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Abstract

The estimation of rotation periods of stars is a key problem in stellar astrophysics. Reliable
measurements of thousands of stellar rotation periods are fundamental for the study of the structure
and evolution of stars, as well as of the Galaxy, to understand interactions between stars and
their environment, and for the characterisation of planetary systems. Given the large amount of
data available from ground-based and space telescopes, there is nowadays a growing concern to
find reliable methods that allow one to quickly and automatically estimate stellar rotation periods
accurately and with precision. This work is dedicated to the development of an approach to tackle
this problem. We focused in building robust machine learning models to predict surface stellar
rotation periods from structured data sets, built from the Kepler catalogue of K and M stars.

In order to make this thesis self-contained, we start by covering essential background in stat-
istics, statistical learning, machine learning, and astrophysics. We then describe the materials
and the methodology. We analyse the variables at hand, investigating the relationships between
the independent variables and the response. We group the features according to their nature and
methods with which they were obtained, and create eleven data sets using them. We then form-
alise the problem, proposing random forests and extreme gradient boosting approaches to create
regression models that can help us meeting our research goals. We describe the sets of experiments
we carried out using the random forests and gradient boosting frameworks, and present the results
obtained with them. The assessment strategy relies on comparing goodness of fit metrics, such as
the adjusted coefficient of determination, and the mean absolute value of the relative error. Our
models demonstrate comparable predictive performance to other similar models published recently,
while being reliable and computationally “cheap”. Moreover, our approach comes the additional
advantage of using data sets with fewer predictors, and, especially, we do not use rotation periods
obtained with classical methods as input variables. We indicate the sets of most important variables
to build solid machine learning models that can be used to automate the process of predicting the
rotation period of K and M stars. Based on the results obtained with this study, we conclude that
the best models obtained with the proposed methodology are competitive when compared with
state of the art approaches.
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Resumo

A determinação de períodos de rotação de estrelas é um problema chave da astrofísica estelar.
Efetuar-se medições fiáveis de milhares de períodos de rotação estelar é fundamental para o estudo
da estrutura e evolução das estrelas, bem como da Galáxia, para compreender as interações entre
as estrelas e o seu meio ambiente, e para a caracterização de sistemas planetários. Dada a grande
quantidade de dados disponíveis a partir de telescópios terrestres e espaciais, existe atualmente
uma preocupação crescente em encontrar métodos fiáveis que permitam estimar rápida e automat-
icamente os períodos de rotação estelar com precisão. Este trabalho é dedicado ao desenvolvimento
de uma abordagem para enfrentar este problema. Concentrámo-nos na construção de modelos ro-
bustos de aprendizagem de máquinas para prever períodos de rotação estelar a partir de conjuntos
de dados estruturados, construídos a partir do catálogo de estrelas K e M do Kepler.

De modo a tornar esta tese auto-contida, começamos por abordar conceitos essenciais em
estatística, aprendizagem estatística, aprendizagem de máquinas, e astrofísica. Em seguida, descre-
vemos os materiais e a metodologia. Analisamos as variáveis em questão, investigando as relações
entre as variáveis independentes e a resposta. Agrupamos as variáveis independentes de acordo com
a sua natureza e métodos com os quais foram obtidas, e criamos onze conjuntos de dados a partir
delas. Formalizamos então o problema, propondo abordagens baseadas em florestas aleatórias
e extreme gradient boosting para criar modelos de regressão que nos possam ajudar a atingir os
nossos objetivos de investigação. Descrevemos os conjuntos de experiências que realizámos utiliz-
ando as florestas aleatórias e o gradient boosting, e apresentamos os resultados obtidos com elas.
A estratégia de avaliação baseia-se na comparação de métricas de goodness of fit, tais como o
coeficiente de determinação ajustado, e o valor absoluto médio do erro relativo. Os nossos mode-
los demonstram um desempenho preditivo comparável a outros modelos semelhantes publicados
recentemente, ao mesmo tempo que são fiáveis e computacionalmente “baratos”. Além disso, a
nossa abordagem apresenta a vantagem adicional de utilizar conjuntos de dados com menos pred-
itores, e, principalmente, não utilizamos períodos de rotação obtidos com métodos clássicos como
variáveis independentes. Indicamos os conjuntos das variáveis mais importantes para construir
modelos sólidos de aprendizagem da máquina que possam ser usados para automatizar o processo
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de previsão do período de rotação de estrelas de classe espetral K e M. Com base nos resultados
obtidos com este estudo, concluímos que os melhores modelos obtidos com a metodologia proposta
são competitivos quando comparados com as abordagens mais avançadas.

Palavras-chave: gradient boosting, aprendizagem de máquinas, floresta aleatória, regressão, parâmetros

estelares, período de rotação estelar, estrutura estelar.
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CHAPTER 1

Introduction

Knowledge is of two kinds. We know a subject ourselves, or we know where we
can find information upon it.

— Samuel Johnson (1709-1784)

We can imagine that this complicated array of moving things which constitutes
“the world” is something like a great chess game being played by the gods, and

we are observers of the game. We do not know what the rules of the game are;
all we are allowed to do is to watch the playing. Of course, if we watch long

enough, we may eventually catch on to a few of the rules.
— Richard Feynamn (1918-1988)

Contents

1.1 Research Goals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.2 Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

TI M E D O M A I N A S T R O N O M Y is the branch of Astronomy devoted to the study of vari-
able phenomena in celestial bodies. It focuses on systems that measurably fluctuate during
the observation period, with timescales typically ranging from fractions of a second to

decades. Time domain astronomy addresses both predictable and random events (e.g., Carroll and
Ostlie, 2017). Of particular interest for this project is the rotation of stellar bodies, which produces
periodic variations in their appearance, as is evident from the observation of the Sun’s photosphere.

Stars have been one of the hottest topics since the dawn of Astronomy. With the rapid devel-
opment of Astrophysics in the early 19th century, after the works of Wollaston (Usselman, 2022)
and von Fraunhofer (Encyclopaedia Britannica, 2022), they quickly became one of the main ob-
jects of celestial studies, as they act as freely available living laboratories, where many physical
phenomena, otherwise hard or impossible to reproduce on Earth, take place (e.g., Gomes, 2016).
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4 CHAPTER 1. INTRODUCTION

Examples include nuclear fusion, strong and large-scale magnetic interactions, mass ejection, and
planet formation.

Solar type stars, i.e., low mass stars with convective outer layers, can exhibit magnetic activity
(e.g., Brun and Browning, 2017), which is manifested by the emergence of magnetic spots at
their surfaces. Stellar spots can be detected by measuring the light curve of a star over time, since
the brightness becomes modulated as spots come in and out of the visible hemisphere of the star.
Consequently, such spot modulation is an important indicator of stellar magnetic activity and stellar
rotation (e.g., Strassmeier, 2009). The accuracy and precision at which stellar rotation is measured
is crucial for the study of the evolution of stars and, ultimately, of the Galaxy, as well as to properly
characterise planetary systems. The rotation period of a star is correlated with its age: it is known
that solar type stars spin down during their main-sequence evolution, so that the period of rotation
of young solar stars can be used to constrain stellar ages, through the gyrochronology relations
(Skumanich, 1972; García et al., 2014). However, for stars older than the Sun, ages determined
by the gyrochronology method do not agree with asteroseismic ages (Jennifer L Van Saders et al.,
2016) and those inferred from velocity dispersion (Angus, Beane et al., 2020), making it necessary
to improve the gyrochronology relations. The rotation period of a star is important to understand
the transport of stellar angular momentum, a process which, on the one hand, is not yet sufficiently
understood (Aerts, Mathis and Rogers, 2019), and, on the other hand, is essential to correctly
estimate the age of the stars (Eggenberger et al., 2009). The latter is, in turn, vital to characterise
planetary systems (Huber et al., 2016), the evolution of which is driven by tidal and magnetic
effects between planets and their host stars (Benbakoura et al., 2019), and to understand how the
Milky Way is evolving (Miglio et al., 2013).

The huge amount of astronomical photometric data released during the last three decades has
recently motivated the use of machine learning (ML) techniques to handle and analyse them. The
advent of new large sky surveys, and the need to process a large number of targets simultaneously is
making the manual handling of astrophysical data impracticable and the use of artificial intelligence
(AI) techniques increasingly popular (e.g., Pichara Baksai, Protopapas and Leon, 2016; Biehl et
al., 2018). A stellar light curve is no more than a time series of photometric data of a star, i.e.,
a sequence of surface stellar fluxes collected at successive points in time. Over the last decade
we have seen the emergence of numerous observations contemplating high-quality, long-term,
and nearly continuous photometric stellar data. Examples are the Kepler space observatory (W.
Borucki et al., 2009), with almost 200 000 targets (Mathur, Huber et al., 2017), the reborn Kepler
K2 mission (Howell et al., 2014), with more than 300 000 targets (Huber et al., 2016), and the
Transiting Exoplanet Survey Satellite (TESS, Ricker et al., 2015), which gathered light curves with
time spans from 25 days to one year for tens of millions of stars. Such an amount of observations
require automatic procedures to process and extract information from them, and machine learning
methods can be used to fulfil that task.

In order to choose a machine learning (ML) technique, one has firstly to select the data from
available sources and study them carefully. Two approaches can be followed: to use the photometric
time series data directly as input, or previously convert the light curves into structured data that
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is suitable to be represented by a set of variables or features in tabular form. Machine learning
models can be trained from those two types of data (unstructured and structured) and automate
processes that otherwise would be tedious or would require too much manpower.

The first case (unstructured data) is nowadays tackled with special types of artificial neural
networks (Haykin, 2009), reinforcement algorithms that need little to no pre-processing of the data.
Blancato et al. (2022) used a deep learning approach and applied convolutional neural networks to
predict stellar properties from Kepler data. However, training neural networks typically requires
heavy computational resources.

The second scenario (using structured data) is solved by resorting on algorithms that can
use tabular data to carry out unsupervised (clustering) and supervised tasks (classification and
regression). Breton et al. (2021) applied random forests (Breiman, 2001) on Kepler data in tabular
form to create three ML classifiers, which allow to detect the presence of rotational modulations
in the data, to flag close binary or classical pulsators candidates, and to provide rotation periods
of K and M stars from the Kepler catalogue. The team used 159 inputs of different kinds to
train the classifiers: rotation periods, stellar parameters such as mass, effective temperature, and
surface gravity (just to name a few), and complementary variables obtained via wavelet analysis,
the autocorrelation function of light curves, and the composite spectrum. They claim accuracies of
95.3 % when willing to accept errors within 10 % of the reference value, and of 99.5 % after visual
inspection of 25.2 % of the observations. One particularity of their work is that they have used
rotation periods as input variables to train their models. We expected those features to be highly
correlated with the target variable (the final rotation periods), and that aroused our curiosity, on
the one hand, to explore their data set and determine what is that level of correlation; and, on the
other hand, to try to train ML models without those rotation period input variables and compare
the performance of the models.

In this thesis, we concentrate on the prediction of rotation periods of K and M stars from the
Kepler catalogue (W. Borucki et al., 2009; W. J. Borucki et al., 2010), resorting on ML approaches.
The main challenges will be related with the selection of suitable data, the size of the data set, the
choice of the best ML methods, the optimisation of their parameters, and the training of the models.
We foresee that time and computational resources will be an important constraining factor in the
development of this project, especially during the learning of the models.

1.1 Research Goals

In the previous section, we addressed the importance of time domain astronomy in the context
of the study of stellar physics, including our Sun, of the Galaxy, and in the search for extrasolar
planets. We described the main difficulties astronomers currently are confronted with in face of the
large amount of data that needs to be explored. We also pointed out possible approaches to analyse
the data, and the challenges that ML strategies used to predict stellar rotation periods entail. In this
context, the main goal of this thesis is the following:
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Main Goal

To determine the surface rotation period of a great number of K and M stars from a set of
predictors in tabular form, resorting on supervised machine learning methods.

By predicting the rotation period for a large number of stars using machine learning and
statistical analysis, we aim at improving the predictive performance of current models, namely the
one built by Breton et al. (2021), and at making available an efficient and computational “cheap”*

tool to automatically predict reliable stellar rotation periods from the Kepler catalogue, that can be
applied to thousands of stars, possibly of other spectral classes than K and M.

The research goal can be decomposed into four questions:

Research Question 1

Which independent variables evince the highest level of correlation with the target variable?

Research Question 2

How does a regression ML model trained on input variables classically used to estimate
stellar rotation periods compare to the classifier developed by Breton et al. (2021)?

Research Question 3

Which sets of input variables are mandatory for obtaining a reliable ML model, with good
predictive performance?

Research Question 4

Is it possible to build an optimal subset of predictors from the set of available explanatory
variables from which robust regression ML models, with good predictive performance, can
be trained?

The first mandatory step before addressing these questions was the selection of the data with
which models would be trained (section 3.1). We compared the possibilities of using real-world vs.
synthetic data. We also defined the quality assessment strategy, so that the predictive performance
of the models could be characterised (section 3.3.3).

In order to answer to the first question, we performed exploratory data analysis and calculated
the correlations between the input variables and the target variable (section 3.1.2).

The second research question was addressed by building ML regressors from the data available,
and by assessing their predictive performance using the quality metrics identified beforehand
(sections 4.1 and 4.2).

The third question was answered by creating several subsets of predictors, grouped by their
type and the processes from which they were obtained, by training similar regressors using each

* By “computational cheap” we mean that there is no need for supercomputers or network computing to get results
in a timely manner.
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of those subsets, and evaluating the predictive performance of the models thus obtained (same
sections as for the previous research question).

Finally, the last question was answered by training the models obtained previously on the
variables of greatest importance (section 4.3).

The code developed for the experiments described above will be made public, in support for
reproducible science.

1.2 Thesis Outline

We close this introductory chapter, by outlining the organisation of the remaining of the manu-
script.

Chapter 2, Background. The fundamental background is provided in chapter 2, which is di-
vided into three sections. The first section pertains to concepts related to statistics and statistical
learning, such as data, variables, models, correlation, common metrics of performance assessment,
resampling techniques, and strategies for hyperparameter optimisation. The second section de-
scribes the most common supervised learning techniques, including linear and non-linear models,
both in the classification and regression scenarios. The third section covers basic astronomical
concepts, which act as an aid to contextualise the research problem and better understand the
meaning of some variables used during our study.

Chapter 3, Materials and Methods. Chapter 3 is composed of three sections. The first one
presents the materials used to execute the experiments, i.e., the data, and explains the motivation for
our choice of the type of data selected. We describe the steps we performed to explore and engineer
the data, and the statistical analysis of the explanatory variables, with emphasis on the correlations
between those and the target variable. In the second section, we formalise the scientific problem
we want to address, and describe the two ML approaches we have used to address the main goal of
the thesis and answer the research questions. In the third section, we detail the experimental design,
describing which strategy we followed to optimise the hyperparameters of the models during the
training phase, and present the performance assessment methodology.

Chapter 4, Prediction of Stellar Rotation Periods. In chapter 4 we present the results of
our contributions to the application of supervised ML approaches to predict the rotation periods of
stars. The chapter is divided into four sections. The first two sections pertain to the results obtained
with random forests and gradient boosting using the first nine data sets described in chapter 3. The
third section is similar to the two previous ones, but the analysis is done on the models built on top
of the two extra data sets created after the experiments of the first two sections of this chapter. The
fourth section is dedicated to discuss the results obtained before.
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Chapter 5, Conclusions. The thesis concludes in chapter 5, where we summarise our contri-
butions, we answer the research questions put forward in this chapter, point out open issues, and
present future research directions.



CHAPTER 2

Background

All men have stars, but they are not the same things for different people. For
some, who are travelers, the stars are guides. For others they are no more than

little lights in the sky. For others, who are scholars, they are problems...
— Antoine De Saint-Exupéry (1900-1944)
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IN T H I S C H A P T E R we describe the essential theoretical notions that support our contribu-
tions. Concepts underpinning others that are used in the dissertation, or that are relevant to
understand the context, are also briefly explained. We start with basic definitions related to

statistics and statistical learning, sailing around the concepts of data, variables, models, and correl-
ation. We then define common metrics used to assess the performance of ML models, introducing
a few developed within the framework of this thesis. After that, we describe tree-based regression
learning techniques, that were used in this thesis to train several models from real data. We finish
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the chapter by introducing some concepts related to time domain astronomy, that are important to
understand the variables contained in the main data set and the motivation for the work carried out
in the framework of this thesis.

2.1 Statistics and Statistical Learning

2.1.1 Basic Concepts

Data, variables, and models. Ultimately, this thesis is about learning models from astronom-
ical data. We intend to predict a quantitative outcome measurement, the response, target variable,
or dependent variable, which in our case is the rotation period of stars, from a set of inputs, ex-
planatory variables, features, predictors, or independent variables, such as the stellar mass, its
effective temperature, the photometric activity index, or the amplitude of the first Gaussian fitted
in the composite spectrum.

We start with a set of structured, tabular data, containing measurements for the features and for
the response variable, for several observations, instances, cases, or objects, which, in this context,
correspond to thousands of stars collected by the Kepler space observatory. Computationally
speaking, these tabular data are organised into data frames, where the columns correspond to the
variables (features plus the response), and the rows to the observations. This data set is split into
the training and testing sets. The former is used to build a prediction model, which in turn will be
applied to predict the rotation period of unseen stars, provided they are input as a set of structured
data similar to the training set, i.e., in a tabular form, containing at least some of its features
(the more the better). The testing set acts as the never-before-seen objects, with the advantage of
containing the outcome (that is not given to the model), which can be used to assess the predictive
performance and quality of the model, by comparing the predicted values with the true outcomes.
A good model is one that accurately predicts the response.

What we just described is known as supervised learning, where the target variable is used to
guide the learning process, as opposed to unsupervised learning, in which no measurements of
the response variable are used—in this case, the values of the features are used to calculate their
relevance in the model (Torgo, 2011).*

Variables can be of different nature. They are continuous or quantitative, when they can be
represented by real numbers, i.e., when some values are bigger than others and close measurements
are close in nature (James et al., 2013); they are categorical, qualitative, or discrete, when they
are non-numerical or assume values in a finite set, i.e., they take on values in one of k different
classes or categories—in this case, they are commonly referred to as factors; they can also be

* There are two more major categories of learning: semi-supervised, and reinforcement learning. The former is
similar to supervised learning, but both labelled and unlabelled data are used during the training of the model; the latter
focuses on processes where a learner can observe the surrounding environment, perform actions, and get rewards or
penalties in return, so that it can learn the best strategy in order to get the most reward over time. Examples of application
are text and photo classifiers for semi-supervised learning, and artificial neural networks and self-driving car algorithms
for reinforcement learning. We refer the reader to, for example, Hastie, Tibshirani and J. Friedman (2009), James et al.
(2013), Kuhn, Johnson et al. (2013) and Géron (2017) for a comprehensive explanation about these types of learning.
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ordered categorical, when there is an order within the values, but no underlying metric between
them (Hastie, Tibshirani and J. Friedman, 2009).

A prediction task is named according to the nature of the response. When the latter is quantitat-
ive, the task is known as a regression problem; when the target variable is qualitative, it is known as
a classification task (if instances are classified into one of two classes), or multiclass classification
or multinomial classification if the cases are classified into three or more classes. The problem
addressed in this thesis is of regression type.

Specifying mathematically, without loss of generality, for a regression problem, we are as-
suming there is a relationship between a quantitative response y and a set of p predictors x =

(x1, x2, . . . , xp), such that
y = f (x)+ e, (2.1)

where f is an unknown fixed function of (x1, x2, . . . , xp), and e represents a random error term
independent of x, with zero mean. The function f can be estimated, but never known completely.
When the inputs x are readily available, in the presence of an estimation for f , f̂ , the output can be
predicted by

ŷ = f̂ (x). (2.2)

Typically, we are not concerned with the exact form of f̂ , provided it yields accurate predictions for
y.* This is the situation we have at hands in the framework of this project: we have measurements
for a set of features and for the response, which we will try to predict by learning a model using
two different approaches (to be explained in section 2.2.7). We will be mainly concerned with the
accuracy of the models obtained, not so much in understanding the exact shape of f .

Since f̂ is not a perfect estimate of f , the inaccuracy of the estimation will give rise to two
types of error, or noise, upon which the accuracy of ŷ as a prediction of y depends: reducible and
irreducible. While the former can be mitigated by using an appropriate ML technique to estimate
f , the second cannot be diminished because it is impossible to reduce the error introduced by e. In
fact, since y is also a function of e, and the latter cannot be predicted by x (by definition), even if
we could estimate perfectly f , ŷ = f (x), the prediction would still contain some error and, so, the
accuracy of the predictions is affected by the variability associated with e, as well. The error term
may be originated from unmeasured variables that are important to predict y, or from unmeasurable
variation (Hastie, Tibshirani and J. Friedman, 2009).

When estimating f from the training set, i.e., when training the model, we usually adopt a
parametric approach, in which the problem is reduced down to estimating a set of parameters. The
optimal set of values for the parameters will avoid both underfitting and overfitting. A model is
said to underfit the data when it is too rigid, and is not able to capture the relationship between
the features and the response accurately; it is said to overfit the data when it follows the errors too
closely, thus performing poorly on unseen data.

* In some domains of application, such as in the health area, the transparency and interpretability of a model is very
important, and f̂ should not be treated simply as a black box.
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Association and correlation. We say that an association exists between two variables when
values of one of the features are more likely to occur with particular values of the other.

Correlation is a statistical quantity that measures the level of relationship, causal or not,
between two random variables. In statistics, correlation is a summary measure describing the
strength of linear association, that is, the extent to which two variables are linearly related. How-
ever, in its broadest definition, it may indicate any type of association between any two variables.
It is usually expressed by means of the correlation coefficient, r , which measures the strength and
direction of a linear relationship. It varies between −1 and +1: these limiting values indicate a
perfect negative and positive linear relation, respectively, while 0 indicates no linear relationship
between two different variables (Agresti, Franklin and Klingenberg, 2018).

Generally, it is a good practice to avoid data with highly correlated variables. Redundant
features frequently add more complexity than information to the model, decreasing its interpretab-
ility, and making its training process more costly. In some models, such as linear regression and
neural networks, the presence of highly correlated variables can lead to collinearity issues, such as
instabilities and numerical errors, which can greatly increase the response variance and generally
degrade the performance of the model (Kuhn, Johnson et al., 2013). A correlation analysis of the
data will be presented in section 3.1.2.

2.1.2 Performance assessment

The performance of a ML model on a given data set is assessed by quantifying to which extent
the predictions are close to the true values of the response for the set of observations (James et al.,
2013). Given the regression nature of the problem in this project, we used six metrics to assess
the predictive quality and the goodness of fit* of the learners: (a) the root mean squared error
(RMSE) and the mean absolute error (MAE); (b) the mean of the absolute values of the residuals,
µerr; (c) two interval-based “accuracies” developed within the framework of this thesis; and (d) the
adjusted coefficient of determination, R2

adj. We are going to briefly describe each of them in the
following.

Mean squared error. In a regression setting, the most commonly-used metric to assess the
performance of a model is the mean squared error (MSE). The MSE of a point estimator θ̂ is
the expected squared deviation of the estimator from the true or real value θ of the parameter it
estimates:

MSE(θ̂) = E
[
(θ̂ −θ)2] . (2.3)

The deviations of the estimator from the true values, the errors, are commonly referred to as the
residuals. With the notation used in section 2.1.1, eq. (2.3) becomes:

MSE =
1
n

n

∑
i=1

[
(yi− ŷi)

2] , (2.4)

* The goodness of fit of a model is a metric giving an indication of how well the model fits a set of observations
(Nolan and Speed, 2001).
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where ŷi = f̂ (xi) is the prediction for the ith observation given by f̂ , and n is the number of cases
present in the data set.

The MSE is a measure of the distance between θ̂ and θ ( f̂ (xi) and y, respectively). It is usually
interpreted as how far, on average, the residuals are from zero, that is, its value represents the
average distance between the model predictions and the true values of the response (Kuhn, Johnson
et al., 2013). In general, a smaller MSE is indicative of a better estimator (Ramachandran and
Tsokos, 2020): the MSE will be small if the predictions and the responses differ a little, and will
be typically large if for some instances they are not close to each other. The MSE can be computed
on both the training and testing data, but we will be mostly interested to measure the performance
of the model on unseen data (the testing set)—the one with the smallest testing MSE will have the
best performance. When a learner yields a small training MSE but a large testing MSE, that is an
indication that it is overfitting the data and, hence, that a less flexible model would have yielded a
smaller testing MSE (James et al., 2013).

The MSE can be decomposed into two quantities:

MSE(θ̂) = Var(θ̂)+
[
B(θ̂)

]2
, (2.5)

where Var(θ̂) is the variance, B(θ̂) = E(θ̂)− θ is the bias, and E(θ̂) is the expected value or
expectation of the point estimator θ̂ (Ramachandran and Tsokos, 2020). The bias of an estimator
θ̂ tells us how far θ̂ is on average from the real value θ . The squared of the bias term in eq. (2.5)
corresponds to the reducible part of the error term of eq. (2.1), while the variance corresponds to
the irreducible error.

A common measure of the differences between estimations and real values is the RMSE, which
is no more than the square root of the MSE:

RMSE(θ̂) =
√

MSE(θ̂). (2.6)

The RMSE has the advantage over MSE of having the same units as the estimator. For an unbiased
estimator, it corresponds to the square root of the variance, or standard deviation.

Similarly to the MSE, in general, smaller values of the RMSE indicate a better estimator, but
because this metric is dependent on the scale of the variables used, comparisons are only valid
across models created with the same data set (Hyndman and Koehler, 2006).

The bias-variance trade-off. Assuming that the data points are statistically independent, and
that the residuals have a theoretical distribution with zero mean and constant variance σ2, given a
previously unseen test observation (x0, y0), not used to train the ML method, the expected testing
MSE can always be decomposed as the sum of three fundamental terms: the variance of ŷ0 = f̂ (x0),
the squared bias of ŷ0, and the variance of the error term (e), σ2. Mathematically,

E
[
(y0− ŷ0)

2
]
= Var(ŷ0)+ [B(ŷ0)]

2 +σ
2, (2.7)
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where E
[
(y0− ŷ0)

2
]

corresponds to the expectation of the testing MSE that we would get if f was
repeatedly estimated on a large number of training sets, and each was tested on x0 (James et al.,
2013; Kuhn, Johnson et al., 2013). An overall value of this quantity can be obtained by averaging
it out over all x0 values of the testing set.

The variance term refers to the variability of f̂ when estimated using different training sets.
The bias term is related to the error resulting from approximating a real-life problem by a simpler
model, i.e., it reflects how close the functional form of the model can get to the true relationship
between the features and the response. The challenge is to find a model for which the variance and
the square of the bias are simultaneously low. While the expected testing error can be minimised
this way, it can never go below the irreducible error which, in eq. (2.7), is translated by σ2 =Var(e).
As a general rule, more flexible learners tend to be characterised by increased variance and smaller
bias than more rigid models. Equation (2.7) is known as the bias-variance trade-off.

Mean absolute error. The mean absolute error (MAE) of an estimator θ̂ is the average of the
absolute values of the errors:

MAE(θ̂) = E
[
|θ̂ −θ |

]
. (2.8)

Using the notation of section 2.1.1, this equation becomes:

MAE =
1
n

n

∑
i=1
|yi− ŷi|, (2.9)

where all quantities have the same meaning as previously. The MAE is a measure of the errors
between the predicted and the observed values, and it uses the same scale as the estimates and the
true values. Therefore, it cannot be used to make comparisons between models created on top of
different data sets.

The MAE has the advantage over the RMSE of being influenced by the error in a direct
proportion to its absolute value (Pontius, Thontteh and H. Chen, 2008).

Mean absolute relative error. The mean absolute relative error (MARE) is given by

MARE = µerr =
1
n

n

∑
i=1

∣∣∣∣yi− ŷi

yi

∣∣∣∣ , (2.10)

where n is the number of observations, yi = f (xi) and ŷi = f̂ (xi). It is similar to the MAE, but
the mean absolute value is computed on the relative residuals rather than the magnitude of the
residuals. The MARE is a measure of the mean relative error of the model, giving a percentage
estimate of how wrong the model is, on average.

Interval accuracies. The problem we tackled in this thesis focus on a regression setting. One
of the goals of the project is to compare the performance of our models with the one developed by
Breton et al. (2021). However, the latter is a classifier and, therefore, we felt the need to develop
a metric that would allow us to compare the results. We devise an interval-based error function
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and an “accuracy” metric to bridge the gap between regression and classification settings. This
accuracy can take two forms, which are equivalent to each other, as we will demonstrate in what
follows.

The first form of the “accuracy” metric is inspired on the standard error rate, but it is calculated
using intervals around the reference values of the response variable:

accx =
1
n

n

∑
i=1

I
(

ŷi ∈
[
yi−

x
2
, yi +

x
2

])
, (2.11)

where, as before, ŷi = f̂ (xi), yi = f (xi), and n is the number of observations. Here, x is a fraction
width, and I(ŷi ∈ interval) is an indicator function, that equals 1 if ŷi ∈

[
yi− x

2 , yi +
x
2

]
, and zero

otherwise. When I(ŷi ∈ interval) = 1, than a correct outcome was predicted for the ith observation,
within x ·100% of the reference value, and it amounts saying that the classification was correct (in
a classification scenario); otherwise, the outcome was incorrectly predicted within an interval of
x ·100% width of the reference value, and it will count as a misclassification.

By using the interval accuracy metric of eq. (2.11), we are able to convert the results of a
regression problem into a classification setting: we get an event, occurrence, or match every time a
predicted value lies within the interval centred on the reference response value, and a non-event,
non-occurrence, or no-match otherwise. This way, we are able to estimate the accuracy of a model
when we are willing to accept an error of x ·100%.

The other form of the interval accuracy is underpinned by an interval-based version of the
residuals, εx. The latter estimates the prediction error in a regression task when we are willing to
accept an error of x ·100%, and it is given by:

εx =

 0, |yi− ŷi| ≤ x · yi

yi− ŷi, otherwise,
(2.12)

where yi = f (xi) and ŷi = f̂ (xi) are respectively the reference and the predicted values, and x is
the fraction width of the zeroing interval. When x is zero, the metric returns the simple residuals.
Figure 2.1 illustrates the interval-based error function of eq. (2.12) computed on simulated data, ob-
tained from an uniform distribution of 100 values varying between 0 and 45. Similarly to eq. (2.10),
this error function, when normalised by the reference values, can be used to approximately estimate
how much a model is wrong, on average, for a given zeroing-interval width.

An error-interval “accuracy”, accε
x , can be devised using the interval-based residuals of eq. (2.12)

as inspiration:

accε
x =

1
n

n

∑
i=1

I (εx = 0) , (2.13)

where x and n are the same as before. In this case, the indicator function equals 1 if the interval-
based error is zero, i.e., whenever εx = 0, and zero otherwise; that is, we consider an event every
time the error is equal to zero in eq. (2.12), and a no-event otherwise.
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Figure 2.1: Graphical representation of the interval-based error function computed on simulated data. Panel
(A) plots the residuals; panels (B), (C), and (D) similarly illustrate the 10 %-width error function,
respectively on the unsorted data, sorted data, and absolute values of the sorted data. In all
panels, the x-axis represents the predicted values, while the y-axis indicates the error.

As expected, the two aforementioned forms of the interval-based accuracy are equivalent,
except for a scale factor. In fact, considering accx, we have an event every time ŷ verifies the
inequality

y− x
2
· y < ŷ < y+

x
2
· y, (2.14)

which is equivalent to (
1− x

2

)
· y < ŷ <

(
1+

x
2

)
· y. (2.15)

On the other hand, considering accε

x/2, an event occurs whenever

|y− ŷ|< x
2
· y, (2.16)

which equates to eq. (2.15). Hence, we conclude that ∀x ∈ R+
0 ,

accx = accε

x/2. (2.17)

For example, acc0.10 = accε
0.05, that is, the interval accuracy measured on a 10 %-width interval, as

defined by eq. (2.11), is exactly the same as the 5 %-error interval accuracy, as given by eq. (2.13).

This metric has the disadvantage of penalising too much a model for which the predicted
values fall outside but close to the limits of the reference intervals. In those cases, a model will
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report a low accuracy, while having most of its predictions falling very closely to the accuracy
intervals. However, this limitation can be mitigated by investigating how much the accuracy
increases when the widths of the intervals are increased. We will be using this metric when
assessing the performance of models in chapter 4.

Coefficients of determination. Another common method for characterising a model’s predict-
ive capabilities is the coefficient of determination, R2. The coefficient of determination is a measure
of the goodness of fit of a model, i.e., it is a statistic used to quantify how well a model describes
the data. It indicates the fraction of the variability of the target variable that has been accounted for
by the predictors. That is, it is the proportion of the information in the data that is explained by the
learner (Kuhn, Johnson et al., 2013). Therefore, it can also be related to the fraction of unexplained
variance (not captured by the model) of the response variable. In regression, it is an indication of
how well the model predictions approximate the real data points (Casella and R. L. Berger, 2001).
It is defined by (Kvålseth, 1985):

R2 =
RegSS
TSS

= 1− RSS
TSS

, (2.18)

where RegSS is the regression sum of squares, RSS is the residuals sum of squares, and TSS is the
Total Sum of Squares.*

The coefficient of determination usually ranges between 0 and 1. A perfect fit of the data—that
is, all variability in the target is explained by the fitted model—is indicated by an R2 of 1, while
the absence of “linear” relationship is indicated by an R2 of 0. Nevertheless, there are situations,
such as when the predictions that are being compared to the true outcomes have not been estimated
with a model build upon those data, when R2 can yield negative values. An example is when R2 is
computed using testing data, which were not used to build the model. Models with a negative R2

have worse predictions than the baseline model, which always predicts the average of the outcome.

The coefficient of determination is not a fair criterion to compare learners with a different
number of explanatory variables, because it never decreases when new predictors are added to a
model (it can only remain the same or increase). A fair measure of the goodness of fit of a model
is the adjusted coefficient of determination:

R2
adj = 1− (n−1)

n− p−1
· (1−R2), (2.20)

* The total sum of squares (TTS) can be decomposed into the sum of the variation due to regression (RegSS) and the
residual variation (RSS):

TSS = RegSS+RSS
n

∑
i=1

(yi− y)2 =
n

∑
i=1

(ŷi− y)2 +
n

∑
i=1

(yi− ŷi)
2 ,

(2.19)

where y indicates the mean of the response. The TSS represents the response total variability, i.e., the total variation of
y; the RegSS and the RSS represent the response variability that is and that is not explained by the model, respectively
(Casella and R. L. Berger, 2001).
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where R2 is the coefficient of determination, defined in eq. (2.18), n is the number of observations,
and p is the number of predictor variables (Baron, 2019).

Resampling Techniques

When used to estimate model performance, resampling techniques all have in common the fact
that a subset of observations are used to fit a model, and the remaining instances are used to assess
the quality of the model. This process is repeated several times, and the results are aggregated and
summarised. The major differences between resampling techniques reside on the methods used
to choose the subsamples (Kuhn, Johnson et al., 2013). In the following, we will consider two of
those techniques, which were directly or indirectly heavily used during the work of this thesis.

k-fold cross-validation. In the k-fold cross-validation (CV), the training instances are randomly
partitioned into k non-overlapping sets or folds of approximately equal size. One of the folds is
held out as a validation set, and the remaining folds are combined in a training set to which a model
is fit. After the performance of the model is assessed on the validation fold, the latter is returned
to the training set, and the process is repeated, with the second fold being held out as the new
validation set, and so on and so forth. The k performance estimates are summarised with measures
of location and dispersion (usually the mean and the standard error), and they are commonly used
to tune the model’s parameters (Kuhn, Johnson et al., 2013; Hastie, Tibshirani and J. Friedman,
2009). Typically, the testing error is estimated by averaging out the k resulting MSE estimates (or
any other quality metric suitable for the problem at hands).

The bias of the technique, i.e., the difference between the predictions and the true values in the
validation set, decreases with k. Typical choices for k are 5 and 10, but there is no canonical rule.
Figure 2.2 illustrates a CV process with k = 3.

Bootstrap. Bootstrapping is a sampling technique in which data are randomly taken with re-
placement (Efron and Tibshirani, 1986). The sample has the same size as the data set from which
it is taken, so some observations will not be included in the bootstrap sample (referred as the
out-of-bag cases), while others will be included multiple times. Typically, in an iterative boot-
strap resampling process, a model is built on the selected observations and is used to predict the
out-of-bag cases.

Hyperparameter Tuning

A hyperparameter or tuning parameter is a parameter which cannot be directly estimated from
the data, and that is used to tune and improve the performance of a ML model (Kuhn, Johnson
et al., 2013). That is, it is a parameter of a learning algorithm, not that of a model.

Hyperparameters are mostly used to control how much of the data are fit by the model, so
that, in an ideal scenario, the real structure of the data is captured by the model, but not the noise.
They are set beforehand and remain constant during the training process. Hyperparameters are not
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Figure 2.2: A schematic of a 3-fold CV process. The original training data is allocated to three non-
overlapping subsets. Each fold is held out in turn as models are fit on the remaining training
folds. Performance estimates, such as MSE or R2 are estimated using the held-out fold in a
given iteration. The CV estimate of the model performance is given by the average of the three
performance estimates.

affected by the learning algorithm, but they have an impact on the speed of the training process
(Géron, 2017; Raschka and Mirjalili, 2017).

There is no formula to calculate the optimal value nor unique rule to tune the parameters used
to estimate a given model. The optimal configuration depends on the data set, and the best way
to build a model is by testing different sets of hyperparameter values by resorting on resampling
techniques, such as the ones introduced in section 2.1.2 (Resampling Techniques), page 18.

2.2 Common Supervised Learning Techniques

Supervised (machine) learning uses labelled data—a training set containing inputs and correct
outputs—to train algorithms to perform predictive tasks, i.e., to teach models to yield the desired
output, such as to classify a set of observations into specific categories (classification problem),
or to predict the value of a continuous target variable (regression problem). Recalling eqs. (2.1)
and (2.2), the goal is to obtain a model that relates the response, y, to a set of p independent
explanatory variables, x1, x2, . . . , xp, by approximating an unknown function f describing the
relationship between them (Torgo, 2011). In this section, we will describe some of the most
common supervised ML approaches, that can be applied in regression or classification problems,
or in both of them. Linear and logistic regression, naïve Bayes, k-nearest neighbours, support
vector machines, decision trees, tree-based ensembles (bagging, random forests, and boosting), and
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artificial neural networks are examples of supervised learning algorithms, which will be described
in more detail in the following.*

2.2.1 Linear Regression

In linear regression analysis, the goal is to model the relationship between a continuous random
variable y (the response or target variable) and a set of p explanatory (observed, not random)
variables x1, x2, . . . , xp of any type, with the purpose of (a) evaluate the effect of the independent
variables on the response, and (b) to forecast, i.e., predict the values of y from the known values of
x1, x2, . . . , xp. An ordinary linear regression model can be mathematically written as

y = b0 +b1x1 +b2x2 + . . .+bpxp + e, (2.21)

where b = (b0, b1, . . . , bp) are the unknown coefficients or parameters, and e is the random error
that cannot be explained by the model. The parameters of the model are estimated during the
training process, by minimising a function of the sum of the squared errors. The parameter b0 is
known as the estimated intercept.

When a model can be represented by eq. (2.21), it is said to be linear in the parameters. Other
examples of this type of learners are ridge regression, lasso, and elastic net, which are penalised
models, in the sense that one or two regularisation terms are included in eq. (2.21) in order to
enhance the prediction accuracy and interpretability of the model. Ordinary linear regression
estimates parameters that lead to a minimum bias, whereas lasso, ridge regression, and elastic net
find estimates that yield the lowest variance possible (Kuhn, Johnson et al., 2013). Advantages of
models following the form of eq. (2.21) are:

• They are highly interpretable: the estimated coefficient of a predictor being β means that a
one unit increase in that predictor’s value will, on average, increase the response by β units.

• The estimated parameters can provide further insights about relationships between the pre-
dictors.

• The statistical significance of the predictors can be assessed by computing the standard
errors for the parameters, provided certain assumptions are made about the distribution of
the model’s residuals.

These models can only be applied in regression problems. Moreover, they are appropriate only
when the relationship between the predictors and the response falls on a hyperplane. When it is
not the case, that is, when the relationship is non-linear, these models might not capture it properly
(Kuhn, Johnson et al., 2013).

* This is not an exhaustive list, and several more ML algorithms could have been included in it. We will be particularly
interested in two tree-based ensemble methods (random forests and gradient boosting), which will be addressed in detail
in chapter 3.
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2.2.2 Logistic Regression

Logistic regression is a probabilistic model that aims at explaining or predicting a binary
response variable y from a set of predictors x = (x1, . . . , xp) of any type, given a set of observations
(Hosmer and Lemeshow, 2013). That is, logistic regression models the probability that the target
variable belongs to a particular category and, therefore, it is applied to classification problems.

If q(x) = Pr{y = 1 | x} is the probability of an event or of a specific class given the set of
predictors x, then we can model q by the logistic function:

q(x) =
eb0+b1x1+...+bpxp

1+ eb0+b1x+...+bpxp
. (2.22)

Being sigmoidal of the model terms, this equation varies between 0 and 1, and it can be rewritten
as

q(x)
1−q(x)

= eb0+b1x+...+bpxp . (2.23)

The left hand side of eq. (2.23) is known as the odds of the event (or the odds of belonging to
the class). Logistic regression models the log-odds or logit of the event or of the class as a linear
function (usually referred as the linear predictor):

log
(

q
1−q

)
= b0 +b1x1 + . . .+bpxp, (2.24)

where the explicit dependence of q on x has been omitted to lighten the notation, and p, as before,
is the number of predictors.

Logistic and ordinary linear regression models belong to a large class of methods called gener-
alised linear models (GLMs), which includes several different probability distributions (Dobson
and Barnett, 2018).

2.2.3 Naïve Bayes

The Naïve Bayes model is a simple probabilistic classifier based on Bayes’ theorem with
strong (naïve) independence assumptions between the predictors. For any given two events, A and
B, Bayes’ theorem states that

Pr{A | B}= Pr{B | A} ·Pr{A}
Pr{B}

. (2.25)

The Naïve Bayes classifier applies this theorem to calculate the probability that the response is
class c j given the predictors that have been observed:

Pr{y = c j | x}=
Pr{x | y = c j} ·Pr{c j}

Pr{x}
, (2.26)

where x = (x1, . . . , xp) is the set of p values of the predictors. Pr{y = c j | x} is called the posterior
probability of the class. The components of eq. (2.26) are the following:
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• Pr{y = c j} = Pr{c j}— the prior expectation of the class c j; it is the expected probability
of the class based on what is known about the problem.

• Pr{x}— the unconditional probability of the predictor values; it is formally calculated using
a multivariate probability distribution.

• Pr{x | y = c j}= Pr{x | c j}— the conditional probability; it is the likelihood of the testing
observation given the class c j, i.e., it corresponds to the probability of observing the predictor
values for the data associated with the class c j.

The naïve Bayes model reduces greatly the complexity of the calculation of the probabilities of
the feature values by assuming independence between the predictors, i.e., by naïvely assuming that
the attributes are class-conditional independent. Under this severe assumption, the unconditional
probability of the observed evidence is

Pr{x}=
p

∏
i=1

Pr{xi}, (2.27)

which is a constant over all classes. Consequently, the most probable class, that is, the class
cmax that maximises eq. (2.26), known as the maximum posterior hypothesis, depends only on the
numerator of eq. (2.26). The conditional probability is calculated in a similar way:

Pr{x | c j}=
p

∏
i=1

Pr{xi | c j}. (2.28)

For categorical predictors, the individual probabilities are estimated using relative frequencies
calculated from the training set; in the case of continuous features, it is assumed they follow a
Normal distribution, whose mean and standard deviation are sampled from the training set.

In spite of these unrealistic and strong assumptions, a naïve Bayes model can be quickly trained,
even for large training sets, and it can perform competitively in many scenarios (Kuhn, Johnson
et al., 2013).

2.2.4 k-Nearest Neighbours

The k-nearest neighbours (kNN) algorithm is a lazy learner* based on distances between obser-
vations, that can be used in both classification and regression problems (Torgo, 2011). It attempts
to estimate the conditional distribution of the response for a particular set of predictors before
performing a prediction. Given a positive integer k and a prediction point x0 (a test observation),
kNN first identifies the set N0 of the k training observations that are closest to x0. Then, in a
classification problem, the conditional probability for a class j is taken as equal to the fraction of
points in N0 for which the response is j:

Pr{y = j | x = x0}=
1
k ∑

i∈N0

I(yi = j), (2.29)

* Lazy learners, instead of building a model from the training set, they simply store the data. Their main work
happens when they perform predictions (Torgo, 2011).
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where, as in section 2.1.2, I is the indicator function. The test point x0 is classified to the class with
the largest probability, using the Bayes rule. In a regression task, the approach is similar: kNN
estimates f (x0) using the average of all the training responses in N0:

f̂ (x0) =
1
k ∑

xi∈N0

yi. (2.30)

The prediction on x0 can also be calculated using other summary statistics, such as the median.
The distances between the prediction point and the training observations are generally obtained

from the Minkowski distance:

d =

(
p

∑
j=1
|xa j − xb j |

) 1
q

, (2.31)

where p is the number of predictors, xa j and xb j are two individual samples, and q > 0. When
q = 2, Minkowski’s reduces to the Euclidean distance (Kuhn, Johnson et al., 2013; Liu, 2011).

2.2.5 Support Vector Machines

Support vector machines (SVMs) are one of the most successful and effective ML tools avail-
able, capable of performing linear and non-linear classification, regression, and outlier detection
(Torgo, 2011; Kuhn, Johnson et al., 2013; Géron, 2017). These models produce non-linear bound-
aries by building a linear boundary in a large, transformed version of the predictor space (Hastie,
Tibshirani and J. Friedman, 2009). While defining the boundary, the model allows for misclassi-
fications, so that overfitting is avoided at the cost of increasing the bias (bias-variance trade-off).
This results in overall improved predictions on new data.

The fundamental ideas behind these techniques are best understood using pictures and by
considering the simple classification case of two classes. When classes can clearly be separated
with a straight line, they are said to be linearly separable. Figure 2.3 illustrates an example of a
data set with two linear separable classes. The blue solid line represents the decision boundary.
On the left panel, this line clearly separates both classes and remains as far away from the closest
training observations as possible. The support vector classifier (SVC) fits the widest (maximal)
possible margin between the classes (represented by the shaded strip), which in this case has width
2M and is defined by the two parallel dotted lines. All instances lie outside and on the right side of
the margin, and so the latter is called hard margin. The margin is fully determined (or “supported”)
by the instances located on its edge. These instances—three, in this case (two green and one red),
circled in blue—are called the support vectors. They define both the margin and the decision
boundary. Adding training instances outside the margin does not affect the model’s predictions.

The SVMs are sensitive to the scale of the predictors, and so the maximal margin is most easily
obtained by normalising the variables. However, sometimes it is hard or even impossible to find
a hard margin. In this cases, more flexible models are used, allowing misclassifications in order
to find a good balance between maximising the margin and limiting its violations. This is called
soft margin classification, which is illustrated on the right panel of fig. 2.3. In this case, the points
labelled as ξ ∗i are on the wrong side of the margin, while points on the correct side have ξ ∗i = 0.
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Figure 2.3: Examples of support vector classifiers. Left panel : hard margin classification, an example of a
linear separable case. Right panel : soft margin classification, an example of a non-separable
(overlap) case. The decision boundary is indicated by the blue solid line. The maximal margin, of
width 2M, is bounded by the two parallel dotted lines. The points labelled ξ ∗i are on the wrong
side of the margin. Adapted from Hastie, Tibshirani and J. Friedman (2009).

The margin is maximised by keeping a total budget σiξi below a certain number. The choice of
support vectors and number of misclassifications is done using CV.

When the data set is not linearly separable, a possible approach is to add more predictors, such
as polynomials. However, that can increase too much the number of features to a point that the
model becomes too slow. The main steps for creating SVM classifiers are the following:

1. The model starts with low-dimensional data;
2. It uses the existing data to create higher dimensions;
3. It finds a decision boundary that separates the higher dimensional data into the number of

classes.

To avoid this potential problem, the decision boundary is found in higher dimensions by using
kernel functions—this mathematical technique is called kernel trick. A kernel is a function K that,
when evaluated on two vectors of dimension n, s and z, yields the same result as the dot product of
the transformation φ of these two vectors into a space of higher dimension m, i.e.,

K(s,z) = φ(s) ·φ(z). (2.32)

Kernels eliminate the need to transform the data from low to high dimensions. They use dot
products between every pair of training points to compute their high-dimensional relationships and
find the optimal decision boundary.

Two of the most popular kernel functions are the polynomial kernel and the radial kernel or
radial basis function.

The polynomial kernel is mathematically defined as (xa ·xb+r)d , where r and d are parameters
determining the coefficient and the degree of the polynomial, respectively. The optimal values for
these parameters are found using CV.
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The radial kernel (or radial basis function) is obtained from the polynomial kernel by taking
r = 0 and d→ ∞. It has the form eγ(xa−xb). Similarly for the polynomial kernel, the optimal value
for the gamma parameter is obtained by CV.

When applied to regression problems, SVMs reverse the objective: instead of maximising
the margin between two classes while limiting its violations, an SVM regressor tries to fit as
many instances as possible on the margin, while limiting violations (i.e., instances off the margin).
Adding training instances within the margin does not affect the model’s predictions. Non-linear
cases are handled in a similar way to the classifier, by applying the kernel trick.

Under the hood, SVMs involve several beautiful equations, which are, however, outside the
scope of this thesis. We refer the reader to Vapnik (2000) and Géron (2017) for a detailed descrip-
tion on how SVMs make predictions and how their algorithms work.

2.2.6 Decision Trees

A decision tree (DT) is a supervised ML method that stratifies or segments the predictor space
into simpler regions. A tree is built by recursively partition the training set, by creating one or
nesting more if-then statements for the predictors. These methods get their name from the
fact that the set of splitting statements used to stratify the feature space can be summarised and
represented in a tree-like structure, as the one illustrated in fig. 2.4.

nt0 = 100

nt 11 = 55 nt 12 = 45

nt 21 = 35 nt 22 = 20
nt 23 = 12

nt 24 = 33

Figure 2.4: An example of a decision tree. Every node t is associated with nt observations from the data set.

To obtain a prediction for a new observation, the model follows the if-then statements defined
by the tree using values of the instance’s predictors, until it reaches a terminal node or end leaf. For
a given sample, the if-then statements generated by a tree define an unique path to a single leaf.
A rule is a set of if-then statements that have been compiled into independent conditions (Kuhn,
Johnson et al., 2013). A very simple example of a tree-based model, inspired in the tree depicted
in fig. 2.4, is written as the set of conditions of the left-hand side of fig. 2.5. The corresponding
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rules in the region space, together with the predicted values, are depicted on the right-hand side
graph of the same figure. Four rules can be extracted from the tree of fig. 2.5:

start;
if predictor A ≥ 3 then

if predictor B ≤ 12 then
outcome← 3.14;

else
outcome← 2.72;

end
else

if predictor B ≤ 8 then
outcome← 0.0073;

else
outcome← 0.0123;

end
end
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Figure 2.5: Set of if-then statements (left) and corresponding regions (right) defined by a simple tree-based
model. These structures are a representation of the tree of fig. 2.4.

if predictor A >= 3 and predictor B <= 12 then outcome = 3.14
if predictor A >= 3 and predictor B > 12 then outcome = 2.72
if predictor A < 3 and predictor B <= 8 then outcome = 0.0073
if predictor A < 3 and predictor B > 8 then outcome = 0.0123

The goal is to partition the data into smaller, more homogeneous subsets. Starting at the tree
root, data are split on the predictor and for the value that results in the largest information gain
(IG), Ig. The latter is defined as follows (Raschka and Mirjalili, 2017):

Ig(DSP,xi) = I(DSP)−
m

∑
j=1

n j

nP
I(DS j), (2.33)

where DSP and DS j are the subsets of the parent and jth child node, respectively, xi is the feature
to perform the split, I is the impurity measure,* m is the number of child nodes, and nP and n j are
the number of training instances at the parent and jth child node, respectively.† Maximising the IG
is equivalent to minimise the impurity in the child nodes.

The two most common impurity measures or splitting criteria used in classification trees are
the entropy, IH , and the Gini index, IG.

For all non-empty classes, the entropy is defined by

IH(t) =−
c

∑
i=1

p(i | t) log2 p(i | t), (2.34)

* In this context, purity is a measure of homogeneity. The less labels are in a node (classification context) or the
closest the numbers in the node (regression case), the more homogenous (pure) it is.

† Every node t of a decision tree is associated with a set of nt instances or data points from the training set.
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where p(i | t), the proportion of observations belonging to class i for a node t, has to respect the
condition p(i | t) ̸= 0. At a given node, the entropy is zero when all its observations belong to the
same class, and it is maximal when the distribution of classes in the node is uniform.

The Gini index is defined as

IG(t) =
c

∑
i=1

p(i | t)[1− p(i | t)] = 1−
c

∑
i=1

p(i | t)2. (2.35)

It is a criterion to minimise the probability of misclassification or the misclassification error. Similar
to entropy, for a given node, the Gini index is maximal when the classes are perfectly mixed.

For regression trees, the IG is also maximised by minimising the impurity function in the child
nodes. However, in this case, the latter is commonly the MSE, which is very similar to eq. (2.4),
page 12:

I(t) = MSE(t) =
1
nt

∑
i∈DSt

(yi− ŷi)
2 , (2.36)

where nt is the number of examples belonging to the training subset DSt at node t, and yi and ŷi are
the true and predicted values of the response, as defined before. In the context of regression DTs,
the MSE is generally known as the within-node variance, and the splitting criterion is commonly
referred as the variance reduction.

The growth process of a DT, usually known as recursive partitioning, is repeated until some
stopping criterion is satisfied—for instance, until the leaves are pure, or the within-node variance
reaches a certain threshold. A prediction is produced by computing the mean or the mode of the
observations contained in the terminal nodes.

Decision trees intrinsically perform feature selection in the data set, because if a variable is
never used in a split, it will not be part of the prediction equation. However, this advantage is
weakened in the presence of highly correlated features, since, in that case, there is a certain level
of randomness in the choice of which predictor to use in a split. More predictors can be used than
actually necessary, affecting variable importance by diluting it among them (Kuhn, Johnson et al.,
2013).

Tree-based models have the advantage of being simple and interpretable, when the DTs are not
large, and they can be quickly computed. Because they are built in a simple and logic way, they
can effectively handle many types of features, even if data are missing, without the need of pre-
processing. In addition, they do not require any transformation of the predictors in situations of non-
linear data, nor normalisation or standardisation, because DTs analyse one feature at a time, rather
than considering weighted combinations of them (Raschka and Mirjalili, 2017). However, they can
be unstable (small changes in the data can affect considerably the structure of the tree and, hence,
its interpretability) and, in terms of predictive performance, they typically are not comparable to
other supervised ML approaches, such ensembles of trees, because they define rectangular regions
that have the potential of yielding large prediction errors when the the relationship between the
explanatory variables and the response cannot be adequately defined by rectangular subspaces of
the predictors (Kuhn, Johnson et al., 2013).
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In the following section, we will cover some important tree-based ensemble algorithms, which
combine many trees into one model and tend to have better predictive performance than single
DTs.

2.2.7 Ensemble Learning

Ensemble methods are ML techniques that combine different models (typically weak regressors
or classifiers) into a single model having better performance than each of the individual models
alone (Hastie, Tibshirani and J. Friedman, 2009). They started to be developed in the 1990s, and
became popular ever since. Examples are Bootstrap Aggregating, Random Forests, and Boosting,
just to name a few. These approaches have in common the fact that they are fully non-linear,
highly flexible, and hard to interpret. They also tend to have very good predictive performance, in
particular tree-based ensembles.

In the following sections, we will discuss the three aforementioned examples of ensemble
methods, that use trees as building blocks to construct prediction models. Two of them, random
forests and gradient boosting, because they were heavily used as workhorses during this thesis to
train regression models, are going to be briefly introduced in this section and will be described in
more detail in chapter 3 (section 3.2).

Bagging

Bootstrap Aggregation or Bagging, is a simple ensemble method proposed by Breiman (1996a)
that uses bootstrapping together with any regression or classification model to build an ensemble
(Kuhn, Johnson et al., 2013; Hastie, Tibshirani and J. Friedman, 2009). For every bootstrap sample,
bagging trains a tree model. If we train m trees, then the predictions of each tree are averaged out
to produce the bagged model’s final prediction. Its simple structure is summarised in the main
steps for a bagging algorithm of fig. 2.6.

for i = 1 to m do
Generate bootstrap sample of the orginal data;
Train unpruned tree model on this sample;

end
outcome← average of m individual predictions;

Figure 2.6: Main ideas for a bagging algorithm (adapted from Kuhn, Johnson et al., 2013).

Due to their aggregation process, bagged models reduce the variance of the predictions when
compared to simple DTs, making them more stable. This is particularly notorious in regression
trees. However, (i) they can be computationally expensive, especially if the learners are not
parallelised by the modeler, (ii) they are less interpretable than simple trees, and (iii) they do not
reduce variance as effectively as other ensemble methods, such as random forests (RFs), mainly
because the trees in bagging are not completely independent of each other, since all predictors are
considered at every split of any tree via the bootstrap sampling (Hastie, Tibshirani and J. Friedman,
2009).
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The logical step to improve bagging is to reduce the correlation among trees, which from
a statistical point of view can be achieved by adding randomness to the building process of the
trees. That was proposed by Breiman (2001) with the well-known and successful random forests
algorithm, which we will briefly address in the following section.

Random Forests

Random forests are among the most popular ML methods, thanks to their good predictive
performance, robustness, and ease of use (Torgo, 2011). The algorithm is part of the ensemble
learning family, since it trains several DTs when learning a model from a data set.

The general principle is analogous to bagging, in the sense that a RF is a set of tree-based
models, each built from a distinct bootstrap sample of the training data set. Similarly to DTs, each
node in a tree of the ensemble corresponds to a condition on a single feature or variable. That
condition is designed to split the data into two sets, so that similar response values end up in a same
given new node. Differently from bagging, in order to increase the variability of the individual
models that make up the ensemble (forest), instead of using the whole set of p variables, each tree
is grown using a random set of m < p features, which is different in every node, so that only a
subset of predictors is used to compare the possible splits and choose the one that leads to the best
result. This prevents a strong predictor to dominate the top splits and increases the variety among
trees, decorrelating them.

Random forests are easily adaptable and versatile methods, being widely used in the context
of classification and regression problems. In essence, the ensembles are built in a similar way
in both cases. The main differences are (a) the type of DTs used to build the forest is different
in each case (classification trees vs. regression trees); (b) different criteria are used to grow the
individual trees (Gini impurity measure or entropy in a classification task, and MSE in a regression
problem); and (c) in classification, the predictions by all the trees are aggregated by assigning
the label obtained by majority vote, while in regression the predicted target value is calculated by
averaging the predictions over all DTs.

Given their robustness, performance, and easy of use, we selected RFs as one of the two ML
tools to tackle our research questions. They will be covered in more detail in chapter 3, in particular
in section 3.2.2 (page 49).

Boosting Methods

Boosting is currently one of the most powerful techniques used in ML (Hastie, Tibshirani and J.
Friedman, 2009). In boosting (Schapire, 1990; Freund and Schapire, 1999; Freund, 1995; Schapire,
2003), the ensemble consists of simple base models, known as weak learners, such as decision
stumps,* which often perform only slightly better than a baseline learner or a random guess. The
main idea behind boosting is to focus on the training instances that yield a bad performance, so

* A decision stump is a ML model consisting of a one-level tree, i.e., a decision tree containing only a single variable
or attribute for splitting, with the root (the first node) immediately connected to terminal leaves (Géron, 2017; Kuhn,
Johnson et al., 2013).
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that an ensemble is incrementally built by adjusting the weights of the examples according to the
error of the previous prediction (Raschka and Mirjalili, 2017). Weak learners are sequentially
built by minimising the errors obtained from previous iterations, while increasing (or boosting)
the influence of high-performing models. By allowing the weak learners to iteratively learn from
the training examples that were misclassified or yielded bad predictions, the performance of the
ensemble is improved (or boosted) as a whole. Similarly to RFs, boosting can lead to a decrease in
both the bias and variance (Breiman, 1996b).

The main ideas of the fundamental formulation of the boosting algorithm can be summarised
as follows:

1. A subset of instances is randomly sampled from the training data set without replacement,
to train a weak learner.

2. A second subset of examples is randomly sampled without replacement and added typically
to 50 % of the instances that previously lead to bad predictions in order to train another weak
learner.

3. The examples which the previous weak learners disagree upon are sought in the training data
set and used to train a third weak learner.

4. The previous weak learners are combined by means of some rule, such as majority voting in
the case of classification.

Boosting and RF are cousin algorithms, in the sense both train several decision trees for a given
data set. The main difference between them is that in RFs trees are independent, while in boosting
each tree focus its learning on the loss of the previous modelled tree.

Developments to the original algorithm, such as AdaBoost or adaptive boosting (AB) and
gradient boosting (GB), use the complete training data set to feed the weak learners.

Instead of subsampling the training data set, AdaBoost (Freund and Schapire, 1997) sequen-
tially re-weights the cases in each iteration to build a strong model able to learn from the mistakes
of the weak learners used in the previous iterations. In each iteration, the algorithm focuses more
and more on the hard cases, i.e., those training examples that were underfitted, so that the weak
learners sequentially improve on top of their predecessors by correcting them.

Similarly to AB, gradient boosting (J. H. Friedman, 2001) focus on adding weak learners
sequentially to the ensemble, each one correcting its predecessor. The main difference to AdaBoost,
however, is that gradient boosting (GB) tries to fit the new weak learners to the residuals yielded by
the previous learners, instead of tweaking the examples’ weights at every iteration (Géron, 2017).
In order to do that, GB employs a gradient descent algorithm, so that errors are minimised in the
sequential models.

Currently, the most popular development of GB is extreme gradient boosting (XGBoost). The
majority of the challenges on the 2015 Kaggle ML competition were won using XGBoost, and the
top 10 placements at the KDD Cup 2016 ML competition used XGBoost. XGboost is a decision
tree based ensemble algorithm built upon the GB framework. It optimises GB by performing
parallel processing and tree-pruning, it uses regularisation to avoid both bias and overfitting, and it
is capable of handling missing values (T. Chen and Guestrin, 2016). Given its robustness, speed,
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and performance, we selected XGBoost as the other ML technique (in addition to RFs) to address
our research questions. We will give a more detailed account of GB and XGBoost in section 3.2.3
(page 51).

Artificial Neural Networks

Tree-based ensemble algorithms typically yield top results when dealing with structured or
tabular data. Other types of non-linear algorithms, such as artificial neural networks (ANNs), tend
to outperform all other frameworks in prediction problems involving unstructured data, such as
images, text, time series, and others. While neural networks are popular, powerful, versatile, and
scalable ML techniques, that can be used both on classification and regression tasks, their study
is out of the scope of this thesis because, on the one hand, they typically excel when used with
unstructured data and, as we will see in chapter 3, our data is structured in tabular form; on the
other hand, they are usually more computationally expensive than traditional algorithms, and we
are focused in building a computationally cheap tool—state of the art deep learning algorithms
can take several weeks to train completely from scratch, depending on the data, and the depth and
complexity of the neural network. The interested reader is referred to the original article from
Bishop et al. (1995), and the books from Ripley (2007), Titterington (2010), Torgo (2011) and
Kuhn, Johnson et al. (2013).

2.3 Useful Astronomical Concepts

In this section, we will briefly describe some astronomical concepts that are useful to contextu-
alise the problem we are trying to solve in this project and the variables related to it.

Stellar classification. All information about the physical properties of stars comes directly or
indirectly from their spectra, which are obtained when the electromagnetic radiation from a star is
analysed by splitting it with a prism or diffraction grating. In particular, by studying the absorption
lines and their strength, stellar composition, temperature, and mass can be deduced.

In Astronomy, stars are commonly classified according to their spectral characteristics. The
strengths of the spectral lines vary mainly due to the temperature of the photosphere of the star. The
spectral classification currently in use was developed at the Harvard observatory, in the beginning
of the 20th century (see e.g., Karttunen et al., 2007). The main stellar spectral types are denoted by
capital letters, ordered according to the mean surface temperature of the star. With the temperature
decreasing to the right, the early classes are

O–B–A–F–G–K–M.

For example, type O stars are blue, with surface temperatures of 20 000 K to 35 000 K, and they are
very massive, from about 16 up to more than 100 Solar masses; G stars, like the Sun, are yellow
and with a surface temperature of approximately 5500 K; K stars are orange-yellow, with a surface
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temperature of about 4000 K; and M stars are red, with a surface temperature of about 3000 K, and
their masses are significantly lower than that of the Sun.

Rotation of stars. Stars are rotating bodies, with periods ranging from a fraction of a second,
such as neutron stars, to tens of days (see e.g., Carroll and Ostlie, 2017). It is known that stellar
rotation is a key phenomenon for the generation of magnetic fields and the transfer of angular
momentum of solar type stars.

Stars are known to decrease their rotation angular speed as they age and loose angular mo-
mentum. Consequently, rotation periods can be used to infer the age of a star, in a process known
as gyrochronology (Santos et al., 2019). Rotation periods are typically measured by detecting mag-
netic phenomena at the stellar photosphere, such as stellar spots. Sun spots have been regularly
recorded since the 17th century, in a well known time series (see fig. 2.7),*, which has made it
possible to measure the solar activity over the last centuries. The same principle is applied to other
stars to measure their surface activity.

Figure 2.7: Yearly mean number of groups of sunspots between the years 1610 and 2018. Visible are two
periods of lesser solar activity, known as the Maunder and the Dalton minima. The data was
retrieved from the SILSO website (http://sidc.be/silso/).

The FliPer metric. The FliPer or Flicker in Power metric (Bugnet et al., 2018) is a measure
of the total power spectral density (PSD) of a star between a low frequency cut-off, νC, and the
Nyquist frequency, νN :

FliPer(νC) =
1

νN−νC

∫
νN

νC

PSDdν−Pn, (2.37)

where Pn is an estimate of the photon noise level.† The FliPer metric is correlated with the stellar
surface gravity, logg. The latter corresponds to the acceleration of gravity experienced at the
surface of a star, at the equator, including the effects of rotation (e.g., Stahler and Palla, 2008).

The photometric activity index. The photometric activity index, Sph, corresponds to the
standard deviation calculated over segments of the light curve of width 5×Prot (Mathur, García
et al., 2014). In this thesis, Sph corresponds to the average of those segments’ values, and for that
reason, we will be referring to it as the photometric activity proxy (Breton et al., 2021).

* A time series is a collection of data indexed in time (Skumanich, 1972).
† Photon noise is the inherent natural variation of the light or photon flux incident on a detector (e.g., Hasinoff,

2014). It depends on the magnitude of the stellar object.

http://sidc.be/silso/
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Traditional methods to measure rotation periods of stars. Stellar surface rotation periods
can be estimated using several methods. The most commonly used during the last decade are the
periodogram analysis (Reinhold, Reiners and Basri, 2013), Gaussian processes (Angus, Morton
et al., 2018), gradient power spectrum analysis (Shapiro et al., 2020), autocorrelation function
(McQuillan, Mazeh and Aigrain, 2014), time-period analysis based on wavelets (García et al.,
2014), and a combination of different diagnostics such as the composite spectrum (Santos et al.,
2019). Of interest for this work are (a) the time-period analysis using a wavelet decomposition,
(b) the autocorrelation function (ACF) of the light curve, and (c) the composite spectrum (CS).

In the time-period analysis, wavelets of different periods are cross-correlated with the stellar
light curve, to obtain the wavelet power spectrum (WPS). The latter is projected over the period-
axis, to obtain the one-dimensional global wavelet power spectrum (GWPS). Several Gaussian
functions are fitted to the GWPS, starting with the one with the highest amplitude. The Gaussian
and corresponding peak are removed, and the next highest Gaussian is fitted in an interactive way,
until no peaks are left above the noise level. The peak of the highest fitted peak in the GWPS is
assigned as the rotation period recovered by this methodology: pgwps

rot . The period uncertainty is
taken as the half width at half maximum (HWHM) of the Gaussian function (Breton et al., 2021).

In the ACF of the light curve method, the rotation period, pacf
rot , is taken as the period of the

highest peak in the ACF at a lag greater than zero (T. Ceillier et al., 2017).
In the CS method, the product between the normalised GWPS and the ACF, i.e., the composite

spectrum, is calculated. This operation aims at amplifying the peaks present in both the GWPS and
the ACF, which possibly will be related to the rotation of the star, while the signals appearing only
in one of the two methods (possibly due to instrumental effects, having a different manifestation
in the two analysis) will be attenuated. Several Gaussian functions are fitted to the CS, in an
iterative process similar to the one described for the GWPS. The extracted rotation period, pcs

rot,
will correspond to the period of the first Gaussian function being fitted (the one with the highest
amplitude). The uncertainty is estimated with the HWHM of the Gaussian function (Breton et al.,
2021).

These and other variables related to the three aforementioned methods are detailed in table A.1.





CHAPTER 3

Materials and Methods

Torture the data, and it will confess to nothing.
— Ronald Coase (1910–2013)

A shortcut is the longest distance between two points.
— Anonymous

Contents
3.1 Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.1.1 Data Engineering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.1.2 Statistical Analysis of Relevant Variables . . . . . . . . . . . . . . . . . 41

3.2 Predictive Task and Modelling Approaches . . . . . . . . . . . . . . . . . . . . 47

3.2.1 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.2.2 The Random Forest Approach . . . . . . . . . . . . . . . . . . . . . . . 49

3.2.3 The Extreme Gradient Boosting Approach . . . . . . . . . . . . . . . . . 51

3.3 Experimental Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

3.3.1 Hyperparameter Values Optimisation . . . . . . . . . . . . . . . . . . . 58

3.3.2 Final Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

3.3.3 Performance Assessment Methodology . . . . . . . . . . . . . . . . . . 61

TH E M A I N G O A L of this project is to develop robust yet computationally cheap models
from tabular astronomical data for predicting stellar rotation periods of K and M stars
from the Kepler catalogue. To accomplish this, specific materials and methods have to be

used to build the models and assess their performance. We will be addressing them in this chapter.
We start by describing the data that served as the basis to build the sets from which we trained
the regression models, and explain the reasons behind the choice of that real-world data set as
starting point for our research. Then, we will define the predictive task, in which rotation periods
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of stars are framed as a regression problem, and will formalise the two ensemble methods selected
to tackle the problem: random forests, and gradient boosting. Next, we describe the experimental
design employed in the training and evaluation of the performance of the models, and finish with
the description of the methods used to compare the different results.

3.1 Materials

The goal of this thesis is to develop an efficient lightweight ML tool to automatically predict
reliable stellar rotation periods of Kepler K and M objects, resorting on a set of tabular standard
predictors. In this context, “standard” means that they are commonly obtained directly or indirectly
from astronomical observations.

We started by analysing structured data from the Kepler catalogue related to K and M dwarf
stars, already in tabular form, published by Santos et al. (2019) and Breton et al. (2021). Both
catalogues—hereafter referred as S19 and B21, respectively—contain all the predictors and targets
we considered in our work. B21 was used as the source of most of the predictors. S19 was used
specifically to extract the rotation periods and features that are directly obtained from Kepler ob-
servations. The latter are commonly known as “stellar parameters” in the astronomical community.
Examples are the mass of the star and its effective temperature, just to name a few. However, we
will avoid using the word “parameter” in this context, in order to prevent confusion with model
parameter. Instead, we will adopt the terminology astrophysical variables when referring to them.

B21 is available in tabular form, without any particular clustering or classification of the
variables. However, we decided to reorganise the predictors according to their nature and/or
method by which they were obtained. We identified six groups, with the following characteristics:*

1. Rotation periods (Prot, prot) — rotation periods obtained by combining the ACF, CS, and
GWPS time-period analysis methods with the KEPSEISMIC light curves, for the 20-, 55-,
and 80-day filters: PACF

rot (prot_acf_xx), PCS
rot (prot_cs_xx), and PGWPS

rot (prot_gwps_xx),
where xx stands for each of the aforementioned filters.†

2. Astrophysical (Astro, astro) — predictors related to the physical properties of the stars, and
that are obtained directly or indirectly from the observation, to wit:

• effective temperature, Teff (teff), and its corresponding upper and lower errors, T err, up
eff

(teff_eup) and T err, low
eff (teff_elo) respectively;

• the logarithm of surface gravity, logg (logg) and its upper and lower error limits,
loggerr, up (logg_eup) and loggerr, low (logg_elo);

• the mass of the star, M (m), and its upper and lower errors, Merr, up (m_eup) and Merr, low

(m_elo);
• the magnitude from the Kepler input catalogue, Kp (kepmag); and

* Words between parentheses, written in typewriter font, refer to the names of the variables as they stand in
table A.1 and in the data frames.

† KEPSEISMIC are time series optimised for asteroseismology. They are available at the Mikulski Archive for Space
Telescopes (MAST), via the link https://dx.doi.org/10.17090/t9-mrpw-gc07.

https://dx.doi.org/10.17090/t9-mrpw-gc07
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• the Flicker in Power or FliPer values, F0.7 (f_07), F7 (f_7), F20 (f_20), and F50 (f_50),
respectively corresponding to cut-off frequencies of 0.7, 7, 20 and 50 µHz.*

3. Time Series (TS, ts) — quantities that are related to the properties of the time series:

• length of the light curve in days, l (length);
• the start and end time of the light curve, St (start_time) and Et (end_time) respect-

ively;
• the bad quarter flag, Qbad (bad_q_flag);
• the number of bad quarters in the light curve, nQbad (n_bad_q);
• the photometric activity proxy or index, Sph (sph), and its error, Serr

ph (sph_e), as
provided by Santos et al. (2019);

• SACF
ph , computed from the ACF method to obtain the rotation period (sph_acf_xx), as

provided by Breton et al. (2021), and its corresponding error, SACF, err
ph (sph_acf_err_-

xx);†

• the height of PACF, GACF, the period of the highest peak in the ACF at a lag greater
than zero (g_acf_xx), for each of the xx-day filter; and

• the mean difference between the height of PACF at the two local minima on both sides
of PACF, HACF (h_acf_xx), for each of the aforementioned filters.

4. Global Wavelet Power Spectrum (GWPS, gwps) — quantities obtained after a time-period
analysis of the light curve using a wavelet decomposition:

• amplitude (gwps_gauss_1_j_xx), central period (gwps_gauss_2_j_xx), and stand-
ard deviation (gwps_gauss_3_j_xx) of the jth Gaussian fitted in the GWPS with the
xx-day filter, where xx stands for 20, 55, or 80 days;

• the mean level of noise of the Gaussian functions fitted to the GWPS for the xx-day
filter (gwps_noise_xx);

• the χ2 of the fit of the Gaussian function on GWPS for the xx-day filter (gwps_chiq_-
xx);

• the number of Gaussian functions fitted to each GWPS for the xx-day filter (gwps_n_-
fit_xx); and

• SGWPS
ph calculated from the GWPS method (sph_gwps_xx), as provided by Breton et al.

(2021), and its corresponding error, SGWPS, err
ph (sph_gwps_err_xx).

5. Composite Spectrum (CS, cs) — variables obtained from the product between the normalised
GWPS and the ACF:‡

• amplitude of PCS (the period of the fitted Gaussian of highest amplitude), HCS (h_cs_-
xx), for the xx-day filter;

* FliPer is a measure of the total power in the power spectral density of the star between the cut-off frequency, νC,
and the Nyquist frequency, νN (recall section 2.3, page 32).

† In Breton et al. (2021), Sph is split in several values, each corresponding to the process from which it was obtained
(ACF, CS, or GWPS) and to the filter applied to the light curves (20, 55, or 80 days).

‡ The composite spectrum (CS) is computed in order to amplify the peaks present in both the GWPS and the ACF,
and to attenuate the signals appearing in one of them resulting, possibly, from instrumental effects that have a different
manifestation in each analysis (recall section 2.3, page 33).



38 CHAPTER 3. MATERIALS AND METHODS

• the mean level of noise of the Gaussian functions fitted to the CS, csnoise (cs_noise_-
xx), for the xx-day filter;

• the χ2 of the fit of the Gaussian function on the CS for the xx-day filter (cs_chiq_xx);
• SCS

ph computed from the CS method (sph_cs_xx), and its error, SCS, err
ph (sph_cs_err_-

xx) for the xx-day filter; and
• the amplitude (cs_gauss_1_j_xx), central period (cs_gauss_2_j_xx), and the stand-

ard deviation (cs_gauss_3_j_xx) of the jth Gaussian fitted in the CS with the xx-day
filter, for j ∈ {1,2, . . . ,6}, where xx stands for 20, 55, or 80 days.

6. Unknown (Wav, wav) — variables, named wav_scl_{max, min}_xx in the data set, which
are not referenced in Breton et al. (2021) and, hence, whose nature is unknown.

The list of explanatory variables, as they appear in the final data set, after exploratory data analysis,
cleaning, and engineering, is referenced in table A.1.

An alternative approach to real-world data would have been to use synthetic data to train the
models. These data would be obtained from reliable stellar models, such as the PLATO Simulator
(Marcos-Arenal et al., 2014), so that we could have full control over the characteristics of the
stars and related variables. In addition, by using synthetic data would have allowed us to prevent
potential bias introduced by the predictors, given that many of the canonical variables used to
estimate the reference stellar rotation periods, such as the amplitude of the Gaussian fitted in the
GWPS, are derived throughout the processes that culminate in the estimation of the final value.
They are not observables, i.e., they are not directly measured through instruments, nor are extracted
directly from the light curves. They are derived features, whose values are strongly correlated with
the reference (“true”) rotation periods.

Nevertheless, we started by using previously published real data because, on the one hand,
it is readily available, which is an advantage within the time-frame of this Master’s thesis; and,
on the other hand, we wanted to benchmark distinct machine learning approaches using different
sets of predictors—thus analysing how much the predictions are affected by the variables closely
connected to the method used to estimate the reference rotation periods—and compare the results
with the ones obtained by Breton et al. (2021)—the results can only be comparable if data sets are
built from the same reference set of observations.

In the following section, we will describe the steps we applied to S19 and B21 to build a master
data set and several subsets to be used to build the ML methods with which we intended to answer
the research questions.

3.1.1 Data Engineering

S19 and B21 were cleaned and merged to obtain a master data set, from which several subsets
were created. During the cleaning process, (i) columns containing only null values were dropped,
(ii) rows with less than 5 % of non-null variables were removed, (iii) a flag-type variable from
S19 was dropped, (iv) all variable names were converted to lowercase, and (v) some names were
changed, for clarity.
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In the merging process, we selected all stars that were present simultaneously in both data
sets. As we will explain in detail in section 3.2, we chose to use tree-based ensemble approaches,
namely RFs and GB, to train our models. Since RFs cannot cope with missing values, we imputed
Not a Number (NaN) type cells using a RF approach with 100 trees and a 0.5 sample fraction—we
relied on the missRanger function of the ranger R package to accomplish this task. After the
data imputation, we decided to create a parallel data set with standardised predictors for further
analysis. We note that because we will be using tree-based (as opposed to distance-based) ensemble
methods, normalisation of predictors is not required (Murphy, 2012; T. Chen and Guestrin, 2016).
Nevertheless, because XGBoost employs a gradient descent algorithm, we decided to use the
normalised version of the data set to create the subsets from which the XGBoost models would be
built, in an attempt to optimise the computations during the training phase.

Several features, mainly of the CS and GWPS groups (recall group of variables in previous
section, page 36), contained values with extremely large or infinite amplitudes.* They are derived
variables, corresponding to some of the amplitudes, central periods, standard deviations, and
mean level of noise of the Gaussians fitted to the CS and GWPS. Their extreme values may have
different origins, such as instrumental errors, and possibly they could have been addressed during
their creation.† In principle, their existence would not pose a problem, as there are no restrictions
on extreme points both in RF and GB methods, and XGBoost can handle missing values. However,
since we do not have missing values in the data sets used to train RF models, we wanted to avoid
NaNs in the data sets created for XGBoost, so that comparisons between models created with both
methods would not be affected by this aspect.

We considered several strategies to address this problem, such as imputation of extreme values
by central measures, removal of outliers, or row elimination. Since we wanted to prevent depletion
of the training set, we chose to replace infinite points by the non-infinite extrema present on the
variable where they occur.

By analysing the distribution of examples with extreme amplitudes, we realised that those were
several orders of magnitude larger (typically above 30 orders of magnitude) than the common
values of the corresponding variable, whose absolute values were always below 100. An example,
corresponding to the variable with the largest amplitudes for the typical values, is illustrated in
fig. 3.1. The figure represents histograms and box-plots for the gwps_gauss_3_1_80 predictor.
In the bottom panels we represent the most common cases, whose values oscillate approximately
between 1 and 50. From the histograms on the left hand side, we can see that most of the values
are distributed within the ]0.01, 100 [ interval, and that outliers can have values above 1035. By
replacing infinite values by the extreme (finite) values present in the feature, we are still flagging
them as very big values, without affecting the z-transform. Therefore, examples with infinite
values—which correspond to less than 1 % of the total number of cases—were scaled down prior
to standardisation, to avoid missing values after the z-transform. On the one hand, we are validating
a strategy to predict stellar rotation periods, and it is irrelevant if the data set contains or not infinite

* This was easily seen when summarising the data after standardisation, because NaNs were produced out of the
infinite values after the z-transform.

† A way to control them would have been to use synthetic data, obtained from reliable stellar simulators.
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Figure 3.1: Histograms and box-plots for the gwps_gauss_3_1_80 predictor. The histogram on the bottom
row highlights the amplitude of the most common values of the variable, while the corresponding
box-plot on the right still indicates the presence of outliers.

values on a methodological point of view; and, on the other hand, not only this approach is similar,
in principle, to an imputation, but we believe it is important to keep large/small examples in the
data set, to mimic real case scenarios, so that the model can learn from them. Performing the
scaling just described will allow the model to learn from outliers, while preventing at the same time
NaNs from appearing after standardisation, and without affecting the performance of the models.*

After the aforementioned transformations, we ended up with two data frames containing 15 006
observations and 180 predictors, one with unscaled and other with scaled predictors. These are the
full or master sets, both labelled as data set 0 (DS0).

Several subsets were created from the full data sets, containing a different number of predictors,
according to their nature or the way they were extracted:†

1. The first subset was obtained by removing the nine rotation period variables (Prot group),
resulting in a data set with 171 variables. This is identified as data set 1 (DS1).

2. Another subset was obtained from the previous one, by removing the unknown Wav variables,
yielding a data set with 165 predictors. This was labelled data set 2 (DS2).

3. A third subset was created by removing the CS variables from DS1, producing a data set
with 108 predictors — data set 3 (DS3).

4. The fourth subset was obtained by removing the GWPS predictors from DS1, creating a data
set with 102 explanatory variables — this is data set 4 (DS4).

* We tested the performance of RF models with and without scaling down infinite values, using the DS3 and DS4
data sets to be defined in what follows, and no significant differences in the predictive performance were identified.

† When talking about models created with RFs or XGBoost, we will always refer to the full data set as DS0, without
explicitly indicating whether we are using the normalised set or not. The type of predictors will be easily identified out
of the context. The same will hold for any of the DSn subsets.
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5. The fifth subset results from removing both the GWPS and CS variables, yielding a data set
with 39 predictors — data set 5 (DS5).

6. The sixth subset is similar to DS5, with the difference that the Wav variables were removed,
remaining 33 predictors in the set — data set 6 (DS6).

7. The seventh subset was obtained by removing all the predictors except the ones related to
the time series, producing a data set with 19 explanatory variables. This was dubbed data
set 7 (DS7).

8. The last subset was obtained by removing the time series variables from DS7, resulting in a
set of 14 predictors, only astrophysical in nature. This was labelled as data set 8 (DS8).

Kepler data is divided into 90-day quarters, because the telescope had to rotate by 90° every
three months in order to keep the solar panels properly aligned with the Sun and the radiator
pointed towards deep space (S. Mullally, 2020). Since it is important to observe at least two cycles
on an object in order to get reliable measurements, an additional data set was created from DS2,
where rotation periods greater than 45 days were filtered out. This strategy also allows to avoid
any problems arising from the stitching of data from different quarters. We further removed stars
with surface rotation periods smaller than 7 d,* because these targets can easily be mistaken for
close-in binary systems or classical pulsators, whose signals may not be consistent with stellar
objects manifesting surface rotation (Breton et al., 2021). By including only stars with rotation
periods between 7 d and 45 d, we were expecting to improve the predictive performance of the
models. We ended up with 13 627 stellar objects, a reduction of approximately 9 % relatively to the
other data sets. The number of predictors in the resulting data set, dubbed data set 9 (DS9), was
also reduced to 36: DS9 contains only the most important features identified during the learning of
the RF and XGBoost models, built on top of the data sets DS0 to DS8.

A final data set, data set 10 or DS10, was created by including only the top-10 most important
variables, as evaluated by the RF and XGBoost models trained with DS9. With DS10, we wanted
to infer how much the predictive performance of RF and XGBoost models would be affected
by including such a reduced number of predictors which, nevertheless, would be able to explain
most of the variability of the response variable. The procedure and results will be explored in
sections 4.3 and 4.4.

3.1.2 Statistical Analysis of Relevant Variables

In this section, we will make use of graphical and numerical statistical tools to analyse relevant
variables for our study, namely the response, and the CS, GWPS, time series (TS), and Astro
families of features. We intend to investigate the shape of the sample distribution of the target
variable, its relationship with the explanatory features, and the usefulness of the predictors to
explain the variability of the response. All variables present in DS0,† including the response, are
continuous. Therefore, we will explore them using histograms, box-plots, and summary statistics.

* Here and in future similar cases, “d” stands for days. Throughout this thesis, we will be using the International
System of units.

† In this section, we will be referring to the unnormalised version of DS0, unless indicated otherwise.
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Figure 3.2: Histograms (left panels), box-plots (central panels), and QQ-plots (right panels) of the target
variable, prot, on DS0 (top row) and on the training set created out of it (bottom row). The
distributions are very similar to each other, right skewed, with medians equal to 23.87 d, minima
and maxima equal to 0.25 d and 143.04 d, respectively. Both exhibit several outliers.

The histograms, box-plots, and QQ-plots of the target variable, prot (the stellar rotation period,
in days), as extracted from DS0 (panels on top) and its training set (panels on bottom), are illus-
trated in fig. 3.2. The sample distributions are very similar to each other. The aforementioned
graphs suggest unimodal, leptokurtic, right-skewed distributions, with several outliers towards
large quantiles, corresponding to the largest stellar rotation periods, above approximately 55 d
up to around 150 d. The medians are equal to 23.87 d, with minima and maxima equal to 0.25 d
and 143.04 d, respectively. The fact that the means (24.43 d and 24.46 d on DS9 and its training
set, respectively) are greater than the medians is a confirmation that the sample distributions are
positively skewed. The histograms show that the majority of the stars in the sample have rotation
periods between zero and approximately 55 d, but the right tail of the distributions extend far past
this interval. Numerous points in the QQ-plot lie outside the 95 % confidence band. Therefore,
there is no statistical evidence for normality in the distribution of prot.

Figure 3.3 shows the histograms, the box-plots, and the QQ-plots of the response, as extracted
from DS9, both on the full data set (top panels) and on the training set (bottom panels). Similarly
to DS0, the distributions on the full and training sets are very similar to each other. There is no
statistical evidence for normality in both sets. The plots suggest unimodal, platykurtic, slightly
right-skewed distributions. The medians are equal to 24.03 d, and the minima and maxima equal
to 7 d and 44.85 d in both DS9 and its training set. A considerable number of points in the QQ-plot
lie outside the 95 % confidence band, and the graph has two pronounced tails. From the histograms
we can also observe that the sample lacks stars with rotation periods up to about 14 d and above
28 d, approximately. The fact that the distribution of prot is not uniform affects the learning of the
models, especially in the less represented regions.
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Figure 3.3: Similar to fig. 3.2, but for the DS9 data set. The distributions are very similar, approximately
symmetric, with means equal to 24.44 d and 24.43 d, and standard deviations equal to 9.11 d
and 9.07 d, on DS9 and its training set, respectively.

Figures 3.4 to 3.7 display the correlations between the variables of each of the families of
variables introduced in the beginning of this section (page 36) and the target variable.

As expected, most Prot variables are strongly positively correlated with the response (fig. 3.4,
left panel), because the latter is obtained directly from estimations of the former. This is the
motivation for creating the DS1 data set. The Wav variables are completely unrelated to the target
variable (fig. 3.4, right panel), and that is the reason for creating DS2 and DS6 data sets.

Some of the TS features are negatively correlated with the response (fig. 3.5, left panel), such
as sph, h_acf_20, or g_acf_20, and we expect they will contribute for the building of models as
important variables. All the variables extracted out of the ACF are strongly correlated with each
other, which in principle is not a problem because we will be dealing with tree-based ensembles
(see section 3.2). Apart from the mass, some cut-off frequencies of the Flicker in Power, and the
effective temperature, classical Astro variables are not correlated to the response (fig. 3.5, right
panel) and, hence, we are not expecting that these predictors will be very important for the learning
process of models.

Concerning the CS family of variables, most do not exhibit correlation with the response, but
some do, either strong positive or strong negative correlation (fig. 3.6). Examples are h_cs_20,
cs_gauss_3_1_20, and cs_gauss_2_1_20, just to name a few, and we are expecting these to be
very important during the training of the models.

Finally, for the GWPS family of features, and similarly to the CS group, several variables are
strongly correlated with the response, either positively or negatively. Examples are sph_gwps and
gwps_gauss_2_1_20, and we expect these to become important for the training of the models.
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Figure 3.4: Correlations between the Prot variables and the response (left panel) and the Wav features and
the target variable (right panel). Red indicates positive correlation and blue negative correlation
between any two features. White colour indicates no correlation between the variables.

Figure 3.5: Similar to fig. 3.4, but for the TS and Astro families of variables. Several TS variables are
negatively correlated with the response, while just a few Astro features exhibit (a weak) correlation
with the target variable.
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Figure 3.6: Similar to figs. 3.4 and 3.5, but for the CS family of variables. Several features have a strong
either positive or negative correlation with the response, but most of the predictors exhibit a
negligible correlation with it.



46 CHAPTER 3. MATERIALS AND METHODS

Figure 3.7: Similar to figs. 3.4 to 3.6, but for the GWPS family of variables. Several features exhibit a strong
level of correlation, either positive or negative, with the target variable, while others evince a
negligible correlation with it.
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As we will see in section 3.2, we will be using tree-based models, whose performance, by
nature, is not affected by the inclusion of highly correlated features. However, interpretability tools,
such as importance estimations, are hampered by collinearity and multicollinearity.

When two features are perfectly correlated, they are likely to be chosen by any of the two
algorithms. While in random forests this random choice is done for each tree (because all trees
in the ensemble are independent), in boosting a link between a predictor and the response will
remain stable as soon as it is learnt by the model, and thus the algorithm will stick to one of the
correlated variables (but not both). Therefore, apart from small differences introduced by the model
parameters, in random forests trees will chose each variable approximately 50 % of the time, and
so the importance of the information contained in each of them—which is the same, because they
are perfectly correlated—will be diluted, and we might not be able to realise how important are
those features to predict the target variable. This situation worsens when the number of correlated
variables increases. In boosting, because the algorithm sticks to one of the variables among all
correlated feature set, we will be able to understand that one of the variables will have an important
role in generating predictions, but we will not realise that the other variable is also important in
the link between the observations and the response unless we perform a correlation analysis of the
features (T. Chen, Benesty and He, 2018).

Typically, the importance profile for gradient boosting has a steeper slope than the one for
random forests, since the trees from boosting are interdependent and, thus, will have correlated
structures as the gradient evolves. Consequently, several predictors will be selected across the
trees, increasing their importance. It is then natural that RF and GB models report differences in
order and importance magnitude between features, which can be used to get further insight on the
relationships between the predictors and the target variable (Kuhn, Johnson et al., 2013).

Since one of the goals of this thesis was to compare the performance of the models generated
from data sets DS0 to DS10 to the Breton et al. (2021) model, we decided not to perform feature
selection when training the RF learners. When training XGBoost models, however, we performed
a simple univariate filtering of features by cross-validating the predictors to the response variable,
in order to remove redundant or non-informative variables from the model. The procedure will be
detailed in section 4.2.

In the following section, we will formalise the predictive task we set out to solve, and will
describe in detail the two ensemble techniques—RFs and GB—we used to create the ML models
that are the ultimate goal of this project.

3.2 Predictive Task and Modelling Approaches

The ultimate aim we want to achieve with this research is to automatically predict rotation
periods of stars from the Kepler catalogue, using a “standard” set of structured predictors, by
resorting on ML methods.
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3.2.1 Problem Formulation

Since stellar rotation periods are positive real numbers, that can range from nearly zero up to
tens of days (Santos et al., 2019; McQuillan, Mazeh and Aigrain, 2014), we frame the problem as
a regression task. Therefore, our problem can be enclosed by eqs. (2.1) and (2.2), where the target
variable y and the p predictors x = (x1, . . . , xp) are respectively the rotation period, prot, and the
set of variables described in section 3.1 and table A.1:

prot = f (x1, x2, . . . , xp)+ e. (3.1)

In this equation, p is an integer varying up to 180, according to the number of variables making up
the data set used to train the model (DS0 to DS10). The model, to be developed by ML methods,
can be written as

p̂rot = f̂ (x1, x2, . . . , xp), (3.2)

where f̂ is the estimation for f . As already pointed out in section 2.1, we will not be concerned
with the exact form of f̂ , but rather with the accuracy of the predictions yielded by the models.

An important condition for us was that the models were simultaneously robust, had good
predictive performance, and were computationally cheap. Given the tabular nature of the data
available and from what was explained in section 2.2, we decided to use tree-based ensembles
methods, in particular RFs and XGBoost, to tackle our research problems. The former, because
they are reliable, easy to use, and have good predictive performance (Torgo, 2011); the latter,
because although harder to tune than RFs, they are fast and have recently proven to yield the
best results for predictive tasks out of structured data (Géron, 2017; Raschka and Mirjalili, 2017),
and we wanted to check how much we could improve results obtained with RFs by using a GB
approach.

We point out that, in both methods, the algorithms contain several hyperparameters (recall
sections 3.2.2 and 3.2.3), which are not contemplated in eq. (3.2). As we saw in section 2.1.2, these
parameters are used to tune and improve the performance of the models. Optimising them using
a resampling technique is crucial and the best way to build a robust model with good predictive
performance. In section 3.3.1, we will describe the strategy we have followed to optimise those
hyperparameters.

The proposed methods aim at improving the predictive performance of existent models, such
as the RF classifier published by Breton et al. (2021), so that rotation periods can be estimated
for thousands of K and M stars from the Kepler catalogue, effortlessly and in a timely manner.
Ultimately, we expect that our results will be useful in predicting rotation periods for stars of other
spectral classes and from other catalogues, and that our approach will serve as a stepping stone for
future results.

Interpretability of the models. A drawback of RFs and XGBoost is that they are considered
black-box algorithms, in the sense that gaining insight of f̂ in eq. (3.1) will be hard, due to the
large number of trees that will compose the ensembles. We will be relying on the calculation of
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the variables’ importance, which is provided by the implementations of both algorithms in R, to
extract interpretable information about the contribution of the different variables.

3.2.2 The Random Forest Approach

As we have seen in section 2.2.7, RFs are widely known for their good scalability and ease of
use. A RF is an ensemble of DTs: the algorithm grows unpruned trees concurrently and combines
the individual predictions, in order to get a final outcome. The main idea behind a RF is to build
a robust model out of multiple (deep) DTs, each of which exhibiting high variance, but that when
combined generate a model which is less susceptible to overfitting and is able to increase the
overall generalisation performance (Raschka and Mirjalili, 2017). The basic ideas to build an RF
algorithm are outlined in fig. 3.8, and can be described in the following steps:

1. Generate a bootstrap sample of size n from the training set, i.e., randomly choose n observa-
tions with replacement, where n is total number of cases in the set.

2. Grow a DT out of the bootstrapped sample; at each node:

2.1. Randomly pick mtry predictors, without replacement;
2.2. Split the node using only one of those mtry predictors, i.e., split the subset of examples

using the feature that provides the best result according to the objective function* —
for instance, minimising the entropy or the MSE.

3. Repeat the steps 1 and 2 ntree times.
4. Aggregate the prediction by each tree in the following way:

• classification task: assign the class label by majority of vote.
• regression task: assign the response value to the average of the predictions of all DTs.

START;
Select the number of models to build, ntree;
for i = 1 to ntree do

Draw a bootstrap sample of size n of the training data;
Train a tree model on this sample;
for each tree node do

Randomly select mtry < p of original predictors;
Select best predictor among the mtry features and partition data;

end
Use typical tree model stopping criteria to determine when tree is complete;
Do not prune tree;

end
Aggregate predictions by individual trees into class label or average value depending if

classification or regression task, respectively;
END;

Figure 3.8: Basic ideas to build an RF algorithm. The p parameter denotes the total number of features in
the data set (adapted from Kuhn, Johnson et al., 2013).

* In the context of ML, the objective function refers to a quantity to be maximised or minimised in a specific
optimisation problem (Hastie, Tibshirani and J. Friedman, 2009; Kuhn, Johnson et al., 2013).
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Since DTs are the fundamental components of RF, they can handle many types of predictors
without requiring pre-processing. The only typical exception are missing values which, in most im-
plementations of the algorithm, are not accounted for and need to be handled with some particular
strategy (Torgo, 2011). A common approach is imputation, in which missing values are replaced
by some value obtained with a statistical measure, such as the mean or the median, calculated on
the predictor containing the missing values.

Random Forests are not as interpretable as DTs; however, they are robust to noise from the
individual trees, requiring no pruning and no major tuning of the hyperparameters. In practice,
the only hyperparameter that requires attention during optimisation is ntree, the number of trees
composing the forest. Similarly to bagging, RFs do not overfit when the number of bootstrapped
training sets is increased. The larger this value, the better the performance of the random forest, at
the expense of computational cost (Raschka and Mirjalili, 2017). Nonetheless, since RFs, similarly
to bagging, are ensembles of independent models,* they are prone to be parallelised, which can
accelerate considerably the training phase (Torgo, 2011). Therefore, in practice a sufficiently large
number of trees is used in order to decrease the error rate (James et al., 2013).

Hyperparameters in random forests. The most common hyperparameters of a RF are (i) the
number of trees in the forest, ntree, (ii) the fraction of the original data set that is assigned to each
tree (related to the size n of the bootstrap sample), (iii) the minimum number of observations
required to split a node, (iv) the maximum depth of a tree, and (v) the number of variables mtry to
consider when looking for the best split (Breiman, 2001). Of those, the most important, that is, the
ones that have the biggest impact in the performance of the model, are arguably ntree, n, and mtry.

The number of trees (ntree, num.trees),† has a default value of 500 in the ranger package.
Typically, the performance of the model is improved by increasing ntree, but the learning process
becomes slower, which can be compensated by a parallel computation strategy.

The sample of observations assigned to each tree, sample.fraction, has a default value of
1 for sampling with replacement (bootstrapping, the default in ranger), and 0.632 for sampling
without replacement. The bias-variance trade-off of the RF is controlled via this parameter. Taking
sample.fraction equal to 1 usually provides a good bias-variance trade-off. Smaller fractions
lead to greater diversity, since it decreases the probability that a particular observation is included
in the bootstrap sample; thus, the randomness of the forest is increased, and less correlated trees
are created, which can help to reduce the effect of overfitting. While smaller gaps between the
training and testing performances can be observed, reducing the bootstrap sample size typically
decreases the overall testing performance (Raschka and Mirjalili, 2017).

The minimum number of cases necessary at a leaf node, min.node.size, defines the minimum
size of terminal nodes.‡ It implicitly sets the depth of the trees in a random forest. Smaller trees
are grown when this parameter is large, making the training process faster; on the contrary, when
min.node.size is small, trees become deeper and prone to overfitting, and the learning process

* In ensembles of independent models, each individual learner is obtained independently of the others.
† Words in typewriter font indicate parameters as they are named in R packages.
‡ Nodes with size smaller than min.node.size can occur (Wright, Wager and Probst, 2019).
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takes more time to complete. The default values are different for classification and regression. In
the ranger package, the default min.node.size is 5 for regression and 1 for classification.

The maximum depth of the trees in the forest, max.depth, has a default value of NULL or 0 in
ranger, corresponding to trees with unlimited depth; when set to 1, meaning that each tree is split
once, the forest becomes composed of decision stumps.

The number of variables to possibly split at in each node (mtry, mtry), determines the diversity
of individual trees. For classification, its default value is the rounded down square root of the
number variables, ⌊√p⌋, and for regression the rounded down third of the number of features,
⌊p/3⌋. Hence, at each node, the algorithm uses a subset of the available predictors to select the
best split for each tree of the random forest. This hyperparameter affects directly the model’s
performance, because large values of mtry decrease the diversity of individual trees and increases
the training time. When there is a large number of correlated features in the data set, choosing a
small value of mtry will typically be helpful in building a random forest (Hastie, Tibshirani and
J. Friedman, 2009).

Variable importance in random forests. As seen in section 2.2.6, while growing the indi-
vidual trees, the split criteria, that is, the (locally) optimal condition the algorithm applies is decided
by the reduction of some measure, known as the decrease of the node impurity. For classification,
the impurity is commonly measured by either the Gini index or the entropy. For regression trees,
the impurity is typically measured with the estimated response variance (Wright and Ziegler, 2017).

When a tree is trained, the algorithm accounts for how much each variable decreases the
weighted impurity of the model. In the case of a forest, the decrease in impurity from each of
the features is averaged out, and the predictors are ranked in terms of importance according to
this measure. The impurity based ranking of variables has some drawbacks. On the one hand,
when categorical variables are present in the data set, feature selection based on impurity is biased
towards variables with more categories (Strobl et al., 2007); on the other hand, in the presence of
correlated features, each will be likely selected as a predictor, and once the model picks one, the
importance of the others within the subset of correlated variables is reduced, since the impurity
they can decrease has already been reduced by the first selected feature. Consequently, the other
features will have a lower reported importance. This can lead to the wrong conclusion that one of
the features is a strong predictor, while the other correlated variables are unimportant, thus affecting
the interpretability of the data. This effect is attenuated by the random selection of features at each
node, but it is generally not completely removed.

In the next section, we will address the GB technique in more detail than it was done in
section 2.2.7.

3.2.3 The Extreme Gradient Boosting Approach

In section 2.2.7 we briefly touched on boosting methods. Here, we are going to look at two of
them—AdaBoost and gradient boosting—in more detail.
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Boosting can combine (or boost) several weak learners, i.e., models that predict marginally
better than random, to produce a strong learner, an ensemble with a superior generalised error rate.
Boosting algorithms are known as ensembles of coordinated models, because each of its members
depends on the others (Torgo, 2011).

Several boosting algorithms are available, most of which train predictors sequentially, so that
at each iteration a weak learner is added, trying to correct its predecessor (Géron, 2017). Weak
models are added to the ensemble with weights that reflect the ensemble’s performance. In each
iteration, the weight of those observations that are poorly predicted by the current ensemble is
increased.

Almost any ML method with hyperparameters can be made into a weak learner. Decision trees
make excellent weak learners for boosting, because (i) they can be made flexible by restricting their
weight; (ii) individual trees can be added together to generate a prediction, much like individual
predictors in a regression model; and (iii) they can be generated very quickly.

The most popular boosting methods are adaptive boosting (AB), or AdaBoost, and gradient
boosting (GB).

AdaBoost (Freund and Schapire, 1997) is called “adaptive” in the sense that at each iteration,
when building a new weak learner (e.g., a DT), the weights of the training cases are adjusted: the
weights of those instances that were wrongly predicted are increased, so that the new learner will
focus on them, trying to accurately predict them. The algorithm can be applied to both classification
and regression tasks. Figure 3.9 illustrates the basic concept underpinning AdaBoost. Represented
is a training data set for binary classification.

Figure 3.9: Basic concept behind AdaBoost. Source: Raschka and Mirjalili (2017).

In sub-figure 1, equal weights are assigned to the examples. A decision stump (horizontal
dashed line) is trained to classify the instances of the two classes (circles and triangles) and to
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possibly minimise the cost function (or the impurity, in the case of decision tree ensembles).
Sub-figure 2 represents the next iteration, in which a larger weight is assigned to the two blue
circles which were misclassified in the previous step, and the weight of the correctly classified
observations is lowered. The new decision stump focus on the instances that have the largest
weights—the examples that supposedly are harder to classify. In sub-figure 3, the three blue
circles that were misclassified in the previous step are assigned a larger weight. Assuming that this
AdaBoost ensemble consists of only three rounds of boosting, the three weak learners previously
trained on re-weighted subsets are combined by a weighted majority vote, as shown in sub-figure
4 (Raschka and Mirjalili, 2017). At the end, AdaBoost produces an additive model, that can be
mathematically represented as (Torgo, 2011)

H(xi) = ∑
k

wkhk(xi), (3.3)

where wk is the weight of the weak base model hk(xi). In the first iteration, the algorithm assigns
the same weight to all training instances, d1(xi) = 1/nt , where nt is the sample size. At iteration
r, the algorithm builds the weak model hr(xi) so that this model minimises the weighted training
error, given by er = ∑i dr(xi)I(hi ̸= hr(xi)), where dr(xi) is the weight of the instance (xi, yi). The
weight of the weak base model hr(xi) is obtained with

wr =
1
2

ln
(

1− er

er

)
. (3.4)

The iteration r+1 receives the same data sample, but with the weights of the instances changed to
reflect the unsuccessful predictions of the current ensemble of models:

dr+1(xi) = dr(xi)
e−wrI(yi ̸=hr(xi))

zr
, (3.5)

where zr is a normalisation factor chosen to make all dr+1 sum up to 1 (Torgo, 2011; Freund and
Schapire, 1997). The general steps of an AdaBoost algorithm for two-class problems is highlighted
in fig. 3.10.

Gradient boosting (J. H. Friedman, 2001) is a method able to address classification and regres-
sion tasks, based on the idea of steepest-descent minimisation. Given a loss function L and a weak
learner (e.g., regression trees), it builds an additive model as in eq. (3.3) that tries to minimise L.
The algorithm is typically initialised with the best guess of the response, such as its mean in the
case of regression, and it tries to optimise the learning process by adding new weak learners that
focus on the residuals (errors) of the current ensemble. The model is trained with a set formed by
the cases (xi,ri), where

ri =−
∂L(yi, f (xi))

∂ f (xi)
, (3.6)

and L is a loss function. Hence, the residuals yield the gradients which, for the most common
loss functions, are easy to calculate. For example, for the squared loss function 1

2 [yi− f (xi)]
2, the

gradient is equal to [yi− f (xi)] (Torgo, 2011). The current model is added to the previous one,
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START;
Let one class be represented by +1 and the other class with the value −1;
Let each example have the same starting weight (1/n);
for k = 1 to K do

Fit weak learner using the weighted instances and compute the kth model’s
misclassification error, errk;

Compute the kth stage value as ln [(1− errk)/errk];
Update sample weights giving more weight to incorrectly predicted samples and less
weight to correctly predicted samples;

end
Compute boosted learner’s prediction for each sample by multiplying the kth stage value
by the kth model prediction and adding these quantities across k;

if sum > 0 then
label of instance←+1;

else
label of instance←−1;

end
END;

Figure 3.10: General ideas to build an AdaBoost algorithm for a two-class problem (adapted from Kuhn,
Johnson et al., 2013).

and the process continues until a stopping-condition is met (e.g., the user-specified number of
iterations).

The general steps for a regression algorithm for GB can be found in fig. 3.11. In this example,
regression DTs were used as the base learners, in which case GB has two tuning parameters—tree
depth and number of iterations—and the squared error was used as the loss function.

START;
Select the tree depth, D, and the number of iterations, ntree;
Compute the average of the response, ȳ;
Use ȳ as initial predicted value for each sample;
for k = 1 to ntree do

Compute the residual (difference between the observed value and the current predicted
value), for each example;

Fit a regression tree of depth D, using the residuals as the response;
Predict each sample using the regression tree fit in the previous step;
Update the predicted value of each sample by adding the predicted value from the
previous iteration to the predicted value generated in the previous step;

end
END;

Figure 3.11: General steps for a simple GB algorithm for regression. Adapted from (Kuhn, Johnson et al.,
2013).

In boosting, the variable importance is a function of the reduction in the squared error (Freund
and Schapire, 1997; J. H. Friedman, 2001; Kuhn, Johnson et al., 2013). Typically, the importance
profile for boosting has a stepper slope than the one for RFs, because in boosting DTs are dependent
on each other, and hence will have correlated structures as the algorithm follows the gradient.
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Several of the same features will thus be selected across the trees, increasing their contribution
to the importance metric (Kuhn, Johnson et al., 2013). It is natural that differences exist in the
importance profiles between RFs and boosting, both in terms of order and magnitude of importance.
The two profiles can be seen as different perspectives of the data, and each should be used to provide
insights of the relationships between the predictors and the target variable.

As we have seen in section 2.2.7, a successful implementation of GB is XGBoost, which was
designed with speed, efficiency of computer resources, and model performance in mind. The
algorithm is suited for structured data. It is able to automatically handle missing values, it supports
parallelisation of the tree building process, it automatically takes care of early stopping when the
training performance is not evolving after some predetermined iterations, and it allows to resume
the training of a model by boosting an already fitted model on new data (T. Chen and Guestrin,
2016).

The method implements the GB algorithm, with minor improvements in the objective func-
tion. A prediction of the response is obtained from a tree-ensemble model built upon K additive
functions:

ŷi =
K

∑
k=1

fk(xi), (3.7)

where the function fk belongs to the functional space F of all possible DTs. Each fk corresponds
to an independent tree learner. The final prediction for an example is given by the aggregation of
the predictions of the individual trees. The set of functions in the ensemble is learnt by minimising
a regularised objective function, L (yi, ŷi), consisting of two parts:

L (yi, ŷi) =
n

∑
i=1

ℓ(yi, ŷi)+
K

∑
k=1

ω( fk). (3.8)

The first term of the right hand side of eq. (3.8) is the training loss, L(yi, ŷi), and the second
term is the regularisation term. Here, ℓ is a differentiable convex loss function measuring the
difference between the predicted and the true values of the response. The training loss measures
how predictive the model is with respect to the training data. A common choice for L is the MSE.
The regularisation term controls (penalises) the complexity of the model. It helps to smooth the
final learn weights, to avoid overfitting. In practice, the regularised objective function tends to
select models employing simple and predictive functions (T. Chen and Guestrin, 2016). A model
is learnt by optimising the objective function above.

Hyperparameters in XGBoost. XGBoost is suitable for hyperparameter optimisation in a
timely manner. Arguably, the most commonly tuned XGBoost hyperparameters are (i) the number
of sub-trees to train, (ii) the learning or shrinkage rate, (iii) the number of variables to grow in each
node or tree, (iv) the maximum tree depth, (v) the subsampling fraction, (vi) the minimum child
weight, and (vii) the reduction or complexity cost.

The number of sub-trees to train, nrounds, is used as a stopping criteria for the algorithm,
preventing overfitting and the ability of the model to memorise the training data.
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The learning rate (η , eta) is a weighting factor for the corrections by new trees when they are
added to the model. It is the step size shrinkage used in each boosting step to make the process more
conservative and, hence, to prevent overfitting. It controls how much information from each new
tree is used in boosting. The learning rate is a real value between 0 and 1. When η is close to zero,
a small portion of information from each tree is used for boosting; when set to 1, all information
available from a new tree is used. Setting η to values less than 1 introduces less corrections for
each tree added to the model, resulting in more trees that must be added to it. Smaller learning
rates turn the computation slower and require more rounds (and, hence, more trees) to achieve the
same reduction in the residuals as larger values of η , but they optimise the chances of reaching the
best model. Larger learning rates result in faster computations, but can cause the model to miss
the optimum completely. Therefore, the learning rate must be set as low as possible, which most
of the times is dependent on the complexity of the data and on the available computer resources.

The number of variables re-sampled in each new node or tree, a process which occurs once for
every tree which is built, is helpful in controlling overfitting. While using all the features available
in a new node/tree makes the algorithm to converge faster, using a fraction of the predictors may
result in more robust models.

The maximum tree depth is used to control the size of the trees. Deeper trees have more
terminal nodes, fit more data, and make convergence faster, in the sense that less trees are needed.
This hyperparameter is typically defaulted to 3. The greater the value, the deeper the tree is, with
0 indicating a tree with no depth limit. A deeper tree might increase the performance, but also
the complexity and chances to overfit; moreover, deeper trees imply that more information is used
from the first trees than from the final trees of the algorithm, making the latter less important on
the loss function. Boosting benefits from using information from many trees, and so too large trees
are not desirable. Taking this parameter much smaller than 3 can significantly reduce the number
of expected useful interactions. Using fractions of whole numbers for the maximum tree depth
usually leads to over-tuning, thus increasing the training time and not yielding noticeable benefits
in terms of overall performance. A rule of thumb consists in increasing the maximum tree depth by
unit steps and seldom above 5—the developers of XGBoost have pointed out for the fact that the
algorithm “aggressively consumes” memory when training deep trees.* Therefore, it is important
to set the maximum tree depth according to the available memory.

The subsample parameter determines whether a regular or a stochastic boosting is being determ-
ined. In the latter, the base learners are fit using subsamples drawn at random, without replacement,
from the training data set. Values greater than 0 and less than 1 correspond to the stochastic case,
while regular boosting is obtained with subsample set to 1. Therefore, this parameter represents
the fraction of observations to be sampled for each tree that is constructed, occurring once in every
boosting iteration. Stochastic boosting is useful for limiting the influence of outliers on the final
model, since they are not considered in several subsamples. Lower values prevent overfitting, but
might lead to underfitting.

* https://github.com/mljar/mljar-supervised/issues/13

https://github.com/mljar/mljar-supervised/issues/13
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The minimum child weight controls the minimum number of observations in a terminal node,
by setting a lower bound on it. The building process does not proceed to further partitioning if the
step results in a leaf node with the sum of instance weight (hessian) less than min_child_weight.
In a regression task, this simply corresponds to the minimum number of instances needed to be
in each node. This parameter can be as low as 1, in which case trees are allowed to have terminal
nodes with only one observation. Larger values imply a stronger regularisation, in the sense that
more instances are required in terminal nodes, making each tree smaller and, consequently, the
algorithm more conservative — this limits a possible perfect fit on some observations, but the
model will be less prone to overfitting.

The reduction or complexity cost (γ , gamma) is a Lagrangian multiplier, a pseudo-regularisation
parameter, depending on other parameters, which controls the minimum reduction in the loss
function required to grow a new node in a tree. It can vary from 0 to infinity, and it is dependent
upon both the data set and the other hyperparameters. Therefore, one data set can have multiple
ideal values for γ , depending upon how the other hyperparameters are set. The γ parameter leads
to shallower trees or, at least, trees with fewer leaves, by restricting the splitting process. It is
sensitive to the scale of the loss function, which in turn is dictated by the scale of the response
variable. According to the XGBoost documentation, the loss function implemented in the package
is defined as

L(θ) = ∑
i
ℓ(θ), (3.9)

where ℓ(θ) can assume several forms. For example, for the quadratic loss, ℓ(yi, ŷi) = (yi− ŷi)
2,

where yi and ŷi correspond respectively to the true and predicted values (T. Chen and Guestrin,
2016). Typically, for an RMSE reduction of at least m in a split, γ must be of the order of (m× s)2,
where s is the subsample size.* Taking γ different from 0 helps the algorithm to stop from growing
unnecessary trees, that could in principle barely reduce the in-sample error and could potentially
result in overfitting. The larger γ , the more conservative the algorithm will be, that is, the stronger
the regularisation and, hence, the less prone to overfitting the model will be. When it is set to 0
(the default), no regularisation is applied to the model. Contrarily to the maximum depth and the
minimum child weight, which regularise using “within tree” information, γ performs regularisation
using “across trees” information. This hyperparameter becomes relevant when one intends to use
shallower trees to combat overfitting (Laurae, 2016).

Although XGBoost has more hyperparameters available for tuning, these are the ones con-
sidered affecting the most the bias/variance decomposition of the MSE, i.e., the level of underfitting
and overfitting, thus having the biggest impact on the performance of the model.

In the following section, we will describe the experimental design and how we tuned the
hyperparameters of the methods we used to create the ML models.

* https://www.r-bloggers.com/2018/07/tuning-xgboost-in-r-part-ii/

https://www.r-bloggers.com/2018/07/tuning-xgboost-in-r-part-ii/
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3.3 Experimental Design

Two ensemble methods were used to build regressor models: random forests (RF), and gradient
boosting (GB). Each model was trained using the hold-out method, where most of the data sets
described in section 3.1 were split into training and testing subsets, in a 75-to-25 percent ratio.
The exceptions were DS9 and DS10, for which we opted to do an 80-to-20 percent ratio split,
due to the reduction in the number of observations. During the training phase, we used a 10-fold
cross-validation (10CV) with five repetitions, where the best values for the hyperparameters were
sought using a searching grid.*

In all cases, the testing sets remained unseen by the models until the prediction and model
assessment phase. That is, the instances belonging to the testing sets were no part of the model
learning process in any time, behaving as new, unknown observations, as it would happen in a
real-life scenario.

3.3.1 Hyperparameter Values Optimisation

In face of what was exposed in sections 2.1.2, 3.2.2 and 3.2.3, we designed two experiments,
one for RFs and other for XGBoost, in which we performed grid search of the best values for the
hyperparameters of each method. The hyperparameters for the models were chosen using 10CV
with five repetitions. In the following, we will outline how the tuning grids were built, and will
justify our choices for the initial set of values for those parameters.

Hyperparameter tuning in random forests. The RFs models were trained and created using
the ranger R package. We performed optimisation of the following parameters:

• min.node.size: the minimal node size, i.e., the minimal number of instances at each node
(larger numbers correspond to less overfitting, that is, to more pruned trees); it was varied
between 2 and 10, by unit steps.

• mtry: the number of randomly sampled predictors to possibly split at in each node; it varied
in unit steps within the interval ⌊npreds/3⌋±3, where npreds is the number of predictors.

• splitrule: the splitting rule; it was chosen between two possibilities: variance and
extratrees, where the number of random splits to consider for each candidate splitting
variable was kept at 1 (the default).

Each forest was composed of 1000 trees, with a fraction of 70 % of all the observations for each
tree. Although we would, in principle, have benefited from varying the number of trees, access
to computational resources was always very limited and we chose to keep this value unchanged.
The variable importance was assessed by means of the impurity measure, which corresponds to the
variance of the response variable.

* We have also tried to use random search in looking for those optimal values, in an attempt to reduce the computa-
tional executing time, but we were never able to outperform the results obtained with an exhaustive search. Hence, since
it was possible to train models using the largest data set in a timely manner, we decided to use a thorough grid search in
all scenarios.
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Hyperparameter tuning in extreme gradient boosting. The GB was implemented via
its optimised XGBoost framework. We looked for the best values of the parameters defined in
section 2.1.2 via a two-step grid search: firstly, the best value was sought within a set of possible
values; then, the search was refined on the learning rate and on the subsample ratio of training
instances, by varying the parameter in a finer grid centred on the best value found in the previous
step. No more than 1000 iterations were carried out for each submodel, since we activated a
stopping criterion, in which the learning would end for any particular model if the performance
was not improving for five rounds. The values of the grids for each parameter were the following:

• colsample_bytree: the fraction of columns to be randomly subsampled when constructing
each tree; it was sought within the set {1/3, 1/2, 2/3}, also during the first grid search.*

• eta, the learning rate, was sought within the values {0.05, 0.1, 0.2, 0.3} in a first stage;
then, the search was refined by looking for five values centred on the best η found in the first
iteration, each 0.01 apart.

• gamma: the minimum loss reduction required to further partition a leaf node of the tree; it
was kept at its default value of 0 in most of the models; however, an optimal value was sought
on the final models, built on top of the selected subset of the most important features in the
previous models and with a sub-selection of observations including only stars with rotation
periods no grater than 45 d; it was then chosen within the set of values {1, 10, 30, 100}.

• max_depth: the maximum depth per tree; the best value was chosen on the set of integer
values {3L,5L}, during the first iteration.

• min_child_weight: the minimum sum of instance weight (a Hessian matrix)† needed in a
child node; similarly to the γ above, this parameter was kept at its default value of 1 in most
of the scenarios, and an optimal value was only sought while learning the final models, in
which case the values for the grids were 1L, 10L, and 50L.

• subsample: the subsample ratio of the training instances; we opted for a stochastic boosting,
and so during the first grid search, subsample was chosen within three possible values: 0.25,
0.5, and 0.75; subsequently, the best value of the parameter found during the first grid search
iteration was refined, by looking for the best of five values centred on that best value, each
0.05 apart.

* Two more hyperparameters belonging to this family of subsampling columns were initially optimised:
colsample_bylevel and colsample_bynode. However, no improvement in the model’s performance was observed
when including them, and since they work cumulatively, at the end only colsample_bytree was kept during the
optimisation process.

† If f (x, y) is a differentiable function with continuous second derivatives on a neighbourhood of a critical point
(x, y) = (a, b), the Hessian or Hessian matrix of f at (a, b) is the symmetric matrix of second derivatives

H(a,b) =

 ∂ 2 f
∂x2 (a, b) ∂ 2 f

∂x∂y (a, b)
∂ 2 f

∂y∂x (a, b) ∂ 2 f
∂y2 (a, b)

 .

We say that (a, b) is a critical point when ∂ f/∂x(a, b) = ∂ f/∂y(a, b) = 0 (Callahan, 2010).
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3.3.2 Final Models

After training and assessing the performance of the models described in section 3.3, data were
narrowed down to a subset of the most relevant cases and most important predictors, as explained
in section 3.1.1 (page 41), on top of which five additional models were trained.

Three models—two based on RFs and another on XGBoost—were learnt from the DS9 data
set, in which stars with rotation periods greater than 45 d and shorter than 7 d were removed, and
only features with the greatest importance in the models built on top of DS2, DS3, DS4, DS6, DS7,
and DS8 were included. By doing so, on the one hand, we were expecting to increase the predictive
performance of the models, since (i) stars with Prot < 7d may be close-in binary stellar systems or
classical pulsator star candidates (Breton et al., 2021), and (ii) due to the 90-day quarters of Kepler,
rotation periods above 45 d are not reliable; on the other hand, by dropping the least important
features, as identified during the learning of the RFs and XGBoosts models using DS2 to DS8
data sets, we were hoping for a significant reduction of the training process, without affecting the
predictive performance of the models. In the RF models, the grid searches were similar to the ones
presented in section 3.3.1, with exception for the parameter splitrule, which remained fixed and
equal to “variance”; such grids gave rise to 63 models. For the XGBoost model, the searching grid
was refined in the very first iteration, by increasing the set of possible values for eta, max_depth,
and subsample, and by including the gamma and min_child_weight parameters:

• colsample_bytree: {1/3, 1/2, 2/3} (unchanged).
• eta: varied between 0.03 and 0.1, by 0.01 steps.
• gamma: {1, 10, 30, 100}.
• max_depth: {5L, 6L, 7L}.
• min_child_weight: {1L, 10L, 50L}.
• subsample: varied between 0.60 and 1.0, by 0.05 steps.

Not counting with the 10CV with five repetitions, this grid gave rise to 7776 models during training.

Finally, three new models were created out of DS10—one based on RFs and two on XGBoost—
where only the ten most important features identified in the models learnt from DS9 were included.
By doing so, we wanted (a) to assess how much the predictive performance of these models would
decrease, and (b) to test if it is possible to deploy models easy to train and that could yield reliable
stellar rotation periods. We kept the same grid search for the RF model (63 submodels during
training), but given the reduced number of features in DS10, we increased the set of available
values for the XGBoost hyperparameters as follows:

• colsample_bytree: {1/3, 1/2, 2/3, 3/4}.
• eta: varied between 0.03 and 0.1, by 0.01 steps.
• gamma: {1, 10, 30, 100}.
• max_depth: {3L, 4L, 5L, 6L, 7L}.
• min_child_weight: {1L, 10L, 30L, 50L}.
• subsample: varied between 0.50 and 1.0, by 0.05 steps.
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This grid gave rise to 28 160 submodels during training, without counting with the 10CV with five
repetitions.

The training process of all the final models, obtained with data sets DS0 to DS10, and the
corresponding results are described in detail in chapter 4.

3.3.3 Performance Assessment Methodology

After the training phase, predictions were produced on each of the testing sets, and the resulting
rotation periods were compared to the reference values contained in the S19 catalogue.

We used five metrics to assess the predictive quality of the models produced in this thesis:
(i) the mean absolute value of the relative residuals, µerr, (ii) the RMSE, (iii) the MAE, (iv) the
interval-based accuracy, accx, and (v) the adjusted coefficient of determination, R2

adj. The index x,
which can take the values 5, 10, and 20, corresponds to the percentage width of the zeroing-interval
centred on the reference value.

In computing the interval accuracies defined in section 2.1.2 (eqs. (2.11) and (2.13) on page 15,
respectively), we note that the width of the intervals centred in the reference values increases with
the rotation period, while the width of the intervals around the corresponding rotation frequen-
cies does not vary significantly with the frequency, except on the low frequency regime (conf.
fig. 3.12). Therefore, because the distribution of frequency widths is more uniform than that of
period widths, the rotation periods were firstly converted to rotation frequencies, with the aim of
reducing the effect of increasing the width of the accuracy intervals with the period, which would
affect comparisons and the assessment of the quality of the models.

The mean of the relative absolute values of the residuals was used as a goodness of fit measure,
allowing us to have an idea of how much the models were wrong, on average.

The RMSE and MAE were used together to measure the differences between the predicted and
reference values of stellar rotation periods. They were particular useful to assess the performance
of the models on the training and testing sets and, thus, to better tune them in order to avoid
overfitting—large differences in the RMSE and/or MAE between the training and testing sets are
usually an indication of overfitting.

With the interval-based accuracy we were able to convert the assessment of a regression prob-
lem into the evaluation of a classification result. That, in turn, allowed us to compare the predictive
performance of our models with the one trained by Breton et al. (2021). Since the latter assessed
their results within a 10 % interval of the reference values, we used the 10 %-accuracy, acc10, as a
benchmark.

The adjusted coefficient of determination, R2
adj, was used to fairly compare the models trained

with the different data sets (recall section 2.1.2, page 17). It will also allow future work to be
compared with ours, even if the number of predictors in the data sets is different.

The quality assessment of all the models is detailed in sections 4.1 to 4.3, and an overview of
the results is discussed in section 4.4.
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Figure 3.12: Variation of the error bands with the period and the frequency. While the width of the intervals
increases linearly with the period (upper panel), it decreases with the frequency, and it does
not change significantly for high frequencies (lower panel)—the variation is only relevant in the
low frequencies regime. The x-axis in the upper panel represents the position of the periods in
the corresponding vector which, coincidentally, are equal to each other.



CHAPTER 4

Prediction of Stellar Rotation Periods

You can use all the quantitative data you can get, but you still have to distrust it
and use your own intelligence and judgment.

— Alvin Toffler (1928-2016)

It does not depend on size, or a cow would catch a rabbit.
— Pennsylvania German Proverb
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FO L L O W I N G the methodology introduced in chapter 3, we addressed the task of predicting
the rotation period of thousands of K and M stars from the Kepler catalogue, resorting to
ML methods. To accomplish this goal, we applied two ensemble regression techniques to

the data sets, random forests (RFs) and gradient boosting (GB), so as to train models to estimate
stellar rotation periods using the sets of features described in section 3.1 and table A.1.

The models were trained by performing a grid search on the selected hyperparameters indicated
in section 3.3, with 10-fold cross-validation (10CV) with five repetitions on the training sets. The
models were evaluated, and the importance of every feature was assessed with regard to the models’
predictive powers using the variance of the responses. The details are presented in sections 4.1
to 4.3 and discussed in section 4.4.
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4.1 Results Obtained With Random Forests

Random forests (RFs) are known in the realm of ML to typically yield good results without
the need of elaborated hyperparameter tuning (Torgo, 2011). Nevertheless, since the best set of
parameter values always depends on the characteristics of the specific problem and data set, we
decided to tune three hyperparameters by performing a grid search:

• mtry (the number of randomly sampled predictors) was varied in unit steps within the
interval ⌊npreds/3⌋±3, where npreds is the number of predictors;

• splitrule (the splitting rule for the nodes) was chosen between the two categories variance
and extratrees; and

• min.node.size (the minimal node size) was varied between 2 and 10, by unit steps.

To our knowledge and according to several experiments we conducted during this work, mtry
and min.node.size are arguably the most important hyperparameters when tuning a RF, since
they have the most noticeable impact in the outcome of the model. The first of the above parameters
is also highlighted by Hastie, Tibshirani and J. Friedman (2009) when building trees and, in partic-
ular, RFs. The values of the grid were selected according to ranger’s defaults, to wit, ⌊npreds/3⌋,
variance, and 5 respectively for mtry, splitrule, and min.node.size. After carrying out the
grid search with a 10CV with five repetitions, we found the set of optimal parameters indicated in
table 4.1.

Table 4.1: Best set of values for the selected hyperparameters in the case of RF models. The split rule was
equal to variance in all the models.

Hyperparameter DS0 DS1 DS2 DS3 DS4 DS5 DS6 DS7 DS8

mtry 65 63 58 40 38 16 14 9 7

splitrule . . . variance . . .

min.node.size 2 4 5 4 3 3 3 3 10

The optimal number of randomly sampled predictors to consider for each tree, mtry, naturally
decreases with the number of features available for the model but, when normalised by the total
number of available predictors in the data set, it increases from approximately 36 % in DS0 to 50 %
in DS8.

The optimal minimal number of instances at each node, min.node.size, varies between
2 and 5, with exception for the smallest data set (DS8), where it was found to be equal to 10.
Hence, all data sets (except DS8) tend to build slightly deeper trees than the ones that would be
obtained using the default value of min.node.size, and shallower trees are built when using
uniquely astrophysical variables. This might be an indication that astrophysical features are weaker
predictors of the stellar rotation period than the others, because models need more observations at
each node in order to perform a split.

The best split rule was variance (the default value in the ranger package) for all the models,
so there was no need to vary this parameter in future grid searches with these data sets.
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The quality assessment of the results obtained by applying RFs to the data to predict stellar
rotation periods is compiled in table 4.2. The number of predictors available for the training
phase is indicated below the label of each data set. The mean of the relative absolute values of
the residuals, µerr, is indicated in the first row. The following three rows report on the interval-
accuracies calculated over different widths on the reference values, as described in section 3.3.3.
These accuracies were computed in an effort to assess the quality of the models and to compare
them to the model developed by Breton et al. (2021). Indicated are also the RMSE and MAE for
both the training and testing sets, and the adjusted coefficient of correlation, R2

adj computed on the
testing data sets.

From µerr, we can say that, on average, DS0 is roughly wrong 9.7 % of the time (or, equivalently,
it is correct approximately 90.3 % of the time), DS1 is wrong circa 15.2 % of the time, and so on
and so forth. Typically, all models are wrong on average between 9.7 and 36.6 % of the time.
According to this metric, the models created with the data sets DS0 to DS7 can be used, at some
extent, for prediction purposes, depending on the error we are willing to accept. With a mean
relative predictive error of 36.6 %, DS8 is not suitable for predictive purposes, and we can claim,
based on this metric, that classical astrophysical quantities are not enough to train a model that can
be used to reliably predict stellar rotation periods.

Table 4.2: Quality assessment of the RF models according to the number of predictors. All quality measures
are presented with three significant figures, except the adjusted-R2 (with four). The top row
indicates the number of predictors in each data set. The first row shows the mean absolute value
of the relative residuals; the three following rows correspond to the interval-based accuracies
defined in section 3.3.3, with widths of 20, 10 and 5 % of the reference values; the last three rows
present the root-mean-squared error and the mean-absolute error, both computed on the training
and testing sets, and the adjusted coefficient of determination (calculated on the testing set).
The best results obtained with the metrics (except for RMSE and MAE) are marked in bold.

Assessment
DS0
180

DS1
171

DS2
165

DS3
108

DS4
102

DS5
39

DS6
33

DS7
19

DS8
14

µerr 0.0968 0.152 0.151 0.186 0.128 0.186 0.184 0.208 0.366

acc20 (%) 92.6 91.0 91.0 88.8 88.5 63.5 63.5 60.2 29.6

acc10 (%) 87.7 86.0 85.9 81.2 82.9 38.7 37.9 36.4 15.2

acc5 (%) 81.6 78.7 78.8 71.0 74.5 20.0 19.8 18.4 7.70

RMSE
(train/test)

1.53
2.98

1.70
3.22

1.70
3.23

1.81
3.30

1.72
3.52

2.20
4.22

2.20
4.19

2.33
4.47

4.51
7.08

MAE
(train/test)

0.429
0.835

0.500
0.997

0.509
1.01

0.630
1.22

0.544
1.16

1.31
2.58

1.31
2.57

1.36
2.72

3.18
5.10

R2
adj (test) 0.9422 0.9279 0.9293 0.9279 0.9168 0.8828 0.8821 0.8668 0.6463

Overall, the accuracies decrease when the number of available predictors is reduced. Naturally,
the accuracy increases when going from 5 % to 20 % widths, because more predictions will lie on
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the zero-error interval and count as an event. Considering we are willing to accept errors up to
10 %, we use the 10 %-width accuracy, acc10, as reference. They approximately differ successively
from each other between 5 to 8 % in the first five data sets, and between 15 to 25 % in the last
four data sets. Thus, the gap becomes larger when the models are trained without the CS and
GWPS predictors. This means that in these cases many points lie close to the boundaries of the
10 %-width zeroing interval, which will count as a match as soon as we consider a wider interval
for the accuracy.

When using all the predictors, the reference accuracy is close to 88 % (DS0), dropping approx-
imately 1.5 points when the rotation period predictors are removed (DS1). Removing the unknown
Wav variables does not affect the quality of the model, regardless of the number of predictors used
for training (from DS1 to DS2, and from DS5 to DS6), and so these features were removed from
future model training. Dropping GWPS or CS predictors leads to a 4 points loss in the reference
accuracy (DS3 and DS4). The most significant drop in accuracy happens when both GWPS and
CS variables are removed (from DS4 to DS5/DS6), in which case the reduction is circa 45 points.
When using only the combined time series and astrophysical predictors, we achieved a value of
about 38 % for acc10 (DS5 and DS6). There is a drop of 1.5 points to the previous case when using
only TS variables (DS7), and a further drop of 21 points when using only Astro predictors (DS8),
making this model completely useless for prediction purposes of stellar rotation periods.

The computed accuracy increases considerably when the zeroing intervals are made wider and
varied from 5 % to 20 %. In the particular case of DS7, when we are willing to accept an error of
20 % in the predictions, we can attain an accuracy 60 % when measured on the reference values.
This value drops to 36 %, if we are willing to accept an error no greater than 10 %.

As expected, the RMSE and the MAE tend to decrease, both on the training and testing sets, as
the number of available predictors increases. When measured on the testing set, the former varies
typically between 3 and 4.5, and the latter between 0.8 and 2.7—exception to DS8, where RMSE
and MAE are above 7 and 5, respectively, indicating that this is the worse of the models. There
is some level of overfitting in the models, as the magnitude of the RMSE and the MAE on the
training sets is roughly the double on the testing sets.

Instead of computing R2, the adjusted coefficients of determination were calculated on the
testing sets using eq. (2.20), so that this statistical measure would not be affected by the different
number of explanatory variables and comparisons between models built from distinct data sets
would be possible. It varies between 0.92 and 0.94 for data sets DS0 to DS4, where GWPS and
CS variables are used as predictors, approximately between 0.87 and 0.88 in data sets DS5 to
DS7, and it is equal to about 0.65 in DS8. When considering the percentage of variability of
the response explained by the predictors, the quality of the model is not greatly affected by the
number of variables provided TS features are present, as R2

adj remains above 0.87. Only when the
model is built uniquely with astrophysical variables its quality is significantly degraded, with the
adjusted R2 dropping to 0.65. This is an indication that traditional astrophysical observables are not
good predictors of stellar rotation periods, and further variables (astrophysical, TS, or derived) are
needed in order to build a solid ML model. Time series features seem to be a good starting point,
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as the model built upon them yielded a goodness of fit (as measured by R2
adj) above 86 %. Without

accounting for DS0, which contains rotation periods as explanatory variables, about 92 to 93 % of
the variance of the response variable can be explained by the GWPS, CS, TS, and astrophysical
features, when combined; circa 87 % of the variance can be explained by the TS variables alone;
the remaining 8 % and 13 %, respectively, can be attributed to unknown variables which my be
hidden in the time series data and still need to be engineered, or to inherent variability.

At this point, we do not know if these values for the adjusted coefficient of determination
accurately reflect the fraction of the response’s variation that the models explain, because we
would need to compare them to the coefficients of determination obtained in similar studies. Since
we are unaware of the existence of any such study, we will be able to compare them only later,
when we describe the results obtained with the XGBoost models learnt from these data sets.

The scatter plots of the reference values vs. the predicted rotation periods are illustrated in
fig. 4.1 and, with more detail, in figs. B.8 and B.9, in the appendix. A blue solid line y = x was
added to the charts in order to aid the comparison between the model predictions with the reference
outcomes. The red dashed line represents the linear model between the predicted and the reference
rotation periods.* The graphs look very similar to each other, showing a good linear relationship
between the predicted and real rotation periods. The exception goes for DS8, which exhibits greater
dispersion than the others, although it continues to show a correlation between the predicted and
reference variables.

We can identify outliers in all the plots, both in the region of smaller and larger rotation periods,
but they are not in great number. Although the total number of cases with rotation periods beyond
the interval [5, 50 ] days is not large, this is an indication that it is harder for the models to perform
predictions in that range of “extreme” stellar rotation periods. The linear model red dashed lines
do not indicate that the models are correctly predicting outliers. Therefore, we can infer that
the correlation coefficients of figs. B.8 to B.9 and their adjusted counterparts of table 4.2 are not
inflated.

Two pairs of plots are practically identical to each other: DS1-DS2, and DS5-DS6. We recall
that the difference between the data sets is that the unknown Wav variables have been removed
in DS2 and DS6. Therefore, this is further proof that these variables are not relevant during the
training of the models.

Figures B.8 and B.9 also show marginal histograms and density plots, and report on the
goodness of fit and significance of the linear relation between the predicted and reference values.
Visually, the predicted and reference density plots are not too different in terms of centrality,
dispersion, and kurtosis. The R-squared indicated in the figures correspond to the coefficient of
determination between the predicted and the reference values. They do not differ significantly
from the R2

adj reported in table 4.2, as expected, because the total number of observations n is
large. The F statistics present in the plots result from testing the null hypothesis that all of the
regression coefficients are equal to zero, that is, the models are equal to the baseline (the intercept
only model) and do not have predictive capabilities (Archdeacon, 1994). Overall, the F-tests and

* In the graphs of figs. B.8 and B.9, the red dashed line indicates the identity function, y = x.
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Figure 4.1: Scatter plots of the reference rotation period as a function of the predicted values for RFs models
built with the data sets DS0 to DS8. The blue solid lines indicate the identity function, and the
red dashed lines represent the linear model between the reference and the predicted values.
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the corresponding p-values considered in the figures indicate that the sets of independent variables
are jointly significant.

The variables that contribute most to the model naturally depend on the data set but, generally,
the rotation periods and ACF, GWPS, and CS predictors dominate the top-10 most important
explanatory variables when they are present in the training data set.* The 10 most important
variables during each of the nine training processes are indicated in figs. B.1 to B.4.

In the first model, created with the full data set (DS0), the most important variable as measured
by the node impurity is the rotation period obtained from the ACF method for the 55-day filter.
The rotation period predictors and the central periods for the GWPS and CS methods for the 55-
and 20-day filters dominate the top-10 list. The only predictor which is not a rotation period nor is
directly related to them is the photometric activity proxy, Sph (fig. B.1).

When training the RF using DS1, Sph remains in the top-10 most important variables, and Teff

starts to integrate that list (fig. B.2, top panel). By removing the Wav unknown variables (DS2),
there is no change in the quality of the model, as indicated before. The top-10 most important
predictors list does not change substantially (fig. B.2, middle panel), and the difference (only on the
10th most important variable) can be attributed to the inherent randomness of the training process.

When we remove the CS variables (DS3), the GWPS predictors become the most relevant,
together with the FliPer value for νC = 0.7µHz, the photometric activity proxies, and the effective
temperature (fig. B.2, bottom panel). Similarly to the DS3 case, in DS4, where we removed the
GWPS variables, the CS predictors became the most relevant, followed by the photometric activity
proxies, Teff, and F0.7 (fig. B.3, top panel). In both cases, the central period and the standard
deviation of the Gaussians fitted to the GWPS and CS, and the 55-day filter dominate over the
variables referring to the amplitude of the Gaussians and to the other filters.

When we remove both the CS and GWPS predictors (DS5), there is a significant drop in the
accuracies, and the photometric activity proxies, the FliPer F0.7, and the effective temperature
become the most important predictors (fig. B.3, middle panel). Removing the unknown variables
belonging to the Wav group (DS6) does not affect the performance of the model nor has impact on
the importance of the predictors (fig. B.3, bottom panel).

If only predictors belonging to the time series group are used for the regression (DS7), the
error in the photometric activity proxy obtained with the 20-day filter becomes the most important
explanatory variable, followed by Sph, the corresponding error for the 55-day filter, and S20

ph. The
G20,55

ACF and H20,55
ACF variables also appear in the top-10 list, being the former typically more important

than the latter (fig. B.4, top panel).

When we use only astrophysical quantities (DS8), F0.7 and F7 become the most important
predictors, followed by Teff and the mass of the star (fig. B.4, bottom panel).

In the next section, we describe the procedure we followed to train XGBoost models from
similar data sets to the ones we used for RFs, and present the results obtained.

* For regression RFs, the ranger R package computes the importance of the variables using the variance of the
responses (Wright, Wager and Probst, 2019). The increase in a node purity is calculated from the reduction in the sum
of the squared errors, whenever a variable is chosen for the split.
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4.2 Results Obtained With Extreme Gradient Boosting

A popular technique in ML, gradient boosting (GB) is an ensemble approach able to convert
weak learners into a strong joint model, by improving on top of the residual errors produced by the
weak learners during the previous iterations. Given the popularity of GB—especially its optimised
XGBoost algorithm—in the academic and business realms, we decided to train GB models using
the XGBoost framework on top of the data sets presented in section 3.1, similarly to as we did for
RFs in the previous section.

We started by preparing the data sets for XGBoost. Since our predictors and response are
numeric, we did not need to encode categorical variables. In addition, even though XGBoost has
been designed to work with sparse and missing data, we opted for using the major data set to which
we previously applied data imputation, so that we could compare the performance of the RF and
XGBoost models as fairly as possible.

Being an ensemble algorithm comprised of tree based learners, XGBoost is invariant to the
scaling of the inputs and, hence, it does not require normalisation of its features (T. Chen and
Guestrin, 2016). However, in order to avoid large scale differences between variables and optimise
numerical computations, we opted to standardise the predictors, so to have all of them on the same
scale.*

While ML algorithms are generally tolerant towards irrelevant or noise variables, too many
irrelevant variables may originate models liable to overfit (Zumel and Mount, 2019). Removing
predictors prior to modelling has the potential advantages of (a) decreasing the computational time
and complexity of the resulting model, (b) removing some correlated features and, consequently,
lead to more parsimonious and interpretable models, and (c) increasing the model performance
by eliminating variables with degenerate distributions (Kuhn, Johnson et al., 2013). Given the
large number of predictors of DS0 to DS4 and the results obtained in section 4.1, we dropped all
predictors of the Wav group, and we cross-validated the features to the response, in an attempt
to identify the most statistically significant variables and perform feature pruning prior to model
training.†

To achieve this goal, we used the vtreat R package‡ (Zumel and Mount, 2016), in particular
its get_score_frame function. It automates the estimation of the cross-validated significance of
the predictors in single variable linear models with the response, and computes the R2 of those
models. Based on that information, it then recommends the set of predictors most suitable for
model training, that is, it advises about which variables appear to be most likely to be useful to

* That decision also revealed helpful during the data set engineering, because it allowed us to detect particular cases
of outliers with extreme and infinite values in some predictors (recall section 3.1). Infinite values became NaNs after
scaling, which were easily detected after a summary of the statistics on the transformed variables.

† This pre-processing step might reduce collinearity, although it will not remove it completely because even if it
eliminates some pairwise correlated variables, several predictors may be functions of two or more of the other variables.

‡ vtreat is an R package designed to prepare real-world data for supervised learning tasks (Zumel and Mount, 2019).
Among others, vtreat automates tasks related to missing values in numeric variables, extreme or out-of-range values in
numeric variables, missing values in categorical variables, and overfitting due to “nested model bias” and due to a large
number of features. We were particulary interested in using vtreat’s ability to select the most suitable predictors for
modelling out of a set of initial variables.
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include in the model. We opted for vtreat’s conservative approach when recommending numerical
variables, to reduce the possibility of mistakenly eliminate predictors that could be useful for the
model. The approach consists in adopting a value of 1/n to the significance level of the linear
models, where n is the number of predictors in the data set.

In the extreme case of having uniquely noise features, that are completely unrelated to the
target variable, the significance levels of the one-variable models will be uniformly distributed in
the [0, 1 ] interval. The weakest possible significance threshold, allowing to eliminate as many
noise predictors as possible, is 1/n. This threshold assures that the expected value of the number of
variables being recommend for modelling is 1 (Mount and Zumel, 2020), while relevant variables
go through.

In spite of being conservative, this method does not prevent the elimination of variables that
have a real but non-linear relationship with the response. We performed nonetheless several tests
on the DS2, DS6, DS7, and DS8 data sets using XGBoost, and the models trained with the shorter
recommended versions of the data sets always achieved at least the same (if not better) predictive
results than the ones trained on top of their full counterparts.

The predictors that were removed in each data set typically correspond to the features in figs. 3.5
to 3.7 which were not correlated with the response variable. The total number of recommended
predictors for each of the DS0 to DS8 data sets is indicated in table 4.3. For DS0, DS2, DS3, and
DS4, the reduction of the number of predictors was approximately between 25 % and 30 %; for
DS6 and DS7, that reduction was of 15 %; and for DS8, it was about 7 %.

Table 4.3: Number of predictors for the main data sets used during XGBoost training “before” and “after”
the recommendation analysis.

Variables DS0 DS2 DS3 DS4 DS6 DS7 DS8
Before 174 165 102 108 33 19 14

After 130 121 76 76 28 16 13

The xgboost package is able to deal with several types of input data, such as dense and
sparse matrices. However, the authors recommend to use xgboost’s own class (xgb.DMatrix)
for efficiency and speed (T. Chen and Guestrin, 2016), and so we converted all training and testing
sets to XGB dense matrices.

Next, we performed a grid search to find the best set of values for the hyperparameters, as
described in section 3.3.1. The results of the parameter optimisation are indicated in table 4.4. By
comparing the results of table 4.4 with the original grid of section 3.3.1, we realise that:

• colsample_bytree oscillated within the three given values, so there is no tendency for the
best value for this parameter, and the original possibilities or similar ones were kept in future
grid searches;

• eta remained below 0.1, and so smaller values were prioritised; this comes with the cost
of longer convergence times and danger of overfitting, hence we considered the gamma
hyperparameter in future grid searches for a more conservative approach;
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• max_depth was always equal to 5; given that the grid offered only two possibilities (3 and
5), cases with larger values (6 and 7) were looked into in subsequent models; and

• subsample remained above 0.60, so we investigated initial values between 0.60 and 1 in
future grid searches.

Table 4.4: Best set of values for the XGBoost hyperparameters after performing grid search. The nrounds
parameter indicates the number of iterations to be carried out by the XGBoost algorithm, in
order to achieve the best model when using the optimal values of the hyperparameters for the
corresponding data set.

Hyperparameter DS0 DS2 DS3 DS4 DS6 DS7 DS8

colsample_bytree 1/3 1/3 1/2 1/3 2/3 1/2 2/3

eta 0.08 0.03 0.05 0.04 0.07 0.05 0.03

max_depth 5 5 5 5 5 5 5

subsample 0.85 0.60 0.80 0.85 0.80 0.85 0.65

nrounds 92 417 336 487 1000 712 98

The models were built using the optimal sets of the hyperparameters found by the grid search,
and the algorithm was stopped after nrounds iterations, as indicated in the last row of the table.
We had set the maximum number of possible iterations to 1000 during the learning phase, but that
never corresponded to the optimal value of nrounds, except for DS6. All other data sets required
less iterations to build the best model according to the specific set of optimal hyperparameters and,
apart from DS7, they required less than 500 iterations.

The performance of the models obtained by applying XGBoost to the data sets of tables 4.3
and 4.4 to train models to predict stellar rotation periods is compiled in table 4.5. Similarly to
table 4.2, the number of predictors used to train the models is indicated below each data set, on the
header of the table. The quantities used to assess the quality of the models are the same as in the
aforementioned table.

Overall, the XGBoost models were wrong, on average, approximately between 12.3 to 38.4 %
of the time, as indicated by µerr. Notably, the models trained with DS2 and DS3 exhibit the
same mean relative absolute value of the residuals, indicating that, for the XGBoost models, and
contrarily to the RF ones, the quality is not affected when the CS are suppressed from the predictors.
The quality of the model is not substantially affected when both CS and GWPS variables are
removed, even when only predictors of the TS type are present in the data set. The turning point is
when all variables except the astrophysical ones are removed. In the presence of uniquely classical
astrophysical predictors, the model performs poorly, being wrong, on average, 38.4 % of the times,
making it impractical for predictive tasks.

The accuracies also decrease as the number of predictors is reduced, but the largest reduction—
approximately 33 points for acc10—is seen when both CS and GWPS variables are removed, i.e.,
when going from DS2 to DS6. The accuracies decrease about 5 points when only TS variables are
present, and approximately 22 points—to 12 % on acc10—when only astrophysical predictors are



4.2. RESULTS OBTAINED WITH EXTREME GRADIENT BOOSTING 73

used to train the model. The difference in the acc10 accuracy in the first four data sets (containing
the CS and GWPS predictors) is of about 7 points, and 27 points in the three last data sets (without
those predictors). However, unless we are willing to accept errors up to 20 %, the interval accuracies
remain below 90 % for all models.

Table 4.5: Quality assessment of the XGBoost models according to the number of predictors. All quality
measures are presented with three significant figures, except the adjusted-R2 (with four). The top
row indicates the number of predictors in each data set. The first row shows the mean absolute
value of the relative residuals; the three following rows correspond to the interval-based accuracies
defined in section 3.3.3, with widths of 20, 10 and 5 % of the reference values; the last three rows
present the root-mean-squared error and the mean-absolute error, both computed on the training
and testing sets, and the adjusted coefficient of determination (calculated on the testing set).
The best results obtained with the metrics (except for RMSE and MAE) are marked in bold.

Assessment
DS0
130

DS2
121

DS3
76

DS4
76

DS6
28

DS7
16

DS8
13

µerr 0.123 0.145 0.145 0.157 0.153 0.170 0.384

acc20 (%) 89.4 87.7 86.8 86.2 66.4 59.4 25.1

acc10 (%) 79.5 77.4 76.1 73.0 39.6 34.1 12.2

acc5 (%) 67.5 62.1 58.8 64.1 21.3 18.7 6.29

RMSE (train/test)
1.79
2.82

1.61
2.79

1.37
2.91

1.32
3.08

1.05
3.63

2.07
3.96

7.08
7.39

MAE (train/test)
0.807
1.06

0.795
1.14

0.737
1.18

0.758
1.33

0.784
2.24

1.54
2.57

5.27
5.41

R2
adj (test) 0.9473 0.9482 0.9429 0.9367 0.9076 0.8907 0.6335

The RMSE on the testing set decreased as the number of predictors increased, except when
going from DS2 to DS0; in turn, the RMSE on the training set initially decreased when going from
DS8 to DS6, but it then increased until DS0. The difference between the training and testing RMSE
varied within the ]1, 2 [ interval for the DS0 to DS7 data sets, indicating some level of overfitting
in those models, but that difference was the smallest (0.31) in the model built with DS8. Therefore,
although it presented the poorest prediction performance, the DS8 model was the one exhibiting
the smallest level of overfitting.

The model hielding the best goodness of fit, as measured by R2
adj on the testing set, was DS2—

we note that DS2 is a data set deprived of Prot variables—closely followed by DS0, DS3, and
DS4, all with values approximately between 93 % and 95 %. The adjusted R-squared for DS6 and
DS7 was close to 90 %, and for DS8 it was of about 63 %. We compared these R2

adj values with
the corresponding unadjusted coefficients of determination and the ones of the models trained in
section 4.1, and they are all of the same magnitude within each model, with differences typically
on the third decimal place (when written as real numbers). Therefore, it is safe to interpret R2

adj as
the fraction of the response’s variation that is explained by the predictors.
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The scatter plots of the real rotation periods vs. the predicted ones are displayed in fig. 4.2
and, with more detail, in figs. B.11 and B.12, in the appendix. Similarly to fig. 4.1, the blue solid
lines indicate the identity function, and red dashed lines represent the linear models between the
predicted and the real values. All graphs evince a good correlation between the predicted and the
real values of the stellar rotation periods. Apart from DS8, the dispersion is not considerably large.

Some outliers can be identified, both in the regions of small and large rotation periods, but they
are not in great number. Although the majority of the stars in the data sets have rotation periods
below 50 d, similarly to the RFs cases, the XGBoost models seem to struggle to accurately predict
stellar rotation periods beyond the interval [5, 50 ] days, approximately. Together with the results
obtained for the RFs models, this confirms our suspicions that stars with rotation periods below 7 d
and above 45 d are not reliable examples to train a model, and together they validate the approach
described in section 3.3.2 for building the DS9 and DS10 data sets. Moreover, the outliers do not
seem to be predicted by the linear models, as is evident from the dashed red lines. Therefore, we
can conclude that the adjusted R-squared coefficients of table 4.5 are not inflated.

The marginal experimental distributions for the predicted and the real rotation periods, as
highlighted by the histograms and density plots of figs. B.11 and B.12, are visually very similar
to each other on every model, in terms of centrality, dispersion, and kurtosis. The coefficients of
determination between the predicted and the reference values reported in the figures do not differ
significantly from R2

adj indicated in table 4.5, and the F-tests and related p-values indicate that the
sets of explanatory variables are statistically significant, as a whole.

The most important variables for the models are highlighted in the bar plots of figs. B.5 to B.7.
Apart from the Prot features, which naturally dominate in terms of importance when they are
present in the data set, CS, GWPS, and TS (mostly ACF parameters) are the most important
variables for the prediction of rotation periods.

In the model created from DS0, the first four most important variables are rotation periods
obtained from the three aforementioned methods (GWPS, ACF, and CS) for the 55- and 20-day
filters. The central periods of the Gaussians fit to both GWPS and CS are also important, as well
the photometric activity proxy and the effective temperature.

For DS2, the central periods and standard deviations of the Gaussians fit to GWPS and CS
computed for the 20- and 55-day filters are the most important features. The only variable in
the top-10 not belonging to this category is the photometric activity proxy. The variables were
clustered in terms of importance, so that predictors with the same bar colour have importances of
similar magnitude. The variable that stands out in the model created with DS2 is gwps_gauss_2_-
1_55. Although the algorithm groups the remaining eight variables in the same group, we would
put the following five predictors in one group, and the last four in another cluster.

In DS3, the central period computed on the Gaussian fit to the GWPS for the 55-day filter is
the most important variable, followed by the central periods computed on the 80- and 20-day filters
(both were clustered in the same group), and then the remaining predictors, all in another cluster
(mainly photometric proxies, effective temperature, and logarithm of the surface gravity).
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Figure 4.2: Scatter plots of the reference rotation period as a function of the predicted values for XGBoost
models built with the data sets DS0 to DS8. The blue solid lines indicate the identity function,
and the red dashed lines represent the linear model between the reference and the predicted
values.
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For the model learnt from DS4, the central periods and standard deviations of the Gaussians fit
to the CS for the 55- and 20-day filters were the most important variables, followed by the FliPer
value for νC = 0.7, central period for the 80-day filter, the photometric activity proxy, the effective
temperature, and the amplitude of the period of the Gaussian with the highest amplitude fitted to
the CS for the 20-day filter. Two clusters can be identified in terms of importance, the border of
which lying between the aforementioned central periods and F0.7.

After removing the CS and GWPS variables, seven out of the ten most important variables
are of the TS type, and only three are astrophysical in nature. Three importance clusters can be
identified: (i) one containing the error of the photometric activity proxy computed on the ACF
for the 20-day filter, and the 0.7-FliPer value; (ii) another composed uniquely of the photometric
activity proxy; and (iii) a third one with the effective temperature, the ACF photometric activity
proxy for the 20- and 55-day filters, the height of the period of the highest peak in the ACF (PACF)
at a lag greater than zero for the 20-day filter, the error of the photometric activity proxy, the mass,
and the mean difference between the height of PACF and the two local minima on both its sides for
the 20-day filter.

Considering only the TS variables (DS7), the photometric activity proxies and their errors
occupy a prominent position in the importance list. Two to three clusters are identified, being
SACF, err

ph for the 20-day filter the most important variable. We can state that a first cluster is
composed of this variable; a second contais SACF, err

ph for the 55-day filter, Sph, and SACF
ph for the

20-day filter; and a third one is composed of GACF for the 20-day filter, Sph, SACF
ph for the 55-day

filter, HACF and GACF for the 55-day filter, and HACF for the 20-day filter.

As for the astrophysical predictors alone, F0.7 is clearly the most prominent predictor in terms
of importance. It is followed by the effective temperature and F7 in a second cluster, and a third
cluster containing the mass, F50, F20, the magnitude from the Kepler catalogue, logg, and the lower
and upper errors for the effective temperature. When it comes to classical astrophysical variables,
the Flicker in Power values and the effective temperature are the features that contribute the most
to the prediction of rotation periods.

In view of the results obtained with the batch of models trained with RFs and XGBoost, we
decided to create a new data set, DS9, containing only the most relevant variables—as identified
while training the aforementioned models—and only stars with rotation periods in the range 7 d
to 45 d, as explained in section 3.3.2. DS9 was further refined in order to include only the top-10
most important variables for the models learnt from it, so we could examine how much predictions
of stellar rotation periods are affected by removing less important variables, and how much of
the previous results would hold with such a stripped down data set. The results are going to be
presented in the following section.

4.3 Minimising the Size of the Data Sets

In section 3.3.2, we described how we built two new data sets of reduced size, DS9 and DS10,
from the master data set stripped out of Prot variables (DS2). Using those data sets, we trained RF
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and XGBoost models, in a similar way to what we have done before with DS0, DS1, . . . , DS8. In
what follows, we will describe the procedure we followed and the results we obtained.

4.3.1 Results From Models Trained With DS9

DS9 resulted from selecting the most important predictors for all the models trained so far with
both RFs and XGBoost, and by filtering out stars with rotation periods outside the interval ]7, 45 [
days. We were left with a data set comprised of 36 predictors and 13 627 instances, which was
split into training and testing sets in a 80-to-20 ratio.*

We started by training two RFs models, one on top of the full DS9 data set, and another after
performing feature pre-pruning, by selecting the most statistically significant predictors, as we
previously did for the XGBoost models. We wanted to check out if the predictive performance
would be affected by applying this procedure in a data set of reduced size, such as DS9. The pruned
version of DS9 contained 33 predictors (three less than the full set). In both cases, we searched
for the optimal values of the mtry and min.node.size hyperparameters using the same grid as
before, but we fixed splitrule to “variance”, since this was always found as the best value in the
previous trainings, which allowed us to save extra learning time. The optimal number of randomly
sampled predictors to possibly split at in each node, mtry, was 15 in the full version of DS9, and
13 in the set with recommended predictors, while the optimal minimal node size was 2 for both of
them. The training time, given that we were always using a shared machine with heavy traffic, was
similar to the training time obtained before with DS6, which has approximately the same number
of features as DS9.

The quality assessment of the RFs models trained with DS9 are presented in the first two rows
of table 4.6. Overall, the performance of the model built with the recommended variables is at
the same level as the performance of the model trained with all predictors available in DS9. On
average, the models were wrong about 2.3 % of the time. The 10 % interval-based accuracy was
above 90 %. The RMSE measured on the testing set was about 2.7 times larger than its training
counterpart, and the testing MAE was approximately 2.8 times larger than the traning one. These
differences, alghouth not significantly large, denote some degree of overfitting by the models.

The goodness of fit, as measured by R2
adj, was circa 96 %, denoting high quality models, in the

sense that, on the one hand, they surpass the performance of all the models previously built with
RFs and XGBoost and, on the other hand, they point to a large fraction of the variability of the
response explained by the predictors.

The scatter plots of the reference stellar rotation periods vs. the predicted values for the model
built with the recommended variables are illustrated in fig. 4.3.† The corresponding residuals and
10 %-error metric plots are illustrated in fig. 4.4.‡ Overall, these plots indicate that there is a general
good agreement between the predicted and the reference response values. This is reinforced by
the marginal histograms and density plots for both the predicted and reference values on the right

* Given the reduction in the number of cases when filtering out stars, we decided to adjust the relative sizes of the
training and testing sets.

† Equivalent plots for the model built with all the features available in DS9 can be found in the appendix, in fig. B.10.
‡ The equivalent plots for the model built with all variables available in DS9 are illustrated in fig. B.13.
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panel of fig. 4.3, which are similar between them. Most of the points fall on the y = x line, but
some outliers can be seen, both representing under and over predicted cases. The largest errors
can go up to approximately 20 d in magnitude. The relative errors oscillate between nearly −1
and +0.5, corresponding to overpredictions of approximately twice and underpredictions of about
half the real values, respectively. Except for two cases, the underpredictions are always larger than
50 % of the corresponding real values. The overpredictions can go up to 200 % of the true values,
the largest of which typically lie in the 20 d to 40 d range. The situation is similar for the model
built with all available variables of DS9.

Table 4.6: Quality assessment of the two RF (first two rows) and the XGBoost (last row) models learnt
with DS9. The indices “rec” and “all” indicate the subset of recommended variables and the
full version of DS9, respectively. The XGBoost model was built upon the recommended set of
variables. The considerations applied to the quality metrics in table 4.2 hold here.

DS9 µerr acc20 acc10 acc5

RMSE
train
test

MAE
train
test

R2
adj

RFrec 0.0231 0.945 0.902 0.837
0.684
1.84

0.212
0.597

0.9601

RFall 0.0229 0.946 0.901 0.839
0.681
1.84

0.210
0.592

0.9597

XGB 0.0226 0.958 0.906 0.810
0.921
1.45

0.389
0.564

0.9758

Figure 4.3: Scatter plots of the reference rotation periods vs. the predictions for the RF model trained with
the DS9 data set using recommended variables. On the left panel, the blue solid line represents
the identity function, and the red dashed line the linear model between the predicted and the true
values. On the right panel, the red dashed line refers to the identity function; the margins contain
the histograms and density plots of the sample of predicted and reference rotation periods.
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Figure 4.4: Residuals (top panel) and 10 %-error metric (bottom panel) for the RF model trained with the
recommended variables in DS9.

Figure 4.5 illustrates all predictors sorted by the degree of importance as they were used to
create the RF models. The panel on the top refers to the model learnt from all the variables avail-
able in DS9, while the one on the bottom is related to the model trained with the recommended
predictors. We can identify five to six clusters in terms of importance, with the two most import-
ant variables being cs_gauss_2_1_55 and gwps_gauss_2_1_55. The set of the top-10 most
important variables is the same in both data sets.

The XGBoost model was trained using uniquely the recommended variables of DS9. Taking
advantage of the reduced size of the data set, and in face of the set of optimal values for the
hyperparameters of table 4.4, we decided to increase the number of values available for the grid
search as follows:

• colsample_bytree: {1/2, 2/3, 3/4};
• eta: {0.03, 0.04, 0.05, 0.06, 0.07, 0.08, 0.09, 0.1};
• max_depth: {5L, 6L, 7L};
• subsample: {0.60, 0.65, 0.70, 0.75, 0.80, 0.85, 0.90, 0.95, 1.0};
• gamma: {1, 10, 30, 100};
• min_child_weight: {1L, 10L, 50L}.

This gave rise to 7776 models without counting with the 10CV with five repetitions. However,
since the learning was interrupted for any model whenever the performance was not improving for
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Figure 4.5: Variable importance in the RF models created with DS9 using all available variables (top panel)
and the set of recommended variables (bottom panel).

five rounds, the grid search took approximately six hours to finish (about three times more than
the previous grid search on the XGBoost model built on top of DS6), making the model learning
still feasible in a timely manner in light of current common computing resources.* The best set of
values for the hyperparameters was the following:

• colsample_bytree: 1/2
• eta: 0.04
• gamma: 1

• max_depth: 7
• min_child_weight: 10
• subsample: 1

* We used a shared machine with 40 Intel Xeon Silver 4214 CPUs running at a clock frequency of 2.20 GHz. We
split the search into four grids, each with 1944 points, and executed them in parallel using at most 10 CPUs each.
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The optimal model was achieved for 153 iterations of the XGBoost algorithm. We note that
(a) the optimal max_depth was 7, the maximum corresponding value in the grid, similarly to
what happened before, which suggests that the algorithm tends to choose the largest value of this
parameter, i.e., deeper trees; and (b) this time we allowed for the possibility of regular boosting,
and the best results were obtained with subsample equal to 1. While deeper trees and regular
boosting might increase the chances of overfit, the gamma hyperparameter makes the model more
conservative and introduces an extra layer of regularisation, which can compensate for that.

The quality assessment of the results obtained with the XGBoost model is compiled in the last
row of table 4.6. As in the RF case, the model was wrong, on average, approximately 2.3 % of the
time. The 10 %-interval accuracy was above the 90 % mark, and approximately 0.5 points better
than the RF counterparts. The differences between the training and testing RMSE and MAE were
less than the half of those in the RF cases, indicating less overfitting of the XGBoost model than its
RF counterparts. The goodness of fit, as measured by the adjusted coefficient of determination, was
better than in the RF models, given that circa 97.6 % of the variability of the response is explained
by the predictors. The MSE for this model is dominated by the variance. These assessment metrics
indicate a solid yet computationally cheap model, with great predictive power.

Figure 4.6 presents the scatter plots of the real stellar rotation periods vs. the predicted ones for
the XGBoost model built with DS9 using the recommended variables, and fig. 4.7 illustrates the
corresponding residuals and 10 %-error metric plots.

Figure 4.6: Similar to fig. 4.3, but for the XGBoost model, built with the recommended variables of DS9.

Similarly to the RF models trained with DS9, the scatter plots, and the marginal histograms and
density curves indicate an overall good agreement between the predicted and the real values of the
stellar rotation periods. The F-test and the corresponding p-value of the right hand panel of fig. 4.6
indicate that the predictors are jointly significant. Most of the values occupy a position close to
the y = x line, with few outliers. Nevertheless, some of the outliers have magnitudes differing
approximately 20 d from the real values, indicating that the model, although rarely, can go way
off the true values. Similarly to the RF sibling models, the relative error oscillates approximately
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Figure 4.7: Similar to fig. 4.4, but for the XGBoost model.

between −1 and +0.5, indicating that the model can overpredict periods as large as twice the
real values, and underpredict rotation periods as low as half of the reference values. There are no
underpredictions less than 50 % of the true values. Six of the overpredictions are larger than 175 %
of the reference rotation periods.

The predictors of the model are sorted out by degree of importance in fig. 4.8. The algorithm
in the xgboost package identified five clusters. The first of them is the most prominent, composed
of the variables cs_gauss_2_1_55 and gwps_gauss_2_1_55, similarly to what happened with
the RFs models trained with DS9. The top-10 variables are the same as for the RF counterparts,
although their sorting order vary slightly.

Given the relevance of the top-10 most important variables in the three aforementioned models
built with DS9, we explored further the possibility to reduce the number of predictors without
loosing too much predictive power. We created one last data set, DS10, composed of the same
cases of DS9, but with only the ten most important predictors.
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Figure 4.8: Variable importance in the XGBoost model created with DS9 using the set of recommended
variables.

4.3.2 Results From Models Trained With DS10

We trained a RF and a XGBoost model, performing a grid search for the optimal values of the
hyperparameters. In the case of the latter, we took advantage of the small size of the data set and
refined the grid, as we will describe below.

For the RF model, we kept the same grid as for DS9, that is, with splitrule equal to “vari-
ance”, and mtry and min.node.size varying within the set of values indicated in section 3.3.2.
The training took approximately 20 min to finish on the same machine used for learning the pre-
vious models. The quality assessment of the RF model trained with DS10 is encompassed in the
first row of table 4.7. The results for the RF model are similar to the ones obtained for its cousins
trained with DS9. The most notorious difference is that the DS10 version was able to explain 1 %
less of the variability of the response than their DS9 RF counterparts.

The scatter plots of the real rotation periods vs. the predictions for the RF model are depicted
in fig. 4.9, and the corresponding residuals and 10 %-error metric are illustrated in fig. 4.10. The
scatter plots, the marginal histograms, and the marginal density plots evince a strong correlation
between the predicted and the real values of the rotation periods. Most of the points lay on the line
representing the identity function (solid or dashed blue lines), or close to it. The largest errors can
go up to about 20 d in magnitude and, similarly to what happened for the DS9 models, the relative
errors oscillate between approximately −1 and +0.5, indicating nearly double overpredictions and
half underpredictions, respectively. While the overpredictions occur through the whole range of
predicted values, underpredictions below 50 % of the real value happen on the range 20 d to 40 d.
Notably, the model is depleted of overpredictions above 200 %, approximately, meaning that, at
most, it predicts the double of the real value. This requires further investigation, since this upper
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limit may be an indication that, in the worst-case scenario, the model captures the first harmonic
of the rotation period.

Table 4.7: Quality assessment of the RF model (first row) and the XGBoost models (second and third rows)
trained with DS10. The three models were learnt from the ten most important variables of the
models trained with DS9. The considerations applied to the quality metrics in tables 4.2 and 4.6
hold here.

DS10 µerr acc20 acc10 acc5

RMSE
train
test

MAE
train
test

R2
adj

RF 0.0222 0.945 0.913 0.860
0.757
2.00

0.214
0.583

0.9525

XGB1 0.0314 0.951 0.901 0.744
1.45
1.79

0.707
0.797

0.9652

XGB2 0.0238 0.955 0.910 0.832
0.979
1.73

0.405
0.601

0.9651

Figure 4.9: Scatter plots of the reference rotation periods vs. the predictions for the RF model trained with
the DS10 data set. On the left panel, the blue solid line represents the identity function, and
the red dashed line the linear model between the predicted and the true values. On the right
panel, the blue dashed line refers to the identity function; the margins contain the histograms
and density plots of the sample of predicted and reference rotation periods.

In the case of the XGBoost, we started to perform a search for the optimal values of the
hyperparameters using the same grid as for DS9, with a 10CV with five repetitions. The model
took about four hours to train. The best values found for the hyperparameters were the following:

• colsample_bytree: 2/3
• eta: 0.05
• gamma: 1

• max_depth: 7
• min_child_weight: 10
• subsample: 0.9
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Figure 4.10: Residuals (top panel) and 10 %-error metric (bottom panel) for the RF model trained with the
DS10 data set.

The best value for max_depth corresponded to the maximal one available in the grid. In the
case of subsample, contrarily to the DS9 case, the model was optimised with a stochastic sampling
of 90 % of the total cases, instead of a regular boosting. The optimal XGBoost model was built
after 19 rounds of the algorithm. Its quality assessment can be inferred from the metrics’ values
of the second row of table 4.7. Overall, the quality metrics are in par with the ones from its RF
sibling. However, we notice (a) a slight decrease in the 10 % accuracy, (b) a slight increase in the
adjusted R-squared, and (c) less overfitting of the model (the differences between the training and
testing values on both RMSE and MAE are smaller than in the RF case).

Finally, we went one step further, and we took advantage of the fact that the data set was
stripped off of most predictors to refine the grid search. Hopping to find the best set of values
for the XGBoost hyperparameters, the size of the grid was increased according to the following
values:

• colsample_bytree: {1/3, 1/2, 2/3, 3/4};
• eta: {0.03, 0.04, 0.05, 0.06, 0.07, 0.08, 0.09, 0.1};
• gamma: {1, 10, 30, 100};
• max_depth: {3L, 4L, 5L, 6L, 7L};
• min_child_weight: {1, 10, 30, 50};
• subsample: {0.50, 0.55, 0.60, 0.65, 0.70, 0.75, 0.80, 0.85, 0.90}.
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This was the most ambitious grid search we carried out during this project, giving raise to
28 160 models, without taking into account the 10CV with five repetitions. On the same machine
used for DS9, the training process took approximately 75 h to complete, given that the CPUs were
shared between several users and this time we did not parallelise the learning by subdividing the
grid, allowing the boosting to be carried out by 30 CPUs simultaneously, instead of the previously
10. The set of best values for the parameters was the following:

• colsample_bytree: 3/4
• eta: 0.05
• gamma: 1

• max_depth: 7
• min_child_weight: 1
• subsample: 1

The optimal model was obtained after 110 rounds of the algorithm, when applying the values
above to the hyperparameters. Its quality can be assessed using the values on the third row of
table 4.7. On average, the DS10 XGBoost model was wrong 2.4 % of the time, as indicated by the
relative mean of the absolute values of the residuals. The 10 % interval-accuracy is in par with the
ones from its siblings (RF and XGBoost), equal to 91 %. The scatter plots of the real vs. predicted
values are illustrated in fig. 4.11.* There is a good linear agreement between the predicted and

Figure 4.11: Scatter plots of the reference rotation periods vs. the predictions for the XGBoost model learnt
from DS10. The blue solid and dashed lines, respectively on the left and right panels, represent
the identity function, while the thicker red dashed line on the left plot represents the linear
model between the predictions and the real values.

the real values: the linear model is not being affected by the outliers, and the marginal histograms
and density plots of the right hand panel are very similar between the predictions and the real
values. The residuals are mostly centred on the horizontal line y = 0 but, as in the previous models,
they can attain magnitudes of about 20 d in absolute value. The bottom panel of fig. 4.12 shows
that when we are willing to accept a 10 % error, most of the residuals are zero. Overpredictions
never go beyond about the double of the corresponding real value. Notably, approximately the half

* There are only minute differences between these graphs and the scatter plots for the XGB1 model, so the analysis
is similar to the one we present here.
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Figure 4.12: Residuals (top panel) and 10 %-error metric (bottom panel) for the XGBoost model trained
with DS10. There are some outliers with magnitudes up to 20 d.

and the double of the real values are sometimes captured by the model. The largest overpredicted
values occur for rotation periods above 20 d, approximately.

The variability of the response is mostly explained by the predictors, as can be attested by the
plots and a goodness of fit of R2

adj = 0.9651. This model overfits less than its RF sibling, since the
differences between the training and testing RMSE and MAE are smaller in this case. The different
levels of overfitting might explain the differences in interval-accuracies and adjusted R-squared
between the models.

In the following section, we will discuss the results portrayed so far, and will present a broad
view of the main ideas extracted from them.

4.4 Discussion of the Results

In sections 4.1 to 4.3, we trained several models using the data sets from DS0 to DS10, which
in turn were built out of the S19 and B21 data sets. In doing so, we optimised the sets of hyper-
parameters for each method, using a thorough grid search approach.

The results indicate that the two most important variables to predict rotation periods of K and
M stars out of the Kepler catalogue are arguably cs_gauss_2_1_55 and gwps_gauss_2_1_55.
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After Prot features being removed from the data set, these variables always made up to the top-10
in terms of importance, provided they were available for training, and they stood out from the
rest of the features. They correspond to the central period of the first Gaussian fitted to the CS
and GWPS for the 55-day filter, respectively. The predictive performance of the RF and XGBoost
models degrades significantly when these features are removed from the data set. Not only those
two predictors, but most of the CS and GWPS features are relevant for the predictive performance
of the models, as it is attested by the results from DS10. Therefore, CS and GWPS predictors based
on the central period of the fit Gaussian should be available in the data set used for the learning
process.

However, we believe that the level of importance attained by the CS and GWPS families of
variables is related to the fact that most of the reference stellar rotation periods were estimated from
them. Hence, there should be a strong correlation between those features and the response. A way
to test this hypothesis would be to train new models from structured data obtained from synthetic
light curves, created with reliable stellar simulators, such as the PLATO Simulator (Marcos-Arenal
et al., 2014). That will possibly require the engineering of new variables, but we will be able in
principle to control the correlations between the predictors and the response.

The results indicate that the CS features are slightly more important for the model than the
GWPS ones, although they are both comparable in terms of the quality assessment metrics. This
is probably a consequence of the fact that the CS results from the product between the normalised
GWPS and the ACF, thus amplifying peaks present in both of them and attenuating signals possibly
resulting from instrumental effects, that manifest themselves differently in the GWPS and the ACF.

The most important TS variables are the activity proxies. They are relevant in the sense that
they frequently make to the top-10 of most important variables, even when CS and GWPS features
are present in the data set (recall figs. B.1 and B.2, for instance), and the performance of the
model is still acceptable at a certain extent if predictions are carried out using uniquely this family
of predictors. It becomes then apparent that it is relevant to extract all activity proxies possible
(photometric, magnetic, and others) directly from the light curves and to use them as predictors
when building a model.

When considered isolated, the weakest features for the prediction of stellar rotation periods are
the astrophysical ones. Alone, they always yield models with poor predictive performance, useless
for practical applications. However, the Flicker in Power values and the effective temperature
sometimes reveal themselves within the most important variables, even in the presence of CS and
GWPS features (recall figs. 4.8, B.2, B.3, B.5 and B.6).

Notably, in all data sets where they are present, variables belonging to the 55- and 20-day filter
categories are the most relevant for the models, which is not unrelated to the fact that most of the
stars in the data set have rotation periods between 10 and 40 d.

Considering the data sets from DS0 to DS8, when compared to the RFs models (recall table 4.2),
XGBoost performed worse, as assessed by the mean error, the interval-accuracies, the RMSE, and
the MAE. The only exception is the model created with DS6, whose predictive performance is
slightly better than that of the corresponding RF. However, according to the adjusted-R2, the
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XGBoost models were able to explain better than the RFs ones the variability of the response in
all data sets, except in DS8. The opposite is verified for the models created with DS9 and DS10,
albeit the RF and XGBoost models keep being of comparable quality in those cases. It is worth
noting that the RF models were obtained with little tuning of the hyperparameters, and that their
quality could possibly have been improved further if other parameters had been optimised, such
as the number of trees in the forest, the fraction of the original data set assigned to each tree,
or the maximum depth of a tree. Moreover, in the data sets of reduced size, when compared to
the XGBoost one, the RF models took much less time to train. So, depending on the level of
precision needed, a RF model can be robust enough to to deliver good predictions. When all extra
“percentage” is important, than models trained with XGBoost seem to be the best option.

The differences between the training and testing RMSE and MAE, although natural, might
indicate some level of overfitting during the training process of the models built from the DS0 to
DS10 data sets. However, these levels of overfitting do not seem to affect the quality performance
of the models. The differences between RMSE and MAE vary among the models created with dif-
ferent data sets, indicating different levels of variation of the individual errors, but these differences
are not expressive.

Prior to rotation period filtering, the models struggled to predict very short rotation periods,
typically below a few days, and periods larger than 45 d. These discrepancies were evidenced in
the scatter plots of the models trained with the DS0 to DS8 data sets, and are further highlighted in
figs. B.14 to B.16, where golden lines represent the ground truth values, and blue and green lines
correspond respectively to predictions performed on the training and testing sets. The differences
between the reference and the predicted values are larger for longer rotation periods, typically
above approximately 45 d, and very short rotation periods, below seven days. Therefore, cases
corresponding to K and M stars with rotation periods below 7 d or above 45 d are not suitable to
train a predictive model using Kepler data. This is essentially due to (a) Kepler’s quarters of 45
days, (b) at least two full cycles are needed in order to get reliable observations, (c) the process
of stitching two or more Kepler time series is not trivial and error free, and (d) signals from stars
with rotation periods smaller than seven days may be mimicked by fluxes from close binaries or
classic pulsators. After the filtering of the rotation periods, the predictive power of the RF and
XGBoost models improved, as became clear from the analysis of the models learnt from DS9
and DS10. By restricting the predictors to the set of the 33 most important variables identified
by the RF and XGBoost models created with DS0 to DS8, and by filtering in stars with rotation
periods between 7 and 45 d, we were able to train computational cheap but solid models, with good
predictive performance.

While being characterised by a remarkable goodness of fit, above 97 % in the XGBoost case,
the final models introduced in section 4.3 still exhibit a few outliers with predictions off the
real value by up to 200 %. In principle, increasing the number of training cases would help to
circumvent this problem and to improve the predictive power of the models. Additionally, we
could perform feature engineering on the original light curves, in an attempt to get a better set of
predictors.
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Lastly, our results are on par with the ones presented by Breton et al. (2021). Focusing on the
10 % interval-accuracy metric, the classifier created with B21 attained slightly better results, but we
have to take into account the fact that our accuracy metric is an approximation to the counterpart
used to assess the quality of a classification model. Moreover, we did not carried out any kind of
visual inspection of the results nor altered them after testing the model. An important aspect to
highlight is the fact that we applied the hold-out method, that is, we used an unseen-before testing
set to perform the assessment of the quality of the model. This testing set was not part of the
training of the model nor participated in the CV carried out to optimise the hyperparameters of
the models. When assessing the quality of a model on a testing set, the predictive performance
is typically more pessimistic than that obtained during the training with CV (Hastie, Tibshirani
and J. Friedman, 2009; Torgo, 2011). The accuracies claimed by Breton et al. (2021) seem to be
obtained with CV on the whole data set, and there is no reference in the paper to the hold-out
method. Therefore, we would expect the performance of their classifier to be worse than the one
they claim if the quality of the model were assessed on an unseen before testing set.



CHAPTER 5

Conclusions

For a construction to be useful and not mere waste of mental effort, for it to
serve as a stepping-stone to heigher things, it must first of all possess a kind of
unity enabling us to see something more than the juxtaposition of its elements.

— Henri Poincaré (1954-1912)

All models are wrong, but some are useful.
— George E. P. Box (1919-2013)
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IN T H I S T H E S I S, we have discussed the possibility of using machine learning (ML) ap-
proaches to determine rotation periods of stars. Obtaining accurate and precise measurements
of stellar rotation periods for a great number of targets is essential for the study of the evolu-

tion of stars and of the Galaxy, as well as to characterise planetary systems, to understand stellar
angular momentum transport, and to estimate the age of stars. Recently, attempts have been made
to apply artificial neural networks (ANNs) to light curves, and classification random forests (RFs)
to tabular data to perform such predictions. On the one hand, the former typically requires heavy
computational resources; on the other hand, concerning the latter, we argue that (a) a classifier
might not be the best approach to predict the rotation period, given that this is a continuous variable,
and (b) using rotation periods as predictors might weaken the prediction performance of the model
in the presence of unseen testing data, which do not contain rotation period values and have not
been used to train the model.
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5.1 Main Conclusions

As motivated in chapter 1, our main goal was settled on building robust and efficient ML
models for the automatic prediction of stellar rotation periods of K and M stars from the Kepler
catalogue. To this end, we applied the regression RFs and extreme gradient boosting (XGBoost)
algorithms to eleven data sets built from the sets originally published by Santos et al. (2019) and
Breton et al. (2021) and trained several models with them. In section 1.1, we divided the main goal
into four research questions, which we will now revisit and answer in turn.

Research Question 1

Which independent variables evince the highest level of correlation with the target variable?

In chapter 3, section 3.1.2, we carried out a statistical analysis of the groups of input variables
identified in page 36 (Prot, Astro, TS, GWPS, CS, and Wav). In particular, we measured the
correlation within each group of predictors, and between them and the response variable, the
rotation period, prot. We found that:

• All Prot features, i.e., rotation periods obtained from the autocorrelation function (ACF) of
the light curve, from the global wavelet power spectrum (GWPS) analysis, and from the
composite spectrum (CS) method, have strong positive correlations among them and with
the response (recall fig. 3.4, left panel); we suspect that those predictors with correlations
close to 1 were used to obtain the reference values of the rotation period published by Santos
et al. (2019), since the ground truth was estimated by resorting on the ACF, GWPS, and CS
methods.

• The unknown Wav variables exhibit no level of correlation among them and with the response
(recall fig. 3.4, right panel).

• Out of the time series (TS) variables, the ones related to the photometric activity proxy, Sph,
and its error, and to the control parameters, H and G, have a strong negative correlation with
the target variable (recall fig. 3.5, left panel); variables related to the length of the light curve
have small to no correlation with the response.

• Concerning the Astro predictors, only the logarithm of the surface gravity, logg, is positively
correlated with the rotation period; all other predictors are negatively correlated with the
target variable, or have little to zero correlation with it; of those, the mass of the star, m, and
the FliPer values for νC equal to 0.7 and 7 µHz, f0.7 and f7 respectively, have a non-negligible
correlation with the response (recall fig. 3.5, right panel).

• In the CS features, we could identify three subgroups of variables: one exhibiting negative
correlations with the response, one having positive correlations, and another (the largest)
with little to no correlation with the target variable (recall fig. 3.6); from the former, the
variables that stand out the most are related to the photometric activity proxy calculated on
the CS, and to the period and amplitude of the first Gaussian function fit to the CS; from
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the second group, the variables related to the central period and standard deviation of the
Gaussian function fitted to the CS are the most prominent.

• Finally, in the GWPS group, similarly to the CS variables, we identify three subgroups,
composed of variables having positive correlation with the response, negative correlation,
and little to no correlation with the target variable (recall fig. 3.7); the first subgroup (the
smallest of the three) is dominated with features related to the period of the first Gaussian
function fitted to the GWPS; in the second subgroup, predictors concerning Sph measured on
the GWPS and its error, and to the number of Gaussian functions fitted to the GWPS stand
out; we also identify variables related to the period of the fourth, fifth, and sixth Gaussian
functions fitted to the GWPS as having non-negligible correlation with the response.

Research Question 2

How does a regression ML model trained on input variables classically used to estimate
stellar rotation periods compare to the classifier developed by Breton et al. (2021)?

We addressed the problem of building supervised machine learning models to predict stellar
rotation periods in chapter 3. We decided to use the RFs and XGBoost algorithms, following a
regression approach. Given that Breton et al. (2021) built a classifier with their data set (hereafter
B21), we developed a metric, the interval-based accuracy, that allowed us to convert predicted
rotation periods into a proportion of successful events. We used this metric as a way to directly
compare the results obtained with the two approaches (regression vs. classification).

In chapter 4, we carried out our experiments and built two or more models per data set based
on RFs and XGBoost. Initially, we used all stars available in the base training set. Overall, the
results show that the predictive performance of the models trained with RFs with a data set, DS0,
equivalent to B21, are on par with the performance of the classifier trained with the latter, when
we are willing to accept a 10 % error in the predictions. The predictive performance of the model
trained with XGBoost is slightly worse than that of the previous model. However, the goodness
of fit, as measured by the mean absolute value of the relative residuals, µerr, and by the adjusted
coefficient of determination, R2

adj, indicates that both models are robust, able to explain most of the
variability of the response (circa 95 %), and that they are wrong approximately 10 % of the time.

When we filter out stars with rotation periods below 7 d and above 45 d, the overall performance
of the models increase considerably, with about 96 % to 98 % of the variability of the response
explained by the predictors, and the 10 % interval-accuracy equal to approximately 90 %. In this
case, the models were wrong no more than 2.3 % of the time.*

We note that we used the hold-out technique when training and testing our models and, hence,
we assessed their performance on a testing set, containing unseen stars, that were not used during
the training process. Breton et al. (2021) do not mention such a method, and apparently they used
the whole data set to perform cross-validation (CV) during the training of their three classifiers

* We recall that the filtering was motivated by the fact that the original data was most possibly contaminated with
classical pulsators and close binaries, which can modulate signals similar to rotation periods below typically 7 d, and
with unreliable Kepler measurements of stars with rotation periods above 45 d.
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based on RFs. In addition, we did not perform visual inspection nor adjustments of the results, as
Breton et al. (2021) did. The results we report were obtained directly from the application of the
models on the testing sets, without further processing.

Therefore, in view of the results we present here, we conclude that our approach is at least on
par with with the classifier developed by Breton et al. (2021).

Research Question 3

Which sets of input variables are mandatory for obtaining a reliable ML model, with good
predictive performance?

As mentioned in the answer to the research question 1, in chapter 3 we created several data
sets, nine of which were based on the groups of predictors we identified in section 3.1. We used
those data sets to train regression RFs and XGBoost models, and assess their quality using several
metrics.

In view of the results reported in chapter 4, we conclude that the most important variables to
train a reliable ML model with good predictive performance are the CS and GWPS ones. When
a model is built with data devoid of these variables, its quality drops abruptly when compared to
models built with data sets containing at least one of them. Moreover, the results from the models
built with DS10 show that even when we only use ten predictors to train a model, we still get
results comparable to Breton et al. (2021), provided that the central periods of the first Gaussian
function fitted on the CS and on the GWPS are present in the data set.

Features of the TS type, i.e., related to the structure of the light curve, such as Sph, have some
relevance for the estimation of stellar rotation periods, as well, since models built with CS, GWPS,
and TS predictors are still able to explain about 88 to 91 % of the variability of the response.
However, when used isolated, TS variables do not have the same level of importance (predictive
power) as the other two.

Research Question 4

Is it possible to build an optimal subset of predictors from the set of available explanatory
variables from which robust regression ML models, with good predictive performance, can
be trained?

This question was addressed in section 4.3, where we used two new data sets of reduced size,
DS9 and DS10. These sets were built by selecting the most important features, as measured during
the training of the models obtained with the data sets DS0 to DS8, and by removing stars with
rotation periods below 7 d and above 45 d, due to the characteristics of the Kepler space observatory
and astrophysical constrains.

Our results show clearly that RFs and XGBoost models trained with these data sets of reduced
size have comparable performance to B21, and to the best models we obtained before, with the
DS0 and DS2 data sets. We claim a reduction of circa 150 to 170 predictors when compared to the
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largest data set (DS0). The most important predictors, as measured by the ranger and xgboost
R packages, are the central periods and standard deviations of the first Gaussian function fit to
the CS and GWPS, followed by the photometric index proxy, Sph. Using a data set composed of
only those variables allows one to train RF and XGBoost models with performances comparable to
those built with much larger data sets. By reducing the size of the sets in this order of magnitude,
we will be able to improve considerably the training time. With the resources we had access to,
i.e., shared machines on which several processes were running simultaneously, we were able to
observe reductions in the training time of several hours.

Final remarks. In conclusion, our main goal has been achieved: we were able to build ML
models to analyse Kepler data, and that allow us to automatically and reliably predict the rotation
periods of K and M stars. Our results show that the predictive performance of the models depends
not so much on the number of input variables, but on their type.

As a remark, we believe that rotation periods calculated with classical methods should not be
used as predictors, because, on the one hand, they already contain the values we are aiming to
obtain and, on the other hand, they are decreasing the predictive performance of the model when
applying it to unseen stars, whose rotation periods we want to predict. Moreover, we suggest
that feature engineering should be performed on synthetic light curves, built from robust stellar
simulators, in order to prevent any bias introduced to the model by the methods used to estimate
the reference values.

5.2 Prospects and Future Work

The methodology presented in this thesis can be improved in several ways. The open questions
that follow from this work are:

• How much correlated features affect the predictive performance of the models? In particular,
would we obtain the same set of the most important predictors, specially in the case of RFs,
if feature selection would have been carried out prior to model training, removing correlated
variables?

• Are there confounding variables in the base data set? How do they affect the predictive
performance of the models?

• Would we be able to improve the quality of the RF models if we had increased the number
of trees during training?

• How does the predictive performance of the models increase if more data is made available?
• Do the large outliers, with values approximately equal to the double of the reference ones,

correspond to harmonics the models might be capturing?
• Is it possible to engineer new features from the light curves in order to improve the perform-

ance of the models?
• How do models trained from synthetic data perform comparatively to models created with

real data?
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These questions lead us to the following potentially interesting research directions.

Feature selection prior to model training. Feature selection should be performed on the
base data set, by (a) investigating correlations within predictors and between those and the target
variable, and (b) by investigating the presence of confounding variables. The task related to the
first topic would be similar to the one carried out in section 3.1.2, but with the extra step of
eliminating colinear features before model training. Given that most of them are derived variables,
a possible criterion to select surviving features could be the ease with which they are obtained.
Confounding variables are known to introduce spurious association between the independent and
the target variables. Their presence in the original data set should be examined. Similar models
to the ones presented in this work should be learnt form the data set after feature selection, and
results compared.

Optimise the number of trees in RFs. We did not vary the number of trees while training the
models based on RFs, due to computational resources constrains. An interesting topic could be to
investigate how much increasing that parameter affects the predictive performance of the models.

Investigate the presence of outliers. Some predicted stellar rotation periods are approxim-
ately equal to the double of their reference values. This seems to indicate that the models are
capturing harmonics, and this is worth further investigation. In particular, increasing the number
of observations in the data set might reduce the number of outliers produced by the models.

Perform feature engineering. We can use the KEPSEISMIC light curves to perform time
series feature engineering. That will require further research on how to extract important features
from the light curves. A good starting point is the work by Cerqueira, Moniz and Soares (2021).

Using synthetic data. Having identified a set of optimal features to predict stellar rotation
periods, it is relevant to train models using tabular data extracted from robust stellar simulators,
such as the PLATO Simulator (Marcos-Arenal et al., 2014), and assess the performance of such
models. On the one hand, we can build a training data set with an uniform distribution for the
ground truth; on the other hand, since we are not introducing bias due to the presence of predictors
that were used to estimate the stellar rotation periods used as reference, we are expecting those
models to be reliable. An additional advantage is that we can train the models on stars with
any possible rotation period, without being concerned with spurious features, misleading signals
introduced by classical pulsators or close binaries, and unreliable data due to poor stitching of light
curves. These models can be used to update the rotation period catalogues currently available.

Using ANNs. There is no free lunch in ML: there is no method that dominates all others over all
possible data sets. While other methods could be applied to some of the data sets created during
this project, mainly DS2, DS6, DS9, and DS10, to decide which learner produces the best results,
we are not expecting to get improvements by using linear regression, generalised additive models,
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lasso, ridge, or support vector machines. We can follow a different type of research line, and
estimate stellar rotation periods from a large number of pre-processed light curves, by applying
deep learning (DL) methods, such as convolutional neural networks. Data can be obtained from
synthetic and knitted real light curves. Perhaps the predictive performance can be improved with
this approach, but these are computational demanding methods and, hence, the effort needed to
train the models might not compensate for the gain.
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APPENDIX A

Tables

Table A.1: Names of the 180 predictors, as they appear in the data set, and their description. Indicated are
the group to which they belong, and the effective number of variables associated to each of them
(N). Astrophysical quantities are labelled “astro”; “ts” stands for time series, “cs” for composite
spectrum, “gwps” for global wavelet power spectrum, and “wav” is an unknown quantity; “prot”
corresponds to rotation periods obtained using ACF, CS, and time-period analysis; xx = 20,55,80.

Variable Description Group Observations N

teff
Teff, effective temperature of the
star

astro 1

teff_eup,
teff_elo

upper and lower errors for Teff astro 2

logg
logg, logarithm of the surface
gravity

astro 1

logg_eup,
logg_elo

upper and lower errors of logg astro 2

m
M, the mass of the star, in solar
masses

astro 1

m_eup, m_elo upper and lower errors for M astro 2

f_07, f_7, f_20,
f_50

FliPer values for
νC = 0.7, 7, 20 and 50µHz

astro 4

kepmag
Kepler magnitude from the
Kepler input catalogue

astro
parameter linked to the quality of
the stellar target

1

length length of the light curve, in days ts
parameter linked to the quality of
the acquired light curve

1

Continued on next page
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Table A.1: Names of the 180 predictors, as they appear in the data set, and their description. Indicated
are the group to which they belong, and the effective number of variables associated to each
of them (N). Astrophysical quantities are labelled “astro”; “ts” stands for time series, “cs”
for composite spectrum, “gwps” for global wavelet power spectrum, and “wav” is an unknown
quantity; “prot” corresponds to rotation periods obtained using ACF, CS, and time-period analysis;
xx = 20,55,80.(Continued)

bad_q_flag bad quarter flag ts
parameter linked to the quality of
the acquired light curve

1

n_bad_q
number of bad quarters in the
light curve

ts
parameter linked to the quality of
the acquired light curve

1

start_time,
end_time

starting and ending time of the
light curve

ts
parameter linked to the quality of
the acquired light curve

2

sph_acf_xx,
sph_acf_err_xx

Sph, photometric activity proxy,
and its error, computed on the
ACF for the xx-day filter

ts
mean of standard deviations over
light curve segments of 5×PACF

rot
6

sph, sph_e Sph, photometric activity proxy ts it is a magnetic activity proxy 2

g_acf_xx
height of PACF for the xx-day
filter

ts

PACF is the period of the highest
peak in the ACF at a lag greater
than zero; GACF is a control
parameter

3

h_acf_xx

mean difference between height
of PACF and the two local
minima on both its sides for the
xx-day filter

ts HACF is a control parameter 3

cs_noise_xx
mean level of noise of the
Gaussian functions fitted to CS
for the xx-day filter

cs
this is the period uncertainty; the
level of noise corresponds to the
HWHM

3

cs_chiq_xx
χ2 of the fit of the Gaussian
function on CS for the xx-day
filter

cs 3

cs_n_fit_xx
number of Gaussian function
fitted to each CS for the xx-day
filter

cs 3

h_cs_xx
amplitude of PCS for the xx-day
filter

cs

PCS is obtained as the period of
the fitted Gaussian of highest
amplitude; it is a control
parameter

3

sph_cs_xx,
sph_cs_err_xx

Sph and its error computed on CS
for the xx-day filter

cs
mean standard deviations over
light curve segments of 5×PCS

rot
6

Continued on next page
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Table A.1: Names of the 180 predictors, as they appear in the data set, and their description. Indicated
are the group to which they belong, and the effective number of variables associated to each
of them (N). Astrophysical quantities are labelled “astro”; “ts” stands for time series, “cs”
for composite spectrum, “gwps” for global wavelet power spectrum, and “wav” is an unknown
quantity; “prot” corresponds to rotation periods obtained using ACF, CS, and time-period analysis;
xx = 20,55,80.(Continued)

cs_gauss_i_j_-
xx

amplitude (i = 1), central period
(i = 2), and standard deviation
(i = 3) of the jth ( j = 1,2, . . .5)
Gaussian fitted in the CS with
the xx-day filter

cs
CS is the product between the
normalised GWPS and the ACF

45

gwps_noise_xx
mean level of noise of the
Gaussian functions fitted to
GWPS for the xx-day filter

gwps
this is the period uncertainty; the
level of noise is given by
HWHM

3

gwps_chiq_xx
χ2 of the fit of the Gaussian
function on GWPS for the
xx-day filter

gwps 3

gwps_n_fit_xx
number of Gaussian functions
fitted to each GWPS for the
xx-day filter

gwps 3

gwps_gauss_i_-
j_xx

amplitude (i = 1), central period
(i = 2), and standard deviation
(i = 3) of the jth ( j = 1,2, . . .6)
Gaussian fitted in GWPS with
the xx-day filter

gwps 54

sph_gwps_xx,
sph_gwps_err_-
xx

Sph and its error computed on
GWPS for the xx-day filter

gwps
mean standard deviation over
light curve segments of
5×PGWPS

rot

6

wav_scl_max_xx,
wav_scl_min_xx

maximum and minimum of
unknown quantity for the xx-day
filter

wav 6

prot_acf_xx
rotation period extracted from
the ACF analysis for the xx-day
filter

prot 3

prot_cs_xx
rotation period extracted from
the CS analysis for the xx-day
filter

prot 3

prot_gwps_xx
rotation period extracted from
the GWPS analysis for the
xx-day filter

prot 3





APPENDIX B

Plots

In this chapter, we present all plots and figures referenced in the manuscript that are not
included in the main text. The figures displayed in the following concern about variable importance,
detailed scatter plots between the ground truth and the predicted rotation periods, and their marginal
distributions.

B.1 Variable Importance

Random Forests

Figure B.1: Variable importance in the random forest model created with DS0.
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Figure B.2: Similar to fig. B.1, but for DS1 (top), DS2 (middle), and DS3 (bottom) models.
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Figure B.3: Similar to figs. B.1 and B.2, but for DS4 (top), DS5 (middle), and DS6 (bottom) models.
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Figure B.4: Similar to figs. B.1 to B.3, but for DS7 (top), and DS8 (bottom) models.

XGBoost

Figure B.5: Variable importance in the XGBoost model created with DS0.
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Figure B.6: Similar to fig. B.5, but for DS2 (top), DS3 (middle), and DS4 (bottom) models. The importance
values were clustered, so that features with the same colour have similar importances.
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Figure B.7: Similar to figs. B.5 and B.6, but for DS6 (top), DS7 (middle), and DS8 (bottom) models.
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B.2 Ground Truth vs. Predictions

Random Forests

Figure B.8: Real values vs. predictions on the testing set for RF models built upon DS0 (top left), DS1 (top
right), DS2 (middle left), DS3 (middle right), DS4 (bottom left), and DS5 (bottom right). The
red dashed lines indicate the identity function.
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Figure B.9: Similar to fig. B.8, but for DS6 (top left panel), DS7 (top right panel), and DS8 (bottom panel).

Figure B.10: Scatter plot of the reference rotation periods vs. the predictions for the RF model trained with
the DS9 data set using all available variables. On the left panel, the blue solid line represents
the identity function, and the red dashed line the linear model between the predicted and
the true values; the right panel presents the identity function (red dashed line), and marginal
histograms and density plots of the sample of predicted and reference rotation periods.
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XGBoost

Figure B.11: Reference vs. prediction values on the testing sets for the XGBoost models built upon DS0
(top left), DS2 (top right), DS3 (middle left), DS4 (middle right), DS6 (bottom left), and DS7
(bottom right). The red dashed lines indicate the identity function.
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Figure B.12: Similar to fig. B.11, but for the DS8 data set.

B.3 Residuals and Error Metrics

Random Forests

Figure B.13: Residuals (top panel) and 10 %-error metric for the RF model trained with all available variables
in DS9.
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Figure B.14: Predictions on the training and testing sets for RF models with 180 (top), 171 (middle), and
165 (bottom) predictors. Orange lines correspond to the ground truth, while blue ones indicate
predictions on the training set and green lines on the testing set.
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Figure B.15: Similar to fig. B.14, but for models with 108, 102, and 39 predictors.
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Figure B.16: Similar to figs. B.14 and B.16, but for models with 33, 19, and 14 predictors.





Index

Accuracy
Error-interval, 15
Interval-based, 15
interval-based, 65

AdaBoost, see Adaptive Boosting
Adaptive Boosting, 30
Artificial intelligence, 4
Artificial neural network, 5

Convolutional neural network, 5
Deep learning, 5

Association, 12
Asteroseismology, 36
Astronomy

Time domain, 3

Bagging, see Bootstrap Aggregating
Baseline model, 17
Bayes’ theorem, 21
Bias, 13
Binary stars

Close-in, 41
Boosting, 28

Number of iterations, 54
Bootstrap, 29
Bootstrap Aggregating, 28

Classical pulsator, 41
Classification, 11, 19

Multiclass, 11
Multinomial, see Multiclass classification

Coefficient of determination, 17, 66, 67
Adjusted, 17

Correlation, 12
Critical point, 59

Data
Structured, 31
Tabular, see Structured data
Testing set, 10
Training set, 10
Unstructered, 31

Data frame, 10

Decision stump, see Decision tree stump
Decision tree, 25

Depth, 54
Leaf, see Node
Majority vote, 29
Node, 25
Rule, 25
stump, 29, 51

Elastic net, 20
Ensemble

Coordinated models, 52
Ensemble method, 28
Entropy, see Impurity
Error, 12

Irreducible, 11
Rate, 15
Reducible, 11
Zeroing interval, 15

Error term, 11
Expected value, 13
Extreme Gradient Boosting, 70

XGB Dense Matrix, 71

Feature, 5, see Variable
Frequency

Nyquist, 32

Gini index, see Impurity
Goodness of fit, 12, 17
Gradient Boosting, 30, 58, 70

Learning rate, 59
Gyrochronology, 32
Gyrochronology relations, 4

Hessian, 59
Hold-out method, 58
Hyperparameter, 18

Impurity, 26, 27, 51, 58
Entropy, 26, 51
Gini index, 26, 51
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Imputation, 50
Independent model, 50
Indicator function, 15
Intercept, 20

Kepler, 36
KEPSEISMIC, 36
Quarter, 41

Kepler catalogue, 5
Kernel

Polynomial, 24
Radial, 24

Kernel function, 24
Kernel trick, 24

Lasso, 20
Lazy learner, 22
Learner, see Model
Learning

Supervised, 10, 19
Unsupervised, 10

Light curve, see Star
Linear predictor, 21
Linearly separable classes, 23
Log-odds, 21
Logistic function, 21
Logistic regression, 21
logit, 21

Machine learning, 4
Margin

Hard, 23
Soft, 23

Maximum posterior hypothesis, 22
Mean squared error, 12

Testing, 13
Training, 13

Minkowsky distance, 23
Model, 10

Coefficient, 20
Linear, 20
Parameter, 20
Weak, 52

Naïve Bayes, 21
Noise, 11

Observable, 38
Odds, 21
Out-of-bag, 18
Overfitting, 11, 55

Parameter
Tuning, see Hyperparameter

Parametric method, 11
Photometric activity index, 32
Photometric activity proxy, see Photometric activity in-

dex
Photon noise, 32
Posterior probability, 21

Power spectral density, 32
Predictor, see Variable
Prior expectation, 22

Radial basis function, see Kernel, Radial
Random Forest, 5, 28, 58
Recursive partitioning, 27
Regression, 11, 19
Regression sum of squares, 17
Regularisation, 20

term, 55
Residual, 12
Residuals sum of squares, 17
Response, see Variable
Ridge Regression, 20
Root mean squared error, 13

Standard deviation, 13
Star, 3

Light curve, 4
Magnetic spots, 4
Solar type, 4
Spots, 4

Steepest-descent minimisation, 53
Stellar rotation period

Autocorrelation function, 33
Gaussian processes, 33
Gradient power spectrum analysis, 33
Periodogram analysis, 33

Stellar rotation periods
Composite spectrum, 33
Time-period analysis based on wavelets, 33

Stellar spot, 32
Stellar surface gravity, 32
Supervised learning, 5
Support vector, 23
Support vector machine

Margin, 23

Time series, 4
Total sum of squares, 17
Training loss, 55

Underfitting, 11, 57
Unsupervised learning, 5

Variable
Case, 10
Categorical, 10
Continuous, 10
Dependent, 10
Discrete, see Variable, Categorical
Explanatory, 10, 67
Factor, 10
Feature, 10
Independent, 10
Input, 10
Instance, 10
Object, 10
Observation, 10
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Ordered categorical, 11
Predictor, 10
Qualitative, see Variable, Categorical
Quantitative, see Variable, Continuous
Response, 10, 67
Target, 10

Variance, 13

Reduction, 27
Whitin-node, 27

von Fraunhofer, Joseph, 3

Weak learner, 29
Wollaston, William Hyde, 3

XGBoost, see Extreme Gradient Boosting
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