
Design of a Flexible and
Extensible Fault Injector
for Testing Concurrent
and Distributed
Applications

Pedro Fernando Moreira da Silva
Antunes
Mestrado em Segurança Informática
Departamento de Ciência de Computadores

2022

Supervisor

João Paulo da Conceição Soares, Assistant Professor, Faculdade
de Ciências da Universidade do Porto

Co-supervisor
Rolando da Silva Martins, Assistant Professor, Faculdade de

Ciências da Universidade do Porto

Sworn Statement

I, Pedro Fernando Moreira da Silva Antunes, enrolled in the Master Degree Information

Security at the Faculty of Sciences of the University of Porto hereby declare, in

accordance with the provisions of paragraph a) of Article 14 of the Code of Ethical

Conduct of the University of Porto, that the content of this dissertation reflects

perspectives, research work and my own interpretations at the time of its submission.

By submitting this dissertation, I also declare that it contains the results of my own

research work and contributions that have not been previously submitted to this or any

other institution.

I further declare that all references to other authors fully comply with the rules of

attribution and are referenced in the text by citation and identified in the bibliographic

references section. This dissertation does not include any content whose reproduction is

protected by copyright laws.

I am aware that the practice of plagiarism and self-plagiarism constitute a form of

academic offense.

Pedro Antunes

September 30, 2022

Abstract

The applications developed today are increasingly distributed, which contributes to an increase
in their complexity. The imminence of failures in these applications is natural and ensuring the
resilience of this software requires the development of fault tolerance techniques. However, there
are not many tools capable of assessing the fault tolerance properties of these applications. The
existing tools are designed for specific applications.

In this document we will present a latest version of Zermia, a fault injector that can be
used by any application developed with any programming language. It is based on the work
developed by the previous injectors Hermes, Proteus and Zermia, all specialized in the fault
tolerance protocol for distributed systems BFT-SMaRT. Our version generalizes and extends the
usability of the tool to any fault tolerance protocols or any type of application.

For fault injection we use an aspect-oriented programming approach that decorates a given
application function with another function that contains the faulty code. This mechanism makes
it possible to assess an application without changing its source code. However, each language
has its own mechanism for aspect-oriented programming, and in some cases, there are minimal
changes that must be made to the application’s source code.

The faults communicate with a client-server architecture that monitors and coordinates the
injection of the faults into the application. Faults can have multiple trigger conditions, either
application dependent or application independent, as well as being dependent on the injection of
other faults. The user can create custom faults without having to deal with the complexity that
comes from our tool.

Maximizing application performance was the focus of our design. The fault triggering has the
flexibility to be independent and can trigger faults without interactions with our architecture,
which maximizes application performance. However, we designed the tool to decide when it
needs to perform communications between the architecture components, which minimizes the
number of communications to decide on the injection of a fault.

Throughout this document we discuss the architecture concepts, explain the implementation
and usage details, and present injection experiments on two real applications from different
programming languages. The first application was developed in Python and is a single-process
application. The second application was developed in Java and is an implementation of a RAFT

i

fault tolerance protocol that can be used in the implementation of distributed systems.

ii

Resumo

As aplicações desenvolvidas nos dias de hoje são cada vez mais distribuídas, o que contribuí para
um aumento de complexidade das mesmas. A iminência de falhas nestas aplicações é natural e
garantir a resiliência deste software requer o desenvolvimento de técnicas de tolerância a falhas.
Contudo, não existem muitas ferramentas capazes de testar as propriedades de tolerância a falhas
destas aplicações. As ferramentas existentes foram desenhadas para aplicações específicas.

Neste documento vamos apresentar um nova versão do Zermia, um injetor de falhas que
pode ser utilizado por qualquer aplicação desenvolvida em qualquer linguagem. Baseia-se no
trabalho desenvolvido dos injetores precedentes Hermes, Proteus e Zermia, todos especializados no
protocolo de tolerância a falhas em sistemas distribuídos BFT-SMaRT. A nossa versão generaliza
e estende a utilização da ferramenta a várias protocolos de tolerância de falhas ou qualquer tipo
de aplicação.

Para a injeção das falhas utilizamos uma abordagem de programação orientada a aspetos
que decora uma determinada função aplicacional com outra função que contém o código faltoso.
Este mecanismo torna possível testar uma aplicação sem alterar o seu código fonte. No entanto,
cada linguagem tem o seu próprio mecanismo de programação orientada a aspetos, e em alguns
casos existem alterações mínimas que têm de ser feitas ao código fonte da aplicação.

As falhas comunicam com uma arquitetura cliente servidor que monitoriza e coordena a injeção
das falhas na aplicação. As falhas podem ter várias condições de acionamento, dependentes
ou independentes da aplicação, como também podem depender da injeção de outras falhas. O
utilizador pode criar falhas personalizadas sem ter que lidar com a complexidade proveniente da
nossa ferramenta.

Maximizar o desempenho aplicacional foi o principal foco do nosso projeto. O acionamento
das falhas tem flexibilidade para ser independente e poder acionar falhas sem interações com
a nossa arquitetura, o que maximiza o desempenho aplicacional. No entanto, a ferramenta foi
desenvolvida para decidir quando é que precisa de efetuar comunicações entre os componentes
da arquitetura, o que minimiza o número de comunicações para decidir a injeção de uma falha.

Ao longo deste documento discutimos as ideias da arquitetura, explicamos os detalhes de
implementação e de utilização e apresentamos experiências de injeção em duas aplicações reais
e de diferentes linguagens de programação. A primeira aplicação foi desenvolvida em Python

iii

e é uma aplicação de um processo único. A segunda aplicação foi desenvolvida em Java e é
uma implementação de um protocolo de tolerância a falhas RAFT que pode ser utilizado na
implementação de sistemas distribuídos.

iv

Acknowledgments

I want to express my sincere gratitude to who never stopped supporting me during the development
of my dissertation.

I thank the thesis supervisor Professor João Soares for having supported me, for helping me
solve the problems that emerged and for sharing his knowledge with me.

I also thank all my friends for having motivated me during this journey and for helping me
to overcome all the difficulties.

Finally, and the most important thanks, goes to my parents and other family members. My
parents were the biggest pillars for everything to be possible, and to them I want to dedicate all
my academic path and all the success that will follow, for believing in me, for the strength and
love. To the other family members for always wishing the best for me and for always being able
to take the best from me.

v

"Remember to look up at the stars and not down at your feet"

Stephen Hawking

vi

Contents

Abstract i

Resumo iii

Acknowledgments v

Contents x

List of Tables xi

List of Figures xiv

Listings xv

Acronyms xvii

1 Introduction 1

1.1 Motivation . 1

1.2 Proposed Solution . 2

1.3 Contribution . 2

1.4 Organization . 3

2 Background and Related Work 5

2.1 The Two Generals Problem . 5

2.2 The Byzantine Generals Problem . 6

2.3 Distributed Systems Models . 7

vii

2.3.1 Network behavior model . 8

2.3.2 Node behavior model . 8

2.3.3 Timing behavior model . 9

2.4 Fault Tolerance . 9

2.4.1 Replication . 10

2.4.2 Consensus . 11

2.4.3 Crash Fault Tolerance . 12

2.4.4 Byzantine Fault Tolerance . 15

2.5 Fault Injection . 19

2.5.1 Xception . 20

2.5.2 FERRARI . 21

2.5.3 FIAT . 21

2.5.4 Ftape . 21

2.5.5 DOCTOR . 22

2.5.6 PROPANE . 22

2.5.7 Loki . 23

2.5.8 J-SWFIT . 23

2.5.9 LLFI . 24

2.5.10 Discussion . 24

3 Prior Work 25

3.1 Aspect Oriented Programming . 25

3.2 gRPC . 27

3.3 Hermes . 28

3.4 Zermia . 29

3.5 Proteus . 31

4 Design 33

4.1 Zermia Design . 33

viii

4.1.1 Server . 34

4.1.2 Client . 35

4.2 Faults . 35

4.3 Schedulers . 36

4.4 Triggers . 37

4.4.1 Coordinator-based Triggering Model . 38

4.4.2 Agent-based Triggering Model . 38

4.4.3 Hybrid Triggering Model . 38

4.4.4 Independent Triggering Model . 39

4.5 Determinism . 39

4.6 Discussion . 39

5 Implementation details 41

5.1 Coordinator . 41

5.1.1 gRPC service . 45

5.2 Agent . 47

5.2.1 gRPC service . 48

5.3 Hook . 48

5.3.1 Faults . 50

5.3.2 Predefined Faults and Extensibility . 51

5.3.3 Java implementation . 51

5.3.4 Python implementation . 54

5.4 How to assess the behavior of Fault Tolerance protocols 56

5.5 Script setup for compiling and running . 57

5.5.1 Configuration file . 58

6 Experiments 63

6.1 Simple Python application testing . 63

6.1.1 Experimental setup . 63

ix

6.1.2 Baseline . 64

6.1.3 Delay Fault . 64

6.1.4 Range Modification Fault . 65

6.1.5 Delay and Range Modification Faults . 65

6.2 RAFT testing . 66

6.2.1 Experimental Configuration . 66

6.2.2 Baseline results . 66

6.2.3 Crash Fault . 67

6.2.4 Delay Fault . 69

6.2.5 Delaying the Leader Election . 70

6.2.6 Delaying Heartbeats . 70

7 Conclusion 73

7.1 Future Work . 74

Bibliography 75

x

List of Tables

6.1 Baseline results for first leader elected after x milliseconds. 70

6.2 Average results obtained after injected delays. In each "Injected delay", six tests
were performed, and the result of the replicas are in milliseconds. 71

6.3 The total amount of candidates that were established leaders after injecting delays.
Each column represents a replica and the number of times it got elected leader. . 71

6.4 The average results obtained from Table 6.3 that also represent the number of
candidates that became leaders. 72

xi

List of Figures

2.1 The two generals’ problem[1] . 5

2.2 Scenarios of communications lost . 6

2.3 The Byzantine Generals Problem[1] . 6

2.4 Scenarios of malicious intentions . 7

2.5 Paxos agreement mechanism using three nodes with all roles and supporting one
node crash . 13

2.6 Raft server states[2] . 14

2.7 Pratical Byzantine Fault Tolerance (PBFT) normal case operation using four
replicas and one faulty node[3] . 16

2.8 PBFT view change using four replicas node[4] . 17

2.9 BFT-SMART normal phase message pattern[5] 18

2.10 BFT-SMART synchronization phase message pattern[6] 19

3.1 gRPC overview[7] . 27

3.2 Hermes’s architecture[8] . 29

3.3 Zermia architecture[9] . 30

3.4 Fault schedule example through command line [9] 30

3.5 Proteus architecture [10] . 31

4.1 Overview of the latest Zermia architecture . 34

4.2 Zermia’s fault triggering models . 37

5.1 Zermia framework hooked in application . 49

xiii

5.2 Fault abstraction . 50

6.1 Simple Python application experiments . 64

6.2 Performance obtained by 1 million requests . 66

6.3 Performance obtained by 1 million requests by injecting a crash at specific points
(Cluster of four nodes (C4) configuration) . 67

6.4 Performance obtained by 1 million requests by injecting a crash at specific points
(Cluster of six nodes (C6) configuration) . 68

6.5 Results obtained through C4 . 69

xiv

Listings

3.1 Simple example of an aspect implementation using AspectJ 27
3.2 Service declaration from proto files[7] . 28
5.1 Running the Coordinator on port 9090, using 4 agents and the settings for the

fault schedules in the agents_config.json file . 41
5.2 An Agent Fault Schedule Configuration File Example 42
5.3 Widespread configurations example . 44
5.4 Coordinator service interface (gRPC methods) 45
5.5 Protocol Buffers messages for AgentConnectionReply 45
5.6 Protocol Buffers messages for dependencies validation 46
5.7 Protocol Buffers messages for fault execution notifications 46
5.8 Running Agent on port 9000, defining the IP and port to listen on by the Coordinator 47
5.9 Running Agent on port 9000, with fault schedule settings in the agents_config.json

file and assuming an Agent-based Triggering Model 47
5.10 Agent configuration file example agents_config.json 47
5.11 Agent service interface (gRPC methods) . 48
5.12 Crash Fault Java implementing following the example shown in Listing 5.10 . . . 52
5.13 Bootstrap Fault Java example . 53
5.14 Agent configuration file example agents_config.json 54
5.15 Zermia framework compile command for Java . 54
5.16 Crash Fault Python implementing following the example shown in Listing 5.10 . 54
5.17 Associating a Crash Fault to a target method in Python 55
5.18 Bootstrap Fault Python example . 56
5.19 Associating the Boostrap Fault to the main method in Python 56
5.20 Running experiences from setup Zermia script . 57
5.21 Script configuration file for Python applications 60
5.22 Script configuration file for Java applications . 61

xv

Acronyms

BFT Byzantine Fault Tolerance

CFT Crash Fault Tolerance

PBFT Pratical Byzantine Fault Tolerance

RPC Remote Procedure Call

AOP Aspect Oriented Programming

TLS Transport Layer Security

FLP Fischer, Lynch and Paterson theorem

FI Fault Injection tools

SFI Software Fault Injection

CPU Central Process Unit

EGM Experiment Generation Module

ECM Experiment Control Module

FIA Fault Injection Agent

DCM Data Collection Module

PSC PROPANE Setup Creater

PCD PROPANE Campaign Driver

PL PROPANE Library

PDE PROPANE Data Extractor

GUI Graphical User Interface

LLVM Low Level Virtual Machine

EDC Egregous Data Corruptions

DSL Domain Specific Language

JAR Java ARchive

JVM Java Virtual Machine

DDoS Distributed Denial of Service

JSON JavaScript Object Notation

OOP Object Oriented Programming

JDK Java Development Kit

RAM Random Access Memory

YCSB Yahoo! Cloud Serving Benchmark

C4 Cluster of four nodes

C6 Cluster of six nodes

SSH Secure Shell

IP Internet Protocol

UML Unified Modeling Language

NFS Network File System

xvii

Chapter 1

Introduction

Facing the new industrial revolution that accompanies the constant innovations and evolution
of technology, computing power plays a key role in the services provided by organizations
today. Large-scale applications use the decentralization of resources and services to increase
computational power. However, this contributes to an increase in their complexity.

Distributed systems are distinguished by their better dependability. These systems need to
have resilience to different communication problems, for example latency and message corruption.
This requires applications to be assessed and validated in realistic scenarios, which include faults.
Even if one node fails or one communication fails, then there is the possibility that the remaining
computers will be able to perform the work intended for the failing node. Thus, it allows the
system to behave correctly and would still be operational even when some node is not cooperating.
That said, a distributed system is a system that is known to be fault tolerant.

1.1 Motivation

Achieving the fault tolerance property is one of the great challenges of distributed systems. How
can system perform operations in such a way that it can tolerate faults? Over the years, the
academic community has been implementing fault tolerance algorithms for distributed systems, for
example Byzantine Fault Tolerance (BFT)[3, 5, 11, 12] and Crash Fault Tolerance (CFT)[2, 13].
However, these algorithms have complex implementations that makes it difficult to rely on the
security properties to adopt them in real application scenarios. To assess the security properties
of these protocols, it is used fault injection tools that can emulate specific practical attack
scenarios, and thus evaluate whether the system behaves correctly as expected or, on the other
hand, whether the security properties can be violated and consequently compromise the system.

However, we consider that the existing fault injection tools are quite dependent on the
application context, because too often their design is specific for test one application. They
end up missing the necessary features to successfully assess the properties that a distributed
system demands, or they are exclusively designed to assess a protocol and/or are specific to a

1

2 Chapter 1. Introduction

programming language. Therefore, we consider that no extensible tools are available that can be
adapted in a generic way to fault tolerance protocols.

Our research work is based on the implementation of a fault injection tool that is extensible
to any fault tolerance protocol, to any language and that allows the user to have freedom to
customize the tests they want to run.

1.2 Proposed Solution

In this dissertation, we present a latest version of Zermia, a fault injection tool that improves
on previously presented solutions (Hermes[8] and Zermia[9]) with a focus on flexibility and
extensibility.

This latest version of Zermia uses gRPC technology to make Remote Procedure Call (RPC)
between the several components of the tool and Aspect Oriented Programming (AOP) paradigm,
used in the previous versions, as a fault injection mechanism through aspects. However, the
previous versions are specific for the BFT-SMaRt protocol, which makes it quite difficult to
adapt the implementation to other types of fault tolerance protocols.

The improvements made in our research involve changing the tool design to make it more easily
portable for testing other fault tolerance protocols and to make it usable in more programming
languages, by making this portability happen with the implementation of as little code as possible.
We also introduced deterministic mechanisms to implement fault dependencies within a single
node or across multiple nodes of the target system, which allow the creation of a synchronization
phase between a set of faults to achieve a coordinated attack that comes from different nodes
and different causes. To make this possible, we create abstraction mechanisms regarding the
faults implementation that need to be developed on the user’s side, allowing the customization
of faults which is independent of Zermia’s structure, so that the user does not have to worry
about the faults synchronization when developing the faulty code.

Also, our solution can leverage the work previously developed in the Proteus[10] injector to
automatically generate the code that the user would have to develop.

1.3 Contribution

The contributions made by this research were as follows:

• Identifying the Zermia older versions limitations.

• Modifying the design to increase the flexibility and extensibility of the fault injection tool.

• Development of deterministic mechanisms to synchronize and coordinate fault injection.

1.4. Organization 3

• Development of fault abstraction mechanisms that allow faults customization by the user.

• Building an independent client-side component specifically for fault injection.

• Independent client-side component implementation in Java and Python languages.

• Building a script for running test experiments through configuration files.

1.4 Organization

The following structure is used in this document. Chapter 2 presents and discusses the state of
the art and related work. It describes models and problems in implementing distributed systems,
explores replication and consensus mechanisms that are used in the implementation of fault
tolerance protocols, and finally discusses some existing fault injection tools. Chapter 3 presents
the prior research work that serves as a background to our research, as well as the technologies
they use to implement fault injection mechanisms. Chapter 4 we presented our design for a
latest version of Zermia, the responsibilities of each component of our tool, and a trade-offs
discussion that led to the final decision to change Zermia’s architecture. Chapter 5, discusses the
implementation details of the tool, presents fault development in Java and Python languages,
and finally presents a script for automatic local execution experiment in Java applications and
Python applications. Chapter 6 we evaluate the effectiveness of the tool by testing different
applications. We demonstrate the use of the tool by evaluating a single-process application
developed in Python. Finally, we adapted some tests done in past Zermia investigations and
analyzed the efficiency and robustness of the Raft protocol in a Java implementation. We follow
this in Chapter 7, analyzing the results and describing the future work that can be done.

Chapter 2

Background and Related Work

In this section we describe two faulty experiences of classical thoughts, the most relevant
approaches to troubleshoot and ensure the operation and security of a distributed system, present
certain fault-tolerant protocols, and discuss some fault injection tools that allow emulation of
communication and component faults to assess the resilience of systems security assumptions.

2.1 The Two Generals Problem

Figure 2.1: The two generals’ problem[1]

The faulty experience of the two generals problem presents in Figure 2.1, where we have two
armies and each controlled by a general, the goal is to attack and capture a city. If the armies
cannot do a combined attack, that is, if the armies attack one at a time, then the city’s defenses
will defeat them. Therefore, if both intend to attack, it is important that they attack at the
same time, so they know they will win. To coordinate attacks, the generals exchange messages
but when a message is sent from one general to another, that message may or may not reach its
destination.

As illustrated in Figure 2.2a, General 1 decides to attack on November 10 and communicates
his intention to General 2 asking him if he agrees. General 2 receives the message, agrees, and
responds affirmatively to General 1’s plan. Unfortunately, General 1 will not receive a reply.

In Figure 2.2b we see another scenario of what can happen, General 1 decides to attack on
November 10, but the initial message is lost and will never reach to General 2. Now, general 2

5

6 Chapter 2. Background and Related Work

(a) Missing response on a date plan[1] (b) Date plan message lost[1]

Figure 2.2: Scenarios of communications lost

will not receive any message and therefore will not send any response.

In both cases, what General 1 observes is that there is no response to his attack intention.
That said, this problem lies in what General 1 should do. However much the odds increase
by sending countless messages so that some get to their destination, it is in fact impossible to
solve this problem. In distributed systems, this problem is called no common knowledge[14].
However arbitrary chain confirmation messages may be constructed, the result will always be the
uncertainty that we will never know if the messages arrived correctly at the destination.

2.2 The Byzantine Generals Problem

There is also the faulty experience of The Byzantine Generals Problem[15], which we can see in
Figure 2.3. Like The Two Generals Problem, we also have armies, generals who command armies
and who want to attack a city simultaneously and who communicate through messages for this
purpose. However, in this problem we have three armies or more.

Figure 2.3: The Byzantine Generals Problem[1]

TThis problem is easier on one hand because it is assumed that the communications are
dependable. Therefore, any message sent will be received. However, the problem becomes more

2.3. Distributed Systems Models 7

difficult when we assume that generals can be traitors. The messages can be corrupted or generals
can send different messages to each of them, which could compromise the honest generals actions.
Still, what is intended is that the honest generals come to an agreement on the city attack.

In Figure 2.4a example, trivially, we note that General 2’s behavior is malicious because he is
claiming that General 1 sent him a message to retreat when in fact, General 1 sent a message to
attack. Unfortunately, from General 3’s perspective, it is not trivial to identify what is happening.
In Figure 2.4b, we have another example of different messages exchanged by General 1 and
General 2, and the General 3 perspective is exactly the same as in Figure 2.4a.

(a) General 2 acting with malicious intentions[1] (b) General 1 acting with malicious intentions[1]

Figure 2.4: Scenarios of malicious intentions

Leslie Lamport et al[15] argue that up to f malicious generals in a total of n generals, where
the honest generals don’t know which ones are the malicious generals and the malicious generals
can work in coordination to fool the honest generals, it takes n ≥ 3f + 1 generals to tolerate
f malicious generals and to make sure that the honest generals can agree on a plan. In other
words, the number of malicious generals must be less than 1

3). To tolerate a system with one
malicious general, we need at least four generals.

2.3 Distributed Systems Models

Through the experiments above, we have been able to obtain a perception of some problem types
that can emerge when we talk about distributed systems. In the problem of the two generals, we
can observe the network behavior model and in the problem of the Byzantine generals we observe
the nodes behavior model. To design secure distributed systems means designing a system where
we assume that both network and nodes can do things wrong in any diverse ways[1, 16]. Any
distributed system algorithm needs to have assumptions of system behavior properties, such as:

• Network behavior

• Node behavior

• Timing behavior

8 Chapter 2. Background and Related Work

2.3.1 Network behavior model

Typically, these systems have a bidirectional peer-to-peer communication. That is, any node in a
link between two nodes, can play the role of sender or receiver. Thus, we must create assumptions
to determine how dependable these links are.

The simplest model to develop is when we assume that are perfectly reliable links. That is, a
link does not lose messages during communications. Realistically, this is a strong assumption,
since in practice connections are not dependable to this extent.

Another assumption we can make is to assume fair-loss links. That is, messages can get
lost, can be reordered, or even duplicated. However, if there are an infinite number of sending
attempts the message will eventually be delivered to its destination, but it is impossible to
determine how long it takes to be delivered.

The weakest assumption we can make is to assume arbitrary links where we assume the
presence of an adversary in the link. The actions that the malicious actor can perform are
intercept, modify, drop, spoof, or replay messages.

With awareness of these three network behavior models, it is possible to convert one model
into another. Assuming a fair-loss link, it can be converted into a reliable link if we assume that we
will constantly try to send the message until the receiver receives it. It is also feasible to convert
an arbitrary link into a fair-loss link if we use a cryptographic protocol in the communication,
such as Transport Layer Security (TLS). By implementing this protocol, we would have a
tamper-resistant communication. After the TLS established communication links, all traffic is
encrypted, which results in resilience against interference from external actors.

2.3.2 Node behavior model

Nodes can also fail in diverse ways. The first type of fault we can consider is a crash fault.
Abstractly, in a crash-stop we are assuming that a process can crash at any time, and once it
crashes it will never execute again.

A second potential assumption we can make is to assume that after the crash, the node can
eventually recover execution after some period. Thus, any information kept in ephemeral memory
is lost. However, information that is kept in stable memory (such as disk storage) is preserved
after the crash.

The last behavior model we can assume for nodes is the Byzantine model. As we saw earlier
in the Byzantine general’s problem, we assume that a node is faulty if it deviates from the correct
behavior defined in its algorithm. Without constraining its behavior, a faulty node can take any
kind of action to try to tamper the system state.

2.4. Fault Tolerance 9

2.3.3 Timing behavior model

After we have assumed the node and network behavior models, to be able to detect failures we
need to assume time synchronization aspects for both the nodes and the network.

In a synchronous system model, it is assumed that after a message is sent, there is a maximum
message delay boundary that will define whether the message has been delivered or has been
lost in the network.It is also assumed that the nodes follow the algorithm by executing each
instruction with a well-known speed, and thus there is a maximum time bound for them to
succeed in the algorithm execution.

Another assumption that can be do, is a partially synchronous model[17], where in some
finite time periods the system may experience asynchronous states (i.e., periods where there are
no upper time bounds), and in different periods it may experience synchronous states.

Finally, in an asynchronous system model there are no time guarantees. That is, we did not
assume time constraints for either the message delays or the processing execution. In both cases,
there is the possibility of extensive time delays.

The timing model is the most difficult assumption to define in a distributed system. The
asynchronous model is good because we do not have to set time bounds, but there are types
of problems that cannot be resolve without assuming these time bounds. And even then, it is
dangerous to assume that the time bounds will always be met. Too many vulnerabilities expose
the security of distributed systems due to these time constants implemented in each algorithm.
The partially synchronous model tries to perform a kind of compromise between the synchronous
and asynchronous model to sensitize and smooth out these timing problems.

2.4 Fault Tolerance

In distributed systems, there is a differentiation between failure and fault. When a certain system
node is not working as intended, we have a fault[18]. The faults can happen for several reasons
and relative to several node components or to the network. When the system as a whole is not
working, we have a failure.

That said, if we allow parts of the system to fail momentarily, then paradoxically we increase
the system resiliency by avoiding a Single Point of Failure (SPOF), such as a node or a network
link whose fault leads to failure and the system becomes unavailable. This is one of the main
reasons for using state machine replication mechanisms. Through replication[19], we can obtain
system information copies by multiple nodes. One replica (i.e., node that contains a data copy)
can be faulty, but we still have the necessary system data accessible and available on the remaining
replicas.

Nevertheless, fault tolerance protocols should implement fault detection algorithms[20]. The
method for detecting and treating faults is through heartbeat timeouts. Replicas send periodically

10 Chapter 2. Background and Related Work

messages to each node, and if there is no response from a certain replica during the stipulated
time, then the node is faulty labeled. However, this way of detecting faults through timeouts,
does not define the type of fault present in the system if we consider partially synchronous or
asynchronous systems. It becomes impossible for the sender to know why his message did not
have any reply. For example, the timeout response may fail because messages lost or delayed in
the network, or because the node simply crashed.

Consensus algorithms focus on trying to detect the types of faults that may occur. Through
timing mechanisms, these algorithms use fault detection and total order broadcast messages
mechanisms where, with the information from all nodes, they try to reach a general conclusion
about what may have happened in the possible presence of a fault.

2.4.1 Replication

Replication is a technique that provides a system dependability by creating data redundancy
across multiple nodes[18]. If one node is unavailable, replication provides fault tolerance, and the
information is accessible on the remaining nodes.

Another reason for implementing replication is load balancing. If a system carries too many
clients, from various places around the world, and all requesting the same information content, it
will lead to an overload for just a single node. Having the same information content on multiple
nodes allows for efficient load balancing and makes the system able to manage more requests
from more clients, which is important in large scale services.

Therefore, replicating static information is trivial. However, replicating information that is
constantly having updates to multiple nodes becomes much harder and requires incredibly careful
processing to ensure the data integrity. To perform dynamic data updates across all replicas it is
necessary to deal with request deduplication and solve inconsistency problems that may arise[21].

The deduplication scenario[22] occurs when you send a message to a node with updated data
and for whatever reason the acknowledgment reply does not reach the sender. Without this reply,
the sender sends the data update again and so we may be updating already updated data, which
can lead to unrealistic data states. To solve these problems timestamp sorting and broadcast
algorithms mechanisms can help to manage request deduplication.

All this makes replication a strong mechanism for security, availability, and data protection.
However, as we saw above, it is necessary to tolerate certain faults and to solve concurrent
problems[23] that can lead to inconsistent data states in the set of replicas. Several algorithms
have been adopted to solve these issues, namely consensus algorithms[24], which are nothing
more than algorithms for sending and receiving messages to all nodes belonging to the system
(broadcast messages) to implement state updates in all replicas and thus allow the full operation
and security of a replicated/distributed system.

2.4. Fault Tolerance 11

2.4.2 Consensus

In a state machine replication system, where replicate servers allow fault tolerance[19], its
operation is based on the interaction and decisions made by its set of nodes, it is necessary to
create a communication procedure where the system reaches an agreement[25] regarding the
system data derived from the actions performed by the clients. This procedure must ensure
reliability in the nodes network, the liveness of the system, the system information consistency,
and the availability in response to requests from the system’s clients. The combination of these
aspects is what characterizes a consensus algorithm in distributed systems and is one of the
most critical parts of design and implementation of such system. Because it involves too many
components, because it deals with conflicting concurrent situations, the coordination of their
states increases implementation complexity, and it becomes quite difficult to assess and ensure
the system’s correct operation.

One consensus implementation problem is to secure message propagation order. In certain
conflicting concurrent moments, where a node may receive several messages coming from different
nodes, and each message requires a new update on the same information element, if the messages
do not follow a well-defined order, some updates may be lost by rewriting updates on the same
element state.

To solve this issue, we use total order broadcast algorithms[26] which can either choose
symmetric or asymmetric approaches. The symmetrical approach is where any replica node
server is allowed to respond to client requests, then the request is propagated to the remaining
nodes and they must reach a consensus value so that the receiver node can then reply to the
client. The assymetrical approach is where a leader or a set of leaders from all the nodes is
allowed to respond to requests. One node is referred as the leader and whenever any node wants
to send any message, that message is sent back to the leader and the leader relays it to all system
nodes. So when the leader/receiver node propagates the messages, trivially it can be assumed
that as it relays the messages it is creating an order since it is not possible to propagate all the
messages it receives in the same time frame.

The consensus protocol also is responsible for ensuring data consistency. Because of network
problems that can occur and conflicts in concurrent data accesses, these protocols must be able
to have mechanisms to ensure data integrity. To solve inconsistencies, these protocols implement
atomic state transactions. Through atomic commitment protocols[27], a data update is effective
when all nodes or a quorum of nodes have committed the update. Thus, whenever a node is
ready to store data, it notifies the others. When a particular node receives notifications from all
nodes, or depending on specifications, notifications from a quorum of nodes, it finalizes the state
change by notifying system nodes that they can commit their new state. This procedure makes
sure that updates do not happen instantaneously on each node but in a coordinated way.

As we saw above, consensus protocols implement mechanisms that require coordination. All
nodes must reach a certain conclusion or agreement to ensure safety properties. Furthermore,
any kind of coordination must respect time constraints to ensure decision termination and,

12 Chapter 2. Background and Related Work

consequently, the system’s liveness[28]. Finally, data validation and integrity should depend on the
system’s assumptions on the type of fault tolerance by nodes, network, and timing synchronization.
The next section discusses consensus protocols that implement different distributed system models.

2.4.3 Crash Fault Tolerance

Crash Fault Tolerance (CFT) is one resiliency level, where the system can still correctly reach
consensus if components fail. Having n nodes in your consensus system CFT capable to withstand
up to n

2 such crashes.

In this model there is (optimal) quorum of n
2 + 1 which must agree on certain value, which

means if n
2 + 1 nodes are available, the system have a majority quorum that will be able to reach

agreement. Therefore„ CFT system requires 2f + 1 nodes to tolerate f failures.

Like we said before, it is necessary to base system security on assumptions. CFT model
guaranties resilience of crash nodes or network partitioning. However, it cannot guarantee
anything in presence of malicious actors.

The Fischer, Lynch and Paterson theorem (FLP) impossibility[29] showed that for asyn-
chronous timing models, which means there is no known bound on message delay and no known
bound on processing speed, is impossible to guarantee termination. Because the algorithm
cannot distinguish a crash fault from a delayed message. To circumvent this problem, the most
mechanism widely used so far is a momentary synchronization periods. This makes CFT based
systems assume the partially synchronous timing model.

The implementation of CFT algorithms has evolved over the years and new protocols will
most probably emerge. Without going into comparisons of the best algorithm to date because
it would be impossible to highlight all of them, we would like to highlight the most popular
algorithms that continue to serve as the foundations for the implementation of new ones. These
are Paxos and Raft, which we will now explain in more detail.

2.4.3.1 Paxos

Paxos[13] is a consensus algorithms family that define three classes of agents: proposers, acceptors,
and learners. The proposers are who propose values to reach consensus and sends it to a set of
acceptors. The acceptor is who contribute to reaching the consensus itself, so may accept the
received value or reject it. Finally, the learner is who learn the agreed upon value by adopting
the value when a large enough set of acceptors have accepted it. In an Paxos implementation,
nodes can take multiple roles (even all of them), they must know how many acceptors a majority
is, and they cannot forget what they accepted.

A Paxos run aims at reaching a single consensus, so the algorithm can only agree on one
value. Once the algorithm reaches on a certain value, it wont progress to any other consensus

2.4. Fault Tolerance 13

(i.e., any other different value). Which means, if we want agreement on multiple values, differents
Paxos run must happen (Multi-Paxos implementation). The solution to do this is to have a
replicated positions log and whether we want an agreement on another value, the algorithm will
start a new Paxos run that will be on next log position. Thus, the set of logs will record all
agreement values that were made by the nodes.

Figure 2.5: Paxos agreement mechanism using three nodes with all roles and supporting one
node crash

Figure 2.5 shows how the Paxos algorithm works. Proposer 1 wants to propose a certain
value. It will need to select a unique identifier ID (usually timestamps are used) and it sends a
PREPARE request using that identifier. After sending, it will wait for responses and, if in a
certain time (i.e., a timeout occurred) it does not receive any response, this proposer will retry
the PREPARE message with a new higher identifier.

Acceptors receives the PREPARE message using ID as identifier and if that identifier is
greater than another identifier received by PREPARE messages, then they reply to the request
with a promise that they will not accept any more proposals using identifier less than ID (i.e.,
they will ignore PREPARE messages using less identifiers). When Proposer 1 gets a majority of
PROMISE messages for the specific identifier ID, it sends ACCEPT-REQUEST messages to
acceptors using promised identifier ID and the value VALUE that it wants to propose to the
system. Acceptors receives ACCEPT-REQUEST message and, if they have not promised to
ignore the message’s identifier ID, they reply with an ACCEPT message containing the identifier
ID and the value VALUE. After that they relay this message for all learners’ nodes. If a acceptors
majority accept the ID,VALUE association, an consensus is reached on value VALUE. When a
proposer/learner gets accept majority (in Figure 2.5 scenario is when you get two accept messages
) for a specific identifier ID, they know that a consensus has been reached on that value VALUE.

In Figure 2.5 after the PREPARE ID+1 message we illustrate the case when the Proposer 2,
that is not consensus aware, wants to propose a value into the system. If it sends a PREPARE
message with an identifier smaller than ID, the acceptors will ignore the message and it will
have to increase the identifier. If it sends a PREPARE message containing a higher identifier
ID+1, the acceptors have not promised to ignore this ID+1, and they respond with a PROMISE
message containing the identifier ID+1, the value VALUE and the identifier ID that they have
accepted in the past. As soon as the proposer receives a PROMISE messages majority for the
identifier ID+1, it checks if any values have been accepted in these messages. If no values have
been accepted, then it can propose the value it wants. Since there was a previously accepted

14 Chapter 2. Background and Related Work

value, Proposer 2 must choose the value containing the highest identifier, which in this case will
be the identifier ID and the value VALUE. Then, it sends ACCEPT-REQUEST messages with
the new identifier ID+1 but with the previously chosen value VALUE.

Finally and again, acceptors receives the ACCEPT-REQUEST messages using an identifier
greater than one they know, so they can’t ignore this messages, and reply with an ACCEPT
message using the identifier ID+1 and the value VALUE. Lastly, Proposer 2 receives ACCEPT
messages and figures out what the consensus was.

2.4.3.2 Raft

Raft[2] is a Paxos successor, and it is an algorithm that is more easily explainable and efficient.
This algorithm implements consensus by electing a distinguished leader and giving him complete
responsibility for managing the replicated log. The leader accepts log entries from clients then,
when its safe to apply log entries to their state machines, replicates them on other servers. Raft
defines three entities on system: leader, candidate, and follower. The leader manages all client’s
requests. Candidates have the responsibility to elect a new leader. Followers is a passive entity,
and they simply reply to request from leaders and candidates.

Figure 2.6: Raft server states[2]

Figure 2.6 represents the required leader election procedures and leader modification in case
an elected leader node presents faulty behaviors.

To detect faults, this algorithm uses constant timeouts by reply. Particularly, a heartbeat
mechanism to trigger leader election. When one node becomes Candidate and starts a leader
election, there is a risk of getting more than one leader simultaneously in system overview, which
is quite dangerous because they can take contradictory actions. To avoid this situation, Raft
uses term sequencers. A leader node election occurs ins a certain term. Whenever there are
new elections, the candidate’s nodes will increment the current term. Using this approach, it is
possible to restrict leaders in certain term to a maximum of one. A fault in leader election can
happen, which means that a term has no leader at all, but there will never be more than one
leader in any term.

2.4. Fault Tolerance 15

In this election procedure, each node in system has chance to vote only once in each term
and there is no chance to change the vote, since it would imply to be voting again in the same
term. Thus, to elect a leader in the system requires a majority votes in which a quorum of nodes
vote for a particular leader node in a specific term. That said, someone should be careful about
who has permissions to insert new nodes into the system’s set of nodes. Otherwise, the system
can be vulnerable to Sybil attacks[30], where malicious actors create multiple anonymous nodes
to form a quorum of nodes that can achieve a majority vote and thus control and manipulate
consensus decisions.

Raft guarantees that there is only one leader node in each term, however it cannot guarantee
that there will not be multiple leaders in different terms. When a leader node for whatever reason
cannot communicate with other nodes, he does not know that there is a new elected leader and
naturally assumes he is the leader, since the last communication suggested this scenario. Thus,
we have one leader in term t and another leader in term t + 1. To deal to the fact that there
may be different leaders on different terms at the same time in system, there is a constraint on
when a leader wants to communicate to other nodes. In this circumstance, the leader does not
decide exclusively for himself and will again have to ask a majority quorum of nodes if in fact
he the leader of all the nodes is still, and thus has authority to deliver new messages with new
values and elements for system information. The remaining nodes will reply affirmatively, if they
do not have a different leader, who will naturally have a longer term (i.e., more recent).

2.4.4 Byzantine Fault Tolerance

Byzantine Fault Tolerance (BFT) appeared in the Byzantine Generals Problem paper[15]. Like
we explained above, the analogy also fits the consensus topic because the generals must act
together. This paper comes with a conclusion that the generals can not make the decision unless
the number of generals is greater than three times the number of malicious actors. If we correlate
the malicious actors with faults tolerated by the system, and the general’s number with system
nodes number, then we can claim the system cannot work safely unless n ≥ 3f + 1.

The key differences to CFT model are in assumptions and fault model, CFT can withstand
up to n

2 system faulty nodes, while no guarantees on adversary nodes. BFT provides guarantees to
withstand and correctly reach consensus in presence of n

3 failures of any kind including Byzantine.
. This kind of protocols assume that faulty nodes are not able to break cryptographic primitives
and consequently cannot impersonate correct nodes.

Recently, blockchain applications[11, 12, 31, 32] adopt this BFT approach. In a blockchain,
consensus is also paramount. The blockchain power is a shared source of truth. If distinct parts
of the network have different blockchain states, they can no longer work together.

16 Chapter 2. Background and Related Work

2.4.4.1 PBFT

Miguel Castro et Barbara Liskov[3, 4] published a solution to the Byzantine Generals problem[15].
Pratical Byzantine Fault Tolerance (PBFT) can solve consensus when considering Byzantine
faults and it tolerates less than 1

3 Byzantine faults. Traditionally, the system can tolerate f
Byzantine faults, where there are n ≥ 3f + 1 total nodes.

Practical Byzantine Fault Tolerance algorithm can implement any deterministic replicated
service with a state (a state machine that is replicated across different nodes in a distributed
system) and some operations. In this service, clients issue requests to invoke operations and
block waiting for a reply.

The original paper showed that it is also efficient when integrated with standard unreplicated
Network File System (NFS). The resulting BFT-NFS is only 3% slower, even though it can now
withstand Byzantine faults. However, the algorithm does not address the problem of fault-tolerant
privacy[33], where a faulty replica may leak information to an attacker.

Figure 2.7: PBFT normal case operation using four replicas and one faulty node[3]

As it can be seen in Figure 2.7, PBFT algorithm consists of three phases on normal case
operation: pre-prepare, prepare and commit. During normal operation, there is a primary replica
that is associated with the corresponding view number. The view number is for tracking the
current primary node of the system (like the Raft terms).

It begins when clients submit a request to primary node containing a timestamp and current
view number. The primary node is responsible for receive requests from the client and to
broadcast them to the remaining replicas nodes. If primary does not broadcast it, the other
nodes will suspect her of misbehavior, causing a view change and another replica tries to take
over his place by starting an election process and increasing the view number.

In pre-prepare phase, primary node 0 sends out Pre-Prepare messages to every replica in
the network. A replica accepts the Pre-Prepare message so long as its valid. Messages contain
a unique sequence number assign to each of their view, like the proposer identifier in Paxos.
They also contain signatures that lets nodes determine message validity. If a node accepts a
Pre-Prepare message, it follows up by sending out a Prepare message to every node. . The

2.4. Fault Tolerance 17

receiving nodes accepts the Prepare messages so long as they are valid, again based on sequence
numbers and signatures

PBFT considered a node prepared where it has seen the original request from the primary
node, has pre-prepared and has seen 2f (where f is the number of Byzantine faults) Prepare
messages that match it pre-prepare phase. These two first phases guarantee that non-faulty
replicas agree on a total order for the requests within a view.

After nodes have prepared, they send out a Commit message. If a node receives f + 1 valid
Commit messages, then they conduct the client request and, finally send out the client reply.
Since the system allows for at most f faults, the client needs to wait for f + 1 of the same reply
and this ensures the response to be valid. After this, client gets the correct response.

Figure 2.8: PBFT view change using four replicas node[4]

In order to handling leader crashes or doing some malicious activity, to kept the protocol
to progress after failing, the view change presented in Figure 2.8, gets triggered by timeouts
that prevent replicas from waiting indefinitely for requests. A timer starts after receiving a
pre-prepare message. After it expires, the replica moves the system to view v + 1. It stops
accepting messages and broadcast a View-Change message to every replica. After receiving 2f
responses, the replica should be the new primary and for this work, it will broadcast a New-View
message followed by a set of Pre-Prepare messages. The replicas will receive these messages, and
they will broadcast them to all other replicas if they accept the received messages.

2.4.4.2 BFT-SMaRt

BFT-SMaRt[5, 6, 34] is a BFT leader-based state machine replication protocol and it was the
protocol used in previous research to assess the developed fault injection tools and fault tolerance
BFT-SMaRt behavior. Considering a system composed by n ≥ 3f + 1, where it can tolerate a
maximum of f replicas subjected to Byzantine faults. It has a partial synchrony model because it
requires synchrony to provide liveness. So, only when the system goes through synchronous states
is that it guarantees the termination of protocol execution. Also, it assumes that all processes
communicate through reliable and authenticated channels (i.e., fair links with retransmission
and cryptographic operation that provide digital signatures[35] and message authentication
codes[36]).

18 Chapter 2. Background and Related Work

Similar to PBFT, the normal operation of BFT-SMaRt consensus instance uses the three-
phase commit procedure we saw earlier to agree on a proposed value, as illustrated in Figure 2.9.
When a consensus instance has decided a value, each replica replicated log will record the commit
operations, along digital signatures of the involved replicas.

Figure 2.9: BFT-SMART normal phase message pattern[5]

Initially, normal phase starts with a client sending requests to all replicas containing a signature
and a sequence number. Correct replicas will consider requests only if the message contains a valid
signature and the expected sequence number. That said, the first phase starts when the leader
sends a PROPOSE message with a batch of operations to be decided for other replicas. During
each of the remaining phases, the procedure goes through an all-to-all communication exchange
where the replicas exchange WRITE and ACCEPT messages, containing a cryptographic hash
relative to the batch of proposed operations. Finally, all the correct replicas sent a reply to the
client.

BFT-SMaRt assumes that correct replicas concurrently respond to the current consensus
instance i and the previous consensus instance i − 1. This ensures that a correct replica that is
running instance i − 1 and is not running instance i will be able to finish instance i − 1 because
there will be n − f correct replicas running instance i − 1. However, due to the asynchrony of the
system, there is a possibility that the replicas receive messages regarding instances of different
consensus (i.e., smaller than i − 1 or larger than i). Replicas store early messages (messages
with consensus instance greater than i) for future processing and discard outdated messages
(messages with consensus instance lower than i). As soon as these conditions are not satisfiable,
the synchronization phase starts.

The synchronization phase, illustrated in Figure 2.10, starts when two timeouts are triggered
referring to a request made by a client, or when the system goes through an asynchronous period.
To try to prevent leader changes, when the first timeout occurs, replicas forward the requests to
all replicas. The reason for trigger timeouts may have to do with a faulty client, which may have

2.5. Fault Injection 19

Figure 2.10: BFT-SMART synchronization phase message pattern[6]

sent the request only to a subset of replicas smaller than n − f (which is not sufficient to ensure
agreement progress). This forward procedure forces requests to reach all replicas in the system.

If there is a second timeout for the same request it is because leader has not delivered the
client requests to other replicas. This phase causes a regency exchange (regencies is equivalent to
views in PBFT) and forces a state synchronization between the correct replicas, i.e., makes all
correct replicas be in a same consensus instance state. Consequently, as we see in Figure 2.10,
the decision procedure (i.e. normal phase) stops by sending a STOP message to all replicas,
which indicates the new leader replica. As soon as a replica receives more than f STOP messages,
it knows that at least one correct replica has started the view change.

When a replica receives more than 2f STOP messages, it will proceed locally to the regency
change. However, it is necessary that all replicas are at the same state to make a peaceful change.
To synchronize their logs, all replicas, including the new leader, provide their decision logs by
sending a STOPDATA message to the new regency leader. The leader checks if all decision
values in logs are valid and when it receives at least n − f valid STOPDATA messages, it sends
a SYNC message to all replicas containing all information collected about consensus instances.
After a replica receives a SYNC message, it performs those same operations provided by the
leader. Finally, all correct replicas are at the same state and normal phase can resume.

2.5 Fault Injection

Faults may derive from hardware or software problems. At any moment, these faults will trigger
due to user activities or by internal activities within the hardware/software systems architecture.
The outcome that a fault can lead to depends on its severity and the system type. Independently
of the developed system, we should be aware of which kind of faults that exposes the system.

20 Chapter 2. Background and Related Work

We should assess the faults impact to determine if a system is vulnerable[37].

In fault-tolerant systems this testing procedure becomes even more important. We can gear
the systems up to react to faulty adversities and respond with correct behaviors. However,
the creation of well-coordinated fault chains intended to deceive and manipulate such systems’
algorithms is always difficult to predict. For this reason, assessing such systems’ algorithms
in presence of recurrent faulty environment is vital to ensure any system reliability[38]. Fault
injection testing is a technique that tests system resiliency in real-world scenarios that may occur
through forced fault injection, to provide an evaluation of the outcome (i.e., the systems’ recovery
paths) and a risk analysis to identify vulnerabilities in systems design and implementation.

Fault Injection tools (FI) can be hardware-based, software-based, or use a hybrid hard-
ware/software approach. Hardware methods can inject faults at the physical level into chip
pins and internal components, such as combinational circuits and registers that are not software
addressable[39–41]. Software faults are known as a major cause of computational systems defects
nowadays. The relevant fault injection tools for this research are software based. They are
extremely useful because they can emulate faults caused by hardware errors[42–44], with low
intrusiveness and because it can monitor the systems by observing behavior in faulty or normal
scenarios to determine if it continues to operate as expected.

Typically, Software Fault Injection (SFI) consists of three entities. The load generator, the
injector, and the monitor[38]. The load generator stimulates the system using fault-triggering
inputs and constraints provided by the tester. The injector introduces faults into the system,
usually at pre-runtime (e.g compile-time, load-time, executable image manipulation[45]) or
at runtime[39, 46]. The monitor gathers system readings and measurements, which may
include target outputs, fault tolerance relevant computations, benchmarking techniques and/or
comparisons with fault-free runs.

However, the existing FI tools are quite specific to the programming environment[47, 48]
or to target application[49]. There is a lack of generic FI tools, especially for concurrent and
distributed environments. Below we deeply describe in more detail the most influential examples
of these types of tools.

2.5.1 Xception

Xception[50] is a fault injector that uses debugging and processor performance monitoring
mechanisms. Its structure is composed of three modules. The Experiment Manager Module
which contains a user interface to produce the faults and displays test results. A module that
loads faults’ configurations and libraries. And lastly, the kernel module that injects faults through
system calls. Through remarkably close hardware-level operations, injected faults have an impact
on any running process and can even affect the kernel.

This tool can collect detailed information on the number of clock cycles, the number of
memory read and write cycles, and instructions executed from the injection of the fault until

2.5. Fault Injection 21

other subsequent event, for instance the detection of an error.

2.5.2 FERRARI

FERRARI[51] emulates hardware faults from software. Through traps and system calls, it
can corrupt the program execution state, making the system’s behavior like a Central Process
Unit (CPU), memory, or bus fault. It brought innovation with the possibility of introducing
temporary and permanent faults, where cycle instructions define the fault duration. In addition
to emulating hardware faults, it can also create flow control errors through target properties such
as the time, location, type, and duration of a fault.

To do this, this injector concurrently executes a process for fault injection and the target
process that will suffer fault injections. This tool manages the fault injection through communic-
ations between the two processes. The injection process changes the target program execution
state by executing system calls.

It is capable of injecting faults in the address, data, or the control lines of the processor.
Additionally, it has modules for initializing faults and collecting information from the tests
performed.

2.5.3 FIAT

FIAT[52] stands for Fault Injection-based Automated Testing environment and creates a software
environment that can fault inject user application code and data. It can manipulate messages
(corrupted, lost, delayed), tasks (delayed or abnormal termination) and timers.

Through workloads, allows fault classes definition (relations between faults and the error
patterns that they cause) within an application context, where the user should configure
parameters regarding where, when and for how long errors will occur. The workloads are
an observable set of real-time communicating tasks, and they could run in one machine or in
distributed computers. For analysis purposes, this tool contains event performance logs and error
reports such as exception logs and abnormal events.

2.5.4 Ftape

The fault injector in FTAPE[53] uses software to emulate the effects of underlying physical faults
and can inject them throughout the target system, including in CPU registers, memory, and the
disk system. The approach used is bit-flip faults to corrupt stored data. The fault configurations
can be concrete or randomly location-based and/or time-based properties.

It has one workload generator that provide a controllable workload that can propagate the
stress conditions on the machine, and it has a measure tool to monitor the workload activity

22 Chapter 2. Background and Related Work

that present results like performance degradation, number of system crashes and fault ratio.

2.5.5 DOCTOR

DOCTOR[45] is an IntegrateD Software Fault InjeCTiOn EnviRonment for Distributed Real-
time systems that aims the HARTS[54] distributed system. This tool can inject communication
faults as well as traditional hardware faults such as memory and CPU faults. The user can
choose any combination of these three types to assess the target system dependable properties.
Effects such as making processes slow or fast, terminating or suspending processes, corrupting
clock/timer services, corrupting system-call services, delay or lose messages adding the capability
of distributed errors injection. The specification of a fault may be as transient, intermittent, or
permanent. Additionally, this tool has a user interface, and it also presents a synthetic workload
(replaces a real program) generation tool that allows the user to specify the fault injection timing
and the rest payloads configurations.

The fault injector consists of three modules: Experiment Generation Module (EGM),
Experiment Control Module (ECM), and Fault Injection Agent (FIA). The EGM is to generate
executable images of workloads, and these executables will run on a single processing node or
on a set of nodes. It is also to parse the experiment fault plan for each node supplied by the
user. After that, ECM uses these files. The FIA receives commands from ECM via Ethernet and
executes them by injecting faults. ECM functions as an external controller and its responsability
is to set up an experiment environment by downloading executable images of the workload
and synchronize the begin/end of each run among the set of nodes. Also, Data Collection
Module (DCM) collects experimental data during each experiment supplied by FIA.

One distinct feature of this injection approach is the segregation of the host computer
components from the target system components. Because each component runs separately and
the target system executes essential components only, it has the advantage of reducing the
run-time interference.

2.5.6 PROPANE

The Propagation Analysis Environment[55] is a fault injector tool that targets software modules
(i.e., software functions which can be multithreading) on a desktop computer. It has injection
and logging mechanisms provided by static C-libraries and the targets are software developed for
single-process applications on embedded systems that can interact with libraries implemented
in the C programming language. The injections support the mutation of source code and the
manipulation variables and memory contents.

By design, it consists of different components to create and run test experiments. Namely,
the PROPANE Setup Creater (PSC), the PROPANE Campaign Driver (PCD), the PROPANE
Library (PL), and the PROPANE Data Extractor (PDE). The target system uses the PL,

2.5. Fault Injection 23

written in the C programming language, for injection functionality. The PCD is responsible for
managing the actual execution of injection experiments and it has a user interface through which
the user can control and follow the experiments. During this analysis, the user may use the PDE
to extract specific data from the test experiment. The PSC creates setup files needed during test
execution with general information (regarding faults, probes, and injection locations) and fault
triggers that may be based on time, frequency, probability distribution or user-based properties
triggers. Also, it is responsible to spawns a new process for each experiment and PL is which
performs the actual fault injection.

2.5.7 Loki

Loki[56] injects faults in a distributed system based on a partial view of its global. To achieve
this view, a state machine specifies each component of the distributed system, and it can go
forward and backward to various states. The global state is the vector of all component’s states.
A partial view is where you abstractly define specific states for each machine/node that will be
the triggers aspects to fault injection.

This tool has the Loki runtime attached to each node, it maintains the partial view
configuration for each node and inject faults when the states restritions in partial view of
a node are true. Therefore, state changes trigger the faults, which allows you to define that a
fault injected in one node can depend on the state of other nodes.

After an injection, Loki uses notifications to inform other system nodes of the state transitions
made in a certain node. However, the Loki runtime does not block the system while these
notifications are on way, which can lead to incorrect fault injections. In terms of features, it also
allows monitor records of state changes and fault injections along with their times of occurrence.

Finally, the user must implement a probe component used in Loki. In this probe component is
where the user select the type of faults to inject into the system and where the Loki perform the
fault injections through the user’s implementation of the injectFault() method, which contains
the code that will be injected. The implementation of Loki runtime was in C++, so the
implementation of this probe component also must be in C++. To facilitate user’s work, this
tool contains a Graphical User Interface (GUI) that can specify a state machine and a fault
injection campaign.

2.5.8 J-SWFIT

The Java Software Fault Injection Tool[57] is based on the G-SWFIT[37] and allows software
faults injection in Java systems. The injection is directly at bytecode level using the Objectweb
ASM framework[58], which means that does not need the source code of target system to perform
the injection. Firstly, it tries to find suitable location by Assembly operations recognition in a
way to deduce the high-level programming source code and then perform modifications in the

24 Chapter 2. Background and Related Work

bytecode by inserting faulty bytecode. It allows operator injection that represents the lack of an
IF structure and its block of code and the lack of a function call.

It has a user interface that facilitates the fault construction but also the monitoring of faulty
result. Firstly, this tool loads the java system classes, recognize of if structures and function
call’s fault patterns, inject faults and then monitor the system.

2.5.9 LLFI

LLFI is a program level fault-injection tool that uses a collection of compiler tools framework
called Low Level Virtual Machine (LLVM)[59] for fault injection mechanisms. LLVM provides
higher level intermediate code than assembly code and encodes information such as address
computations of loads and stores.

Anna Thomas et Karthik Pattabiraman[60] target applications called soft computing applic-
ations (e.g, multimedia application) and argue terms like Egregous Data Corruptions (EDC)
to denote outcomes whose quality deviates from the fidelity system metrics. They focus is to
formulate source-level heuristics on detecting errors under user assumptions. LLFI allows fault
injections performed at specific program points and into specific data types by a single bit flip
into the destination registers.

2.5.10 Discussion

The tools we have covered present different approaches to perform fault injections. Some use
low-level injection mechanisms to control CPU processing, such as Xception and Ferrari, or use
bit-flip mechanisms to corrupt the data stored in the memory registers, such as Ftape and LLFI.
Others we have discussed have source or byte code manipulation mechanisms but are heavily
dependent on the native language (for example, C or Java), as is the case of PROPANE and
J-SWFIT.

The closest tools to our implementation are those that are designed to assess distributed
systems such as FIAT, DOCTOR and LOKI. FIAT can inject similar faults as we do, such as
delayed messages or processing, and creates an interesting fault relationship. DOCTOR also
provides the similar type of faults to us. However, it is specifically for assessing a distributed
system implementation called Harts. Loki uses an interesting and similar approach to ours where
it defines independent states for each node as the triggering method for faults in the system.

Many of these tool’s features served as inspiration for our research, however we feel that there
is no generic tool that enables the user to freely choose the programming language, the type of
system, the protocol it uses, and fault customization.

Chapter 3

Prior Work

Due to the huge complexity involved in protocols that implement distributed systems, it is difficult
to cover and investigate all attack vectors to which can expose such algorithm. The purpose of
beginning a fault injector investigation is to create a tool that detect system vulnerabilities and
improve the system resilience of such complex distributed system.

In this chapter we present the tools used by the Fault Injector in our research and in the
research that precedes our work. Next, we present the research work on Fault Injector tools
that precedes this document. Hermes was the initial tool which combined Aspect Oriented
Programming (AOP) and Software Fault Injection (SFI) approaches to create faulty tests in
Byzantine Fault Tolerance (BFT) protocol implementations. Zermia came next to improve the
testing capabilities of Hermes. Lastly, Proteus brought the innovation of automating the code
development process for a target application by creating a Domain Specific Language (DSL).

3.1 Aspect Oriented Programming

The tool we have developed, and tools before ours, rely on AOP implementation mechanisms for
fault injection in a modularized way.

AOP describe a programming technique and a way of thinking about the construction
of software applications that complements the forms of expression found in object-oriented
programming. Aspect oriented programs comprise of a mixture of objects and aspects and the
goal of AOP is to improve the modularity of software applications[61].

The behavior in an aspect can execute at points in the runtime of the program determined by
the aspect’s specification. This simple idea turns out to be enormously powerful at modularizing
the implementation of additional code on top of the application code without necessarily having
to edit the application code. This allows in our case to create a fault injector with an extremely
low intrusiveness.

In its operation, it uses four main concepts:

25

26 Chapter 3. Prior Work

• JoinPoint - Join points are events that occur during the runtime execution of a program
(for example, the initialization of a class, the execution of a method, the handling of an
exception, or the updating of a field).

• Pointcut - Pointcuts are predicates (usually class names or methods) that match join points.

• Advice - Any join point matched by a pointcut expression executes blocks of code known
as advice.

• Aspect - Aspects are modular units of crosscutting implementation. Aspect declarations
defines an Aspect, which have a form like class declarations. Aspect declarations may
include pointcut declarations, advice declarations, as well as all other kinds of declarations
permitted in class declarations.

There are several ways to trigger an advice associated to a particular pointcut:

• Before - runs before the called predicate.

• After - runs after the predicate returned a result.

• Around - This is the most powerful kind of advice. Around advice can perform custom
behavior before and after the method invocation. It is also responsible for choosing whether
to proceed to the join point by returning its own return value or throwing an exception.

AspectJ implements AOP for the Java runtime and will be the tool we will use in our injector.
It provides three types of weaving[62]:

• Compile-time weaving - It requires access to the source code of an application and then,
the AspectJ compiler, called ajc, will compile from source and produce woven class files as
output. The aspects themselves may be in source or binary form.

• • Post-compile weaving - Also sometimes called binary weaving, it does the weaving of
existing class files and Java ARchive (JAR) files. Like the compile-time case, the aspects
used for weaving may be in source or binary form and may aspects weave them.

• Load-time weaving - Defers from binary weaving at the point that a class loader loads a
class file and defines the class to the Java Virtual Machine (JVM).

We will use the post-compile weaving method for weaving and annotations in the code
implementation on aspects regarding a particular fault.

Listing 3.1, shows a simple example of an implementation of aspects. The @Aspect annotation
declares the HelloAspect class as an aspect. The pointcut refers to the main() method of the
HelloWorld class that is in the com.example package. The @After annotation executes the advice
after this predicate pointcut returned a result. The helloWorldMainAdvice() is the advice (block
of code) associated with this pointcut. Lastly, the joinPoint has information associated with the
pointcut’s method call (for example, the arguments to the main function).

3.2. gRPC 27

@Aspect

public class HelloAspect {

@After("execution(* com.example.HelloWorld.main(..)")

public void helloWorldMainAdvice(JoinPoint joinPoint) {

... // some i n s t r u c t i o n s executed a f t e r main ()
}

}

Listing 3.1: Simple example of an aspect implementation using AspectJ

3.2 gRPC

gRPC[7] is an open-source high performance Remote Procedure Call (RPC) framework developed
by Google that can run in multiple common languages. This tool is essential for the communication
of the different Zermia components. This makes it possible to implement Zermia components in
other languages without affecting our architecture.

Figure 3.1: gRPC overview[7]

Figure 3.1 shows how gRPC works. A client application can directly call a method on a server
application on a different machine. A server application can be developed on Java and a client
application implementation can be written in Python. Even so, they can communicate through
grpc Server and grpc Stub, which derived from Protocol Buffers, Google’s mature open-source
mechanism for serializing data structures. gRPC uses protoc with a special gRPC plugin to
generate code from proto files. It will generate gRPC client and server code, as well as the
regular protocol buffer code for populating, serializing, and retrieving message types.

For demonstration, we can see in Listing 3.2 an RPC call to say hello written in protoc,

28 Chapter 3. Prior Work

// The gree t e r s e r v i c e d e f i n i t i o n .
service Greeter {

// Sends a g ree t ing
rpc SayHello (HelloRequest) returns (HelloReply) {}

}

// The reques t message containing the user ’ s name .
message HelloRequest {

string name = 1;

}

// The response message containing the g r e e t i n g s
message HelloReply {

string message = 1;

}

Listing 3.2: Service declaration from proto files[7]

where a message is sent containing thw user’s name and then replied with the response message
containing the greetings.

3.3 Hermes

Hermes[8] is a software fault injection tool that through AOP[63] can intrinsically weave the entire
injection infrastructure into the target application’s code. The aspect-oriented programming
approach decreases intrusiveness because it allows to avoid modifications in the source-code of the
respective application. After the definition of injection points, the faults need to be compiled into
the injection points in the target source-code. Applications developed in programming languages
like Java and C++ are the ones that can use this tool, since the tool relies on technologies like
AspectJ[61] and AspectC++[64] to implement the aspect-oriented programming approach.

The Hermes architecture, shown in Figure 3.2, has one Orchestrator that manages all the
remote nodes of the distributed system and allows the coordination of multiple fault injections.
The Hermes Runtime is a component that is present on each node, symbolizes a fault configuration
and performs the actual fault injection through communications with the Orchestrator, which
acts as a synchronization layer. These two components have three communication primitives:
RemoteAction, Action and Notification. The Hermes Runtime sent an Action to Orchestrator to
check if the fault is ready to be executed. The Orchestrator sent an RemoteAction to a particular
Hermes Runtime to manipulate its execution state. A Notification is an asynchronous message
that sends Orchestrator information about a replica’s state.

Regarding faults, Hermes considers that there are protocol context independent faults,
where it is not necessary for the developer to be familiar with BFT protocol implementations

3.4. Zermia 29

Figure 3.2: Hermes’s architecture[8]

to successfully inject faults, and protocol context dependent faults, where it is necessary for
the developer to access protocol data and thus must make modifications to the source code.
Context-independent faults are Central Process Unit (CPU) Load, Crash, Sleep and Drop packet.
Context-dependent faults are Corrupt header, Corrupt payload, Forge signatures and Distributed
Denial of Service (DDoS).

As a trial foundation, Hermes assessed the BFT-SMaRt protocol implementation and through
synchronous combination of several faults revealed bugs in the validation of incoming packet
sizes and the increases in timeouts values in leader exchange phase.

3.4 Zermia

Zermia[9] is a Hermes evolution and shows many similarities both in architecture and in
technologies it uses to implement fault injection mechanisms (such as the AOP approach).

It uses a client-server model, shown in Figure 3.3, that was developed in Java and has two
main components: the independent Coordinator and an Agent for each replica/client node from
the target system. The Coordinator is responsible for managing Agent instances by providing
their user-defined fault schedules. However, it also coordinates the fault injection moments
through synchronization mechanisms of the various Agents involved. The Agents maintain
application-independent states to monitor fault injection moments depending on the application
state, and through the AOP approach by using AspectJ code weaving mechanisms, they take
over locations in the target protocol where they can perform actions such as changing the node
state and execution flow by accessing to method calls and variable modifications.

This independent state mechanism allows the comparison of the current execution state of

30 Chapter 3. Prior Work

Figure 3.3: Zermia architecture[9]

a node with the intended state when a fault is ready to trigger. Zermia has also developed a
priority mechanism to control fault collisions at the same instant, where a specific priority is
associated with each fault type to increase the faulty behavior impact on the application. The
fault types that Zermia is capable of injecting are:

• Crash - Suddently crashes the client or replica.

• Thread Delay - Delays the thread by using sleep method, where the user defines the time.

• Message Dropping - Replicas or clients drop message by preventing the send target
method call. The user can define the execution based on a probability (between 0-100).

• Message Flood - Sends several messages per call, where the user defines the number of
messages sent, to simulate a Denial-of-Service attack.

• Message Modification - Replace message contents by modifying argument values from
method call. The user defines the message content.

• Resource exhaustion - Increases the usage of CPU or memory, which can lead to crashes
and memory leaks. The user can specify the number of threads for CPU tasks and the
amount memory used.

Figure 3.4: Fault schedule example through command line [9]

Figure 3.4 shows a test experiment configuration, where it defines the fault schedules for two
server replicas and one client. Replica 0 will receive a delay fault for 100 milliseconds, and it will

3.5. Proteus 31

trigger when consensus instance 5000 is running and consecutively in the next 10000 consensus
instances. Replica 2 will have the same delay fault configuration as Replica 0 and, additionally
has a crash fault configured that it will trigger at consensus instance 20000. Finally, Client 5
stops sending messages only to the primary replica for 100 consecutive rounds, once he reaches
the sequence number of 500.

Comparatively to Hermes, Zermia improved aspects such as flexibility, extensibility and
eventually introduced new fault types to assess BFT system protocols. It also introduced the
gRPC[65] technology that is a tool created by Google to perform RPC which opens the ability
to extend the tool to other languages through Agent portability. However, the system has a
complex implementation and is very dependent on the Coordinator, which leads to unnecessary
overhead to the target application that distances it from functioning with its normal performance.
It also remains extremely focused on BFT-SMaRt protocol like Hermes, which makes it quite
difficult to port this tool to other BFT protocols and other programming languages.

3.5 Proteus

Proteus[10] is the evolution of the previous tools Hermes and Zermia, consequently it has a
similar architecture, as shown in Figure 3.5.

Figure 3.5: Proteus architecture [10]

The biggest innovation that this tool brought was the creation of DSL[66] code that facilitates
the method of creating fault schedules by the user. By defining grammars and using the Xtext
framework, an extension of the Java programming language, Proteus can generate Java source-
code that will use AspectJ as a mechanism to alter the execution state of the target application.
This makes it possible to create fault schedules for each of the system’s replicas, simply by
defining configuration parameters for the behavior of the faults and the injection location of
the application. The DSL transform the described schedule to the corresponding code that
implements it.

The purpose of Proteus is the creation of a standardized way of defining and creating objects
using a higher-level abstraction, which allows for simpler code and facilitates any future expansions
into a new programming language, since the code generator allows the code development of any

32 Chapter 3. Prior Work

language.

Chapter 4

Design

In this chapter we describe our design for a latest version of Zermia in which it is possible to assess
a variety of distributed and concurrent applications. First, we describe the main objectives and
analyze each of the components of our tool, referencing their functionalities. Next, we describe
the primary features that lead us to achieve the proposed objectives, such as the designation of
faults, schedulers, and triggers. Finally, we discuss the design ideas we implemented, touch on
other paths we could have taken in our approach, and we make a comparison with previous tools
Hermes[8],Zermia[9] and Proteus[10].

4.1 Zermia Design

Zermia is a fault injector framework designed for concurrent and distributed applications
which focuses on flexibility, extensibility, and efficiency. It aims at evaluating the behavior
of distributed/concurrent systems to assess whether they behave properly in the presence of
certain adversities. In this latest version of the injector, we decided to redesign the previous
versions so that the injector is extensible to assess various fault tolerance protocols, to porting
our Agents to other programming languages because the capability of injecting faults in different
nodes that have different languages is interesting for the testing of distributed applications. Also,
we want to provide freedom for the users to customize the faults they want to assess in their
application (while still providing predefined faults).

This implementation follows client-server model to inject predefined and customized faults on
a concurrent or distributed application, as presented in Figure 4.1. A client is a target application
node from tested system which has Zermia libraries hooked to manage and inject Fault Hooks
that will produce faulty behavior in the application. The server is composed by Agents and one
Coordinator (as needed to inject faults that depend on the state of several application nodes).
All communications between components (Coordinator, Agents, and Fault Hooks) are through
Remote Procedure Call (RPC) by the gRPC tool, as we describe in Section 3.2.

33

34 Chapter 4. Design

Coordinator

Node

Target Application
Instance

Agent

Hook
Hook

Hook

Node

Target Application
Instance

Agent

Hook
Hook

Hook

Node

Target Application
Instance

Agent

Hook
Hook

Hook

Node

Target Application
Instance

Agent

Hook
Hook

Hook

Figure 4.1: Overview of the latest Zermia architecture

4.1.1 Server

The main functions of the servers are to serve the client applications nodes with the fault scheduler
configuration and to receive notifications of the injected faults. With those notifications, servers’
instances can check dependencies between faults. These dependencies can be internal (faults
injected within the same application node), external (faults injected in another application node)
or independent (no dependencies).

One of Zermia’s characteristics is its flexibility in these types of dependencies, distinguishing
the server’s execution flow according to each type of fault dependencies. To ensure this flexibility,
the server splits into two main components. They are the Agents and the Coordinator. Each
application node requires one Agent because it is through him that the application node receives
the information regarding the faults it should inject, but in terms of dependencies, Agents does
internal fault dependency checks. The Coordinator (which coordinates all agents) does external
fault dependency checks and the user can exclude him from a test experiment if he does not
want to check dependencies between multiple Agents.

4.1.1.1 Agent

Agents runs in the same node of the target application. It interacts with a target application
node by monitoring its execution and deciding when to inject faults based on a fault scheduler.
As stated above, it is reponsible for serving the application node with the configuration of his
fault scheduler, where Zermia data structures hooked into the application will stores it. For
this purpose, an Agent can get the scheduler from the Coordinator, or it can have its own fault
scheduler. If it gets its scheduler from the Coordinator, during an Agent bootstrap it must

4.2. Faults 35

register with the Coordinator to get its corresponding scheduler.

That said, it plays a key role because it performs internal fault dependencies. To do this, the
Agent stores which faults for its application node have already been injected.

4.1.1.2 Coordinator

Coordinator is an Agent’s handler. It is responsible to communicate with Agents, distribute their
respective fault scheduler, synchronizing and coordinating Agents and Fault Hooks. It plays a
key role because it allows dependencies checks on external faults. That is, when we need to know
some execution state of another external application node, the Coordinator can inform about the
running state of other nodes. For this and like the Agent, it stores the faults that have already
been injected. However, the Coordinator stores the faults of all Agents.

4.1.2 Client

Clients are all the nodes (client’s application, replicas, server, processes, or threads) that are
part of the target application, and that will be exposed to faulty behavior or have an influence
on the fault injection process in other application nodes. To integrate with Zermia, they interact
with Zermia libraries that allows the communication with their respective Agent and controls
when a fault should be injected according to their fault schedule defined in Agent. During a
target application node bootstrap, it must register with their respective Agent to instantiate the
required Zermia data structures for maintaining its state and to get its corresponding scheduler.

4.1.2.1 Fault Hook

Fault Hooks are a set with zero or more concrete faults attach to target application node and
sharing that process’s runtime to produce faulty behavior. They use the Zermia library that
can maintain additional state, independent of the application, which allows the definition of
parameters for triggering faults. Through Aspect Oriented Programming (AOP) mechanisms as
we describe in Section 3.1, they can alter the target execution state and flow, by acessing method
calls, arguments and return values.

4.2 Faults

In Zermia, we identify faults through a unique identifier and define faults as a high-level structure
through four characteristics:

• What is the code to be injected.

• When should inject the fault, the conditions required to trigger the fault.

36 Chapter 4. Design

• Where should inject the fault, the location in the application context.

• How to trigger the fault, if is to be triggered before or after, and if it prevents the target
from execution.

Since we want to provide freedom to the user to customize the faults they want to inject,
we chose to define these characteristics in two phases. On the server side of Zermia (Coordin-
ator/Agent) we define the When characteristic and specify the Agent to whom the fault belongs,
which is associated with the application node.

The conditions needed to trigger a fault can be based on application/timing state conditions
or based on fault dependencies. Those based on application/timing state conditions can have
multiple purposes. For example, we may want to trigger a fault at a specific time instant,
consensus instance, specific thread, we may set a time or consensus range of instances, we may
set a certain value for a variable to perform actions whenever a variable loads that value, or
we may have several of the above conditions that when all have been met it creates a specific
state so that the fault can be injected. Because of the plethora of possibilities that we can have
as trigger conditions, we chose to abstractly define the conditions and let the user define the
specifics according to the tests they want to run.

In addition to the above, we can also add the possibility that we want a fault to be triggered
after a certain behavior of the system or before/after another fault has been injected. For
example, we may want a fault to be triggered before another fault. So, we define dependencies
through after and before which are sequences of zero or more fault identifiers, where in the after
you define the fault identifiers that must happen previously for a fault to be triggered, and in the
before you define the fault identifiers that cannot happen previously for a fault to be triggered.

On the client side, when implementing a Fault Hook, the user must define the remaining
Where, What and How characteristics. A function and its code block define the code to be
injected. JoinPoints define the location in the application context and After, Before or Around
annotations (AOP features, as presented in Section 3.1) define how to trigger the fault.

4.3 Schedulers

Schedulers are a sequence of zero or more faults. It includes information about the Agent that
will apply the scheduler, and which is associated with a specific application node. The user
creates these schedulers and Zermia was designing to provide scheduling flexibility, offering
support for:

• Independent fault schedulers for each Agent, including fault free schedules (i.e., schedulers
with zero faults).

• Fault dependencies within the same scheduler, i.e., dependencies between faults triggered by

4.4. Triggers 37

a single Agent. The capability of triggering faults is affected by whether internal faults are
triggered (e.g., prevent a fault from triggering if another fault has already been triggered).

• Fault dependencies between schedules, i.e., dependencies between faults triggered by
different Agents. Like the previous model but in extending restrictions involving several
nodes. The capability of triggering faults is affected by wether or not external faults are
triggered (e.g., only inject a fault after some other Agent has injected its own scheduler).

4.4 Triggers

Like we said above, in Zermia, fault triggers can be state (dependant of target application’s)
and/or event based. There are several ways of monitoring these triggers. Zermia includes
different trigger modules, and these can be managed by the Coordinador, the Agent, a hybrid
approach managed by both Agent and Coordinator, and a indepedent model where a fault does
not need to be managed by any Agent or the Coordinator (the Fault Hook manages itself).

d)

c)

b)

a)

Coordinator

Node

Agent
Target

Application
Instance

Fault
Hook

Fault
Hook

Fault
Hook

Fault
Hook

Figure 4.2: Zermia’s fault triggering models

38 Chapter 4. Design

4.4.1 Coordinator-based Triggering Model

In the Coordinator-Based approach, the Coordinator is responsible for managing the triggering
of faults. Agents query the Coordinator before each fault is triggered to check the triggering
conditions. The fault is injected or not depending on the response given by the Coordinator, as
presented in Figure 4.2, case a).

This approach makes it possible to trace faults from multiple Agents and enables fault
dependency between multiple Agents. Conversely, the Agent must constantly communicate with
the Coordinator, which will consequently mean more communications and more overhead for the
target application.

4.4.2 Agent-based Triggering Model

The Agent-Based approach does not require the Agent to contact the Coordinator to determine
if a fault is to be triggered or not, leaving the Agent responsible for managing internally the
triggering of faults, as presented in Figure 4.2, case b).

The benefit of this approach is the reduction of communications, and therefore the reduction
of overhead for the target application. However, this approach makes it impossible to depend
on faults between multiple Agents, since there is no synchronization with the Coordinator. We
could implement direct communications between multiple Agents, however this would lead to
enormous complexity and an increase in the number of communications throughout the system.

4.4.3 Hybrid Triggering Model

In the Hybrid model, as presented in Figure 4.2, case c), Agent can trigger faults autonomously,
notifying the Coordinator after triggering faults if needed, or synchronise with the Coordinator
for triggering faults with external dependencies.

The objective of this approach is reaching a balance between the previous two models. We
achieve this balance by letting the Agent perceive and determine whether the fault contains
internal dependencies, external dependencies, or both. Since it has access to its fault scheduler,
it knows faults assigned to it and checks if the fault depends on any fault that it knows about. If
it depends on an internal fault, it checks if the fault can be triggered according to the internal
dependency and returns a response. If it depends on a fault that the Agent does not know about,
then it has an external dependency and contacts the Coordinator to perform the verification.

Although it is a more complex approach, compared to the Coordinator-based model it reduces
overhead, and compared to the Agent-based model it increases flexibility since faults can contain
external dependencies.

4.5. Determinism 39

4.4.4 Independent Triggering Model

The Independent model approach does not require any contact with the Agent or the Coordinator
to determine if a fault is to be triggered or not. The Fault Hooks maintain the necessary state
information for managing their own triggering conditions, as presented in Figure 4.2, case d).
However, this model is quite restricted because it only supports state-based trigger conditions.
Any event-based condition, i.e., any dependency, this model cannot support it.

This increases complexity in the Fault Hook, since it is responsible for managing target
application state. However, this approach reduces overhead, compared with other models, since
no external communication.

Reducing overhead is important, since an intrusive fault injector can compromise the target
application’s execution flow, which in turn compromises test run validity. To being able to
simulate a wide range of execution scenarios possible, Zermia implements a triggering model
according to the hybrid and independent approaches. We try to reach a balance between
overhead and flexibility providing management of state-based triggering conditions by Fault
Hooks and management of event-based (i.e., dependencies) trigger conditions by Agents and/or
the Coordinator.

4.5 Determinism

Concurrent and distributed applications typically suffer from non-deterministic execution traces
due to different thread/process interleaving. Fault injection tools must find deterministic
mechanisms to execution the faults in the same order, where the configuration is the same.

Our hybrid triggering model reduces non-determinism by synchronizing internal faults or
synchronizing Agents with the Coordinator before triggering faults. This allows the user to assess
multiple coordinated event scenarios based on fault dependencies.

The previous version of Zermia developed a system based on priorities, which allows users
to assign priorities to faults to determine fault execution when two or more faults are triggered
concurrently. We have no mechanism in this version for this purpose. However, the user can set
up a fault priority and order manually using conditions and fault dependencies.

4.6 Discussion

To add flexibility and efficiency to Zermia it was necessary to modify the design that had
accompanied the last investigations of our group. We could have chosen an architecture without
the Agent components, so that the functions performed by the Agent would be on the Zermia
library present in an application node and used by the Fault Hooks. However, this would imply
the implementation of functions to communicate with the Coordinator within the application

40 Chapter 4. Design

context, and our intention is to guarantee, without major complexities, the portability of the
tool to test applications of several languages.

The significant difference was that we chose to remove the Agent functions from the application
context, placing the Agent independent of the application but residing on an application node.
This change makes it possible to port Fault Hooks and the Zermia library used by Fault Hooks to
other languages. Therefore, the tool is structurally prepared to assess a node of any programming
language, without having to patch any functionality of the injector. Thus, the user will have
to develop the faults regarding the tests they want to perform and will have to use the Zermia
library to communicate with our injector’s structure to take full advantage of the functionalities
we offer.

Another change we had to make was in the definition of the fault schedules. In the previous
version of Zermia[9], the definition of the fault schedules was a little complex and the schedules
did not allow flexibility to the user’s tests. In Proteus[10] there was an evolution in this aspect
by adding flexibility in the fault triggering conditions, which makes it like our implementation.
However, due to the use of code generation mechanisms, Proteus differs from our injector because
it defines the location in the application context where the fault should be injected and the
location of the code that should be injected in the Coordinator. In our implementation, we want
to guarantee the user’s ability to inject faulty code that is already developed (i.e., predefined
faults) or their own custom code (i.e., custom faults). To achieve this goal, we had to change the
schedule definition syntax and we have implemented an abstraction of a Fault Hook to enable
the creation of custom faults while implementing as little code as possible to use our injector’s
functionality. We will cover this implementation in more detail in Chapter 5.

Since we can set faults to run during a range of instances, the fault notifications should only
be sent when a fault was executed for the last time. Otherwise, we may be making semantic errors
that could lead to faulty behavior outside the intended context. Therefore, sending notifications
is responsibility of the user.

Those injected fault notifications are sent to the corresponding Agent and, if necessary, to
the Coordinator. We could have instead opted for the possibility of broadcasting to all Agents
when a fault is injected, obtaining a decentralized way to control fault dependencies (i.e., without
the need for a Coordinator). However, we felt that this approach would result in reduced
communications for applications with few nodes, and that it is not a scalable solution, because
with many nodes the communications would be exponentially more than having to check the
dependencies in a centralized way, with the Coordinator’s support.

Our fault model and schedules enable assessing several types of applications, independent
of the concurrent model. Zermia can be used with a simple Agent that is responsible for fault
injection, while in concurrent applications, each process or thread can have its own Agent. This
allows faults to be triggered on independent processes/threads, or to coordinate faults between
processes/threads. The same principles apply to distributed and replicated applications.

Chapter 5

Implementation details

In this chapter we describe the implementation details that led us to a latest version of Zermia.
First, we present the details of the Coordinator and Agents and how they are booted. Next,
we present the details of faults in an abstract way, predefined faults, and how we can define
faults from that abstraction in two programming languages case studies (Java and Python). We
address some thoughts on how to achieve fault tolerance testing protocols. Finally, we present a
test automation script to initialize Coordinator, Agents and application nodes to demonstrate
the faulty experiences derived from a configuration.

5.1 Coordinator

Coordinator was developed in Java and provides an Remote Procedure Call (RPC) communica-
tions service to interact with Agents. As can be seen in Listing 5.1, to be instantiated it needs 3
inputs:

• The port number to listen for communications made by Agents.

• The total number of Agents.

• The configuration file with the fault schedules for each Agent.

$ java -jar coordinator.jar -p 9090 -a 4 -f agents_config.json

Listing 5.1: Running the Coordinator on port 9090, using 4 agents and the settings for the fault
schedules in the agents_config.json file

Internally it stores the schedulers of the respective Agents configured via a JavaScript Object
Notation (JSON) file. This configuration must contain the agents field with a sequence of zero
or more agents where each Agent must be defined by three fields. The agent_id identifier, the
faulty logic property, and its scheduler fault schedule.

41

42 Chapter 5. Implementation details

The faulty field, which characterizes whether the Agent is a faulty or a correct Agent,
distinguishes Agents that can inject faults (i.e., a faulty Agent). This distinction is designed
to allow that one correct Agent can use a faulty configuration to monitor correct events that
may happen in the application, in order to deterministically reach a certain application state,
and thereby be able to use the injector to send notifications when it reaches the desired states,
without injecting any kind of fault.

The scheduler field is a sequence of zero or more faults where each fault must be defined by a
fault_id identifier and which optionally can contain both the fault_trigger_conditions field and
the fault_dependencies field.

The fault_trigger_conditions field is used to specify the triggering constraints that will
define the intended application state to inject the fault. Since all applications have their own
specifications, the user can define any constraint or a set of constraints that define the intended
application state. However, for serialization reasons in the injector structure, the constraints and
the values of the constraints must be of String type. When it is necessary to compare application
states, the constraints should be deserialized to their native data structure in the application.
Thus, the key-value or key-values method defines a trigger condition. In the first case we define
the trigger condition with the syntax “key”:”value”. In the second case we define the condition
with the syntax “key”: ["value1", "value2", "valueN"].

The fault_dependencies field defines the synchronization moments that a fault should have
with other faults. Since we will instantiate the Coordinator, this synchronization can refer to the
same Agent or to different Agents. If we did not have a Coordinator, we could only synchronize
a fault with the faults that may happen in the same Agent. To define this synchronization,
optionally the user can define the after field and the before field. The after field is a sequence
of zero or more fault identifiers that means that all the faults that are defined in this field will
have to be injected earlier, so that the fault we are configuring can be injected after these faults.
The before field is also a sequence of zero or more fault identifiers that mean that all the faults
that are set in this field will have to be injected later, so that the fault we are setting up can be
injected before these faults.

{

"agents": [

{

"agent_id": "0",

"faulty": true,

"scheduler": [

{

"fault_id": "delayFault_0",

"fault_trigger_conditions": {

"consensus_instance": [

"5500",

"5700",

"5600"

],

5.1. Coordinator 43

"consecutive_rounds": "20"

},

"fault_dependencies": {

"before": [

"crashFault_0"

]

}

},

{

"fault_id": "delayFault_1",

"fault_trigger_conditions": {

"consensus_instance_end": "6500"

},

"fault_dependencies": {

"after": [

"crashFault_0"

]

}

}

]

},

{

"agent_id": "1",

"faulty": true,

"scheduler": [

{

"fault_id": "crashFault_0",

"fault_trigger_conditions": {

"consensus_instance": "6000"

},

}

]

}

]

}

Listing 5.2: An Agent Fault Schedule Configuration File Example

As we mentioned in Section 4.2, fault configuration is divided into two processes. The process
shown in Listing 5.2 refers to describing the application’s state context and the synchronizations
that are required to inject the fault. The application location, the faulty code to execute and
how it will execute will be covered later in Section 5.3.1. In the configuration example presented
in Listing 5.2, we intend to inject faults into two Agents in a distributed context where consensus
mechanisms exist in a fault tolerance protocol. We intend Agent 1 to crash as soon as it is at
consensus instance 6000. That said, we want Agent 0 to synchronize with Agent 1’s state to
execute delay faults with different delay times. Thus, we intend that before Agent 1 crashes,
Agent 0 delays execution for a brief period on several consensus instances. Respectively in
instances 5500, 5600 and 5700 and in the following 20 instances. Therefore, it is intended that
the delay be executed in the intervals of instances [5500:5519], [5600:5619] and [5700:5719]. The

44 Chapter 5. Implementation details

fault setting with delayFault_0 identifier symbolizes this delay. Then, we want that after Agent
1 crashes, Agent 0 delays execution for an extended period on all instances until it halts delaying
execution on instance 6500, which is what symbolizes the delayFault_1 fault. With this setting,
the user only needs to know the current execution consensus instance and compare it with the
settings in the fault schedule of the respective Agent. We will see in Section 5.3.3 how this can
be done.

With a total number of agents, a, all Agents that are not identified in the agent configuration
file, between 0 and a − 1, will be left with the default configuration that will be characterized as
correct and faultless agents in their schedule.

If required and for the sake of widespread use, both the trigger conditions and the dependencies
can be defined in a generic way for all faults in a scheduler of a respective agent, by the
scheduler_trigger_conditions and scheduler_dependencies fields, or in schedulers of all agents,
by the agents_trigger_conditions e agents_dependencies fields.

{

"agents_trigger_conditions": {

"messages":[

"PREPARE",

"COMMIT"

]

},

"agents": [

{

"agent_id": "0",

"faulty": true,

"scheduler_trigger_conditions": {

"consensus_intance_start": "1000"

"consensus_instance_end": "I’m gonna be changed"

}

"scheduler_dependencies": {

"before": [

"crashFault_0"

]

}

"scheduler": [

{

"fault_id": "delayFault_1",

"fault_trigger_conditions": {

"consensus_instance_end": "2000"

},

},

...

]

}

...

]

5.1. Coordinator 45

}

Listing 5.3: Widespread configurations example

The end configuration of a fault is determined by the depth level of the configurations. If
there is a widespread like we shown above in Listing 5.3, and if we define other configurations
for a specific fault within the fault scheduler, this fault will then be configured with the deepest
configuration that replaces some of the configurations defined by their upper layers. The
fault delayFault_1 of Agent 0 on Listing 5.3, will inherit the generalized trigger conditions for
agents regarding messages, will inherit the generalized trigger condition for Agent 0 regarding
consensus_instance_start, will replace consensus_instance_end with a new value and finally
will inherit the generalized dependencies for Agent 0.

5.1.1 gRPC service

The Coordinator establish Agent interactions through the gRPC interface presented in Listing 5.4.
These interactions can be done to provide Agent schedulers, to check the current states of several
Agents or to receive a notification that reports the injection of a fault in a respective Agent. The
interaction to provide the Agent scheduler is not synchronized as it has no interference with
the actions that must be taken when it comes to triggering a fault. However, the interaction of
checking other Agents’ states and the fault notification interaction have a direct influence with
the faults that has been injected on all Agents. Thus, it is needed to deal with multi-threads
problems, such as race conditions. Therefore, any method that need to deal with triggered
faults list, must be prevented by a synchronization method. In our implementation we use
ReentrantLocks to prevent multiple threads from entering these processes simultaneously.

service CoordinatorServices {

rpc AgentConnection (AgentId) (AgentConnectionReply) {}

rpc FaultDependenciesValidation (DependenciesServerMessage) returns

(InfoReply) {}

rpc NotifyFaultExecution (NotifyFaultExecutionRequest) () {}

}

Listing 5.4: Coordinator service interface (gRPC methods)

In AgentConnection request, the Coordinator receives the Agent identifier and based on the
identifier sends the faulty property declaration and the corresponding fault scheduler, as we can
see in Listing 5.5.

message AgentConnectionReply {

bool faulty_agent = 1;

repeated FaultServerMessage scheduler = 2;

}

message FaultServerMessage{

string fault_id = 1;

46 Chapter 5. Implementation details

repeated TriggerConditionsServerMessage trigger_conditions = 2;

optional DependenciesServerMessage dependencies = 3;

}

message TriggerConditionsServerMessage {

string condition_key = 1;

repeated string condition_values = 2;

}

message DependenciesServerMessage {

repeated string before = 1;

repeated string after = 2;

}

Listing 5.5: Protocol Buffers messages for AgentConnectionReply

In FaultDependenciesValidation request, Coordinator receives all the dependencies that refer
to a particular fault in the Agent’s schedule, as we can see in Listing 5.6. The Coordinator
maintains a list with the faults that have already been triggered, and thus checks whether the
dependencies it receives before and after are met in the current state. If there is no hindrance,
Coordinator validates the dependencies by sending a successful response or an unsuccessful
response otherwise.

message DependenciesServerMessage {

repeated string before = 3;

repeated string after = 4;

}

message InfoReply {

bool successful_operation = 1;

}

Listing 5.6: Protocol Buffers messages for dependencies validation

In NotifyFaultExecution request, an Agent notifies that a fault has been injected. Coordinator
receives the fault identifier and the agent identifier, as we can see in Listing 5.7. It stores this
information internally in the list of injected faults and does not send anything to the Agent.

message NotifyFaultExecutionRequest {

string fault_name = 1;

string agent_id = 2;

}

Listing 5.7: Protocol Buffers messages for fault execution notifications

5.2. Agent 47

5.2 Agent

Agent is also developed in Java and implements a gRPC stub to serialize communications with
the Coordinator services and also provides an RPC communications service to interact with the
application nodes. Agent can be instantiated in two ways but in both initialization cases it will
always need the port number definition to listen for communications made by the application
nodes. The first way to instantiate the Agent is by defining the Coordinator, i.e. the Internet
Protocol (IP) address and the listening port) as we see in Listing 5.8, which after the agent
interaction will be responsible for delivering the configuration of his respective fault schedule.

$ java -jar agent.jar -p 9000 -c 10.10.10.10 -cp 9090

Listing 5.8: Running Agent on port 9000, defining the IP and port to listen on by the Coordinator

The other way is to replace the Coordinator definition with the definition of its own Agent
fault schedule via a JSON file, as we see in Listing 5.9. However, this second option assumes
an Agent-based Triggering Model as we described in section 4.4.2, and for this reason it is not
possible to validate fault dependencies between multiple Agents.

$ java -jar agent.jar -p 9000 -f agent_1_scheduler_config.json

Listing 5.9: Running Agent on port 9000, with fault schedule settings in the agents_config.json
file and assuming an Agent-based Triggering Model

In this case, the JSON file follows the same layout as was demonstrated for the Coordinator
in Section 5.1, as we can see in Listining 5.10. The only difference is that only one specific Agent
is defined.

{

"agent_id": "1",

"faulty": true,

"scheduler": [

{

"fault_id": "delayFault_0",

"fault_trigger_conditions": {

"consensus_instance_start": "500"

}

},

{

"fault_id": "crashFault_0",

"fault_trigger_conditions": {

"consensus_instance_start": "650"

},

"fault_dependencies": {

"after": [

"delayFault_0"

]

48 Chapter 5. Implementation details

}

}

]

}

Listing 5.10: Agent configuration file example agents_config.json

5.2.1 gRPC service

Interaction with an application node is established through the gRPC interface presented in
Listing 5.11. This interaction can be to provide fault schedulers to the application, to check the
dependencies that a fault has are valid, or to receive a notification that informs of the injection
of a fault. The messages for providing a schedule (Listing 5.5) and fault injection notifications
(Listing 5.7]) is very similar to what we have seen for the Coordinator.

service AgentServices {

rpc ApplicationConnection (AgentId) (ApplicationConnectionReply) {}

rpc VerifyDependencies (VerifyDependenciesRequest) returns (InfoReply) {}

rpc NotifyFaultExecution (NotifyFaultExecutionRequest) () {}

}

Listing 5.11: Agent service interface (gRPC methods)

What differs from the Coordinator is the VerifyDependencies service. Although the messages
are the same as we showed in Listing 5.6, when an application node asks the Agent for this
service, the Agent is in charge of figuring out if the dependencies sent are internal dependencies
and so it knows them because they are in its scheduler. Otherwise, if the Coordinator is defined
it asks to the Coordinator to perform the check for external dependencies. For this to be possible,
Agent keeps a list of its injected faults, and so checks the dependencies it receives "before" and
"after" are fulfilled in their current state. After doing its check if it is not successful it immediately
returns a unsuccessfull response to the application. If it is successful, in case there are still
dependencies that it does not know about, then it communicates with the Coordinator to finish
the check and sends the response depending on the Coordinator’s response.

As happen in the Coordinator, the dependency checking process and the fault notification
process have to be prevented by synchronization mechanisms to deal with multi-threads problems.

5.3 Hook

To finish the fault configuration process and to inject the faults into the target application, we
use Aspect Oriented Programming (AOP) mechanisms such as advices and joinpoints, as we
saw in Section 3.1. Based on these concepts, we can get the interaction of the faults with the
application using joinpoints with advices. That is, we specify a target method, which through an
execution preceding or following the method call, will execute faulty code in the application.

5.3. Hook 49

It is through these mechanisms that the fault configuration defines the what, how and where
properties described in the Section 4.2, and that complements the existing configuration in the
Agent, which defines the when property.

Zermia hooked the faults into the application code after going through a compilation (if
necessary) and before the application starts running. The development of the faults will be as
intrusive in the application code as the AOP mechanism used in the application language.

To establish communication from the hooked faults to the Agent, it was necessary to develop
a grpc stub to communicate with the Agent’s services. Since we implemented an Independent
Triggering Model to trigger faults that does not have dependencies on other faults, and therefore
does not need to communicate with its Agent, it was necessary to develop mechanisms to achieve
an application-independent state on each node of the application.

These two mechanisms represent the Zermia framework that is present and runs along with the
application. The Figure 5.1 show the Unified Modeling Language (UML) Class Diagram regarding
the data structures used to implement the Zermia framework in the application, which supports
the fault implementation. The AgentStub structure has the task of performing the communications
with the Agent services and sanitizing the responses received. The ZermiaRuntime structure
stores the application’s independent state and is responsible for determining whether can it
enable the Independent Triggering Model. It is based on a Singleton class, which can be used in
multiple threads and locations, but its instance will be unique.

Figure 5.1: Zermia framework hooked in application

50 Chapter 5. Implementation details

5.3.1 Faults

The fault procedure follows the information gathering regarding the current application state or
other application-independent information. Whether there is a match of the gathered information
with the application independent Zermia state that contains the exact information that defines
when the fault should be injected, the application executes the faulty code injected by Zermia
and notifications are sent via Zermia framework hooked in application.

Regardless of the information gathered and the code that it will be injected, we define a
fault as an object, using an Object Oriented Programming (OOP) approach. The faults must
implement an interface that symbolizes the method for checking the trigger conditions and the
method that will inject the code into the application, respectively the canTrigger() method and
the executeFault() method. To facilitate the faults development to the user, we developed an
InjectableFault class that is characterized by an fault identifier and contains several methods
that interact with the Zermia framework that facilitate the implementation of the canTrigger()
method, as we see in Figure 5.2.

Figure 5.2: Fault abstraction

Therefore the user will have to develop a class, characterized as an Aspect, that extends Inject-
ableFault and implements the canTrigger() and executeFault() methods. In the implementation
of the canTrigger() method, the user should use the InjectableFault methods for the triggering
conditions to be able to match the application’s state instance with the configuration made in

5.3. Hook 51

the Zermia framework. These are:

• hasTriggerCondition() - Receives the condition (key) identifier and returns true if the
condition was configurated on Agent side in the fault trigger conditions associated with
fault identifier.

• getTriggerConditionValues() - Receives the condition (key) identifier and retrieve all trigger
condition values that was configurated on Agent side associated with fault identifier.

• getFirstTriggerConditionValue() - Receives the condition (key) identifier and retrieve the
first trigger condition value that was configurated on Agent side associated with fault
identifier.

• getAllTriggerConditions() - Retrieves all trigger conditions configurations associated with
fault identifier.

The verifyFaultDependencies() method is used to automatically verify the fault dependencies,
so the user can call this method if they wish, and it will automatically determine which components
they need to call to get a dependency verification.

5.3.2 Predefined Faults and Extensibility

Using the InjectableFault interface, the user must implement executeFault() which will have the
code that will be injected into the application. To implement custom faults the user just need to
implement executeFault() with the code they want. To simplify the developer interaction, Zermia
provides a set of predefined faults that can be invoked on executeFault() method. These faults
come from the previous version and were intended for assessing the properties of distributed
systems as they are related to communication faults but can be adapted to assess any kind of
application. They were described in Section 3.4.

5.3.3 Java implementation

We developed a Zermia library in Java, which implements the classes we present in the Figures 5.1
and 5.2. To assess Java applications, users can develop faults with the support of this library
and using the AspectJ tool that uses AOP. In Listing 5.12 we can see an example of a Crash
Fault. This example shows the continuity of the crash fault development referred in Listing 5.10,
and we are gathering the consensus information through the arguments given in the application’s
target function shown in Line 2. After this, the consensus instance is compared with the settings
we made in Listing 5.10. If the instance state is higher than the one that was configurated, the
trigger condition check is successful, and, since this fault depends on another fault, we check if
the dependencies are met. If all goes according to plan the executeFault() method is called which
will eventually stop the execution of the Java process.

52 Chapter 5. Implementation details

Finally, through the joinPoint.proceed() method the target method can proceed and execute
its predestined code. Since we are experiencing a Crash Fault, when the application executes
the faulty code, this instruction will no longer be executed because the process will terminate.
However, this demonstrates the notion of how the execution would eventually follow with its
previously defined instructions with the joinPoint.proceed() instruction, and how we can use this
to execute the faulty code after or before the target method call.

@Aspect

public class CrashFault extends InjectableFault {

@Around("execution(*
bftsmart.communication.server.ServersCommunicationLayer.send*(..))")

public void sendConsensusMessageEntryPoint(ProceedingJoinPoint joinPoint)

throws Throwable {

super.setId("crashFault_0");

Object[] arg = joinPoint.getArgs();

Integer consensus_instance = (Integer) joinPoint.getArgs()[1];

ArrayList<Object> conditions = new ArrayList<>();

conditions.add(consensus_instance);

if (super.isAgentFaulty() && canTrigger(conditions)) {

super.notifyFaultExecution();

executeFault(new ArrayList<>());

}

joinPoint.proceed(arg);

}

@Override

public Boolean canTrigger(ArrayList<Object> conditions) {

Integer current_instance = (Integer) conditions.get(0);

if (super.hasTriggerCondition("consensus_instance_start")) {

Integer initial_configured_instance =

Integer.valueOf(super.getFirstTriggerConditionValue("consensus_instance_start"));

if (current_instance >= initial_configured_instance &&

super.verifyFaultDependencies())

return true;

}

return false;

}

@Override

public void executeFault(ArrayList<Object> params) {

System.exit(-1);

}

}

Listing 5.12: Crash Fault Java implementing following the example shown in Listing 5.10

5.3. Hook 53

5.3.3.1 Bootstrap Fault

To get the Zermia structures initialized in the application node, it is necessary to register the
node in its Agent. For this purpose, during bootstrap and by using a special fault associated
with the application node main method, the user must implement the Boostrap Fault, which is
responsible to interact with the Agent (using the gRPC services) to instantiate the necessary
Zermia data structures for maintaining its independent state.

@Aspect

public class BoostrapFault {

ZermiaRuntime zermia_runtime = ZermiaRuntime.getInstance();

@Before("execution(* *.main(..))")

public void mainEntryPoint(JoinPoint joinPoint) {

String[] args = (String[]) joinPoint.getArgs()[0];

String agent_id = args[0];

String agent_ip = "127.0.0.1";

Integer agent_port = 0;

if (agent_id.equals("0"))

agent_port = 9000;

else if (agent_id.equals("1"))

agent_port = 9010;

else if (agent_id.equals("2"))

agent_port = 9020;

else if (agent_id.equals("3"))

agent_port = 9030;

zermia_runtime.registerApplication(agent_id, agent_ip, agent_port);

}

}

Listing 5.13: Bootstrap Fault Java example

In Listing 5.13, we have an example where we take the first argument of the main function
(which corresponds to the identifier of the application node) and use this identifier as the identifier
of the Zermia Agent used to communicate with our framework. If we have several nodes that
must be registered to different Agents, we can use the node identifier to differentiate each Agent
node, where they will communicate through the port they are listening on. Finally, to register
the application node in the Zermia Agent we call the function registerApplication() from the
ZermiaRuntime class where we take as arguments the Agent identifier, the IP address and the
Agent port.

5.3.3.2 Compilation

The Zermia library binaries should be compiled by the same Java Development Kit (JDK)
version as the target application to avoid conflicting version incidents. To compile the Zermia

54 Chapter 5. Implementation details

library we use the Maven automation and compilation tool. We built a configuration file for
compiling called pom.xml. By default, the library is compiled for JDK version 11. To change the
JDK version you need to change the pom.xml file as shown in Listing 5.14.

<properties>

<maven.compiler.source>desired-JDK-version-here</maven.compiler.source>

<maven.compiler.target>desired-JDK-version-here</maven.compiler.target>

</properties>

Listing 5.14: Agent configuration file example agents_config.json

That said, once the maven installation, inside the directory containing the pom.xml file, we
can run the command presented in Listing 5.15 which will lead to a new target folder containing
the Java ARchive (JAR) with all the classes from the Zermia library.

mvn clean package

Listing 5.15: Zermia framework compile command for Java

5.3.4 Python implementation

We also developed a Zermia library in Python and it implements the classes we present in the
Figures 5.1 and 5.2. Since we have not found any tool that implements an AOP approach in
Python, such as AspectJ in Java, from the research we have done the best way to implement the
AOP paradigm in Python is through decorators. The solution with decorators is very similar
with the AOP approach, as we can see in Listing 5.16. We define a class that implements the
InjectableFault interface and defines the __call__() method that makes the class instances
behave like methods that can be called. This method takes as parameter another method that
will be the target method of the application.

Inside this function the user can define the advice with the same arguments passed by the
target method and that will be called by the __call__() method. This advice will be as a proxy
method, so whenever the target method is called the user can invoke the target method or not.
In Listing 5.16, we have the same crash fault implementation example that we performed in Java
in Listing 5.12. In the _proxy_advice() method we start by collecting the information regarding
the current consensus instance, which is later inserted into the canTrigger() method that checks
the trigger conditions and dependencies of the crashFault_0 fault. Finally we call the target
application method func() that we receive as an argument by the __call__() method, store the
returned variables so we can then return them and proceed with the normal operation of the
application, just like joinPoint.proceed() in Java.

class CrashFault(InjectableFault):

def __call__(self, func):

self.setId("crashFault_0")

5.3. Hook 55

def _proxy_advice(*args, **kwargs):

instance = args[1]

conditions = []

conditions.append(instance)

if super().isAgentFaulty() and self.canTrigger(conditions):

self.notifyFaultExecution()

self.executeFault(None)

results = func(*args, **kwargs)

return results

return _proxy_advice

def canTrigger(self, conditions):

current_instance = conditions[0]

if super().hasTriggerCondition("consensus_instance_start"):

initial_configured_instance =

int(super().getFirstTriggerConditionValue("consensus_instance_start"))

if current_instance >= initial_configured_instance and

super().verifyFaultDependencies():

return True

return False

def executeFault(self, params):

sys.exit()

Listing 5.16: Crash Fault Python implementing following the example shown in Listing 5.10

The difference between the Python and Java implementation is that in Python we have
to manually develop the moment we want to execute the target function by calling the target
method inside the advice, whereas in AspectJ we used After,Before or Around annotations and
then used joinPoint.proceed() for continue with the normal execution application method. In
this Python implementation we also have to be a bit more intrusive since we have to define the
JoinPoints inside the application’s source code whereas in AspectJ we would do the JoinPoints
definition without having to mess with the source code. Despite this, this definition minimally
affects the source code, since it is just a decorator in the target method signature annotated with
the @ character followed by the developed class name, as we can see in Listing 5.17.

@CrashFault()

def do_something_important(x):

...

return x,y

Listing 5.17: Associating a Crash Fault to a target method in Python

56 Chapter 5. Implementation details

5.3.4.1 Bootstrap Fault

Also in Python, we must define a specific fault for the initialization of the Zermia structures
on the application nodes. As we saw in Section 5.3.3.1, this special fault called BootstrapFault
defines the Agent properties that the application node will interact with. Listing 5.18 illustrates
the same bootstrap fault implementation example we saw in Listing 5.13 but now in Python.

class BootstrapFault():

def __call__(self, func):

def bootstrapAdvice(*args, **kwargs):

agent_ip = "127.0.0.1"

agent_port = 0

agent_id = args[0]

if agent_id == "0":

agent_port = 9000

elif agent_id == "1":

agent_port = 9010

elif agent_id == "2":

agent_port = 9020

elif agent_id == "3":

agent_port = 9030

ZermiaRuntime().get_instance().registerApplication(agent_id,

agent_ip, agent_port)

result = func(*args, **kwargs)

return result

return bootstrapAdvice

Listing 5.18: Bootstrap Fault Python example

As we saw in Listing 5.17, the user must inject the BootstrapFault in the main() method of
the target application, as we can see in Listing 5.19.

@BootstrapFault()

def main(args):

...

Listing 5.19: Associating the Boostrap Fault to the main method in Python

5.4 How to assess the behavior of Fault Tolerance protocols

There are several ways to assess fault tolerance protocols. As each protocol has its own
particularities it is difficult to characterize the conditions needed to evaluate the resilience
of this protocols. A simple consensus instance can have different nomenclatures in different
protocols. For this reason, we opted to let the Zermia user decide the trigger conditions.

However, there are patterns and scenarios for assessing the resiliency of these types of protocols

5.5. Script setup for compiling and running 57

that are independent of their implementation. The Zermia predefined faults were designed with
the intention of being used in a general way to assess these distributed applications. By injecting
these faults, it is possible to evaluate the reactive communications that arise to circumvent
malicious behaviors.

Thus, the correct behavior of the protocol must be defined, all phases must be determined,
and for each phase, each of the predefined fault types defined in Zermia must be applied.

Other missing experiments that may help in assessing these systems are:

• Shutting down the leader server.

• Shut down one or more backup servers.

• Delaying the sending of packages regarding voting from the leader server election.

• Delay sending the periodic communications (heartbeat communications) that define the
liveness of the nodes and establish leadership/authority.

• Try to break a cluster into different subsets and see if these creates two leads.

The next chapter will present some of these experiments by assessing the RAFT protocol.

5.5 Script setup for compiling and running

Zermia has an executable script written in Python3 that allows the automation of assessing fault
injection experiments either in Java or Python. From a configuration file where information such
as the Zermia server structure used (Coordinator and Agents), the target application and the
code developed for the faults are provided.

The script creates an output directory which contains files with the output of the processes
started by the script (Coordinator, Agents, application servers and application clients). For
the assessing of Java applications, since we must compile the developed faults and then insert
the compiled faults into the application via the AspectJ compiler, the output directory will
also contain a directory with the compiled faults and a directory representing the application
alongside the compiled faults. That said, it will be from this directory that we execute the Java
application with the faults hooked. For Python, since we do not have to compile source code and
the faults must be already within the application project, the output directory will only contain
the process monitoring files generated by the script. Listing 5.20 shows example commands for
running experiments from the script.

$ python3 setup.py -cfg config.ini --run_python -o

python_experiment_output_dir_name

$ python3 setup.py -cfg config.ini --run_java -o java_experiment_output_dir_name

Listing 5.20: Running experiences from setup Zermia script

58 Chapter 5. Implementation details

Mandatory for running the script is to provide a configuration file in .ini format through
the -cfg argument and a name for the output directory through the -o argument. You must also
define the type of language that the application is going to use (Python or Java). The language
differentiation is set using the –run_python or –run_java argument.

Optionally the user can define the binary paths of the programming languages that the script
will eventually use, such as:

• Path to Java binary by the –java argument.

• Path to Java compiler by the –javac argument.

• Path to AspectJ compiler by the –ajc argument.

• Path to Python3 binary by the –python argument.

5.5.1 Configuration file

The configuration file must be organized by sections, where [zermia] represents the zermia section.
The sections contain mandatory fields and optional fields. The different sections that user need
to configure are:

• zermia - This is where needs to define the paths to the Coordinator and Agent binaries.
The definition of the attribute referring to the coordinator is optional and should be set
when the faulty experiments have multi-agent dependencies.

– The zermia section fields are:

∗ agent - Represents the Zermia Agent binary path.
∗ n_agents - Represents the Agents number that experiment will use.
∗ coordinator - Represents the Zermia Coordinator binary path.
∗ boot_time - It has an optional field that represents the waiting time for booting

Zermia infrastruture in seconds.

• coordinator - The coordinator section is defined when it is intended to inject faults with
dependencies between multiple Agents.

– The coordinador section fields are:

∗ ip -Represents the ip address of the Coordinator host.
∗ port - Represents the port that Coordinator is listening.
∗ agents_scheduler - Represents the Agents fault schedulers configuration JSON

file.

• agent-X - Each agent will have its own section identified by a number that symbolizes X.
There will be as many sections as defined in the n_agents field in the zermia section.

5.5. Script setup for compiling and running 59

– The agent section fields are:

∗ ip - Represents the ip address of the Agent-X host.
∗ port - Represents the port that Agent-X is listening.
∗ scheduler - Is is an optional field that must be defined when there is no

Coordinator host. It represents fault scheduler configuration JSON file of Agent-X.

• aspects - This section is only used in Java application experiments and defines the source
code developed for implementing the faults and the dependencies needed to compile that
code.

– The aspects section fields are:

∗ source - Represents the root folder that has all packages of aspects source code.
∗ dependencies - Represents all dependencies on the aspects source code. This

field represents a list, and each item list can be defined as a directory with multiple
JAR files, by a single var file, or by a compiled code package. Unavoidably, it must
contain the AspectJ library and the Zermia library and may obviosly contain
more dependencies.

• application - This section defines all the characteristics needed to be able to run the
application. Mainly, the number of servers and clients that the experiment will use.

– The application section fields are:

∗ root_folder - This field is only used for testing Java applications and represents
the root directory that contains the entire application project.

∗ binary - This field is only used for testing Java applications and represents the
compiled application Java code. It must be a JAR or a folder with the packages
that contains the compiled Java classes.

∗ dependencies - This field is only used for testing Java applications and represents
all dependencies of target application. It represents a list, and each item list can
be defined as a directory with multiple JAR files, by a single var file, or by a
compiled code package. It is a must that a dependency folder is in this field and
this is because it will be in this directory where we add the necessary dependencies
to the fault implementation code.

∗ n_replicas - It as an optional field and represents the replicas number needed
by application server.

∗ server_execution_path - It as an optional field and represents the working
directory to execute server application.

∗ server_boot_time - It as an optional field and represents the waiting time in
seconds for proceeding execution after all replicas are up.

∗ n_clients - It as an optional field and represents the clients number needed by
application.

60 Chapter 5. Implementation details

∗ client_execution_path - It as an optional field and represents the working
directory to execute client application.

• replica-X - Each server in the application will have its own section identified by a number
that symbolizes X. There will be as many replica’s sections as defined in the n_replicas
field in the application section.

– The replica section fields are:

∗ execution_command - Represents the command that executes to the Replica-X
and should follow the path described in the server_execution_path field of the
application section.

∗ boot_time - It is an optional field and represents waiting time in seconds for
booting the Replica-X.

• client-X - Each client in the application will have its own section identified by a number
that symbolizes X. There will be as many client’s sections as defined in the n_clients field
in the application section.

– The client section fields are:

∗ execution_command - Represents the command that executes the Client-X
and should follow the path described in the client_execution_path field of the
application section.

∗ boot_time - It is an optional field and represents the execution time of the
Client-X.

In Listing 5.22 we can see an example of a Java application testing experiment that will need
two Agents, the Coordinator, four processes for the application server and one process for the
application client. In Listing 5.21 we can observe an example of a Python application testing
experiment that will need only one Agent and one process for the application server.

[zermia]

agent = "./agent/my_zermia_agent-1.42.1-jar-with-dependencies.jar"

n_agents = 1

boot_time = 0.5

[agent-0]

ip = "127.0.0.1"

port = 9000

scheduler = "./agent/agent-0_scheduler.json"

[application]

n_replicas = 1

server_execution_path = "/home/trainee/my-simple-app"

server_boot_time = 2

n_clients = 0

5.5. Script setup for compiling and running 61

[replica-0]

execution_command = "runscripts/startReplicaYCSB.sh 0"

boot_time = 0.25

Listing 5.21: Script configuration file for Python applications

[zermia]

coordinator =

"./coordinator/my_zermia_coordinator-1.42.1-jar-with-dependencies.jar"

agent = "./agent/my_zermia_agent-1.42.1-jar-with-dependencies.jar"

n_agents = 2

boot_time = 0.5

[coordinator]

ip = "127.0.0.1"

port = 9090

agents_scheduler = "./coordinator/crashFault_test_bftsmart.json"

[agent-1]

ip = "127.0.0.1"

port = 9010

[agent-3]

ip = "127.0.0.1"

port = 9030

[aspects]

source = "./fault_hooks/src/main/java"

dependencies = [

"./fault_hooks/lib"

]

[application]

root_folder = "./bft-smart-test"

binary = "./bft-smart-test/bin/BFT-SMaRt.jar"

dependencies = [

"./bft-smart-test/lib"

]

n_replicas = 4

server_execution_path = "./bft-smart-test"

server_boot_time = 8

n_clients = 1

client_execution_path = "./bft-smart-test"

[replica-0]

execution_command = "runscripts/startReplicaYCSB.sh 0"

boot_time = 0.25

[replica-1]

execution_command = "runscripts/startReplicaYCSB.sh 1"

boot_time = 0.25

62 Chapter 5. Implementation details

[replica-2]

execution_command = "runscripts/startReplicaYCSB.sh 2"

boot_time = 0.25

[replica-3]

execution_command = "runscripts/startReplicaYCSB.sh 3"

boot_time = 0.25

[client-0]

execution_command = "runscripts/ycsbClient.sh"

Listing 5.22: Script configuration file for Java applications

Chapter 6

Experiments

In this section we present experiments that are meant to demonstrate the use of Zermia and its
impact on applications. We decided to choose two different applications developed in different
programming languages. The first experiment is a simple single-process application developed in
Python, where we are injecting basic faults over time. The second experiment is an implementation
of the RAFT protocol developed in Java where several faults were injected to validate the behavior
and resilience of the protocol.

6.1 Simple Python application testing

We assessed the latest Zermia version with a single-process application developed in Python.
The application is quite simple. Infinitely, by generating random numbers in the range [0:500000],
it checks if the generated number is a prime number and if so, increments the count of primes
found.

We chose to assess an application of such simplicity to demonstrate simple injection experi-
ments. In terms of fault triggering conditions, we chose to define execution timings to determine
the application’s execution states.

6.1.1 Experimental setup

In this experiment we used Ubuntu 20.04.5 LTS virtual machine with 11GB of Random Access
Memory (RAM) and eight Central Process Unit (CPU) core. The native machine has one AMD
Ryzen 7 2700X Eight-Core 3.7GHz Processor and uses 16GB of RAM with a Windows 10 x64
operating system.

We do the fault injections locally on this machine with the initialization of one Zermia Agent.

63

64 Chapter 6. Experiments

6.1.2 Baseline

Figure 6.1 shows the evaluation of the application through various experiment measuring the
throughput of the number of primes per second. In Figure 6.1 a), we can observe the behavior of
the application in a fault-free experiment. This result derived from an average of ten runs of
the application. We can observe that the common behavior of the application goes through the
random generation of 100 to 125 prime numbers per second.

Figure 6.1: Simple Python application experiments

6.1.3 Delay Fault

In Figure 6.1 b) we can observe the experiment of delay fault injection in the execution. We
triggered this fault at fifth, thirteenth and twenty-seventh seconds and it has delay intervals of
three seconds. The result shows three instants where the random prime generation is zero, which
coincides with instants fifth, thirteenth and twenty-seventh seconds.

6.1. Simple Python application testing 65

6.1.4 Range Modification Fault

In Figure 6.1 c) we can observe the fault injection experiment of modifying the random number
generation range. We triggered this fault from the tenth second until the twentieth second.
During the fault execution the random number generation range becomes reduced to [0:150000].
This interval reduction increases the probability of randomly generating a prime number. The
result shows that from the tenth second there is an exponential increase in the generation of
prime numbers and that it remains constant until the twentieth second, where it finally decreases
and returns to the standard throughput.

6.1.5 Delay and Range Modification Faults

In Figure 6.1 d), we can observe the experiment of injecting delay faults and modifying the
random number generation range. The Delay fault is similar to the one we saw in Figure 6.1
b), but it only triggers at the fifth and fifteenth seconds, and now it will have delay intervals
of 1.5 seconds. The Interval Modification fault is exactly the same as in Figure 6.1 c), at tenth
second until the twentieth second, the random number generation interval becomes reduced
to [0:150000]. However, additionally to the Range Modification Fault we will append an event
dependency. This fault will only trigger after the Delay Fault has been executed. So, there is a
dependency between internal faults.

The result of Figure 6.1 d) shows that at fifth second there is a local minimum coming
from the Delay Fault. Then, from tenth second the throughput drops to half of the baseline
value and remains constant at these values until the fifteenth second. This behavior comes
from the dependency checking that the Range Modification Fault performs. Since the of the
Range Modification fault execution is between the tenth and twentieth seconds, the Range
Modification Fault contacts its Agent to know if the Delay Fault has already been injected.
Communicating with the Agent requires the sharing of the machine’s processing time between
running the application and checking injector dependencies, which is noticeable between the
tenth and twentieth seconds.

Again, at fifteenth second, the throughput has a local minimum coming from the Delay
Fault. At this time, the Delay Fault is eventually terminated and notifies the Agent of the fault
injection’s completion. This unlocks the Range Modification fault which is noticeable between
the fifteenth to twentieth seconds, as the throughput reaches values close to what it reached in
Figure 6.1 c) at the same interval. After the twentieth second, the Range Modification Fault is
eventually terminated, and we observe the application standard throughput from that instant
onwards.

66 Chapter 6. Experiments

6.2 RAFT testing

Evan Sá[67] used Zermia in assessing the RAFT fault tolerance protocol. They relied on
a Java implementation of RAFT and, evaluated the algorithm’s performance in number of
operations performed per second. For this evaluation they implemented a Yahoo! Cloud Serving
Benchmark (YCSB)[68] benchmark, which builds a key-value store responsible for receiving and
handling requests from the benchmark such as inserting, removing, or updating data.

6.2.1 Experimental Configuration

The tests were conducted on a single machine on the Linux operating system that used the
Ubuntu 22.04.1 LTS distribution. The embedded processor was the quad-core i7-7700HQ CPU
and used 16GB of RAM.

As we saw in Section 2.4.3.2 the RAFT protocol needs n ≥ 2f + 1 replicas to manage up to
f faults. The experiment setup was divided into two clusters where one can manage f = 1 faults
and the other f = 2 faults. Respectively the number of nodes in the clusters are, four replicas
and another with six replicas. For easy identification in the following sections, we abbreviate
each cluster with Cluster of four nodes (C4) and Cluster of six nodes (C6).

Finally, the YCSB configuration has fifty clients sending in total one million transactions
into the system.

6.2.2 Baseline results

0 50 100 150 200 250 300
Time (s)

0

1000

2000

3000

4000

O
pe

ra
ti

on
s

(o
ps

/s
)

(a) Cluster of 4 replicas

0 50 100 150 200 250 300 350 400
Time (s)

0

500

1000

1500

2000

2500

3000

O
pe

ra
ti

on
s

(o
ps

/s
)

(b) Cluster of 6 replicas

Figure 6.2: Performance obtained by 1 million requests

Figure 6.2 shows the standard performance obtained using the script setup mentioned in 5.5
without any fault injection. These results served as a baseline, to analyze the same setup but
with the injection of certain faults and then try to observe the implications that each fault
generates by comparison with the baseline.

6.2. RAFT testing 67

6.2.3 Crash Fault

This experiment consists of forcing a replica to shut down and the trigger conditions are related
to the size of the state machine log. Since per configuration, the clients will send one million
requests in total, on the state machine log this reflects an index of the same length. The trigger
condition used in this experiment was the last index used in the state machine log. This type of
fault was tested by injecting it into the primary (Leader) and Follower replicas.

0 50 100 150 200 250 300 350
Time (s)

0

500

1000

1500

2000

2500

3000

3500

4000

O
pe

ra
ti

on
s

(o
ps

/s
)

(a) Leader crash for trigger condition: 500000

0 50 100 150 200 250 300
Time (s)

0

500

1000

1500

2000

2500

3000

3500

O
pe

ra
ti

on
s

(o
ps

/s
)

(b) Leader crash for trigger condition: 300000 and
600000

0 50 100 150 200 250 300 350 400
Time (s)

0

500

1000

1500

2000

2500

3000

3500

O
pe

ra
ti

on
s

(o
ps

/s
)

(c) Follower crash for trigger condition: 300000

Figure 6.3: Performance obtained by 1 million requests by injecting a crash at specific points
(C4 configuration)

Figure 6.3, illustrates experiments of the C4 and shows that the crash of a server decreases
the system performance to values close to zero for a few seconds. After the crash, the system
never managing to recover the performance it had before the fault injection.

In Figures 6.3a and 6.3b, we illustrate the injection of crash faults on primary replicas. In
Figure 6.3a, the Raft algorithm was quickly able to recover from first crash fault, electing a new
leader and continue serving client requests. However, in Figure 6.3b a second fault was injected
at log index six hundred thousand to crash the new leader server, remaining only two up of four
servers, which breaks the protocol invariant n ≥ 2f + 1. This is because to be able to tolerate two
faults, the number of nodes in the system would have to be at least five. Figure 6.3c illustrate the

68 Chapter 6. Experiments

injection of crash fault on follower replica, and it display the triggering of the fault at log index
three hundred thousand to a follower node, which does not a big impact on the throughput.

0 100 200 300 400 500
Time (s)

0

500

1000

1500

2000

2500

O
pe

ra
ti

on
s

(o
ps

/s
)

(a) Leader crash for trigger condition: 300000 and
600000

0 100 200 300 400
Time (s)

0

500

1000

1500

2000

2500

O
pe

ra
ti

on
s

(o
ps

/s
)

(b) Leader crash for trigger condition: 300000,
600000 and 800000

0 50 100 150 200 250 300 350 400
Time (s)

0

500

1000

1500

2000

2500

3000

3500

O
pe

ra
ti

on
s

(o
ps

/s
)

(c) Follower crash for trigger condition: 300000 and
600000

Figure 6.4: Performance obtained by 1 million requests by injecting a crash at specific points
(C6 configuration)

Figure 6.4 shows results derived from the same experiment as above but on C6 and then we
injected one more crash fault in each experiment. In comparison, we notice a slight improvement
in throughput after the injection of the crash faults. In other words, system recovery is much
more effective. In Figures 6.4a and 6.4b, the behavior during leader crashes is the same, but with
an improvement in the performance when the protocol establishes a new leader. In Figure 6.4c,
even with the loss of two followers nodes, it had no effect on system performance.

To conclude, in both clusters, we verify target RAFT implementations respects the security
properties related to its configuration, i.e. the formula n ≥ 2f + 1.

6.2. RAFT testing 69

6.2.4 Delay Fault

In this experiment, the objective is to inject delays on replicas execution before managing certain
client requests. The trigger condition will be the same as in the previous Crash Fault, i.e., the
last replicated log index. Different delays injected at separate times of the system execution will
be shown, to get an idea of the system’s latency because it is an essential attribute that Raft
needs to have for practical systems.

0 100 200 300 400 500 600 700
Time (s)

0

500

1000

1500

2000

2500

3000

3500

O
pe

ra
ti

on
s

(o
ps

/s
)

(a) Leader delay 20,50 and 100 ms

0 100 200 300 400 500 600 700
Time (s)

0

500

1000

1500

2000

2500

3000

3500

4000

O
pe

ra
ti

on
s

(o
ps

/s
)

(b) Delay all nodes 20,50 and 100 ms

0 50 100 150 200 250 300 350
Time (s)

0

500

1000

1500

2000

2500

3000

3500

4000

O
pe

ra
ti

on
s

(o
ps

/s
)

(c) Delay all followers 20,50 and 100 ms

Figure 6.5: Results obtained through C4

In the three tests performed, we triggered the faults in three different instants. At log index
number 100000, 500000 and 800000, and lasted for 2000 requests. For each interval we injected
respectively delays of twenty milliseconds, fifty milliseconds, and one hundred milliseconds. The
cluster used was the C4. Figure 6.5 shows the results obtained after injecting these delays. In
Figure 6.5a the target was the leader replica, in Figure 6.5b all replicas (leader and followers)
and in Figure 6.5c only the followers.

It is possible to verify that in the tests involving the leader replica (Figures 6.5a and 6.5b,
the decrease in performance is extremely high.

70 Chapter 6. Experiments

6.2.5 Delaying the Leader Election

In this fault experiment we want to verify how long it takes for the first leader to be elected after
injecting a certain delay. For this purpose, before the target application procedure RequestVote
message sending, a delay execution is injected into it.

Tables 6.1 and 6.2 shows the results obtained after running the C4 and we performed six
tests to have a more average value.

The values represented in each replica refer to the average time that a replica acknowledged
the election of a leader or, in the replica leader, the time it took to become a leader. Concerning
Term column, it represents how many elections rounds it took to elect a leader. The results in
Table 6.1 were run without the presence of faults and the election of the leader almost occurs in
the first term.

In Table 6.2 delays of 100, 250, and 280 milliseconds were injected before the vote request
occured. The candidate timeout used by this RAFT implementation is equal to 300 milliseconds.
The closer the delay is to this value, the longer it will take for system elects the replica leader.
The results show that from 250ms to 280ms, the increase was substantial. Tests from 290ms and
above already created infinite loops of request votes because the injected delay is longer than the
candidate timeout.

In conclusion, we could disable the system with the injection of delays completely. Nevertheless,
RAFT assumes a practicality where it cannnot manage Byzantine faults and only network faults,
so it is unlikely to reach this point.

6.2.6 Delaying Heartbeats

In this experiment, the intention is to delay the sending of heartbeats by the leader, which
guarantees the system’s stability, resetting the election timeout of the follower nodes and thus
avoiding recurrent elections.

Test Replica 0 Replica 1 Replica 2 Replica 3 Term
T1 1144 1175 1035 1238 1
T2 1084 860 1067 777 1
T3 1145 1132 1139 1129 1
T4 1459 1293 1125 1478 2
T5 1389 1357 1377 1108 2
T6 1369 1527 1591 1681 2

AVG 1265 1224 1222 1235 1,5

Table 6.1: Baseline results for first leader elected after x milliseconds.

6.2. RAFT testing 71

Injected delay Replica 0 Replica 1 Replica 2 Replica 3 Term average
0 ms 1265 1224 1222 1235 1,5

100 ms 1615 1677 1739 1617 1,5
250 ms 3031 3021 3073 3116 6,3
280 ms 15477 15482 15378 15574 52,17

Table 6.2: Average results obtained after injected delays. In each "Injected delay", six tests were
performed, and the result of the replicas are in milliseconds.

Delaying these messages for enough time can elapse the election timeouts and start a new
election. However, if this delay is higher than the maximum election timeout, the leader elections
will become infinite. The election timeouts in this RAFT implementation are something like 150
to 300 miliseconds.

The test results present in Table 6.3 used the C4 configuration, least for 60 seconds and we
repeated the tests three times, by increasing the injected delay (mentioned as the F column)
until it reached values exceeding the election timeout value. Since the maximum election timeout
of a follower is 300 miliseconds, and if the heartbeats are frozen during that time (or longer),
then the replica will elapse and transit to the candidate state. This process will happen on all
followers in the cluster as no timeout reaches values greater than 300 ms leading to an infinite
leader election that makes the system unusable. It is possible to evidence this for the total delay
values of 300 milliseconds and 350 milliseconds in Table 6.3 and Table 6.4.

F(ms) R0 R1 R2 R3 Total F(ms) R0 R1 R2 R3 Total F(ms) R0 R1 R2 R3 Total
25 1 0 0 0 1 25 0 0 1 0 1 25 0 0 1 0 1
50 0 1 0 0 1 50 0 1 0 0 1 50 0 0 0 1 1
75 0 0 1 0 1 75 0 1 0 0 1 75 1 0 0 0 1

100 1 1 0 0 2 100 0 0 0 1 1 100 0 0 0 1 1
125 5 6 6 4 21 125 1 1 0 0 2 125 1 0 0 1 2
150 9 7 11 8 35 150 10 8 10 7 35 150 9 9 9 10 37
175 12 7 6 12 37 175 15 7 13 11 46 175 12 10 6 11 39
200 8 12 10 13 43 200 8 11 11 7 37 200 9 11 10 9 39
225 18 21 15 2 56 225 17 8 13 15 53 225 19 14 15 12 60
250 18 15 22 16 71 250 9 29 33 27 98 250 11 34 19 30 94
275 18 18 10 28 74 275 25 29 25 24 103 275 77 59 10 7 153
300 113 0 0 113 226 300 112 112 0 0 224 300 0 0 111 111 222
350 0 0 110 110 220 350 0 0 115 114 229 350 113 0 0 113 226

Table 6.3: The total amount of candidates that were established leaders after injecting delays.
Each column represents a replica and the number of times it got elected leader.

Regarding the minimum election timeout value of 150 ms, it is possible to see in both tables,
Tables 5.3 and 5.4, that we are already starting to see unusual leader elections in 125 ms delay
injection with an average of 8,3 leaders.

72 Chapter 6. Experiments

Fault (ms) Leader Average
25 1
50 1
75 1

100 1,3
125 8,3
150 35,7
175 40.66
200 39.66
225 56,3
250 87,7
275 110
300 224
350 225

Table 6.4: The average results obtained from Table 6.3 that also represent the number of
candidates that became leaders.

Chapter 7

Conclusion

Throughout this project, we explored mechanisms to generalize the tool to various fault tolerance
protocols, multi-process, or single-process applications. In addition to this, we explored certain
components that make it possible to extend the tool to several programming languages, using
the gRPC tool and Aspect Oriented Programming (AOP) approaches. We also contributed to
the implementation of intuitive fault dependency mechanisms that make it easy for the user
to operate. The tool is flexible enough to evaluate the dependencies required in each test run
and adapt its execution flow so that it minimizes the message swapping between components of
the Zermia framework. Finally, we built a script that, through the fault development by the
user, allows the injection test experiments by running the entire Zermia framework (Coordinator,
Agents) and the target application together with the developed faults.

We present separate experiments of fault injection using Zermia. First, we used a simple single-
process application developed in Python where we applied Delay and information Modification
Faults pertaining to the application. In this case, we also demonstrated experiments that contained
dependencies between faults. Then, we presented the use of the tool in an implementation of
RAFT developed in Java where we applied crash, delays and more deeply leader election delays
and heartbeats delays.

One limitation of our implementation is when we constantly checked internal and external
dependencies between faults. The communication to the respective Agents and the Coordinator
is done by only one thread/node simultaneously to avoid race conditions that could lead to
unwanted injection states. For this reason, if Zermia checks dependencies for an extended period,
this can lead to performance degradation in the application. We suggest that the users use the
dependencies with awareness and if possible, in a combination of trigger conditions that minimize
dependency checking so that the application has no performance consequences.

73

74 Chapter 7. Conclusion

7.1 Future Work

This tool can be further improved to create a real automation and test injection tool. The
study and develop a fault injection policies engine that analyzes existing code to determine the
policies for injecting faults, would be a beneficial way to define the most important locations
where a fault should be injected (for example, the methods that are called more frequently). In
addition, through an adaptation of the procedure done in Proteus that generates the fault code
automatically by the Domain Specific Language (DSL) definition, automation mechanisms could
be created that would avoid the fault code development by the user. Thus, through these two
mechanisms, we could automate the fault injection tests through configuration files.

The script for running injection experiments can also be extended to allow running experiments
remotely. Currently, the script works for local testing. However, it can be adapted using the
Secure Shell (SSH) tool to be able to access other machines remotely, we can run the Zermia
Agents and application nodes remotely.

Another interesting development would be to create more predefined fault types by identifying
patterns related to fault tolerance protocols.

Finally, since we can extend the usability of the tool to more programming languages and for
the automation procedure reaches several applications in different programming languages, the
development of the Zermia libraries and the fault development structure could be developed in
other programming languages.

Bibliography

[1] Martin Kleppmann. Distributed systems. https://www.cl.cam.ac.uk/teaching/2021/
ConcDisSys/dist-sys-notes.pdf. Online; Accessed December-2021.

[2] Diego Ongaro and John Ousterhout. In search of an understandable consensus algorithm.
In 2014 USENIX Annual Technical Conference (Usenix ATC 14), pages 305–319, 2014.

[3] Miguel Castro, Barbara Liskov, et al. Practical byzantine fault tolerance. In OsDI, volume 99,
pages 173–186, 1999.

[4] Miguel Castro and Barbara Liskov. Practical byzantine fault tolerance and proactive recovery.
ACM Transactions on Computer Systems (TOCS), 20(4):398–461, 2002.

[5] Alysson Bessani, João Sousa, and Eduardo EP Alchieri. State machine replication for
the masses with bft-smart. In 2014 44th Annual IEEE/IFIP International Conference on
Dependable Systems and Networks, pages 355–362. IEEE, 2014.

[6] Joao Sousa and Alysson Bessani. From byzantine consensus to bft state machine replication:
A latency-optimal transformation. In 2012 Ninth European Dependable Computing
Conference, pages 37–48. IEEE, 2012.

[7] Google. grpc. https://grpc.io/. [Online; Accessed July-2022].

[8] Rolando Martins, Rajeev Gandhi, Priya Narasimhan, Soila Pertet, António Casimiro, Diego
Kreutz, and Paulo Veríssimo. Experiences with fault-injection in a byzantine fault-tolerant
protocol. In Acm/ifip/usenix international conference on distributed systems platforms and
open distributed processing, pages 41–61. Springer, 2013.

[9] Ricardo Jorge Alves Fernandez. Injecting faults in byzantine fault tolerant protocols. Master’s
thesis, Faculdade de Ciências da Universidade do Porto, September 2021.

[10] Miguel André Queirós Coelho da Silva. Injector de faltas para teste de aplicações. Master’s
thesis, Faculdade de Ciências da Universidade do Porto, September 2021.

[11] Andrew Miller, Yu Xia, Kyle Croman, Elaine Shi, and Dawn Song. The honey badger
of bft protocols. In Proceedings of the 2016 ACM SIGSAC conference on computer and
communications security, pages 31–42, 2016.

75

https://www.cl.cam.ac.uk/teaching/2021/ConcDisSys/dist-sys-notes.pdf
https://www.cl.cam.ac.uk/teaching/2021/ConcDisSys/dist-sys-notes.pdf
https://grpc.io/

76 Bibliography

[12] Maofan Yin, Dahlia Malkhi, Michael K Reiter, Guy Golan Gueta, and Ittai Abraham.
Hotstuff: Bft consensus in the lens of blockchain. arXiv preprint arXiv:1803.05069, 2018.

[13] Leslie Lamport. The part-time parliament. ACM Transactions on Computer Systems, 16,
1998.

[14] Joseph Y Halpern and Yoram Moses. Knowledge and common knowledge in a distributed
environment. Journal of the ACM (JACM), 37(3):549–587, 1990.

[15] Leslie Lamport, Robert Shostak, and Marshall Pease. The byzantine generals problem.
ACM Transactions on Programming Languages and Systems, 4:382–401, 7 1982.

[16] Leslie Lamport and Nancy Lynch. Distributed computing: Models and methods. In Formal
models and semantics, pages 1157–1199. Elsevier, 1990.

[17] Cynthia Dwork, Nancy Lynch, and Larry Stockmeyer. Consensus in the presence of partial
synchrony. Journal of the ACM (JACM), 35(2):288–323, 1988.

[18] Abdeldjalil Ledmi, Hakim Bendjenna, and Sofiane Mounine Hemam. Fault tolerance in
distributed systems: A survey. In 2018 3rd International Conference on Pattern Analysis
and Intelligent Systems (PAIS), pages 1–5. IEEE, 2018.

[19] Fred B Schneider. Implementing fault-tolerant services using the state machine approach:
A tutorial. ACM Computing Surveys (CSUR), 22(4):299–319, 1990.

[20] Tushar Deepak Chandra and Sam Toueg. Unreliable failure detectors for reliable distributed
systems. Journal of the ACM (JACM), 43(2):225–267, 1996.

[21] Matthias Wiesmann, Fernando Pedone, André Schiper, Bettina Kemme, and Gustavo Alonso.
Understanding replication in databases and distributed systems. In Proceedings 20th IEEE
International Conference on Distributed Computing Systems, pages 464–474. IEEE, 2000.

[22] Peter Sobe. Combination of data deduplication and redundancy techniques in distributed
systems. In ARCS 2016; 29th International Conference on Architecture of Computing
Systems, pages 1–6. VDE, 2016.

[23] Domenico Cotroneo, Luigi De Simone, Pietro Liguori, Roberto Natella, and Nematollah
Bidokhti. How bad can a bug get? an empirical analysis of software failures in the
openstack cloud computing platform. In Proceedings of the 2019 27th ACM Joint Meeting on
European Software Engineering Conference and Symposium on the Foundations of Software
Engineering, pages 200–211, 2019.

[24] Czesław Danilowicz and Ngoc Thanh Nguyen. Consensus methods for solving inconsistency
of replicated data in distributed systems. Distributed and Parallel Databases, 14(1):53–69,
2003.

[25] Michael J Fischer. The consensus problem in unreliable distributed systems (a brief survey).
In International conference on fundamentals of computation theory, pages 127–140. Springer,
1983.

Bibliography 77

[26] Leslie Lamport. Time, clocks, and the ordering of events in a distributed system.
Communications of the ACM, 21, 1978.

[27] Vassos Hadzilacos. On the relationship between the atomic commitment and consensus
problems. In Fault-Tolerant Distributed Computing, pages 201–208. Springer, 1990.

[28] Gul A Agha and Reza Ziaei. Security and fault-tolerance in distributed systems: an actor-
based approach. Proceedings Computer Security, Dependability, and Assurance: From Needs
to Solutions (Cat. No. 98EX358), pages 72–88, 1998.

[29] Michael J. Fischer, Nancy A. Lynch, and Michael S. Paterson. Impossibility of distributed
consensus with one faulty process. Journal of the ACM (JACM), 32, 1985.

[30] John R Douceur. The sybil attack. In International workshop on peer-to-peer systems, pages
251–260. Springer, 2002.

[31] Joao Sousa, Alysson Bessani, and Marko Vukolic. A byzantine fault-tolerant ordering
service for the hyperledger fabric blockchain platform. In 2018 48th annual IEEE/IFIP
international conference on dependable systems and networks (DSN), pages 51–58. IEEE,
2018.

[32] Maofan Yin, Dahlia Malkhi, Michael K Reiter, Guy Golan Gueta, and Ittai Abraham.
Hotstuff: Bft consensus with linearity and responsiveness. In Proceedings of the 2019 ACM
Symposium on Principles of Distributed Computing, pages 347–356, 2019.

[33] Marek Jawurek and Florian Kerschbaum. Fault-tolerant privacy-preserving statistics. In
International Symposium on Privacy Enhancing Technologies Symposium, pages 221–238.
Springer, 2012.

[34] Alysson Bessani, Marcel Santos, João Felix, Nuno Neves, and Miguel Correia. On the
{Efficiency} of durable state machine replication. In 2013 USENIX Annual Technical
Conference (USENIX ATC 13), pages 169–180, 2013.

[35] Ronald L Rivest, Adi Shamir, and Leonard Adleman. A method for obtaining digital
signatures and public-key cryptosystems. Communications of the ACM, 21(2):120–126, 1978.

[36] Gene Tsudik. Message authentication with one-way hash functions. ACM SIGCOMM
Computer Communication Review, 22(5):29–38, 1992.

[37] Joao A Duraes and Henrique S Madeira. Emulation of software faults: A field data study
and a practical approach. Ieee transactions on software engineering, 32(11):849–867, 2006.

[38] Roberto Natella, Domenico Cotroneo, and Henrique S Madeira. Assessing dependability
with software fault injection: A survey. ACM Computing Surveys (CSUR), 48(3):1–55, 2016.

[39] Mei-Chen Hsueh, Timothy K Tsai, and Ravishankar K Iyer. Fault injection techniques and
tools. Computer, 30(4):75–82, 1997.

78 Bibliography

[40] Jean Arlat, Martine Aguera, Louis Amat, Yves Crouzet, J-C Fabre, J-C Laprie, Eliane
Martins, and David Powell. Fault injection for dependability validation: A methodology
and some applications. IEEE Transactions on software engineering, 16(2):166–182, 1990.

[41] Ang Jin, Jianhui Jiang, Jiawei Hu, and Jungang Lou. A pin-based dynamic software fault
injection system. In 2008 The 9th International Conference for Young Computer Scientists,
pages 2160–2167. IEEE, 2008.

[42] Eunjin Jeong, Namgoo Lee, Jinhan Kim, Duseok Kang, and Soonhoi Ha. Fifa: A kernel-level
fault injection framework for arm-based embedded linux system. In 2017 IEEE International
Conference on Software Testing, Verification and Validation (ICST), pages 23–34. IEEE,
2017.

[43] J-C Fabre, Frédéric Salles, M Rodríguez Moreno, and Jean Arlat. Assessment of cots
microkernels by fault injection. In Dependable Computing for Critical Applications 7, pages
25–44. IEEE, 1999.

[44] Siva Kumar Sastry Hari, Sarita V Adve, Helia Naeimi, and Pradeep Ramachandran. Relyzer:
Application resiliency analyzer for transient faults. IEEE Micro, 33(3):58–66, 2013.

[45] Seungjae Han, Kang G Shin, and Harold A Rosenberg. Doctor: An integrated software
fault injection environment for distributed real-time systems. In Proceedings of 1995 IEEE
International Computer Performance and Dependability Symposium, pages 204–213. IEEE,
1995.

[46] Rickard Svenningsson, Jonny Vinter, Henrik Eriksson, and Martin Törngren. Modifi: a
model-implemented fault injection tool. In International Conference on Computer Safety,
Reliability, and Security, pages 210–222. Springer, 2010.

[47] János Oláh and István Majzik. A model based framework for specifying and executing
fault injection experiments. In 2009 Fourth International Conference on Dependability of
Computer Systems, pages 107–114. IEEE, 2009.

[48] Eliane Martins, Cecilia MF Rubira, and Nelson GM Leme. Jaca: A reflective fault injection
tool based on patterns. In Proceedings international conference on dependable systems and
networks, pages 483–487. IEEE, 2002.

[49] Yuting Fu, Andrei Terechko, Tjerk Bijlsma, Pieter JL Cuijpers, Jeroen Redegeld, and
Ali Osman Örs. A retargetable fault injection framework for safety validation of autonomous
vehicles. In 2019 IEEE International Conference on Software Architecture Companion
(ICSA-C), pages 69–76. IEEE, 2019.

[50] Joao Carreira, Henrique Madeira, and Joao Gabriel Silva. Xception: A technique for the
experimental evaluation of dependability in modern computers. IEEE Transactions on
Software Engineering, 24(2):125–136, 1998.

Bibliography 79

[51] Ghani A. Kanawati, Nasser A. Kanawati, and Jacob A. Abraham. Ferrari: A flexible software-
based fault and error injection system. IEEE Transactions on computers, 44(2):248–260,
1995.

[52] Zary Segall, D Vrsalovic, D Siewiorek, D Ysskin, J Kownacki, J Barton, R Dancey,
A Robinson, and T Lin. Fiat-fault injection based automated testing environment. In
Twenty-Fifth International Symposium on Fault-Tolerant Computing, 1995,’Highlights from
Twenty-Five Years’., page 394. IEEE, 1995.

[53] Timothy K Tsai and Ravishankar K Iyer. Measuring fault tolerance with the ftape fault
injection tool. In International conference on modelling techniques and tools for computer
performance evaluation, pages 26–40. Springer, 1995.

[54] Kang G. Shin. Harts: A distributed real-time architecture. Computer, 24(5):25–35, 1991.

[55] Martin Hiller, Arshad Jhumka, and Neeraj Suri. Propane: an environment for examining the
propagation of errors in software. ACM SIGSOFT Software Engineering Notes, 27(4):81–85,
2002.

[56] Ramesh Chandra, Ryan M Lefever, Michel Cukier, and William H Sanders. Loki: A state-
driven fault injector for distributed systems. In Proceeding International Conference on
Dependable Systems and Networks. DSN 2000, pages 237–242. IEEE, 2000.

[57] Bruno Pacheco Sanches, Tânia Basso, and Regina Moraes. J-swfit: A java software fault
injection tool. In 2011 5th Latin-American Symposium on Dependable Computing, pages
106–115. IEEE, 2011.

[58] Eugene Kuleshov. Using asm framework to implement common bytecode transformation
patterns. Proc. of the 6th AOSD, ACM Press, 2007.

[59] Chris Lattner and Vikram Adve. Llvm: A compilation framework for lifelong program
analysis & transformation. In International Symposium on Code Generation and
Optimization, 2004. CGO 2004., pages 75–86. IEEE, 2004.

[60] Anna Thomas and Karthik Pattabiraman. Llfi: An intermediate code level fault injector for
soft computing applications. 2013.

[61] Ivan Keselev. Aspect-oriented programming with AspectJ. Sams, 2003.

[62] Palo Alto Research Center. Eclipse. The aspectjtm development environment guide. https:
//www.eclipse.org/aspectj/doc/released/devguide/ltw.html. [Online; Accessed June-2022].

[63] Gregor Kiczales, John Lamping, Anurag Mendhekar, Chris Maeda, Cristina Lopes, Jean-
Marc Loingtier, and John Irwin. Aspect-oriented programming. In European conference on
object-oriented programming, pages 220–242. Springer, 1997.

[64] Olaf Spinczyk, Andreas Gal, and Wolfgang Schröder-Preikschat. Aspectc++ an aspect-
oriented extension to the c++ programming language. In Proceedings of the Fortieth

https://www.eclipse.org/aspectj/doc/released/devguide/ltw.html
https://www.eclipse.org/aspectj/doc/released/devguide/ltw.html

80 Bibliography

International Conference on Tools Pacific: Objects for internet, mobile and embedded
applications, pages 53–60, 2002.

[65] Kasun Indrasiri and Danesh Kuruppu. gRPC: up and running: building cloud native
applications with Go and Java for Docker and Kubernetes. O’Reilly Media, 2020.

[66] Jetbrains. Domain-specific languages. https://www.jetbrains.com/mps/concepts/domain-
specific-languages/. [Online; Accessed June-2022].

[67] Evan Diamantino Alves Dias Arezes de Sá. Raft under fire - fault injection. Master’s thesis,
Faculdade de Ciências da Universidade do Porto, September 2022.

[68] Brian F Cooper, Adam Silberstein, Erwin Tam, Raghu Ramakrishnan, and Russell Sears.
Benchmarking cloud serving systems with ycsb. In Proceedings of the 1st ACM symposium
on Cloud computing, pages 143–154, 2010.

https://www.jetbrains.com/mps/concepts/domain-specific-languages/
https://www.jetbrains.com/mps/concepts/domain-specific-languages/

	Abstract
	Resumo
	Acknowledgments
	Contents
	List of Tables
	List of Figures
	Listings
	Acronyms
	1 Introduction
	1.1 Motivation
	1.2 Proposed Solution
	1.3 Contribution
	1.4 Organization

	2 Background and Related Work
	2.1 The Two Generals Problem
	2.2 The Byzantine Generals Problem
	2.3 Distributed Systems Models
	2.3.1 Network behavior model
	2.3.2 Node behavior model
	2.3.3 Timing behavior model

	2.4 Fault Tolerance
	2.4.1 Replication
	2.4.2 Consensus
	2.4.3 Crash Fault Tolerance
	2.4.4 Byzantine Fault Tolerance

	2.5 Fault Injection
	2.5.1 Xception
	2.5.2 FERRARI
	2.5.3 FIAT
	2.5.4 Ftape
	2.5.5 DOCTOR
	2.5.6 PROPANE
	2.5.7 Loki
	2.5.8 J-SWFIT
	2.5.9 LLFI
	2.5.10 Discussion

	3 Prior Work
	3.1 Aspect Oriented Programming
	3.2 gRPC
	3.3 Hermes
	3.4 Zermia
	3.5 Proteus

	4 Design
	4.1 Zermia Design
	4.1.1 Server
	4.1.2 Client

	4.2 Faults
	4.3 Schedulers
	4.4 Triggers
	4.4.1 Coordinator-based Triggering Model
	4.4.2 Agent-based Triggering Model
	4.4.3 Hybrid Triggering Model
	4.4.4 Independent Triggering Model

	4.5 Determinism
	4.6 Discussion

	5 Implementation details
	5.1 Coordinator
	5.1.1 gRPC service

	5.2 Agent
	5.2.1 gRPC service

	5.3 Hook
	5.3.1 Faults
	5.3.2 Predefined Faults and Extensibility
	5.3.3 Java implementation
	5.3.4 Python implementation

	5.4 How to assess the behavior of Fault Tolerance protocols
	5.5 Script setup for compiling and running
	5.5.1 Configuration file

	6 Experiments
	6.1 Simple Python application testing
	6.1.1 Experimental setup
	6.1.2 Baseline
	6.1.3 Delay Fault
	6.1.4 Range Modification Fault
	6.1.5 Delay and Range Modification Faults

	6.2 RAFT testing
	6.2.1 Experimental Configuration
	6.2.2 Baseline results
	6.2.3 Crash Fault
	6.2.4 Delay Fault
	6.2.5 Delaying the Leader Election
	6.2.6 Delaying Heartbeats

	7 Conclusion
	7.1 Future Work

	Bibliography

