. Preliminary tests and literature showed a logical increase in performance the 

higher the number of cores, but there was a threshold from which the performance increased 

became negligible when dealing with higher spatial resolutions [11]. 
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3. Results and discussion  
 

3.1. Resulting Data Cube 
 

The resulting data cube is a multidimensional data cube with an overseeing 

geographical delimitation of the continental area of Portugal. The structure built for the 

purposes of the dissertation encapsulates 10 years of data, from January 1st 2010 to January 

1st 2020. 

In more detail, other than the 3 previously referred “axis” of the cube, there are 13 

other spectral dimensions currently included in the structure. From a primary product 

standpoint, there are 10 spectral bands directly obtained from the MODIS09A1, MODIS11A2 

and MODIS14A2 products. These are the 7 reflectance bands, Red, Blue, Green, Near 

Infrared and 3 Short-Wave Infrared. In addition to those, there are also 2 Land Surface 

Temperature bands, for daytime and night-time, as well as a Fire Mask band, used for fire 

detection and delimitation. We also computed and added as secondary products 3 spectral 

indexes, NBR (Normalized Burned Ratio), NDVI (Normalized Difference Vegetation 

Index) and SAVI (Soil-Adjusted Vegetation Index). 

From a granularity standpoint, given that the 3 products have different spatial 

resolutions amongst themselves, with the MODIS09A1 product being a 500 m x 500 m 

product while the other two are 1 km x 1 km products, we used the highest common 

resolution, and hence the cube has a 1 km x 1 km resolution. Nonetheless, if needed, the 

pipeline is set up to use an even higher spatial resolution, if assured that the only used 

products are the MODIS09A1 derived observations, as of now. All of the observations in a 

data cube follow an 8-day composite norm, meaning that for an X Day value, that value 

represents the best value taken in a group of 8 days of observations. This was done to 

ensure the least amount of impact was done by atmospheric/aerosol/cloud disturbances. 

As currently constructed, the data cube includes images and data amounting to 70.1 

Gigabytes of data. 
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3.2. Monitoring and Environmental relevant queries  
 

To make a demonstration of the possibilities behind the data cube, we designed a 

series of consequential queries to achieve a certain final product to be downloaded as a 

time-series, visual information or supporting data for further programming interactions, with 

special attention to machine learning. Different end-product needs have different coding 

paths and associated costs, whether time, difficulty, or data accessibility to the average user.  

First up, we computed a series of plots visualizing the spatial distribution for values 

of two assorted products, the LST (Land Surface Temperature), the NVDI (normalized 

difference vegetation index) . The first one is a straightforward measure of the Earth’s 

Surface Temperature at a set spatial polygon, measured by thermal reflection[23]. This is 

obtained by getting the pixel value for all pixels inside our delineated geometric form, for the 

date-spans we choose. We selected 3 different years, 2010,2015,2019 and plotted the mean 

LST value for the 30 days of May and November, representing season change. We used 

1KM as the spatial resolution, since LST measurements, made aboard the satellites are 

capped at 1km spatial resolution in the MODIS imagery 
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While the winter season changes are present albeit scarce and further data 

management options would then ensue (as done with a posterior case study), the Land 

Surface Temperate values from the summer of 2010 to 2015 are eerily visualizable in the 

current visualization form. LST can reducibly be labeled as a measurement of the Earth’s 

land surface temperature, making it a prime indicator for the energy partitioning across the 

planet’s surface, having been classified by the International Geosphere and Biosphere 

Program (IGBP) has one of the most important spectral measurements to study and explore 

[24]. It has been used in multiple environmental studies, from deforestation impact on LST 

[25]  to an assessment of heat waves impact on land surface measurements, a work which 

has related severe heatwaves to drastic changes in an area’s LST values[26].  

Figure 6 Mean LST values for the month of May and November, for 2010,2015 and 2019 

 



FCUP| Towards a National Data Cube of satellite Earth Observation data for ecological 
modeling and monitoring 

 

36 
 

Most studies around impact on LST and what LST may or may not represent use its 

max or mean values pre and post target date/occasion, and as such, we figured the first 

step would start by a visualization of the change of LST over time, such as in figure 6.  

 

For an easier visualization of the changes through time, to detect timeframes of 

interest for further investigation, we did create an alternative in which the consecutive plots 

are encoded into a .gif for easy information retrieval. Unfortunately, there is no way to 

provide said file in a .docx document, but we did provide the alternative line in the code 

above on table 5, which takes us through the process to create the figure above, in which 

the temporal subset can be taken as simple date lists or a temporal subset, which would 

create a visualization in temporal order.  

Since this is a single-band plot, from here on now we can use the function 

extract.geom()  to get the values for shorter time frames and specific sf objects, polygon-

based objects representing specific areas. We go through the entire process in the section 

“Pedrogão as a case study” detailing the entire pipeline from cube building to value 

extraction to information building. 

In the second query, we made the same request than before but applied it to two 

different spectral indices. NDVI, formulated by the equation  𝑁𝐷𝑉𝐼 =  
NIR − Red

NIR + Red
 , where NIR 

represents the Near-Infrared (841 to 867 nm) and Red the visible red (620 to 670 nm) 

channel of remote sensing imagery. This index has had a widespread use due to its easy 

visualization nature, allowing for a quick delineation of vegetation and vegetative stress for 

monitoring and study, making it appealable to commercial and agriculture studies[27]. 

 
LSTVALUES = select_bands(Merged_Portugal_Cube, "LST_DAY") %>%  

    apply_pixel("LST_DAY * 0.02 - 273.15", names="LST_Day") %>%  

    select_time(c("2010-06-01", "2010-12-01", "2015-06-01", "2015-12-01", "2019-06-

01", "2019-12-01")) %>%  

    window_time(expr = "mean(LST_DAY)", window = c(30,0)) %>%  

    plot(key.pos = 1, zlim=c(10, 50), col=viridis::viridis),  

    animate(key.pos = 1, zlim=c(10, 50), col=viridis::viridis, fps = 5) #gif 

encoding instead of a layout of plots 

Table 5 Code to obtain the plots in figures 6, the LST values. Animation as gif was included but cannot be visualized in word 
document  
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 We plotted both layouts in sequence (Figure 7), applying the same temporal selection as in 

the LST plot, to detect and visualize delineation of vegetation-heavy zones and possible 

tendencies which may have showed up in 10 years, having in mind possible future work.  

  

 

The code on table 6, and the one before, follow a linear progression in which the original 

data cubes created from the first lines of the case are cached, allowing for the apply_pixel(), 

filter_pixel() and window_time() functions to be changed and ran again, saving the user time 

and the program memory usage. This option was only turned off when measuring the 

performance times of the scripts, as the cached data cubes reduced drastically the time of 

every repetition past the first evaluation since it never actually ran the queries again.   

 Speaking from a logical sense, the script is simple. We take the original Portuguese 

Data Cube with the 3 products, then proceed to select the corresponding bands needed for 

the final index we aim to obtain. B01, B02 represent red and near infrared channels of the 

MODIS data. The temporal selection can be made after by providing a list of the target dates, 

or if we wish to use a timespan, then crop() allows to subset the time variable by a t0 and t1 

argument, after which the program will plot/obtain every value available between both. After 

having the required bands, we apply the arithmetic function required to obtain he desired 

index. This specific function takes regular expressions such as mean, min, max, standard 

deviation, but also user input expressions or functions. After this, we can apply a 

window_time() function, to obtain the values correspondent, in this case, to the 30 days 

before the given date. This allows for a more robust evaluation, as single day values can be 

either outliers or malfunction of the instrument, amongst others. This problem is also solved 

using 8-day composite products, which take the best quality pixel of the eight previous days, 

 
NDVI=select_bands(Merged_Portugal_cube, c("B01","B02")) %>% 

 

   apply_pixel("(B02-B01)/(B02+B01)", names = "NDVI") %>%  

   select_time(c("2010-06-01", "2010-12-01", "2015-06-01", "2015-12-01", "2019-

06-01", "2019-12-01")) %>%  

   filter_pixel("NDVI > 0") %>%  

   window_time(expr = "mean(NDVI_30D)", window = c(30,0)) %>%  

   plot(key.pos=1, zlim=c(-0.5, 1.0), col=viridis::viridis)  

 

 Table 6 Same code format as the table before, this time produces the image in figure 7, the mean NDVI values for the 
months of May and November in selected year.  
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taking care of any possible atmospheric/cloud interference without the need for multiple 

quality masks for each day[28]. 

From here on now, it is a matter of graphical choices, the number of plots per column 

and row of the image, the color palette and choosing between plotting and animating, context 

dependent. 

We can quite easily see the delineation of vegetation heavy areas, while identifying 

the green vegetation free region in Alentejo, a more deserted area. Slightly more subtle but 

still noticeable is the lower average values for both in pixels across the Porto area. Ever 

since 2010, there has been a considerable urbanization of the entire district as the city center 

became more crowded, which may be an explanation for the loss of value in these indexes. 

 

 

 

 

Figure 7 Mean NDVI values for the months of May and November in 2010,2015 and 2019 
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3.3. Case study as a display of possibilities 
 

 During the 10 years of data that we ingested in the cube created as a prototype for 

display and use during the dissertation project, one of the most important and impactful 

environmental occurrences to happen in Portuguese soil was the Pedrogão Grande fires in 

June of 2017. These started on the 17th of June and ended up as the deadliest forest fires 

in Portugal history, as well as produced a distinguished impact in the area, at a structural 

and personal level[29]. With such thing in mind, we decided to try and visualize the impact 

it had on the area using the tools included in the data cube. 

 

 

Table 7 Creation of the images in figure 8, created from the red, blue and green bands of the satellite imaging 

PedrogãoFoto <- select_bands(Merged_Portugal_cube, c("B01","B04", "B03")) %>%   

   select_time("2017-06-21") %>%      

   plot(rgb = 1:3, fps= 5, save_as = "Pedrogão_after.jpg"),      

PedrogãoFoto <- select_bands(Merged_Portugal_cube, c("B01","B04", "B03")) %>% 

 

   select_time("2017-06-05") %>%  

   plot(rgb = 1:3, fps= 5, save_as = "Pedrogão_before.jpg") 

 

Figure 8 TrueColorRGB pictures obtained on the observation 
immediately before and after the Pedrogão Fire 
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First, we created two True Color RGB images from the MODIS data downloaded, 

one for the last instance before the fire and another one for the instance immediately after 

the start of the fires. We hoped, with success, that it would return a visual impact of what the 

fires did to the area. We omitted the creation of the data cube in the following images since 

the creation was unique and all following queries, from previous sections and this case study 

were all made upon the original cube. 

As shown, there is a noticeable burned area showing up on the TrueColorRGB image 

plotted from the instance after the fire deflagration. Smoke and Cloud effects are inherently 

accounted for during the processing of the MODIS data, hence not showing up in the image. 

 From here onward, we started developing workable multi-band end-products from 

the dataset. Since we were aiming to obtain only the values for Pedrogão Grande itself, we 

used a shapefile of the municipality as the spatial definition from which to get the spectral 

indexes values. At a first stage, we made a distinct query for NDVI, and introduced two non-

standard MODIS indexes, NBR and SAVI.  

SAVI stands for Soil-Adjusted Vegetation Index, a spectral index developed from 

NDVI which was given a soil-adjustment factor L, to consider the vegetation density in the 

soil when obtaining the value [30] [31]. It is formulated by  1 + 𝐿
𝑁𝐼𝑅+𝑅𝑒𝑑

𝑁𝐼𝑅+𝑅+𝐿
 . 

 NBR stands for Normalized Burn Ratio, and it is used as a variable to both delineate 

fire affected areas, as well as classify the severity of the fire in distinct points of that area. It 

is formulated by 
𝑁𝐼𝑅−𝑆𝑊𝐼𝑅

𝑁𝐼𝑅+𝑆𝑊𝐼𝑅
 , with NIR being the Near Infrared Channel( 841 to 867 nm ) and 

the Short-Wave Infrared (2080 - 2350 nm) channels. For classification, we used the following 

delta NBR ( NBR_Prefire_Values – NBR_PostFire_Values) to classify each pixel in the area 

regarding the fire severity. The classification was made according to thresholds designed  

and used for the Mediterranean Area(Table 8). [32] 

 

 

 

 

 

 

SEVERITY LEVEL dNBR RANGE 

Low Severity <.319 

Moderate Severity .319 to .649 

High Severity > .649 

Table 8 Severity level classification derived from DeltaNBR values 
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To work with this framework of data, we used the extract_geom() function mentioned 

before. This function allows us to extract the band values for a specific spatial extent. To 

define this extent, we downloaded a shapefile of Portugal, present in the CAOP2021 (Carta 

Administrativa Oficial de Portugal, obtained from the Direcção-Geral de Território) and 

proceeded to subset it to only contain the values for the municipality of Pedrogão Grande, 

then using it to rasterize a spatial file. By passing this spatial file over our data cube, which 

includes data from the entire Portugal landmass, it will obtain the values for the bands in the 

pixels which fall under the spatial file extents. For purposes of this case study, we first used 

NBR to plot an interactive map of Pedrogão Grande, where mouse hovering would return in 

which class of NBR Fire Severity Scale did that specific area. The classes, color coded, 

represent the five severity levels presented above, while the area was plotted over a 

topographic map or Portugal, with zoom, hover, click and drag capabilities. 

 While in this document it is not possible to submit said interactive map, we can show 

what it looks like visually. We also plotted the number of sub-areas/pixels were placed under 

which class, to gauge the overall impact of the fire in the Pedrogão Grande municipality. 

While this visualization has a meaningful purpose in the evaluation of the spread and 

impact of the fire, it has the limitation of being currently restricted to the geographical 

delimitations in the original shapefile being bigger than the spatial extent of each pixel. This 

means that each subsection of the images, corresponding to the “freguesias” of the 

municipality of Pedrogão Grande, return values corresponding to the aggregation of 3 to 5 

pixels of the MODIS data, depending on the size. While not always a problem, there are 

cases in which we may need to represent the data as close to the original as possible, which 

would mean we would have to use and build different shapefiles for the purposes, where the 

delimitation is made on a 1x1 km grid to align with the satellite data, in the MODIS case. 
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Figure 9 From left to right and top to bottom, Pedrogão municipality map with the NBR values pre-fire, post-fire, the delta values between both instances, and the 
classification of each area as an impacted area by fire, derived from the DeltaNBR values. 
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At this point, spectral metadata obtained from satellite imaging has been processed 

and ran through a series of scripts until we have obtained the fire impact classification of a 

pre-determined area, according to peer-reviewed spectral indexes computation. From here 

on forward we now can also take the same processed metadata, and instead of focusing on 

a more visual and interactive side, we can also use that data to construct time-series of 

spectral indexes (table 9), both for first-hand monitoring and assessment, but also 

functioning as base for future machine learning models and time-series evaluation packages 

when used in pair with in-situ data and other instruments of monitoring.  

 

 

And so, now that we established the impact of the fire, using the Normalized Burn 

Ratio, we want to assess the long-term impact and recovery of the vegetation soil and 

surface in the area. For that, we first obtain the values for three different time-series for the 

target area (table 9). 

These 3 functions return a data frame with the values for every pixel in the spatial 

file “z” (Pedrogão), for every occasion where the satellite measured it from t0 to t1, both of 

which user decided. We settled on June 6th, 2016, all the way to January 1st, 2020, so that 

we could check initial pre-fire values for all indexes, the impact the fire had on the indexes, 

and the recovery process for the area. Since in this instance, we are only exploring the data 

for the area of itself, with no particular interest in any individual pixel, we chose to group the 

observations by time, using the mean value of all pixels for that individual time. So instead 

of n observations on x day with y value, we have 1 observation on X Day, with value equal 

 
PedrogãoNBR = select_bands(Portugal_Cube_LSR, c("B02","B07")) %>%  

   apply_pixel("((B02-B07)/(B02+B07))", names = "NBR") %>%  

   extract_geom(z, FUN=mean)  

   

PedrogãoNDVI = select_bands(Portugal_Cube_LSR, c("B01","B02")) %>%   

   apply_pixel("(B02-B01)/(B02+B01)", names = "NDVI") %>%  

   extract_geom(z, FUN=mean)  

   

PedrogãoSAVI = select_bands(Portugal_Cube_LSR, c("B01","B02")) %>%   

   apply_pixel("1.5*((B02-B01)/(B02+B01+0.5))", names = "NDVI") %>%  

   extract_geom(z, FUN=mean)  

Table 9 Creation of time-series derived from data obtained from the Pedrogão Area shapefile. Time delineation was omitted 
but referenced in the text. Output is a dataframe of values for each spectral index. 
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to the mean of the n observations. The time variable was converted to date format, as it is 

provided simply as a string of characters in its original form. This was executed for the 4  

indexes and correspondent data frames (table 10 and 11). 

 

 

 

 
NBRPedrogão <- data.frame(PedrogãoNBR)  

NBRPedrogão <- NBRPedrogão %>% group_by(time) %>% summarize(NBRValue = mean(NBR, 

na.rm = TRUE))  

NBRPedrogão <- as.data.frame(NBRPedrogão)  

NBRPedrogão$time <- as.Date(NBRPedrogão$time, format="%Y-%m-%d") 

Table 10 Data frame manipulation for ensuing visualization of the time-series 

 
PlotSingleTimeSeries_SAVI <- ggplot(data=SAVIPedrogão, 

 

            aes(x=time, y=SAVI)) +  

  geom_line( linetype = 1, size = 1) +  

  ylim(0,2)  

print(PlotSingleTimeSeries_SAVI + ggtitle("SAVI time-series in the Pedrogão Area"))  

   

   

#Plotting 3 timeseries  

   

df_list <- list(NDVIPedrogão, NBRPedrogão, SAVIPedrogão)  

df_list %>% reduce(full_join, by='time')  

TimeSeriesLongFormat <- melt(df_list, id="time")  # convert to long format  

   

p <- ggplot(data=TimeSeriesDFLong,  

       aes(x=time, y=value, colour=variable)) +  

  geom_line( linetype = 1, size = 1) +  

  ylim(0,2)  

print(p + ggtitle("Time-Series of 3 spectral indices in the Pedrogão Area")) 

Table 11 Merging of each singular data-frame and posterior visualization arguments 
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At this point we have 3 different data frames, composed of a time-series of its 

respective spectral index. Two pathways are available, either plotting each of them 

singularly for easier visualization and data exploration of that index or plotting the three 

timeseries all together. We will show the code for either version  but only plotted the 3 time-

series together, for the sake of comparison and visualization. 

 

Figure 10 non-Smoothed (top) and Smoothed (bottom) Time-Series of the Pedrogão Área for three spectral indexes 
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As we can see in the figure, after the instant severe decline in the vegetation indexes 

and NBR value as the fires happened, almost 3 years after the fact there was still only an 

approximation to the pre-fire values with none of them reaching them on a consistent basis, 

showing the lasting damage that the occurrence had in the area. This is consistent with the 

literature, in which 4 to 8 years is the consistent as a timeframe for the vegetation 

“greenness” indexes to return to pre-fire levels. We decided to add a smoothed version of 

the time-series, as there were present negative and positive peaks due to mis-observations 

of the band values in certain dates. We did it by replacing those mis-observations by the 

average values of the previous and posterior observation. 

We also decided to add a secondary query and timeseries analysis process, where 

we plot the time-series for the NDVI values across the same time span but split by severity 

levels. 

 

Figure 11 NDVI values split by areas with distinct severity impact levels, as calculated before. 
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As we can see, areas which were classified as high severity of impact had a more 

abrupt decline of NDVI values, leading to a higher percentual increase of NDVI in the 

following years, taking a bigger effort into achieving pre-fire levels or values close to it. Low 

severity areas have a noticeably less relevant impact at the point of fire, and as such have 

a smoother recuperation line on the time series, as there’s less of a slope needed to recover 

regarding the index values. 

 

3.4. Performance Evaluation  
 

Considering land surface products as well as multiple water (Sea Surface 

Temperature, Ocean Reflectance, Particulate Organic Carbon Concentration), and 

atmospheric resources (Aerosol Product, Precipitable Water) also available for future 

ingestion and processing, there are thirty-seven different available MODIS products. In 

addition to these, the pipeline is also designed to ingest major Sentinel-2 products. While 

the ingestion of all of them is not the endgame of the project, as many of them are different 

day composites of the same product (daily composites vs 8-day composites), what is 

currently seventy gigabytes of data representing three products for the span of ten years 

can easily be expected to become terabytes of data in a near future. As such, understanding 

the strain that an increase in size represents to the data cube/pipeline is of the utmost 

importance. 

For this purpose, we designed multiple time-evaluating performance tests. After 

exploration, we understood that the biggest computing weight of the process if the creation 

of the data cube itself, especially the image collection creation, using the ingestion .json files 

and the post-download MODIS products. For these tests, we ran two different datasets, one 

with two years’ worth of data from the three different MODIS products, as this is the minimum 

dataset required to be able to make any year-to-year claim of environmental or biodiversity 

claims (further referenced and explored) and a second dataset with ten years’ worth of data, 

to act as a variable when measuring the scalability of our pipeline. 

 The MODIS download part of the pipeline is inherently harder to measure as it is 

dependent on the network behind the download, and such internet is more complex and 

variable than CPU and script performance measurement. Even so, the download of 70.1 

gigabytes of data referring to the 10-year span used in the stress and scalability testing took 
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a total of 5 hours and 38 minutes, made using a powerline to directly connect to a NOS 

router set for 240MB/s default speed. As previously stated, this time is dependent on network 

speed at a local level (inherently variable by sheer virtue of peak hours for traffic, amongst 

others influences, as well as interferences in the HTTPS server used for download. All 

downloads were made from the same server, https://e4ftl01.cr.usgs.gov/ . 

 After measuring the performance of the data cube creation phase of the pipeline, we 

also designed multiple environmental and biodiversity relevant queries to the merged data 

cube with the three products, simultaneously measuring the capacity of the pipeline to obtain 

specific queries, as well as showing the diversity and various possibilities of queries 

available from the built data cube. We then ran these queries multiple times, to record the 

time taken by each query/request. 

 . 

3.5. Data Cube Building Computing Performance 
 

Using a simple repetition script recording the time each iteration takes, we made it 

so three different expressions were benchmarked. The three correspond to the Data Cube 

Creation for the different MODIS products, over the same spatial extent, Portugal 

Continental territory. Split into two phases, the first measured the creation of the cubes for 

a two-year time span, the 2nd one measure the creation of the cubes for a ten-year span. 

They were evaluated 100 times each, and while the 3 of them were measured at once for 

logistic purposes, the benchmarking was made with random order within each other, to avoid 

any possible tendencies or hidden learning. To show the results, we plotted the distribution 

of the one hundred evaluations, in seconds, as well as a statistic summary of the 

benchmarking. As expected, we noticed an increase in the ingestion time, by a factor of six 

for each separated cube. The merging of the posterior cubes is a under 0.1 second function, 

given it functions as a simple data structure merge by a spatio-temporal extent.  

With this into account, the creation of the three different MODIS products data cubes, 

with the bands from the three original products under the same spatial extent, takes 132 

seconds (2 minutes and 12 seconds) when given a two-year span of available data vs 669 

seconds (11 minutes and 9 seconds) when given a ten-year span. While this shows the time 

constraint of dealing with an increased amount of data, it is to be remembered that when 

https://e4ftl01.cr.usgs.gov/
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talking about the ability of a user to create a data cube, this is a one-time action for a use of 

an overly arching data cube. 

 As far as the creation of a National Data Cube, the idea behind the pseudo-API 

revolves around after the first creation and hosting of the Data Cube, subsequent merges 

would only encapsulate newly obtained MODIS files, at a weekly or monthly rate, diminishing 

the required processing time required with each update. The first creation would be the most 

demanding one, which we estimate would require up to 40 minutes, assuming a first build 

with the currently in use products and the earliest available data, from the year 2000, all the 

way to the most recently available data. 

  

As we can see by the benchmarking results in table 12, different MODIS products 

produce vastly differing results. This is explained by the different in original file size to be 

ingested. MODIS09A1 downloaded files amounted to 64.5 GB of data, while the same 

temporal extent for MODIS14A2 files produced 570 MB of data. Such effect stems from the 

differing number of bands/layers included in each file, as well as the resolution at which the 

original instrument obtained the data. MODIS09A1 data is collected at a 500 m base spatial 

resolution while MODIS11A2 and MODIS14A2 are collected at 1km base spatial resolution. 

These two are the main reasons behind the distinct data size. The better the resolution and 

larger the number of bands, the larger will the downloaded data folder be, and consequently 

the following ingestion process into the data cube. The violin plots designed used a log scale 

for easier visualization. 

  

Cube Min(s) Lower 

quartile(s) 

Mean(s) Median(s) Upper 

quartile(s) 

Max(s) Number of 

test runs 

MODIS09A1TwoYears 71.43 72.19 72.68 72.59 73.01 75.67 100 

MODIS11A2TwoYears 51.01 52.21 52.57 51.54 52.86 55.40 100 

MODIS14A2TwoYears 6.11 6.22 6.29 6.29 6.35 6.59 100 

MODIS09A1TenYears 354.91 258.19 370.48 360.23 374.07 439.13 100 

MODIS11A2TenYears 251.19 260.85 268.05 262.41 269.55 324.31 100 

MODIS14A2TenYears 30.35 30.67 31.63 30.827 31.51 41.17 100 

Table 12 Performance statistics for the ingestion of metadata and creation of data-cubes for each MODIS product 
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Figure 12 Violin Plots for the previously established performance statistics. Plot used a logarithmic scale for  
easier visualization 
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3.6. Environmental Queries Computing Performance 
 

In the next performance testing phase, we designed a series of tests to measure the 

performance behind the environmental queries referred in the previous section, for the LST 

and NDVI, as well as similar queries for EVI values, another spectral index. This was made 

to ensure the number of bands required for the calculus of a spectral index didn’t severely 

impact the computing time of that spectral index. 

First up, we computed the performance testing for a series of plots visualizing the 

spatial distribution for values of three assorted primary and secondary products, the LST 

(Land Surface Temperature), the NVDI (normalized difference vegetation index) and 

the EVI (Enhanced Vegetation Index).  

Divided in two stages, we first measured their computing times with a spatial 

resolution of 1 km per pixel, the highest possible resolution allowed with our product 

combination. 

Figure 13 Violin Plots for the computation time of 1k spatial resolution group of plots. 
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.  

On simplified terms, from the moment we pass the query to the data cube structure, 

with the code referenced in the results section referent to the plot creation, it takes an 

average of slightly over 90 seconds for it to obtain six 1 km spatial resolution of a determined 

band on six separate occasions amongst the datasets. This is true for every band, every 

date selection. We noticed the increment in the number of images request led to a linear 

increment in the computing time, with each singular image added to the query representing 

between 14 to 16 seconds of added computing time. As soon as data cube access is 

granted, it takes around 15 seconds to obtain any image from any date as well as the 

possibility of saving it under .png or .jpg formats. 

 At the next stage of the performance testing, we then decided to see how resolution 

impacted the computing time of the plots. As such, we created a “copycat” cube, with the 

spatial resolution set to 5 km per pixel. We noticed an immense gain in script performance, 

which would indicate that for queries that do not require a high degree of spatial resolution, 

Figure 14 Computing performance for a 5 km spatial resolution cube 
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5 km or similar spatial resolutions would be a great performance enhancing tool for the 

running scripts. 

Finally, and as an empiric way to prove what we thought was the likely scenario in 

the code format being used, we decided to test whether the computing order affected the 

total time used for the script to run. As such, we decided to test 2 versions of the same EVI 

query, one where we first subset the data cube by the pretended bands and only after that 

do we scan through it for the desired dates, and another one where we reversed the order. 

As expected, the cube where the bands were selected first had a better computing 

performance. This is due to the data cube layered structure, by automatically subsetting it 

to only require values for the desired numbers of bands N, in which N < the total number of 

bands present in the data cube, the posterior date search will run over a lesser number of 

“layers” of the cube. 

 

 

 

Figure 15 Difference in computation times depending on the coding order 
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3.7. Case Study Computing Performance 
 

 Finally, and as the main example of the possibilities behind the data cube structure 

as currently designed, we computed the performance of the entire pipeline behind the case 

study previously presented as a single block, which means it represents the time taken from 

the extraction of the desired analysis ready data for the desired location and timeframe. We 

did not count the ingestion/building of the data cube as  part of the pipeline as the 

assumption is made that end users would not have to go through that part of the process, 

and we already performed the computing performance tests for that part of the pipeline. 

While the example taken here is towards Pedrogão Grande, comparable results are 

obtained for any municipality or district, with a small variation depending on the total study 

area. The pipeline as described here represents the processing needed to obtain both the 

interactive map with the Delta NBR values and the histograms assessing the severity of the 

fire impact, as well as the time-series produced, both singular and the plotting of the 4 time-

series at the same time. As with previous performance tests, continuous attempts of 

improving the code efficiency by refactoring are being made. 

Figure 16 Computing time for the entire case study code pipeline 
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3.8. Visual Interface 
 

One of the main and final objectives we have with the project is the creation of an end-

user applicable visual interface that allows for the user to submit personal and specific 

requests to the data cube involving structure, returning the pretended output. We did this 

using the shiny app package and side packages to help with the visualization and at this 

stage, there is a robust and deployable visual interface ready to go public. Nonetheless, 

continuous efforts are being made to add and improve features to the application, for a 

broader reach and versatility of outputs, so that the maximum amount of end uses may be 

tackled. Given the document format, we took some screenshots to allow for a better 

understanding of the composition of the interface and possibilities attached to it. 

 

In the picture above, we see a query for the NDVI index values across the Porto 

district, between January 1st 2010 and January 1st 2011. This produces two automatic 

outputs, a map representing the value difference between those days, which may be used 

to assess the impact of punctual unexpected events in a certain area, using index values 

such as NBR for fire impact, Flood Index, Snow indexes to understand extent, amongst 

others. The second output is a time series of values for the requested index/band across the 

Figure 17 Visual interface prototype 
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entire timespan in the input, in the delimitated area, which may be used to produce time-

series for specific areas when affected by long-term events like droughts, climate change, 

amongst others. While in this demonstration interface, we used a reduced timespan, for 

computation time purposes, the code behind the application was tested for scalability, and 

as such can be used in the ulterior data cube with the complete timespan as ingested. 
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4. Conclusion, Limitations and Future Work 
 

 The purpose of this project and dissertation was to lay the groundwork for the definite 

construction of a Portuguese National Data cube, by showing and demonstrating a working 

pipeline allowing the download, processing, and ingestion of data into a data structure 

whose main selling point is the adaptability and capability of holding multispectral data in 

one base structure. As we close this part of the project, there is a basis of work established 

from which further steps can be taken, by taken advantage of the scripts prepared and 

refactored, scripts whose interoperability with other programming languages other than R 

provide scalability and adaptability to the pipeline as the market and area of Data Cubes as 

a mainstream data structure grows. While in this project we used a 10-year sample data 

cube as display of the proof-of-concept and for all the programming performance testing 

done in this dissertation, as currently structured, the code is ready for deployment of a 22-

year data-cube, from 2000 to 2022 for available products. As referred in the respective 

section, for products not supported by the base package gdalcubes, we constructed an 

ingestion file for additional products used (MOD09A1). If there was to be an immediate (pre-

2023) release of a Portuguese Data Cube back-end structure, ingestion files are supported 

for 14 different open-source free satellite imaging products, 10 MODIS products and 4 

Sentinel-2 products. Ingestion of other MODIS and Sentinel products is also not impossible 

or particularly difficult, as both projects publicly share the structure of their metadata files, 

allowing us to interpolate the structure that the ingestion file, always in .json must take for 

the pipeline to work. 

 The project is also not meant to be purely a back-end data structure process. The 

intent is to support said backend with a front-end visual interface, allowing for users to make 

a set of selected inputs, such as time, multispectral band, arithmetic functions to be applied, 

as well as spatial polygon drawing on maps itself, allowing for spatial subsetting with mouse 

clicks or coordinate inputs. While R isn’t the preferred choice of a front-end hub, it is still a 

useful one, which we have explored by making smaller shiny apps running and publicly 

available, showing the purposefulness and usefulness of the back-end structure to support 

environmental queries.  
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 As an overall conclusion on this stage of process and project, there is definitely 

enough support, both from a biological and a programming perspective for building upon 

this project with an intent to grow it from an available data standpoint, creating a central hub 

to act as the host for the MODIS metadata and the running and refactored R code to run the 

pipeline at a scheduled routine, maintaining a continuous 24 hours per day up and running 

front end visual interface. This would allow for it to work as a hub for environmental and 

biodiversity monitoring data queries and possible start point for academic paper data and 

visualizations.  

 As far as performance goes, the times obtained for environmental queries show 

tolerable and even desirable computing times for mainstream queries, and while at an early 

stage, there is a clear scalability and variability value in the project and code that allows for 

quick shifts in queries by location, time, bands, that can’t currently be quantified by any 

existent coding or done by existent workflows. That remains the big performance advantage 

of the data cube structure when put against more traditional methods for time-series 

creations and specific geo-spatial queries. 

 There are current limitations that stop this structure from being a be all and end all 

product that would instantly take-over the area. Perhaps the most overarching and the more 

“code” focused one is that while it is well on its way to become the language of choice for 

the treatment of spatial data, R has a few inherent limitation and problems. On the front-end, 

R, and shiny applications, aren’t tailored as websites and web endpoints, having a big, but 

still limited pool of available widgets, html and css functions when compared to the popular 

front-end languages. Secondly, and perhaps a bridge into a more logistical discussion to be 

taken into the future, R only allows for in-memory work, which means you’ll always be limited 

by the RAM of the current workstation. This poses a problem depending on the final purpose 

of the project. If it were ever to transition to a commercial approach, then adaptation towards 

cloud computing would be required as a workaround for the problem. 

 As an academical learning application, the project has a lot of potential for 

mainstream use, as it is becoming more and more apparent with the ever-growing number 

of large-scale data cubes being built and upkept. There are frameworks public for the 

launching of the final version of such a product, and the Swiss model could perhaps show 

to be a good initial point, by making the Data Cube contents, both at back-end and front-end 

level, available to learning institutions and possibly strict organizations tasked with 

monitoring and biodiversity modelling. It also can work as a framing for the temporal timeline 



FCUP| Towards a National Data Cube of satellite Earth Observation data for ecological 
modeling and monitoring 

 

59 
 

of the rest of the project. The SDC has been in early planning and testing phase since 2016, 

and is currently still building on those first tests, running a prototype application. This is now 

the next challenge for the Portuguese Data Cube. We established an early proof-of-concept 

of the advantages and disadvantages of the cube as well as delineated an overarching 

working pipeline for its implementation on a larger scale, and we should now begin 

conversations over the logistics and structure behind the code. Organizations and licenses, 

wide-spread vs localized first testing phases and extent of the first public prototype. These 

are all decisions which now need to be argued and discussed in order to define the 

immediate next steps. 
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Annexes 
 

 

 

#!/bin/bash  

GREP_OPTIONS='' 

  

cookiejar=$(mktemp cookies.XXXXXXXXXX) 

netrc=$(mktemp netrc.XXXXXXXXXX) 

chmod 0600 "$cookiejar" "$netrc" 

function finish { 

  rm -rf "$cookiejar" "$netrc" 

} 

  

trap finish EXIT 

WGETRC="$wgetrc" 

  

prompt_credentials() { 

    echo "Enter your Earthdata Login or other provider supplied credentials" 

    read -p "Username (nuno_sousa): " username 

    username=${username:-nuno_sousa} 

    read -s -p "Password: " password 

    echo "machine urs.earthdata.nasa.gov login $username password $password" >> $netrc 

    echo 

} 

  

exit_with_error() { 

    echo 

    echo "Unable to Retrieve Data" 

    echo 

    echo $1 

    echo 

    echo 

"https://e4ftl01.cr.usgs.gov//DP131/MOLT/MOD09A1.061/2017.08.05/MOD09A1.A2017217.h17v05

.061.2021280020745.hdf" 

    echo 

    exit 1 

} 

  

prompt_credentials 

  detect_app_approval() { 
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    approved=`curl -s -b "$cookiejar" -c "$cookiejar" -L --max-redirs 5 --netrc-file 

"$netrc" 

https://e4ftl01.cr.usgs.gov//DP131/MOLT/MOD09A1.061/2017.08.05/MOD09A1.A2017217.h17v05.

061.2021280020745.hdf -w %{http_code} | tail  -1` 

    if [ "$approved" -ne "302" ]; then 

        # User didn't approve the app. Direct users to approve the app in URS 

        exit_with_error "Please ensure that you have authorized the remote application 

by visiting the link below " 

    fi 

} 

  

setup_auth_curl() { 

    # Firstly, check if it require URS authentication 

    status=$(curl -s -z "$(date)" -w %{http_code} 

https://e4ftl01.cr.usgs.gov//DP131/MOLT/MOD09A1.061/2017.08.05/MOD09A1.A2017217.h17v05.

061.2021280020745.hdf | tail -1) 

    if [[ "$status" -ne "200" && "$status" -ne "304" ]]; then 

        # URS authentication is required. Now further check if the application/remote 

service is approved. 

        detect_app_approval 

    fi 

} 

  

setup_auth_wget() { 

    # The safest way to auth via curl is netrc. Note: there's no checking or feedback 

    # if login is unsuccessful 

    touch ~/.netrc 

    chmod 0600 ~/.netrc 

    credentials=$(grep 'machine urs.earthdata.nasa.gov' ~/.netrc) 

    if [ -z "$credentials" ]; then 

        cat "$netrc" >> ~/.netrc 

    fi 

} 

  

fetch_urls() { 

  if command -v curl >/dev/null 2>&1; then 

      setup_auth_curl 

      while read -r line; do 

        # Get everything after the last '/' 

        filename="${line##*/}" 

  

        # Strip everything after '?' 

        stripped_query_params="${filename%%\?*}" 
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        curl -f -b "$cookiejar" -c "$cookiejar" -L --netrc-file "$netrc" -g -o 

$stripped_query_params -- $line && echo || exit_with_error "Command failed with error. 

Please retrieve the data manually." 

      done; 

  elif command -v wget >/dev/null 2>&1; then 

      # We can't use wget to poke provider server to get info whether or not URS was 

integrated without download at least one of the files. 

      echo 

      echo "WARNING: Can't find curl, use wget instead." 

      echo "WARNING: Script may not correctly identify Earthdata Login integrations." 

      echo 

      setup_auth_wget 

      while read -r line; do 

        # Get everything after the last '/' 

        filename="${line##*/}" 

  

        # Strip everything after '?' 

        stripped_query_params="${filename%%\?*}" 

  

        wget --load-cookies "$cookiejar" --save-cookies "$cookiejar" --output-document 

$stripped_query_params --keep-session-cookies -- $line && echo || exit_with_error 

"Command failed with error. Please retrieve the data manually." 

      done; 

  else 

      exit_with_error "Error: Could not find a command-line downloader.  Please install 

curl or wget" 

  fi 

} 

  

fetch_urls <<'EDSCEOF' 

https://e4ftl01.cr.usgs.gov//DP131/MOLT/MOD09A1.061/2017.08.05/MOD09A1.A2017217.h17v05.

061.2021280020745.hdf  

EDSCEOF 
 

Table Attachment 1 – Alternative shell script to download MODIS products in case the main framework or package doesn’t 
work. Obtained from the LP DAAC Data Pool. 

 

 

{ 

  "selcat": "Radiation Budget Variables - Land Surface Reflectance", 

  "selprod": "Surf_Ref_8Days_500m (M*D09A1)", 
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  "prod_version": "006", 

  "sensor": "Terra", 

  "bandsel": ["b1_Red", "b2_NIR", "b3_Blue", "b4_Green", "b5_SWIR", "b6_SWIR", 

"b7_SWIR", "sur_refl_qc"], 

  "quality_bandsel": null, 

  "indexes_bandsel": null, 

  "download_server": "http", 

  "user": "RSCourseCIBIO", 

  "password": "Remotesensing123!", 

  "downloader": "http", 

  "download_range": "Full", 

  "start_date": "2010.01.01", 

  "end_date": "2020.01.01", 

  "spatmeth": "bbox", 

  "start_x": 18, 

  "end_x": 19, 

  "start_y": 0, 

  "end_y": 2, 

  "bbox": [-121000, -301000, 164000, 278000], 

  "spafile": null, 

  "drawnext": null, 

  "out_projsel": "User Defined", 

  "output_proj": "3763", 

  "out_res_sel": "Resampled", 

  "out_res": 500, 

  "resampling": "near", 

  "reprocess": false, 

  "delete_hdf": false, 

  "nodata_change": false, 

  "scale_val": false, 

  "out_format": "GTiff", 

  "compress": "None", 

  "out_folder": "C:/Users/nunoe/OneDrive/Ambiente de Trabalho/MODIS09A1", 

  "out_folder_mod": "C:/Users/nunoe/OneDrive/Ambiente de Trabalho/MODIS09A1", 

  "MODIStspVersion": "2.0.8" 

} 
Table attachment 2 Download file passing arguments for the download of MODIS09A product 

 

 

{ 
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  "description": "Collection format for selected bands from the MODIS MxD09A1 

(Aqua and Terra) product", 

  "tags": ["MODIS", "surface reflectance"], 

  "pattern": ".*\\.hdf.*", 

  "subdatasets": true, 

  "images": { 

    "pattern": "HDF4_EOS:EOS_GRID:\"(.+)\\.hdf.*" 

  }, 

  "datetime": { 

    "pattern": ".*M[OY]D09A1\\.A(.{7})[^/]*", 

    "format": "%Y%j" 

  }, 

  "bands": { 

    "sur_refl_b01": { 

      "pattern": ".+sur_refl_b01.*", 

      "nodata": -28672 

    }, 

    "sur_refl_b02": { 

      "pattern": ".+sur_refl_b02.*", 

      "nodata": -28672 

    }, 

    "sur_refl_b03": { 

      "pattern": ".+sur_refl_b03.*", 

      "nodata": -28672 

    }, 

    "sur_refl_b04": { 

      "pattern": ".+sur_refl_b04.*", 

      "nodata": -28672 

    }, 

    "sur_refl_b05": { 

      "pattern": ".+sur_refl_b05.*", 

      "nodata": -28672 

    }, 

    "sur_refl_b06": { 

      "pattern": ".+sur_refl_b06.*", 

      "nodata": -28672 

    }, 

    "sur_refl_b07": { 

      "pattern": ".+sur_refl_b07.*", 

      "nodata": -28672 

    }, 

    "QC_500m": { 

      "pattern": ".+sur_refl_qc_500m.*" 



FCUP| Towards a National Data Cube of satellite Earth Observation data for ecological 
modeling and monitoring 

 

68 
 

    }, 

    "Day_Of_The_Year": { 

      "pattern": ".+sur_refl_day_of_year.*" 

    } 

  } 

} 
Table attachment 3 – Ingestion file for the MODIS09A1 product, written from scratch to read and interpret the HDF format 
outputted from the product download from MODIS servers 


