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Towards a Universal Machine Learning Pipeline to Understand Galaxies

by Nuno Ramos Carvalho

Galaxies are the building blocks of the Universe at large scale. The study of their

formation and evolution is fundamental to describe the history of the Universe, and for

the understanding of physical processes such as star-formation, the build-up of nuclear

supermassive black holes, and quenching processes. While providing valuable insights

and knowledge for other disciplines like cosmology for example.

Machine Learning methods are becoming increasingly relevant for many studies in as-

trophysics and related disciplines. Deep Learning approaches are providing state-of-the-

art results for many classification and estimation tasks, enabling the creation of methods

for estimating galaxies proprieties in a systematic approach while providing efficient ways

to process large volumes of data. With the advent of upcoming missions and surveys new

approaches will be required to quickly and consistently process large datasets.

The overarching goal of this work is to explore the composition of Deep Learning mod-

els to build pipelines for inferring properties about galaxies exploring data from heteroge-

neous sources. A total of 31 models, composed by 518 layers, comprised of a total of

70128 689 trainable parameters, provide the building blocks for creating easy to apply,

update and evolve pipelines for systematic galaxy characterization. A new dataset, built

from SDSS data, of around 100k objects is used to train, validate and test the devised

models, that achieved a best score on the test sets of 0.00047 on the MSE loss function

for predicting the redshift, 7.17838 on the MAE loss function for predicting the stellar mass,

an accuracy of 88.456% for predicting the sub-class and of 51.504% for predicting the GZ2

simplified class. All the models, tools and resources are publicly available under open-

source licenses, immediately enabling anyone to use them in their own work or research

without restrictions or limitations.
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Rumo a um Pipeline Universal de Aprendizagem Máquina para Compreender

Galáxias

por Nuno Ramos Carvalho

As galáxias são os blocos de construção do Universo em grande escala. O estudo da

sua formação e evolução é fundamental para descrever a história do Universo e para a

compreensão de processos físicos como a formação de estrelas, a geração de buracos

negros super-massivos e processos que levam à redução da taxa de formação estelar.

Fornecendo informação e conhecimentos valiosos para outras disciplinas como por exem-

plo a cosmologia.

Métodos de Aprendizagem Máquina estão a tornar-se cada vez mais relevantes para

muitos estudos em astrofísica e disciplinas relacionadas. Abordagens baseadas emDeep

Learning estão a atingir resultados estado-da-arte em muitas tarefas de classificação e

previsão, possibilitando a criação de métodos para estimar propriedades de galáxias de

uma forma sistemática e fornecendo métodos eficientes para processar grandes volumes

de dados. Com o advento das próximas missões e censos, novas abordagens serão

necessárias para lidar de forma rápida e consistente com grandes volumes de novos

dados.

O objetivo deste trabalho é explorar a composição de modelos de Deep Learning para

construir pipelines para inferir propriedades de galáxias. Um total de 31 modelos, com-

postos por 518 camadas, com um total de 70128 689 parâmetros treináveis, fornecem

os blocos necessários para construir pipelines expeditos de aplicar e atualizar que ex-

ploram dados de fontes heterogéneas para caracterização sistemática de galáxias. Um

conjunto de dados construído a partir de dados do SDSS com cerca de 100k objetos é

utilizado para treinar e validar os modelos implementados. Os melhores modelos obtive-

ram os resultados nos dados de teste de: 0.00047 na função de perda MSE para estimar

mailto:up201007509@fc.up.pt


o redshift, 7.17838 na função de perda MAE para estimar a massa estelar, uma precisão

de 88.456% para estimar a sub-classe e de 51.504% para estimar a classe simplificada

do GZ2. Todos os modelos, ferramentas e recursos desenvolvidos são distribuídos publi-

camente sob licenças de software aberto, imediatamente disponíveis para qualquer um

usar no seu trabalho ou investigação sem restrições ou limitações.
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Chapter 1

Introduction

Galaxies are one of the major building blocks while discussing the current structure and

knowledge about the Universe. The study of galaxy formation and evolution is fundamental

to describe the history of the Universe and in other fields of study, e.g. cosmology. Galax-

ies are colossal objects and they span across a great variety of distances from Earth, from

the Local Group, which includes the Milky Way, to the far edge of the observable Universe,

and probably beyond, and therefore cannot be studied in a laboratory, as often is the case

in the context of astrophysics. To understand these mammoths indirect methods are used

to measure familiar characteristics from observations, e.g. mass, size, composition.

The process of drawing conclusions from observations is, historically, a human mental

activity. The challenge is to focus on the details of interest (features) in the available

data and capture the pattern that generalizes well enough to the majority of cases, which

later allows to infer properties for new observations. For example, given observations of

planets, the Moon and the Sun (data), Brahe created detailed records of their position in

the Sky (features), and from these Kepler inferred his laws of motion (patterns), that can

be used to predict (infer) the mass of objects in and outside the Solar System (generalize)

(Koestler, 1959). The challenge is: how to go from features to patterns that describe a set

of well defined rules able to accurately infer new conclusions.

Machine Learning (ML) is a broad field concerned with the study of techniques used

to discover patterns in data and build models (rules) that capture these patterns and en-

able inference given new never seen before observations. For example, given detailed

observations of the movement of the Earth around the Sun, it is possible to train a model

to predict the next position of the Earth relative to the Sun. With more traditional ML tech-

niques the features of focus are selected and devised by humans, with the advent of Deep

1



2 Towards a Universal Machine Learning Pipeline to Understand Galaxies

Learning (DL) this has changed, because more data is directly used to train the network,

and given the nature of thesemodels, they are able to find the features of interest, i.e. more

relevant to the task at hand. Of course, in some cases feature engineering, i.e. manually

creating features based on domain knowledge, still enables achieving better results. For

example, some years ago the spam/no-spam e-mail filters were trained by providing a

set of specific features to an ML algorithm, e.g. number of nouns, number of capitalized

words, number of words found in the dictionary, today the entire text is fed to a neural

network and given enough data, and enough time, the algorithm can learn the features of

interest as part of the model training stage.

In any case, the use of ML techniques requires data to train models. To end up with a

model that is able to generalize well an adequate volume of data observations is required,

otherwise the model will not be able to capture the underlying pattern. Projects like the

Sloan Digital Sky Survey (SDSS) provide large volumes of data, readily available, and for

free, which enable the creation and exploration of DL and other families of models.

The overarching goal of this work is to explore the use of combinations of DL models

and data to devise computational ready to use tools capable of characterizing galaxies.

The main intuition behind this idea is to let the network figure out the features of interest in

the data, and the pattern that better generalizes to unseen examples, opposed to manually

selecting the features of interest. The panoply of research available in the literature already

sustains the intrinsic assumption that the required information is available in the data.

Hence, the guiding research question for this work is defined as:

Can a set of data pipelines, using a combination of deep learning models

and heterogeneous data sources, potentially provide additional benefits for

characterizing galaxies properties to enhance galaxy understanding?

The remaining sections of this chapter include: a discussion of the generic problem that

this approach is addressing; a brief motivation for studies in this area of research; a sum-

mary of the work plan, including the main contributions of this work; and an outline of the

remaining chapters of this document.

1.1 The Problem

The study and characterization of galaxies is an ongoing challenge in astrophysics. It is

not possible to measure a galaxy length with a ruler, or its weight with a traditional scale.
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Most of the measurements done in modern times are performed using indirect methods.

These provide ways to extrapolate quantities of interest that are not possible to measure

directly. The overarching goal of this work is to provide a clear and integrated mechanism

to characterize galaxies to contribute to all the works that explore this data as input for

analysis.

There are currently different approaches available in the literature for analysing differ-

ent properties of interest about galaxies, including tools and models at different levels of

maturity, Section 2 introduces some of them. Twomajor shortcomings recurrently emerge:

the lack of integration of different approaches, techniques and models; and, the lack of in-

tegration of different sources of data. The simultaneous integration of data that models

different aspects of nature has the potential to provide more accurate predictions of mea-

sures of interest. Another shortcoming with current approaches discussed in the literature

for the study of galaxies is the lack of information and/or resources for reproducing the

approach applied to new or updated datasets. Galaxy characterization is often based on

statistical analysis and tools, and it is common to recurrently process data, including new

data releases, to explore new or updated results. Techniques that are not fully described

may be hard, or impossible, to systematically (re-)apply to new datasets.

1.2 Motivations

Galaxies provide a unique environment for studying physical processes, e.g. general hy-

drodynamics, thermodynamics, plasma, nuclear or atomic physics, in conditions that are

not possible no replicate in a laboratory on Earth. Star formation and evolution is another

topic that can also take advantage of the studies on galaxies.

Galaxies play an important role in the study of the structure and evolution of the Uni-

verse. They are abundant and bright, and span over cosmological time and length scales

on large numbers, which allows using them as tracers of the Universe evolution, their dis-

tribution and properties on large scale can provide insight on cosmological parameters

that can be used to test cosmological models (Mo et al., 2010).

The space between galaxies, typically referred to as the Intergalactic Medium (IGM),

although empty of stars it still contains some gas and dust of minute particles provid-

ing valuable information about the distribution of mass of the Universe at a cosmological
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scale. This medium can be studied by analysing the light from distant galaxies or stars

that crosses it and reaches the detectors (Mo et al., 2010).

With the increase of available data, and with the upcoming surveys, the feasibility and

necessity of using ML increases. Also, the currently available literature already includes

many works discussing synergies between these areas of research, emphasizing the moti-

vations for working in these topics, some recent examples include the works by Cavanagh

et al. (2021), Collister & Lahav (2004), Dieleman et al. (2015), Huertas-Company et al.

(2018) and Tuccillo et al. (2018).

Besides the scientific motivations, by providing well defined pipelines capable of yield-

ing properties of interest, that are able to process data from different sources while inte-

grating models for different aspects and by developing tools and models as stand-alone,

self-contained building blocks, integration with future development workflows and apply-

ing the pipelines to new datasets is possible systematically, hence addressing some of the

shortcomings highlighted in the previous section.

1.3 Work Plan

In a nutshell, the devised work plan for addressing the problem guided by the research

question is divided in three main parts:

1. Compile a dataset from observations of objects of interest (galaxies) that includes

useful information for characterizing galaxies in heterogeneous formats and from

different sources, images, FITS1 and spectra data;

2. Build and train a set of DL models for inferring properties of interest of galaxies, given

the data compiled in the previous step, using different combinations of input data for

different properties outputs;

3. Combine the models and data processing capabilities developed in the previous

steps to create ready to use, pipelines for systematic galaxy characterization.

1Flexible Image Transport System (FITS) is the standard format for astronomical images and derived data.
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1.4 Main Contributions

The overarching goal of this work is to contribute to enhance the characterization and

understanding of galaxies, a summary of the main contributions follows:• Increased awareness for exploring DL techniques in the context of astrophysics ap-

plications, the creation of shareable datasets and models, and easily reproducible

data processing techniques and workflows;• A compiled dataset with SDSS observations from around 100k objects classified as

galaxies with data from different sources, including RGB images, FITS and spectral

data2;• A collection of DL models with single and multi inputs/outputs that can be used stand

alone or combined together to infer several properties of galaxies objects3;• A generic Python package and framework for developing pipelines, including helper

modules for dealing with SDSS data and a set of pipelines for systematically pro-

cessing data readily available4;• An online application for exploring the collection of available models and pipelines,

allowing to readily infer and process SDSS objects data5.

All packages, models, applications and resources are shared publicly and under MIT or

CC permissive licenses, that immediately enables anyone to use them in their own work

or research without restrictions or limitations.

1.5 Document Outline

A brief outline of the remaining chapters of this document follows:

Chapter 2 introduces some topics concerning the study and analysis of galaxies, and dis-

cusses some of the properties that can be explored to enable a deeper understanding

of galaxy formation and evolution;

2Available from: https://doi.org/10.5281/zenodo.6393487 (last accessed: 2022-10-18).
3Available from: https://github.com/nunorc/astromlp-models (last accessed: 2022-10-18).
4Available from: https://github.com/nunorc/astromlp (last accessed: 2022-10-18).
5Available from: https://nunorc.github.io/astromlp-app (last accessed: 2022-10-18).

https://doi.org/10.5281/zenodo.6393487
https://github.com/nunorc/astromlp-models
https://github.com/nunorc/astromlp
https://nunorc.github.io/astromlp-app
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Chapter 3 discusses some ML and DL background concepts used throughout this work,

and introduces some artefacts and techniques used in the following chapters;

Chapter 4 describes and illustrates the devised models to infer properties of interest, and

the new dataset created to train, validate and test the models;

Chapter 5 describes the implementation of pipelines for galaxy characterization using the

previously described models and resources and how they can be applied;

Chapter 6 ends the document with some final remarks and trends for future work.

A couple of additional remarks concerning the content of this document. Mainly dur-

ing Chapter 4 and 5, to clearly define and discuss models, data inputs and outputs, and

pipelines integration the Haskell programming language is used as a specification lan-

guage. Most of the times the Haskell syntax is followed strictly, i.e. the code can be

executed by a compiler, but sometimes in order to increase readability some details are

simplified, resulting in non-valid syntax, but hopefully easier to be read by humans. Ap-

pendix G provides a brief introduction to the Haskell notation, emphasizing the most com-

mon expressions and statements used in this document.



Chapter 2

Understanding Galaxies

Galaxies are one of the fundamental building blocks of the current description of the Uni-

verse. A galaxy can be described as a gravitationally bound collection of gas, dust, stars,

and other exotic matter. They exist in many shapes and forms and are found mostly in

pairs or groups, which sometimes are bound together in clusters, groups and clusters may

form larger systems, superclusters. Properties like form, size and mass are related with

the physical phenomena that drive the processes responsible for galaxies formation and

evolution, and understanding these processes enables a deeper understanding of galax-

ies (Karttunen et al., 2007). The remaining sections of this chapter discuss some of the

properties later addressed using Deep Learning (DL) models in more detail.

2.1 Imaging & Photometry

Astronomical imaging encompasses all the tasks (e.g. planning, calibration) of capturing

photons using a telescope and a CCD camera or other apparatus; while photometry is

a field of study more concerned with measuring the actual amount of electromagnetic

radiation captured from astronomical objects (Gallaway, 2016).

Luminosity and flux are some of the quantities addressed by the field of photometry.

Luminosity refers to the total amount of energy radiated by an object per unit time. Flux

is the amount of energy from a luminous object that reaches a given area or surface.

Luminosity and flux are related mathematically by the following equation:

F = L
4π r2

, (2.1)

7
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where, the flux F is given by dividing luminosity L by the surface of a sphere with radius

r, i.e. the distance to the object, assuming the source is radiating evenly in all directions.

For further distances this relation should also include a factor to correct for the spectral

distance, usually the K-correction (Hogg et al., 2002) is used. Typically the flux is mea-

sured using some kind of apparatus, e.g. a detector in a telescope, and if the distance

to the object is known, its luminosity can be calculated for example, generally only well

defined intervals of wavelengths, sometimes referred to as bands, are measured (Sparke

& Gallagher III, 2007).

Morphological classification, cosmological redshift, galaxy activity are some of the

properties of interest that are calculated from the heterogeneous fluxes, in different bands,

retrieved using imaging and photometry techniques. The remaining sections of this chap-

ter discuss some of these properties in more detail.

2.2 Morphological Classification

Morphological classification of galaxies from images, based on their appearance and form,

is a characteristic studied to understand galaxy formation and evolution. As a first ap-

proach, galaxies can be roughly divided in two major groups: historically named as early-

type galaxies, with an older stellar population, redder in the optical; and, late-type galax-

ies, bluer in the optical, with a younger stellar population; but more complex classification

schemas are available in the literature (Sparke & Gallagher, 2000).

The classification system proposed by Hubble (1936), illustrated in Figure 2.1, is the

first proposed schema to classify galaxies, it organizes objects by their form and appear-

ance.The underlying interest of classification schemas is to group objects that share com-

mon characteristics in order to study their physical properties, some examples of groups

follow:• Ellipticals: smooth shaped early-type galaxies, bright in the optical red, and lacking

any distinguishable features, very low ongoing star-formation;• Disks: galaxies with a central bulge and a spiral like structure, may have other fea-

tures like bars and rings, brighter in the optical blue, actively forming stars;• Lenticulars: in-between elliptical and spiral galaxies, with a high bulge to disk ratio

and little ongoing star formation;
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of the other groups.

Figure 2.1: Hubble classification diagram, where three major branches of galaxies are
illustrated: ellipticals (E) to the left, disk galaxies (S) to the right, and lenticular galaxies

(S0) in the fork (Hubble, 1936).

The schema proposed by Hubble was later expanded by de Vaucouleurs (1959), to include

specific classes to cope better with the presence and prominence of spiral arms, bars and

rings. Conselice (2003) proposes another classification system based on the quantitative

measure of three parameters: concentration (C), asymmetry (A), and clumpiness (S), re-

ferred to as the ”CAS” system, able to clearly distinguish galaxies in various phases of

evolution.

Independently of the schema used, traditionally, the classification of galaxies is a task

performed by humans, by visually inspecting two dimensional images. With recent devel-

opments in Machine Learning (ML) techniques, technological improvements of astronom-

ical instruments, the advent of citizen science projects like Galaxy Zoo 2 (Willett et al.,

2013), and the increased availability of labelled data, i.e. observations that has been

tagged with one or more labels, e.g. images of galaxies with the corresponding mor-

phological classification label, other methods have been proposed to handle such tasks

more automatically and exploring different data. To cite just a few examples related with

this work: morphological analysis with unsupervised learning from multi-band photometric

imaging by Martin et al. (2020); classification from spectroscopic data by Ball et al. (2006);

morphological classification using DL networks by Cavanagh et al. (2021); Dieleman et al.

(2015) present a deep neural network model for galaxy morphology classification; and,
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Zhu et al. (2019) propose a variant of residual networks for galaxy morphology classifica-

tion.

2.3 Spectral Analysis

Spectroscopy is a field of study concerned with measuring and studying the electromag-

netic signatures that result from the interaction of electromagnetic radiation with matter.

Several methods and techniques for analysing galaxy spectra details can be used to ex-

tract information about the observed object. By comparing the absorption lines and emis-

sion lines with a broad continuum emission it is possible to determine for example: the

velocity and cosmological redshift from the lines’ shift with regard to their reference posi-

tions; the relative abundances of elements from the relative strength and width of the lines;

or the pressure, density and rotation from the shapes of the lines (Gallaway, 2016).

2.3.1 Cosmological Redshift

Spectral lines of light from moving galaxies, travelling in the form of electromagnetic radi-

ation in a stretching spacetime, get shifted towards the red by an amount proportional to

their distances, this phenomena is referred to as the cosmological redshift (Bunn & Hogg,

2009, Whiting, 2004).

The dimensionless redshift z can be directly computed from the spectrum, by measur-

ing the shift of some identified line(s) with respect to the expected wavelength asmeasured

in a laboratory using the following relation:

1 + z = λobj
λref

(2.2)

where, λobj is the wavelength of the spectral feature from the distant object and λref is

the wavelength of the spectral feature observed in a laboratory on Earth (Karttunen et al.,

2007). As an example Figure 2.2 illustrates the spectrum for a galaxy1, where the solid

vertical orange line identifies the wavelength for the Hα spectral feature from the distant

object, where λobj = 7222.0Å, and the dotted vertical orange line identifies the wavelength
for the Hα spectral feature observed in a laboratory on Earth, where λref = 6563.8Å. From
the relation in Equation 2.2 is immediate to calculate that for this observation the redshift

z = 0.1.
1Object identifier 1237666407379828976, data retrieved from the SDSS database.
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Figure 2.2: The shift towards the red from the wavelength of the spectral feature observed
in a laboratory on Earth, where λref = 6563.8Å, to the wavelength of the spectral feature

from the distant object, where λobj = 7222.0Å.
When processing spectra in bulk, for large surveys of data, its not feasible to identify the

spectral features of interest against the spectrum continuum manually, a more systematic

approach is required. There are two major trends available in the literature:• Template fitting methods, the first and most common approach, in which a Spectral

Energy Distribution (SED) is matched against a set of templates for different galaxy

types and redshifts, the best match found determines the redshift, the method of

maximum likelihood is predominantly used, trying to find the match that minimizes

the χ2 when comparing the observed magnitudes with the magnitudes derived from

the templates (Bolzonella et al., 2000). Examples that follow this approach include

the works by Arnouts et al. (2002), Benítez (2000), Brammer et al. (2008), Coe et al.

(2006) or Ilbert et al. (2006);• ML based approaches, appearing later, where a smaller set of observations with

known redshifts is used to train a model that is later used to infer the redshift for

observations of interest, for examples that follow this approach refer to the works by

Collister & Lahav (2004), Gerdes et al. (2010) or Carrasco Kind & Brunner (2013).

There are advantages and disadvantages for both approaches, and there are also exam-

ples of combined approaches, for more details on a comparison between these refer to

Sánchez et al. (2014).
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2.3.2 Stellar Mass

The stellar mass of a galaxy encompasses the sum of the mass of all the stars gravitation-

ally bound to it, including stars still undergoing nuclear fusion, as well as stellar remnants,

e.g. white dwarfs, neutron stars. Measuring and studying the distribution of stellar mass

at a cosmological scale, helps understanding and testing the evolution of galaxies through

time, since typically the mass of a system is its main evolution driver (Courteau et al.,

2014).

Although there are several approaches currently available in the literature for estimat-

ing the stellar mass, the more popular are computed using a SED fitting approach. A SED

conveys information about a galaxy stellar population by describing the distribution of light

emitted by all the stars across all wavelengths, which helps to compute the contribution

to the overall radiated energy from the stars that are shining, this can be observed and

also modelled. There are two main ingredients for estimating the stellar mass using this

approach: (i) a set of model templates for different stellar populations, and (ii) a fitting

method to find the best match between the observed data and the templates. Examples

of template sets include the works by Bruzual & Charlot (2003) and of fitting methods the

works by Bolzonella et al. (2000)

Typically, the redshift is relevant and required for most approaches and techniques, it

can be just another free parameter in the model, i.e. the value is also found during fitting,

or it can be provided outside the scope of the model, i.e. just another input variable, this

usually depends on if the redshift is already available or not.

2.4 Starbursts & Active Galaxies

The Star Formation Rate (SFR) of a galaxy measures the total mass of stars formed,

on average, per unit time, usually a year, and is calculated based on flux measures at

different wavelengths, e.g. ultraviolet continuum emission from hot stars. When a galaxy

experiences an intense SFR, usually somewhere between 10 to 100 times higher than the

average SFR for normal galaxies, is referred to as a starburst. The intense star formation

is typically concentrated in small regions and can be identified by strong ionized hydrogen

emission lines on a blue stellar continuum (Mo et al., 2010). Figure 2.3 illustrates the

spectrum for an object from the SDSS database classified as a starburst galaxy2.

2Object identifier 1237668335783116981, data retrieved from the SDSS database.
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Figure 2.3: Example spectrum for a galaxy classified as starburst from the SDSS
database.

An Active Galactic Nuclei (AGN) is a compact region at the centre a galaxy that emits

radiation across the entire range of the electromagnetic spectrum, opposed to the consid-

ered normal galaxies where most of the light comes from stars, gas and dust, thought to be

powered by matter accreting onto a Super Massive Black Hole (SMBH). A galaxy hosting

an AGN is usually referred to as an active galaxy, examples include Seyfert galaxies, radio

galaxies, and quasars. The spectra of many AGN is usually identified by strong emission

lines and non-thermal radiation covering the entire electromagnetic spectrum from radio

to gamma-ray, including X-rays, ultraviolet and visible radiation. Some spectral features

of active galaxies may vary according to the orientation through which they are observed

(Mo et al., 2010, Robson, 1996). Figure 2.4 illustrates the spectrum for a galaxy from the

SDSS database classified as an AGN3, showing characteristic strong emission lines, e.g.

[OII], Hα, [NII], over a lower, less flat, continuum with shallow absorption lines.

Figure 2.4: Example spectrum for a galaxy classified as AGN from the SDSS database.

3Object identifier 1237663548519088286, data retrieved from the SDSS database.
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2.5 Observational Surveys, Catalogues & Projects

Studying objects like distant stars and galaxies is fundamental to understanding the Uni-

verse, but these can not be studied in a laboratory. Indirect measures from observations

is one of the sources of information, but these are hard to make accurately and prone

to errors. Sometimes the only way to study some phenomena is to perform statistical or

ML based analysis, but these require large amounts of data (observations). This section

briefly introduces some resources that provide large volumes of data that enable the use

of the techniques explored throughout this work.

2.5.1 Sloan Digital Sky Survey (SDSS)

The Sloan Digital Sky Survey (SDSS) project is a survey collecting observations for mil-

lions of sources primarily at optical wavelengths (Blanton et al., 2017). The project en-

compasses several instruments, like the 2.5 meters Sloan Foundation Telescope (Gunn

et al., 2006), and the multi-object fibre spectrographs capable of obtaining 1000 spectra

simultaneously (Smee et al., 2013), both mounted at Apache Point Observatory in New

Mexico, United States of America. The project periodically provides data releases, that

provide access to the collected observations, and also to the result of other programs,

catalogues, for example, the Baryon Oscillation Spectroscopic Survey (BOSS) (Dawson

et al., 2013). At the time of writing this document the last data release made available is

DR17 (Abdurro’uf et al., 2022).

Some relevant SDSS data used throughout this work includes: objects classification

and redshift resulting from the pipeline discussed by Bolton et al. (2012); photometric data

resulting for the observed bands u, g, r, i and z, Table 2.1 summarizes the bands central

wavelengths and corresponding full widths at half maximum (Fukugita et al., 1996); and,

the stellar mass from the eBOSS Firefly catalogue (Comparat et al., 2017) calculated using

the FIREFLY tool (Wilkinson et al., 2017).

For more details and information refer to the SDSS official website4, where all the data

is made available through different services in a heterogeneous set of formats.

4Available from: https://sdss.org (last accessed: 2022-10-18).

https://sdss.org
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Band u g r i z

Wavelength 3500Å 4800Å 6250Å 7700Å 9100Å
FWHM 600Å 1400Å 1400Å 1500Å 1200Å

Table 2.1: SDSS photometric data central wavelengths and corresponding full widths at
half maximum for bands u, g, r, i and z.

2.5.2 Wide-Field Infrared Survey Explorer (WISE)

The Wide-Field Infrared Survey Explorer (WISE) survey is a mid-infrared all sky survey

mission funded by NASA. The 40cm satellite mounted telescope, mapped the whole sky

in four infra-red bands, referred to as W1, W2, W3 and W4, Table 2.2 summarizes the

bands central wavelengths and corresponding full widths at half maximum (Rodrigo et al.,

2012, Wright et al., 2010).

Band W1 W2 W3 W4

Wavelength 34655Å 46443Å 132156Å 222229Å
FWHM 6358Å 11073Å 62758Å 47397Å

Table 2.2: WISE photometric data central wavelengths and corresponding full widths at
half maximum for bands W1, W2, W3 and W4.

For more details and data refer to the WISE website5. The data is also available from the

SDSS database, including a best match between objects identifiers for both programs.

2.5.3 Galaxy Zoo 2 (GZ2)

The Galaxy Zoo 2 (GZ2) project is a crowd-funded project where volunteer citizens manu-

ally annotate morphological features of SDSS images of galaxies at a large scale (Willett

et al., 2013).

The dataset contains the votes to a set of questions, e.g. “Is the object a smooth galaxy,

a galaxy with features/disk or a star?”, “Is there a spiral pattern?”, from human volunteers.

From a statistical analysis of these votes, labels are created for each galaxy conveying

morphological information, for example the presence of specific features like bars or spiral

features Hart et al. (2016). The volume of data available enables exploring the use of ML

techniques for task automation, e.g. galaxy classification, for some examples refer to the

works by Zhu et al. (2019) or Polsterer et al. (2012).

5Available from: https://irsa.ipac.caltech.edu/Missions/wise.html (last accessed: 2022-10-18).

https://irsa.ipac.caltech.edu/Missions/wise.html
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For more details about the project refer to the GZ2 official website6, for more details

about the data and the complete dataset refer to the data website7. Most of the compiled

data is also available immediately from the SDSS database.

6Available from: https://galaxyzoo.org (last accessed: 2022-10-18).
7Available from: https://data.galaxyzoo.org (last accessed: 2022-10-18).

https://galaxyzoo.org
https://data.galaxyzoo.org


Chapter 3

Deep Learning Essentials

A computer would deserve to be called intelligent if it could deceive a

human into believing that it was human.

– Alan Turing

Artificial Intelligence (AI), in a nutshell, refers to the ability of machines to perform in-

telligent, human-like behaviour, tasks. This chapter introduces and reviews some funda-

mental topics in the sub-fields of Machine Learning (ML) and Deep Learning (DL) closely

related with this work, starting with some definitions (Janiesch et al., 2021).

Artificial Intelligence

AI is a broad field of study concerned with automating intellectual tasks, usually performed

by humans. This spawns a wide range of applications, for example: a computer program

playing chess, a human robot walking, a satellite in orbit taking pictures of the Earth, a

mobile phone application providing restaurant suggestions, and so on. In a nutshell we

can devise this artefact that displays some human-like behaviour, usually referred to as an

agent, as being in an environment and as inputs are received from the environment some

action is performed by this agent, given some previous knowledge.

Machine Learning

ML is a sub-field of AI concerned with the study of algorithms and techniques that dis-

cover patterns in data. By learning these patterns from real data, a model can capture the

17
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underlying mapping between the inputs and the outputs. A widely accepted more formal

definition follows:

“A computer program is said to learn from experience E with respect to some

class of tasks T and performance measure P, if its performance at tasks in T,

as measured by P, improves with experience E” (Mitchell, 1997).

More informally, ML enables a computer to learn how to perform a task without being

explicitly programmed how to do it.

Deep Learning

DL, a sub-field of ML, is a broad term encompassing the study of algorithms and techniques

exploring models implemented as a (deep) composition of layers where the output of one

layer is passed to next layer consecutively building new representations of the data until

the output layer computes the final result (Goodfellow et al., 2016).

Deep Learning

Machine Learning

Ar�ficial Intelligence

algorithms using deep neural networks

learn and improve pa�erns from data

machines imita�ng human like behavior

Figure 3.1: Fundamental relations between the fields of AI, ML and DL.

Figure 3.1 illustrates the fundamental relations between AI, ML and DL, and how they

fit together. The next sections discuss some aspects from these fields in more detail,

focusing on ML and DL.

3.1 Fundamentals of Machine Learning

ML introduced a new paradigm for developing applications. In more traditional approaches

a computer is given some data and the rules to produce some answers (outputs). When

using ML the paradigm changes, the computer is given some data and the answers, and
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it produces the rules, i.e. a mapping that describes the pattern that goes from data to

answers. In this sense, the computer ”learns” the rules from the data, opposed to being

explicitly programmed.

This function, or mapping, between inputs and outputs is usually captured in a model

and a ML technique or approach is used to build these models. Some examples of com-

mon ML techniques include: linear regression, decision trees or neural networks.

3.1.1 Defining the Problem & Major Branches

Most of the available literature distinguishes three major branches of ML, in no particu-

lar order: supervised learning, unsupervised learning and reinforcement learning, but of

course other more detailed subdivisions are possible. Each branch addresses some typ-

ical type of task, and usually employs some well know techniques. Hence, usually when

addressing a new problem, the first step is to define in which branch (or category) the

problem falls into. This usually entails which techniques are more suitable to use. There

is no hard line between these branches and some problems may cross different learn-

ing approaches but clearly defining the problem, and the context, is a required step for

applying ML. A brief description of the major branches follows (Janiesch et al., 2021).

Supervised Learning

In supervised learning the inputs and outputs are known during training, the goal of the ML

algorithm is to build a mapping, a function, between the inputs and the outputs, sometimes

also referred to as the ground truth, that is later used to predict outputs given new unseen

inputs. The most common tasks in supervised learning are regression and classification.

In regression problems the output of the model is a continuous variable, e.g. predict the

temperature, salary; in classification problems the output variable is discrete, i.e. predict

the most probable label, also known as category or class, e.g. spam or no-spam, cat or

dog. Common models in this family of problems include linear regression, decision trees

and neural networks.
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Unsupervised Learning

In unsupervised learning only the inputs of the problem are available. In this case the goal

of the ML becomes finding some underlying structure in the data. A typical example is clus-

tering, e.g. find groups of users with similar tastes, or group books by topic; recommender

systems can be another example of unsupervised learning, e.g. recommend friends on

social networks, recommend items of interest in a grocery store. Common algorithms in

this family of problems include for example k-means and hierarchical clustering.

Reinforcement Learning

In reinforcement learning the gist is learn by doing, in this family of problems the algorithm

learns how to perform a task using a reward system, where the algorithm is rewarded when

the result of an action, or sequence of actions, has a positive outcome, and penalized oth-

erwise. The main intuition behind this approach is that given a sufficiently large number of

iterations eventually the model starts to learn the best actions to take in specific settings as

to maximize some notion of cumulative reward, e.g. learning how to play a game. Com-

mon techniques in this family of problems include for example Markov Decision Process

and Q learning.

3.2 Artificial Neural Networks & Deep Learning

An Artificial Neural Network (ANN) is a model used in ML built using a network of nodes,

stacked in consecutive layers, connected by edges. Networks get some input data, and

outputs a representation of data in a more useful form in the context of the problem at

hand. Each node in each layer has its own weights, bias and activation capable of learning

a feature of the input it gets. When a significant number of hidden layers exist, i.e. layers

that stand between the input and the output layers, we enter the field of DL. The main

intuition behind this concept is that each layer learns a more useful representation of the

data before passing it on as input to the next layer, by successively transforming the data

in more useful representations the network is capable of finding a statistical structure for

mapping inputs to outputs (Chollet, 2018). Figure 3.2 illustrates a deep neural network

model with three input nodes, one output node, and three fully connected hidden layers

in-between.
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Figure 3.2: Artificial neural network example with three fully connected hidden layers.

The gist of building a DL model to perform a specific task in a given context revolves

mainly around defining four main components:

1. The model input and output;

2. The network architecture – the combination of layers that define the model;

3. The loss function – to evaluate the model;

4. The optimizer – to update the model.

The input data and model output immediately derive from the problem at hand. For ex-

ample for an image classification problem, the input is an image of a given size, and the

output is a label. The following sections discuss each one of the other components in more

detail.

3.2.1 Network Architecture & Composition of Layers

In the context of DL a model is a directed, acyclic graph of layers, where the most common

instance is a linear stack of layers, mapping multiple input nodes to output nodes. In a

nutshell a layer is a function that maps inputs into outputs. Each layer has a number of

nodes that describe the shape that the data has before and after being processed. In a

broad sense a model is also a function that maps inputs into outputs, and the network

architecture of the model is a combination of layers, where the output of one layer is the

input to the next, until the final output is computed.

A layer is a construct that is used to define the model architecture. Composition of

layers entails connecting a sequence of layers in order, where the output of the previous
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layer is the input to the next one. A shape is usually associated with a layer, used to

define the dimensions of the layer input and output. Layers inputs and outputs can have n

dimensions and different shapes, layers can also have inherent different structures. Every

network model has at least one input layer, this is the first layer in the network and it has

as many nodes as required by the input data, usually the shape of the layer is defined

by the type of data; and also at least one output layer, that has as many nodes as the

desired outputs, for example if a model is predicting temperature and this is defined as a

regression problem, the final layer has one node – the temperature. An arbitrary number

of layers of different types, referred to as hidden layers, may exist between the input and

output layers that are used to build a function for mapping the inputs to the outputs.

Types of Layers

Some other commonly used layers include (Chollet, 2018):• Fully connected: a fully connected layer, or sometimes also referred to as a dense

layer, is a layer where every node is connected to every other node, this is typically

the default type of hidden layer inmost libraries, the input shape of the layer is defined

by the previous layer, i.e. it is the same, and the output shape of the layer defines

the input of the next one. This kind of layer usually implies that all the nodes in

the previous data representation may affect all nodes in the current representation,

leaving to each nodes’ weights the responsibility to define the importance of each

edge during the training process.• Convolutional layer: is a specific type of layer that is commonly used to deal with

images data, by applying special filters, usually called kernels, to the input a feature

map is created that, in a nutshell, summarizes the features of interest found in the

input. Note that the kernels used are usually created also during the training process

of a network, i.e. they are made of parameters themselves and so the feature maps

are specific to the problem and context at hand.• Pooling layer: is commonly used in combination with Convolutional layers to re-

duce the dimensions of the feature maps, by summarizing the feature map1 using

1Feature map refers to the output of a convolutional layer, these include the relevant patches of the

previous layer that convey features of interest to the task at hand.
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some given mathematical operation, e.g. average, maximum; this also helps finding

specific features in different locations of the input.• Dropout layer: its a special layer in the sense that it has no parameters to train; the

goal of this layer is to randomly remove nodes from the network. This is used mainly

as a regularization technique to prevent over-fitting of the network, or sub-networks,

to the training data. The underlying intuition is that by randomly dropping nodes

in the network, some edges between some nodes disappear making other weights

have to deal with seldom seen cases (Hinton et al., 2012).• Normalization layer: its another special layer in the sense that there are no pa-

rameters to train; the goal of a normalization layer is to normalize the input data, i.e.

downscale the values to a more useful scale, usually small numbers around 0 is best

for the inner mechanics of neural networks. This is usually done at the beginning of

the network but it can also be used with other purposes in the middle of the network.

Activation Functions

An activation function, required for every layer, defines the output of a node given the node

internal representation of the data, and it allows the network to learn more complex (non

linear) patterns. The output of the activation function is actually the output of the node that

becomes the input on the nodes in the layer. Some common activation functions include

(Nwankpa et al., 2018):• Linear: the linear activation function is proportional to the input, it can be defined as:

a(x) = x . (3.1)• Sigmoid: accepts arbitrary number of inputs, and outputs a number between 0 and

1, mainly used in binary classification problems:

a(x) = 1
1 + e−x . (3.2)• Rectified Linear Unit (ReLU): is one of themost commonly used activation functions

a(x) = max(0, x) . (3.3)
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typically used for multi-class classification, and it computes the relative probability of

belonging to a class or label, each node in the output layer produces a value between

0 and 1, and the sum of all the output nodes is 1.• Hyperbolic Tangent (TanH): accepts arbitrary number of inputs, and outputs a num-

ber between -1 and 1, it can be defined as:

a(x) = ex − e−1
ex + e−x . (3.4)

3.2.2 Loss Functions

The goal of a loss function, also know as objective function, is to measure a model per-

formance by calculating some measure of difference between the values computed by

the model and the actual true values from the data, also known as the ground truth. This

usually entails that the lower value comes out of a loss function, the better the model is

performing (Wang et al., 2022). So, the goal of the training process becomes minimizing

the loss function output. Some popular loss functions for regression problems, i.e. models

that output a real value, include:• Mean Squared Error (MSE): is a loss function that computes the average squared

difference between predictions and true values, the result of the function will get

closer to zero as the difference between the predicted values (Ŷi) and the true values

(Yi) gets smaller:

MSE = 1
n

n∑
i=1(Yi − Ŷi)2 . (3.5)• Mean Absolute Error (MAE): is a loss function that computes the mean of absolute

difference between predictions and true values:

MAE = 1
n

n∑
i=1 |Yi − Ŷi| . (3.6)

Some popular loss functions for classification problems include:• binary cross-entropy: is a loss function that computes the mean of squares of

errors between labels predictions for two classes problems;• categorical cross-entropy: is a loss function that computes the mean of absolute

difference between labels and predictions for multi-class problems.



3. Deep Learning Essentials 25

3.2.3 Optimizers

An optimizer is responsible for computing the weights updates for the model on every it-

eration during model training, usually called an epoch, in order to reduce the model loss.

A common parameter to these algorithms is the learning rate, used to scale the model

weights updates, by setting an high learning rate the model may converge faster but may

also overshoot the function minimum, by setting a lower learning rate the model may con-

verge too slowly. Some popular optimizers include (Deisenroth et al., 2020):• Gradient Descent (GD): is one of the most common optimization algorithms used,

the algorithm consistently moves to the local minimum of a function, proportional to

the negative of the gradient at the current point, and scaled by the defined learning

rate.• StochasticGradient Descent (SGD): is a stochastic approximation of theGDmethod,

by only randomly selecting a batch of data this algorithm is faster.• Adaptive Gradient Descent (AdaGrad): is another variation of GD, where the learn-

ing rate depends on the gradient at the current point, leaving to the algorithm the job

of updating the learning rate making the model converge faster (Duchi et al., 2011);• Root Mean Square Propagation (RMSProp): is an extension of the SGD, popular

in DL, using an adaptive learning rate, scaled by an exponentially decaying average

of squared gradients;• Adaptive Moment Estimation (Adam) is another extension of SGD, that computes

adaptive learning rates for each parameter, similar to RMSProp (Kingma&Ba, 2014).

In a nutshell there are pros and cons to each algorithm and there is no generic optimal

solution, depending on the specific details of each problem and related data any of these

algorithms can outperform the others. Besides the actual algorithm there are still a variable

number of hyper-parameters that can be fine-tuned, the learning rate for example.

3.2.4 Training, Validation & Testing

Given a model, a loss function and an optimizer the training of the model is the process

by which the model weights are calculated given the training data. This process is usually

divided in epochs, i.e. every time the model processes all the data an epoch has passed.
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Within each epoch, the data is processed in steps, the batch size defines the number

of observations, or samples, of the entire input data that are processed on each step.

For example, training a model for 10 epochs with a batch size of 32, entails that the entire

dataset is processed 10 times, and on each time its analysed in steps, using batches of 32

observations from the input dataset. On each step the following operations are executed:

1. The forward propagation is done, where the model computes the network output for

a number (batch size) of samples;

2. The loss function is used to calculate the error of the outputs;

3. The error is propagated backwards in the network during back propagation;

4. Given the loss update the model weights get updated by the optimizer.

This loop repeats for the defined number of epochs. On each epoch the validation set can

be used to measure the model performance in samples that are not used during training,

so that it has a better measure of the models’ ability to generalize. This validation can also

be used to fine-tune the model hyper-parameters. In the end, after the training process,

the test set can be used to measure the model performance, by using data never seen

during training.

Normalization

Normalization includes a set of data transformations with the goal of setting all the input

data to the same comparable scale, so that the contribution of the feature to the model

output is dictated by its absolute value. For most DL models the usual desired distribu-

tion of values is around 0, between -1 and 1. This usually also entails speeding up the

optimization process. Data normalization can be done before applying the model or a

normalization layer can be used in the model network, as long as it done before training,

some common normalization techniques include: z-score or MinMax (Yu & Spiliopoulos,

2022).

3.3 Advanced Techniques

This section introduces some more advanced techniques used throughout this work.
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3.3.1 Hyper-parameters Tuning

In the context of DL besides the model definition there are other components that play an

important role in building an actual model, and also have a deep impact on the model per-

formance, for example the loss function, the optimizer or the batch size. Fine-tuning these

parameters to achieve the best results is not an easy task because there are no rules set in

stone to which option is always best for a given problem, and the hyper-parameters search

space is very large. Hence, a common more pragmatic way to address this issue is by

exploring a sub-space of the parameters space available, by using different combinations

of hyper-parameters and comparing some models evaluation of performance. This can

be done manually, usually using a smaller parameters sub-space but with faster results,

or using a more systematic approach, covering a larger sub-space but a slower process.

3.3.2 Regularization

Over-fitting is a concept generally used in ML that represents the state of a model that

is over trained to the fitting data, and has a high performance on this data but lower per-

formance on data that the model does not see during train, i.e. the model is failing to

generalize to unseen inputs. This is a major concern with neural networks.

Regularization is a set of techniques that address the problem of over-fitting by pro-

viding techniques that put constrains on the complexity of the model, ensuring the model

weights and model complexity is kept low. Common regularization techniques include

(Chollet, 2018): L1 regularization and L2 regularization that add a factor to the loss func-

tion based on the sum of the model parameters values, this entails penalizing parameters

with higher values, trying to guide the optimization process to lower value parameters, usu-

ally less prone to over-fitting; and dropout layers, that randomly drop (up to some degree)

some part of the network.

3.3.3 Data Generators

Some libraries available for DL require all the data to be loaded into memory for training

the models. But, due to computers limited resources and given the huge size of datasets

used today, sometimes its not possible to load the entire data to memory. One common

approach to deal with this shortcoming is to load data as needed, i.e. on every epoch load

the next data batch from disk. To accomplish this and following deep learning parlance, an
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artefact called data generator is used. This enables, among others things, loading data

into memory as needed for training, opposed to loading all the data before the training

process. For example, when processing thousands or millions of images it enables loading

the actual images data (or any other sources of data) to memory immediately before each

step for processing, and discarding the images from memory after each step, opposed to

loading all the images in the beginning and keeping them for the entire training process

which would require a much higher amount of memory, most of the times not available. A

positive side effect of this approach is that its possible to also do some custom processing

task on the data after loading and before actually passing it to the model.



Chapter 4

Datasets & Models

Divide et impera a

– Philip II of Macedon
a“Divide and Rule” or “Divide and Conquer”.

The previous chapters introduce some background about galaxies, and some funda-

mental topics on Machine Learning (ML) and Deep Learning (DL). This chapter discusses

the creation of a set of models to infer properties of interest about galaxies, and of a dataset

devised to train and explore these models.

4.1 The SDSS Galaxy Subset

The SDSS Galaxy Subset (SDSS GS)1 is a subset of around 100k objects classified as

GALAXY from the Sloan Digital Sky Survey (SDSS) survey described in Section 2.5.1.

The dataset includes tabular data, stored in a CSV2 format where each row refers to an

object and Table 4.1 summarizes the columns information available for each object. All

the data in the table is gathered directly from tables in the SDSS database, except for

the Galaxy Zoo 2 (GZ2) classification from Willett et al. (2013)3. Appendix F describes

the SQL4 queries required to retrieve the data from the SDSS official database. The GZ2

1Available from: https://doi.org/10.5281/zenodo.6393487 (last accessed: 2022-10-18).
2Comma-Separated Values (CSV) is a common format for storing tabular data in a plain text file.
3Available from: https://data.galaxyzoo.org (last accessed: 2022-10-18).
4Structured Query Language (SQL) is a domain specific language for querying and handling data in a

relational database management system.
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simplified classification labels are a simplification of the original class set where some

details are removed in order to reduce the total number of classes, the complete simplified

class set including a brief description is available in Appendix D.

Column Description

objid unique SDSS object identifier

mjd Modified Julian Date (MJD) of observation

plate plate identifier

tile tile identifier

fiberid fibre identifier

run run number

rerun rerun number

camcol camera column

field field number

ra object right ascension

dec object declination

class spectroscopic class (only objects with GALAXY class are included)

subclass spectroscopic sub-class

modelMag_u better of DeV/Exp magnitude fit for band u

modelMag_g better of DeV/Exp magnitude fit for band g

modelMag_r better of DeV/Exp magnitude fit for band r

modelMag_i better of DeV/Exp magnitude fit for band i

modelMag_z better of DeV/Exp magnitude fit for band z

redshift final redshift from SDSS data z

stellarmass stellar mass extracted from the eBOSS Firefly catalogue, in units of M⊙
w1mag WISE W1 ”standard” aperture magnitude

w2mag WISE W2 ”standard” aperture magnitude

w3mag WISE W3 ”standard” aperture magnitude

w4mag WISE W4 ”standard” aperture magnitude

gz2c_f Galaxy Zoo 2 classification

gz2c_s simplified version of Galaxy Zoo 2 classification

Table 4.1: Summary of the columns information available from the tabular data in the
SDSS GS dataset.

Besides the data there are also available four extra files for each object namely:• A RGB image file for the object in JPEG format, generated using the SkyServer

DR16 WebService5, with a scale of 0.4 arsec per pixel, and a height and width of
5Available from: https://skyserver.sdss.org/dr16/en/help/docs/api.aspx (last accessed: 2022-

10-19).

https://skyserver.sdss.org/dr16/en/help/docs/api.aspx
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150 pixels; the image is generated from the g, r, i bands based on an adaptation of

the algorithm described by Lupton et al. (2004).• The FITS original data, downloaded from the SDSS file server for u, g, r, i, and z

bands, a cut is made around the object location. The cut is made using the Image-

Cutter library6, the cut out size is the default size of 0.4 arc minutes in size on the x

and y axis and the data is stored in a numpy array.• The spectra data is also downloaded directly from SDSS data files in CSV format, the

BestFit value between wavelengths 4000Å and 9000Å is usually used throughout

this work, but the complete spectra is available.• There is also another spectra file (ssel) that includes only a set of selected band-

widths of interest discussed by Sánchez Almeida et al. (2010).

The objects included in the dataset are sampled at random from the SpecPhoto table

from the SDSS database. The only constraint on the sampling is that it is stratified on the

subclass column, i.e. the subset contains approximately the same percentage of samples

of each sub-class as the original table.

4.2 Exploratory Analysis

This section explores the SDSS GS dataset with a closer look to some of the variables

later used in models as inputs and outputs. The dataset has a total of 100077 objects

classified as galaxies, defined by the class variable. There is a sub-class for each object,

the subclass column, that splits galaxies in different categories, Table 4.2 summarizes the

four available sub-classes for classifying galaxies.

The sub-class information is available for all objects, Figure 4.1 illustrates the distri-

bution of sub-classes for all objects, the STARFORMING sub-class is the most common

with a total of 72213 objects, followed by STARBURST with a total of 15481 objects, and

with the AGN and BROADLINE sub-classes applying to the remaining objects with a to-

tal of 6410 and 5973 respectively. These labels are not mutually exclusive, in the sense

that they can be combined together to classify objects (although no multi-labels examples

where included in the dataset) and are based on the spectra emission lines. Objects are

6Available from: https://github.com/jhoar/ImageCutter (last accessed: 2022-10-19).

https://github.com/jhoar/ImageCutter
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Label Description

AGN has detectable emission lines that are consistent with being a Seyfert
or LINER

BROADLINE has lines detected at the 10-sigma level with sigma > 200 kms−1 at
the 5-sigma level

STARBURST galaxy has an intense star-formation rate

STARFORMING has detectable emission lines that are consistent with star-formation
criteria

Table 4.2: Set of labels for the sub-class variable in the SDSS GS tabular data.

classified as AGN when log10([OIII]/Hβ) > 1.2log10(NII/Hα) + 0.22, otherwise they are

classified as STARBURST if the Hα line width is greater than 50Å, or STARFORMING oth-

erwise; the BROADLINE label is given when they have line widths in excess of 200 kms−1
(Baldwin et al., 1981, Bolton et al., 2012).

Figure 4.1: Distribution of the sub-class categorical feature, where the STARFORMING
sub-class is the most common with a total of 72213 objects.

Concerning the continuous variables redshift and stellar mass Table 4.3 illustrates the

statistical summary for the available data. The redshift and stellar mass values are avail-

able for all objects. The redshift values distribution has a mean value of 0.087883, with
a standard deviation of 0.079735, a minimum value of 0.000042 and a maximum value

of 1.584996. The stellar mass values distribution, in units of M⊙, has a mean value of

2.53× 1010, with a standard deviation of 4.45× 1011, a minimum value of 9.05× 102, and
a maximum value of 1.12×1014. This interval clearly has values that are not expected for

a galaxy stellar mass, from a quick overview of other properties of some of these objects it
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seems that the shortcoming is that they are not correctly classified as galaxies, and hence

were included in the pool of randomly selected objects from the database.

Count Mean Std Min Max

redshift 100077 0.087883 0.079735 0.000042 1.584996
stellar mass 100077 2.53 × 1010 4.45 × 1011 9.05 × 102 1.12 × 1014

Table 4.3: Descriptive statistics for the redshift and stellar mass (in units of M⊙) data
available from the SDSS GS dataset.

Figure 4.2 illustrates the distribution of values for the redshift variable, from a visual anal-

ysis of the figure is clear to see that the values are skewed to the lower range, there are

more observations that are closer than far away, the majority of the values are lower than

0.2. Figure 4.3 illustrates the distribution of values for the stellar mass variable, from a

visual analysis of the figure is clear to see that the values are again skewed to the lower

range, there are more less massive galaxies than galaxies with higher mass, the majority

of the values are lower than 2.5 × 1010M⊙.

Figure 4.2: Distribution of values of the redshift variable, where the majority of values are
located in the lower range, below 0.2.

Figure 4.4 illustrates the distribution of values for the GZ2 simplified class categorical

feature, where the most common class is ScR (with features/disks, just noticeable bulge

prominence, has spiral structure) with a total of 14646 objects, followed by the class Ei

(smooth, in-between) with a total of 8606 objects.
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Figure 4.3: Distribution of values for the stellar mass variable, in units of M⊙, where the
majority of values are lower than 2.5 × 1010M⊙.

Figure 4.4: Distribution of the GZ2 simplified class categorical feature, where the ScR is
the most common class with a total of 14646 objects.

4.3 Features, Inputs & Outputs

The data contained in the dataset described in the previous section is used as features for

creating single and multi input/output models. Regarding features (inputs) pre-processing:• The img data values are normalized by a factor of 255 when loaded;• The fits data are used as is;• The spectra, ssel, bands and wise data is normalized using a standard scaler;
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and in theory the actual range of values is not relevant to the inner model mechanics

but just to make the updates smaller numbers and the training and validation metrics

easier to follow and visualize.

Table 4.4 summarizes the data from the dataset used as input in the models, and Table 4.5

summarizes the data used as models outputs.

Input Shape Description

img 150 × 150 × 3 RGB image from the object in JPEG format

fits 61 × 61 × 5 FITS data subset around the object across the u, g, r, i and z bands

spectra 3225 × 1 full best fit spectra data between wavelengths 4000Å and 9000Å

ssel 1225 × 1 best fit spectra data for selected intervals of wavelengths

bands 5 × 1 photometric magnitudes for the u, g, r, i and z bands

wise 4 × 1 photometric values for the W1, W2, W3 and W4 WISE magnitudes

Table 4.4: Summary of the data in the dataset used as input features for the devised
models.

Output Type Description

redshift regression final redshift from SDSS data ‘z‘

subclass classification subset of sub-class from SDSS data for the galaxy objects subclass

smass regression stellar mass extracted from the eBOSS Firefly catalogue

gz2c classification simplified version of the GZ2 classification

Table 4.5: Summary of the data in the dataset used as output for the devised models.

For the upcoming discussion of the models architecture and in order to be closer to an

actual implementation, a more formal definition (specification) of the data types used by

the models follows. This allows a more accurate upcoming discussion of models and data

flows, using a more formal language, and helps with the actual implementation.

data Img = Img { values ∶∶ NDArray [height, width, bands] }
where, the Img data type is defined as a three-dimensional array with dimensions height = 150,
width = 150 and bands = 3, inline with the RBG images described in the SDSS GS dataset

that have the same size, 150 × 150 pixels, and 3 colour channels (Red, Green and Blue).

Note that the order of dimensions between the height and width is somewhat arbitrary,

because all the images-like data in the dataset have a ratio of 1, i.e. have the same width
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and height, the reason to select this particular ordering is to be consistent with the conven-

tion that the frameworks is used for the implementation of the models, discussed later in

this chapter, which is: samples, height, width and channels. The data type for FITS data

is defined following a similar reasoning:

data Fits = Fits { values ∶∶ NDArray [height, width, bands] }
where, the Fits data type is defined as a three-dimensional array with dimensions height = 61,
width = 61, and bands = 5, inline with the FITS data available in the described dataset

where the cut of the data around the object has a size of 61 × 61 pixels, and the data has

5 bands. The data type for the full spectra data is defined:

data Spectra = Spectra { values ∶∶ NDArray [height, width] }
where, the Spectra data type is defined as a two-dimensional array (or a vector) with

dimensions height = 3225 and width = 1. The spectra data available in the dataset, in a

tabular format, has more dimensions but since only the BestFit flux is considered this is

just a vector of values, including the height and width is just a consistency detail. The data

type for the spectra selected bands follows exactly the same logic:

data Ssel = Ssel { values ∶∶ NDArray [height, width] }
where, the Ssel data type is defined as a two-dimensional array (or a vector) with dimen-

sions height = 1225 and width = 1. The data type for the bands data is defined as:

data Bands = Bands { values ∶∶ NDArray [height, width] }
where, the Bands data type is defined as a two-dimensional array (or a vector) with di-

mensions height = 5 and width = 1. The bands data available in the dataset, in a tabular

format, corresponds to the values in the specific bands as described in the catalogue. The

data type for the WISE data is defined as:

dataWise = Wise { values ∶∶ NDArray [height, width] }
where, the Wise data type is defined as a two-dimensional array (or a vector) with di-

mensions height = 4 and width = 1. The WISE data available in the dataset, in a tabular

format, corresponds to the values in the specific bands as described in the catalogue. Fi-

nally we can define a data type to represent an arbitrary input, i.e. an object representing

an instance of any of the defined input types:
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type Input = Img | Fits | Spectra | Ssel | Bands | Wise

And the data types for the outputs are also defined for the sake of completeness, the

redshift is defined as an alias for the native type Float:

type Redshift = Float

and the same for the stellar mass:

type Smass = Float

The data type for the sub-class is defined as an alternative between all the classes avail-

able:

type Subclass = AGN | Broadline | Starburst | Starforming

where, each class is simply defined as string with the name of the class. The same for the

GZ2 simplified class labels:

typeGz2c = A | Ec | Ei | Er | SBa | SBaR | SBb | SBbR | ... | Ser
For a a complete list of the GZ2 simplified classes and descriptions refer to Appendix D.

And again we can define a data type to represent an arbitrary output, i.e. an object repre-

senting an instance of any of the defined output types:

typeOutput = Redshift | Subclass | Smass | Gz2c
Given the aforementioned data type definitions, where all the data types are repre-

sented using multi-dimensional arrays, note that all dimensions are consistent and follow

the pattern [ height, width, bands ], this is relevant because when instances of these

data types, i.e. real data, are feed to neural networks this is the expected semantics of the

values. By choosing these definition there is no ambiguity later to what the data represents

and everything is readily consistent.

4.4 Models Architectures

The generic definition of the specification of a model in the context of this work, is a function

that maps a list of inputs to a list of outputs, following the collection of data types defined

in the previous section this is captured in the following function signature definition:
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model ∶∶ [Input] → [Output]
A more specific definition for a model, for example, that infers the redshift from an RGB

image can be described as:

i2r ∶∶ Img → Redshift

where, i2r is a function that maps an image, a three dimensional array with an height and

width of 150, and depth of 3 values as defined by the Img data type, to the redshift a real

number (Float). The intended inputs and outputs of the model are well defined, and there

is no ambiguity.

To explore and experiment with these models an actual implementation is required. In

the context of this work models are built using a DL approach, i.e. they are defined as a

combination of layers and networks described in Chapter 3 and their inputs and outputs

match exactly the data types defined in the previous section. Table 4.6 summarizes the

complete list of devised models with a single input and a single output, following the in-

puts described in Table 4.4 and the outputs described in Table 4.5, including the type of

model, regression or classification, and a small description on each model intended goal.

Table 4.7 summarizes the complete list of devised models with multiple inputs and outputs,

following the inputs described in Table 4.4 and the outputs described in Table 4.5.

All the models are defined as a combination of layers, The next section describes in

detail all the DL models architectures devised, implemented using Keras (Ketkar, 2017),

a open-source framework providing an interface for artificial neural networks libraries. Ap-

pendix E illustrates the use of the Keras API to create a simple network example.

4.4.1 Predicting Redshift

To predict the redshift of an object a collection of models is available, namely one for each

available individual input: image, FITS, spectra, selected spectra, bands and WISE data;

and some exploring multi inputs and outputs.

In the case where the single input are images or FITS data the model first layers apply

convolutional operations, followed by max polling layers, to capture small details from the

data and build up larger representations. After a flatten operation a sequence of fully

connected layers using a ReLU activation function connects to the output layer, a single

node – the redshift. Figure 4.5 illustrates the network composition used for the models to

predict the redshift from the image (left) and FITS data (middle).
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Model Input Output Type Description

i2r img redshift regression infer redshift from RGB image

f2r fits redshift regression infer redshift from FITS data

s2r spectra redshift regression infer redshift from spectra data

ss2r ssel redshift regression infer redshift from selected spectra data

b2r bands redshift regression infer redshift from bands data

w2r wise redshift regression infer redshift from WISE data

i2sm img smass regression infer stellar mass from RGB image

f2sm fits smass regression infer stellar mass from FITS data

s2sm spectra smass regression infer stellar mass from spectra data

ss2sm ssel smass regression infer stellar mass from selected spectra data

b2sm bands smass regression infer stellar mass from bands data

w2sm wise smass regression infer stellar mass from WISE data

i2s img subclass classification infer sub-class from RGB image

f2s fits subclass classification infer sub-class from FITS data

s2s spectra subclass classification infer sub-class from spectra data

ss2s ssel subclass classification infer sub-class from selected spectra data

b2s bands subclass classification infer sub-class from bands data

w2s wise subclass classification infer sub-class from WISE data

i2g img gz2c classification infer GZ2 simplified class from RGB image

f2g fits gz2c classification infer GZ2 simplified class from FITS data

s2g spectra gz2c classification infer GZ2 simplified class from spectra data

ss2g ssel gz2c classification infer GZ2 simplified class from selected spectra data

b2g bands gz2c classification infer GZ2 simplified class from bands data

w2g wise gz2c classification infer GZ2 simplified class from WISE data

Table 4.6: Summary of the complete list of models with single input and single output.

Model Inputs Outputs

fSbW2rSM fits, spectra, bands, wise redshift, smass

fSbW2sG fits, spectra, bands, wise subclass, gz2c

iFsSSbW2r img, fits, spectra, ssel, bands, wise redshift

iFsSSbW2sm img, fits, spectra, ssel, bands, wise smass

iFsSSbW2s img, fits, spectra, ssel, bands, wise subclass

iFsSSbW2g img, fits, spectra, ssel, bands, wise gz2c

iFsSSbW2rSMsG img, fits, spectra, ssel, bands, wise redshift, smass, subclass, gz2c

Table 4.7: Summary of the complete list of models with multi inputs and outputs.
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In the case where the input is the spectral data there are two models available with

slightly two different approaches. When the input is the full spectral data, a vector of num-

bers, the first layer included in the model is a normalization layer, followed by convolutional

operations layers and a max pooling layer, mainly to try to capture details in the spectra

that may shift positions in the input vector. The next layers include a flatten operation and

a sequence of fully connected layers using a ReLU activation function, ending in a single

node – the redshift. When the input is only the spectral data for the list of selected bands

since the input is no longer completely sequential, i.e. there are gaps in the data – the

bands not selected to be included – there is less point on looking for moving patterns that

could appear in different positions of the vector, so there are no convolutional operations.

After the normalizing layers a sequence of fully connected layers is used, ending in an

output node – the redshift. Figure 4.5 (right) illustrates the network composition used for

the model to predict the redshift from the full spectral data, and Figure 4.6 (left) illustrates

the model for predicting the redshift from the selected spectral bands.

In the case where the input are the bands and WISE data, the models start with a

normalizing layer to scale the values, followed by a sequence of fully connected layers,

ending in a single output node – the redshift. Figure 4.6 illustrates the model for predicting

the redshift from the bands data (middle), and from the WISE data (right).

Following the aforementioned notation and data types definitions, Table 4.8 summa-

rizes the signatures for the functions that map the individual inputs representing the avail-

able single input single output models to predict the redshift.

Models

i2r ∶∶ Img → Redshift

f2r ∶∶ Fits → Redshift

s2r ∶∶ Spectra → Redshift

ss2r ∶∶ Ssel → Redshift

b2r ∶∶ Bands → Redshift

w2r ∶∶ Wise → Redshift

Table 4.8: Summary of functions representing the single input single output models for
predicting the redshift.



4. Datasets & Models 41

?×150×150×3

img

SeparableConv2D

kernel�3×3×3×1�
bias�1×1×3×64�
bias�64�

ReLU

MaxPooling2D

SeparableConv2D

kernel�3×3×64×1�
bias�1×1×64×64�
bias�64�

ReLU

MaxPooling2D

SeparableConv2D

kernel�3×3×64×1�
bias�1×1×64×128�
bias�128�

ReLU

MaxPooling2D

SeparableConv2D

kernel�3×3×128×1�
bias�1×1×128×128�
bias�128�

ReLU

MaxPooling2D

Flatten

Dense

kernel�6272×64�
bias�64�

ReLU

Dense

kernel�64×32�
bias�32�

ReLU

Dense

kernel�32×32�
bias�32�

ReLU

Dense

kernel�32×1�
bias�1�

redshift

?×61×61×5

fits

SeparableConv2D

kernel�3×3×5×1�
bias�1×1×5×64�
bias�64�

ReLU

MaxPooling2D

SeparableConv2D

kernel�3×3×64×1�
bias�1×1×64×64�
bias�64�

ReLU

MaxPooling2D

SeparableConv2D

kernel�3×3×64×1�
bias�1×1×64×128�
bias�128�

ReLU

MaxPooling2D

SeparableConv2D

kernel�3×3×128×1�
bias�1×1×128×128�
bias�128�

ReLU

MaxPooling2D

Flatten

Dense

kernel�128×64�
bias�64�

ReLU

Dense

kernel�64×32�
bias�32�

ReLU

Dense

kernel�32×32�
bias�32�

ReLU

Dense

kernel�32×1�
bias�1�

redshift

?×3522

spectra

Normalization

mean�3522�
variance�3522�
count = 43105

Reshape

Conv1D

kernel�3×1×32�
bias�32�

ReLU

Conv1D

kernel�3×32×32�
bias�32�

ReLU

MaxPooling1D

Flatten

Dense

kernel�112544×64�
bias�64�

ReLU

Dense

kernel�64×32�
bias�32�

ReLU

Dense

kernel�32×1�
bias�1�

redshift

Figure 4.5: Predicting redshift from RGB images (left), FITS data (middle) and spectra
data (right) model architectures using convolutional operations.
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Figure 4.6: Predicting redshift from selected spectra bands data (left) bands data (middle)
and WISE data (right) model architectures using only fully connected layers.

4.4.2 Predicting Stellar Mass

To predict the stellar mass of an object another collection of models is available, namely

one for each available individual input: image, FITS, spectra, selected spectra, bands and

WISE data; and some exploring multi inputs and outputs.

In the case where the single input are images or FITS data the model initial layers apply

convolutional operations, followed by max polling layers, as before to capture small details

from the data and build up larger representations. After a flatten operation a sequence of

fully connected layers using a ReLU activation function connects to the output layer, a

single node – the stellar mass. Figure 4.7 illustrates the network composition used for the

models to predict the the stellar mass from the image (left) and FITS data (middle).

In the case where the input is the spectral data there are two models available with

slightly two different approaches. Following a similar approach as to predict the redshift,

when the input is the full spectral data, a vector of numbers, the first layer included in
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the model is a normalization layer, followed by convolutional operations layers and a max

pooling layer, mainly to try to capture details in the spectra that may shift positions in the

input vector. The next layers include a flatten operation and a sequence of fully connected

layers using a ReLU activation function, ending in a single node – the stellar mass. When

the input is only the spectral data for the list of selected bands since the input is no longer

completely sequential, i.e. there are gaps in the data as discussed before, there is less

point in looking for moving patterns that could appear in different positions of the vector,

so there are no convolutional operations. After the normalizing layers a sequence of fully

connected layers is used, ending in an output node – the stellar mass. Figure 4.7 (right)

illustrates the network composition used for the model to predict the stellar mass from the

full spectral data, and Figure 4.8 (left) illustrates the model for predicting the stellar mass

from the selected spectral bands.

In the case where the input is the bands andWISE data the models start with a normal-

izing layer to scale the values, followed by a sequence of fully connected layers, ending in

a single output node – the stellar mass. Figure 4.8 illustrates the model for predicting the

stellar mass from the bands data (middle), and from the WISE data (right).

Following the aforementioned definitions, Table 4.9 summarizes the signatures for the

functions that map the individual inputs representing the available single input single output

models to predict the stellar mass.

Models

i2sm ∶∶ Img → Smass

f2sm ∶∶ Fits → Smass

s2sm ∶∶ Spectra → Smass

ss2sm ∶∶ Ssel → Smass

b2sm ∶∶ Bands → Smass

w2sm ∶∶ Wise → Smass

Table 4.9: Summary of functions representing the single input single output models for
predicting the stellar mass.

4.4.3 Predicting Sub-class

To predict the sub-class of an object another collection of models is available, namely

one for each available individual input: image, FITS, spectra, selected spectra, bands and

WISE data; and some exploring multi inputs and outputs.
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Figure 4.7: Predicting stellar mass fromRGB images (left), FITS data (middle) and spectra
data (right) model architectures using convolutional operations.
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Figure 4.8: Predicting stellar mass from selected spectra bands data (left) bands data
(middle) and WISE data (right) model architectures using only fully connected layers.

In the case where the single input are images or FITS data the model initial layers

apply convolutional operations, followed by max polling layers, to capture small details

from the data and build up larger representations. After a flatten operation a sequence of

fully connected layers using a ReLU activation function connects to the output layer, fully

connected layer with the number of nodes equal to the number of classes using a softmax

activation function. The final layer represents the probability distribution of being classified

to one specific class – the sub-class. Figure 4.9 illustrates the network composition used

for the models to predict the sub-class from the image (left) and FITS data (middle).

In the case where the input is spectral data, once again there are two models avail-

able with slightly two different approaches. Following a similar approach as to predict the

redshift and the stellar mass, when the input is the full spectral data, a vector of numbers,

the first layer included in the model is a normalization layer, followed by convolutional op-

erations layers and a max pooling layer, mainly to try to capture details in the spectra that
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may shift positions in the input vector. The next layers include a flatten operation and

a sequence of fully connected layers using a ReLU activation function, ending in a fully

connected layer with the number of nodes equal to the number of classes using a soft-

max activation function. As before, the final layer represents the probability distribution of

being classified to one specific class – the sub-class. When the input is only the spectral

data for the list of selected bands since the input is no longer completely sequential, i.e.

there are gaps in the data – the bands not selected to be included – there is no point on

looking for moving patterns that could appear in different positions of the vector as before,

so there are no convolutional operations. After the normalizing layers a sequence of fully

connected layers is used, ending in a fully connected layer with the number of nodes equal

to the number of classes using a softmax activation function. Figure 4.9 (right) illustrates

the network composition used for the model to predict the sub-class from the full spec-

tral data, and Figure 4.10 (left) illustrates the model for predicting the sub-class from the

selected spectral bands.

In the case where the input is the bands andWISE data the models start with a normal-

izing layer to scale the values, followed by a sequence of fully connected layers, ending in

a fully connected layer with the number of nodes equal to the number of classes using a

softmax activation function. As before, the final layer represents the probability distribution

of being classified to one specific class – the sub-class. Figure 4.10 illustrates the model

for predicting the sub-class from the bands data (middle), and from the WISE data (right).

Following previous definitions, Table 4.10 summarizes the signatures for the functions

that map the individual inputs representing the available single input single output models

to predict the sub-class.

Models

i2s ∶∶ Img → Subclass

f2s ∶∶ Fits → Subclass

s2s ∶∶ Spectra → Subclass

ss2s ∶∶ Ssel → Subclass

b2s ∶∶ Bands → Subclass

w2s ∶∶ Wise → Subclass

Table 4.10: Summary of functions representing the single input single output models for
predicting the sub-class.
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Figure 4.9: Predicting sub-class from RGB images (left), FITS data (middle) and spectra
data (right) model architectures using convolutional operations.
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Figure 4.10: Predicting sub-class from selected spectra bands data (left) bands data (mid-
dle) and WISE data (right) model architectures using only fully connected layers.

4.4.4 Predicting GZ2 Simplified Class

To predict the GZ2 simplified class of an object another collection of models is available,

namely one for each available individual input: image, FITS, spectra, selected spectra,

bands and WISE data; and some exploring multi inputs and outputs.

In the case where the single input are images or FITS data the model initial layers

apply convolutional operations, followed by max polling layers, to capture small details

from the data and build up larger representations. After a flatten operation a sequence of

fully connected layers using a ReLU activation function connects to the output layer, fully

connected layer with the number of nodes equal to the number of classes using a softmax

activation function. The final layer represents the probability distribution of being classi-

fied to one specific class – the GZ2 simplified class. Figure 4.11 illustrates the network

composition used for the models to predict the GZ2 simplified class from the image (left)
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and FITS data (middle).

In the case where the input is the spectral data there are two models available with

slightly two different approaches. Following a similar approach as to predict the sub-class,

when the input is the full spectral data, a vector of numbers, the first layer included in the

model is a normalization layer, followed by convolutional operations layers and a max

pooling layer, mainly to try to capture details in the spectra that may shift positions in the

input vector. The next layers include a flatten operation and a sequence of fully connected

layers using a ReLU activation function, ending in a fully connected layer with the number

of nodes equal to the number of classes using a softmax activation function. As before,

the final layer represents the probability distribution of being classified to one specific class

– the GZ2 simplified class. When the input is only the spectral data for the list of selected

bands since the input is no longer completely sequential, again there is less point on look-

ing for moving patterns that could appear in different positions of the vector, so there are

no convolutional operations. After the normalizing layers a sequence of fully connected

layers is used, ending in a fully connected layer with the number of nodes equal to the

number of classes using a softmax activation function. Figure 4.11 (right) illustrates the

network composition used for the model to predict the GZ2 simplified class from the full

spectral data, and Figure 4.12 (left) illustrates the model for predicting the GZ2 simplified

class from the selected spectral bands.

In the case where the input is the bands andWISE data the models start with a normal-

izing layer to scale the values, followed by a sequence of fully connected layers, ending in

a fully connected layer with the number of nodes equal to the number of classes using a

softmax activation function. As before, the final layer represents the probability distribution

of being classified to one specific class – the GZ2 simplified class. Figure 4.12 illustrates

the model for predicting the GZ2 simplified class from the bands data (middle), and from

the WISE data (right).

Following previous definitions, Table 4.11 summarizes the signatures for the functions

that map the individual inputs representing the available single input single output models

to predict the GZ2 simplified class.

4.4.5 Multi Input/Output Models

The previous sections discuss the single input, single output models, one available for

each combination of available input data and outputs. This section discusses first the
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Figure 4.11: Computing GZ2 simplified class from RGB images (left), FITS data (middle)
and spectra data (right) model architectures using convolutional operations.



4. Datasets & Models 51

?×4

wise

Normalization

mean�4�
variance�4�
count = 48081

Dense

kernel�4×32�
bias�32�

ReLU

Dense

kernel�32×32�
bias�32�

ReLU

Dense

kernel�32×23�
bias�23�

Softmax

gz2c

?×5

bands

Normalization

mean�5�
variance�5�
count = 48145

Dense

kernel�5×32�
bias�32�

ReLU

Dense

kernel�32×32�
bias�32�

ReLU

Dense

kernel�32×23�
bias�23�

Softmax

gz2c

?×1423

ssel

Normalization

mean�1423�
variance�1423�
count = 11810

Dense

kernel�1423×256�
bias�256�

ReLU

Dense

kernel�256×128�
bias�128�

ReLU

Dense

kernel�128×32�
bias�32�

ReLU

Dense

kernel�32×23�
bias�23�

Softmax

gz2c

Figure 4.12: Computing GZ2 simplified class from selected spectra bands data (left)
bands data (middle) and WISE data (right) model architectures using only fully connected

layers.

Models

i2g ∶∶ Img → Gz2c
f2g ∶∶ Fits → Gz2c
s2g ∶∶ Spectra → Gz2c
ss2g ∶∶ Ssel → Gz2c
b2g ∶∶ Bands → Gz2c
w2g ∶∶ Wise → Gz2c

Table 4.11: Summary of functions representing the single input single output models for
predicting the GZ2 simplified class.
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devised models that combine all the available inputs to predict a single output, either for

regression or classification. And also some experiments where some combinations of

available inputs are used to predict different combinations of outputs. The main intuition

for creating these models is that data from different sources can potentially provide more

information to predict the intended output. Also the exploration of such models may infer

unexpected patterns between inputs and outputs that can give hints on new links between

the available measurements and physical phenomena underlying themodels outputs char-

acteristics.

The following multi input, single output models, illustrate the networks for the models

that take as input all the available data: images, FITS, spectra, bands and WISE, and

predict each one of the available outputs individually: redshift, stellar mass, sub-class and

GZ2 simplified class, by composing the single input, single output models described in the

previous section.

Figure 4.13 illustrates the model for predicting the redshift, where the output of all the

model networks for predicting the redshift described in the previous section are combined

together using a concatenation layer, this conveys a single vector representing all the input

data, followed by a sequence of fully connected layers, ending in a single node output –

the redshift. Figure 4.14 illustrates the model for predicting the stellar mass, following a

similar approach.

Figure 4.15 illustrates the model for predicting the sub-class, where the output of all

the model networks for predicting the sub-class described in the previous section are com-

bined together using a concatenation layer, this conveys a single vector representing all

the input data, followed by a sequence of fully connected layers, ending in an output layer

with a softmax activation – the sub-class. Figure 4.16 illustrates the model for predicting

the GZ2 simplified class, following a similar strategy.

Besides multi input with single output models some more complex networks with multi

input multi output models are also devised. The intuition behind these models is exploring

the relations between the inputs and the outputs at the same time, looking for new syner-

gies. This entails that during the training process, when models weights space is explored,

there are several output constrains being captured by the same underlying patterns, at an

higher level of abstraction the physical phenomena that drive different output measure-

ments should be the same. Figure 4.17 illustrates the networks for implementing models

that use all the available inputs: RGB images, FITS, spectral, bands and WISE data to
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Figure 4.13: Predicting the redshift from the RGB images, FITS, spectral, bands and
WISE data using a combination of networks.
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Figure 4.14: Predicting the stellar mass from the RGB images, FITS, spectral, bands and
WISE data using a combination of networks.
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Figure 4.15: Predicting the sub-class from from the RGB images, FITS, spectral, bands
and WISE data using a combination of networks.
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Figure 4.16: Predicting the GZ2 simplified class from the RGB images, FITS, spectral,
bands and WISE data using a combination of networks.
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predict simultaneously the redshift and the stellar mass (left) and the sub-class and GZ2

simplified class (right).

And finally the model network illustrated in Figure 4.18 uses all the inputs available

by combining all the required sub-networks, and yields all the output measurements. The

approach used is similar to the ones before, all the input data is combined into a single

vector, followed by a sequence of fully connected layers, but this time the output layer is

comprised of one node to output the redshift value, another node to output the stellar mass

value, a set of nodes using a softmax activation layer to output the sub-class, and another

set of nodes, also using a softmax activation function, to output the GZ2 simplified class.

The underlying patterns mapping all the inputs to all the outputs should be captured in a

single function.
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Figure 4.17: Predicting the redshift and the stellar mass from the RGB images, FITS,
spectral, bands and WISE data (left); and, the sub-class and the GZ2 simplified class
from the RGB images, FITS, spectral, bands and WISE data (right) using combinations

of networks.
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Figure 4.18: Predicting the redshift, the stellar mass, the sub-class and the GZ2 simplified
class from the RGB images, FITS, spectral, bands and WISE data using a combination

of networks.
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4.5 Training & Evaluation

Given the collection of models described in the previous section, the next step is to actually

fit the models to real data (train) and perform some kind of evaluation to assess the models

performance. As discussed in Section 3 there is a set of hyper-parameters that can be

fine-tuned to potentially improve each model. Some of these parameters, besides the

architecture of the model, include: the optimizer, the batch size and the loss function. One

common way to explore some options for these parameters that yield good results is to test

different combinations using the same dataset and compare the performance results. Also

note that sometimes the output of the loss functions by itself is not directly comparable due

to the mathematical definition of the function, for example the Mean Squared Error (MSE)

squares the difference between the output and true values.

Table 4.12 illustrates the hyper-parameters exploration for the single input single output

models discussed in the previous section for predicting the redshift. Each row in the table

represents a full training cycle run for the given number of epochs and changing the batch

size, the optimizer and the loss function. For each cycle the available data is split in the

three sets: training, validation and testing. The validation dataset is used to monitor model

evolution during training, and the score in the table indicates the model performance on

the test dataset, that is never seen during training. Since these are regression models, i.e.

models that output a real value, the two loss functions that are tested include: MSE and

Mean Absolute Error (MAE); the selected optimizers to test are RMSProp and Adam with

the default learning rates; and the batch size is tested between 32 and 64. By looking at the

score (lower is better in this case) the hyper-parameters that achieve the best performance

can be selected. For example, given the results for the i2r model, the model achieves

the best result using a batch size of 32, a RMSProp optimizer and a MSE loss function.

Table 4.13 illustrates the hyper-parameters exploration for the single input single output

models discussed in the previous section for predicting the stellar mass. Following the

same approach as before, each row in the table represents a full training cycle run for the

given number of epochs and changing the batch size, the optimizer and the loss function.

For each cycle the available data is split in the three sets: training, validation and testing.

The validation dataset is used to monitor model evolution during training, and the score in

the table indicates the model performance on the test dataset, that is never seen during

training. Since these are regression models, the two loss functions that are tested include:

MSE and MAE; the selected optimizers to test are RMSProp and Adam with the default
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Model Input Output Epochs Batch Size Optimizer Loss Score

i2r img redshift 10 32 RMSProp MSE 0.003365
i2r img redshift 10 32 RMSProp MAE 0.030170
i2r img redshift 10 32 Adam MSE 0.016661
i2r img redshift 10 32 Adam MAE 0.071612
i2r img redshift 10 64 RMSProp MSE 0.003508
i2r img redshift 10 64 RMSProp MAE 0.030480
i2r img redshift 10 64 Adam MSE 0.003498
i2r img redshift 10 64 Adam MAE 0.071558
f2r fits redshift 10 32 RMSProp MSE 0.001930
f2r fits redshift 10 32 RMSProp MAE 0.027434
f2r fits redshift 10 32 Adam MSE 0.001917
f2r fits redshift 10 32 Adam MAE 0.024896
f2r fits redshift 10 64 RMSProp MSE 0.002075
f2r fits redshift 10 64 RMSProp MAE 0.028206
f2r fits redshift 10 64 Adam MSE 0.001870
f2r fits redshift 10 64 Adam MAE 0.024997
s2r spectra redshift 10 32 RMSProp MSE 0.004649
s2r spectra redshift 10 32 RMSProp MAE 0.033334
s2r spectra redshift 10 32 Adam MSE 0.006617
s2r spectra redshift 10 32 Adam MAE 0.040978
s2r spectra redshift 10 64 RMSProp MSE 0.005554
s2r spectra redshift 10 64 RMSProp MAE 0.038496
s2r spectra redshift 10 64 Adam MSE 0.014275
s2r spectra redshift 10 64 Adam MAE 0.044180
ss2r ssel redshift 10 32 RMSProp MSE 0.004343
ss2r ssel redshift 10 32 RMSProp MAE 0.030403
ss2r ssel redshift 10 32 Adam MSE 0.008098
ss2r ssel redshift 10 32 Adam MAE 0.045030
ss2r ssel redshift 10 64 RMSProp MSE 0.005174
ss2r ssel redshift 10 64 RMSProp MAE 0.031783
ss2r ssel redshift 10 64 Adam MSE 0.006342
ss2r ssel redshift 10 64 Adam MAE 0.053812
b2r bands redshift 10 32 RMSProp MSE 0.003765
b2r bands redshift 10 32 RMSProp MAE 0.027912
b2r bands redshift 10 32 Adam MSE 0.004437
b2r bands redshift 10 32 Adam MAE 0.027528
b2r bands redshift 10 64 RMSProp MSE 0.004726
b2r bands redshift 10 64 RMSProp MAE 0.029070
b2r bands redshift 10 64 Adam MSE 0.004593
b2r bands redshift 10 64 Adam MAE 0.027921
w2r wise redshift 10 32 RMSProp MSE 0.011475
w2r wise redshift 10 32 RMSProp MAE 0.055713
w2r wise redshift 10 32 Adam MSE 0.011523
w2r wise redshift 10 32 Adam MAE 0.055016
w2r wise redshift 10 64 RMSProp MSE 0.011657
w2r wise redshift 10 64 RMSProp MAE 0.056263
w2r wise redshift 10 64 Adam MSE 0.011557
w2r wise redshift 10 64 Adam MAE 0.055382

Table 4.12: Hyper-parameters exploration for the single input/output models predicting
the redshift.
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learning rates; and the batch size is tested between 32 and 64. By looking at the score

(again, lower is better) the hyper-parameters that are prone achieve the best results can

be selected. For example, given the results for the i2sm model, the model achieves a good

performance using a batch size of 32, aRMSProp optimizer and aMAE loss function. Also,

remember that some combinations of hyper-parameters are not directly comparable, for

example MSE and MAE give outputs in different ranges due to their definition, but the

exploration of parameters is always useful to yield an informed decision of a reasonable

good place to start.

Table 4.14 illustrates the hyper-parameters exploration for the single input single out-

put models discussed in the previous section for predicting the object sub-class. Each

row in the table represents a full training cycle run for the given number of epochs and

changing the batch size, the optimizer and the loss function. For each cycle the available

data is split in the three sets: training, validation and testing. The validation dataset is

used to monitor model evolution during training, and the score in the table indicates the

model performance on the test dataset, that is never seen during training. Since these

are classification models, i.e. models that output a discrete value, the only loss function

considered is categorical crossentropy; the selected optimizers to test are RMSProp and

Adam with the default learning rates; and the batch size is tested between 32 and 64. By

looking at the score (higher is better in this case) the hyper-parameters that achieve the

best result can be selected. For example, given the results for the i2s model, the model

achieves the best performance using a batch size of 32 and an Adam optimizer.

Table 4.15 illustrates the hyper-parameters exploration for the single input single output

models discussed in the previous section for predicting the GZ2 simplified class. Each

row in the table represents a full training cycle run for the given number of epochs and

changing the batch size, the optimizer and the loss function. For each cycle the available

data is split in the three sets: training, validation and testing. The validation dataset is

used to monitor model evolution during training, and the score in the table indicates the

model performance on the test dataset, that is never seen during training. Since these

are classification models, as in the previous case, the only loss function considered is

categorical crossentropy; the selected optimizers two test are RMSProp and Adam with

the default learning rates; and the batch size is tested between 32 and 64. By looking at

the score (higher is better in this case) the hyper-parameters that achieve the best result

can be selected. For example, given the results for the i2g model, the model achieves
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Model Input Output Epochs Batch Size Optimizer Loss Score

i2sm img smass 10 32 RMSProp MSE 40929.859
i2sm img smass 10 32 RMSProp MAE 26.048
i2sm img smass 10 32 Adam MSE 40813.363
i2sm img smass 10 32 Adam MAE 26.695
i2sm img smass 10 64 RMSProp MSE 40982.949
i2sm img smass 10 64 RMSProp MAE 26.736
i2sm img smass 10 64 Adam MSE 42835.566
i2sm img smass 10 64 Adam MAE 26.238
f2sm fits smass 10 32 RMSProp MSE 40600.176
f2sm fits smass 10 32 RMSProp MAE 27.171
f2sm fits smass 10 32 Adam MSE 40491.633
f2sm fits smass 10 32 Adam MAE 25.758
f2sm fits smass 10 64 RMSProp MSE 40679.352
f2sm fits smass 10 64 RMSProp MAE 26.600
f2sm fits smass 10 64 Adam MSE 40903.289
f2sm fits smass 10 64 Adam MAE 25.931
s2sm spectra smass 10 32 RMSProp MSE 2963.335
s2sm spectra smass 10 32 RMSProp MAE 20.871
s2sm spectra smass 10 32 Adam MSE 3432.733
s2sm spectra smass 10 32 Adam MAE 20.129
s2sm spectra smass 10 64 RMSProp MSE 3159.474
s2sm spectra smass 10 64 RMSProp MAE 21.317
s2sm spectra smass 10 64 Adam MSE 3518.646
s2sm spectra smass 10 64 Adam MAE 20.420
ss2sm ssel smass 10 32 RMSProp MSE 40206.445
ss2sm ssel smass 10 32 RMSProp MAE 22.797
ss2sm ssel smass 10 32 Adam MSE 3018.159
ss2sm ssel smass 10 32 Adam MAE 22.728
ss2sm ssel smass 10 64 RMSProp MSE 40271.656
ss2sm ssel smass 10 64 RMSProp MAE 24.099
ss2sm ssel smass 10 64 Adam MSE 40798.273
ss2sm ssel smass 10 64 Adam MAE 22.380
b2sm bands smass 10 32 RMSProp MSE 3387.860
b2sm bands smass 10 32 RMSProp MAE 26.523
b2sm bands smass 10 32 Adam MSE 5747.023
b2sm bands smass 10 32 Adam MAE 25.930
b2sm bands smass 10 64 RMSProp MSE 5520.346
b2sm bands smass 10 64 RMSProp MAE 26.694
b2sm bands smass 10 64 Adam MSE 5725.097
b2sm bands smass 10 64 Adam MAE 25.151
w2sm wise smass 10 32 RMSProp MSE 4323.260
w2sm wise smass 10 32 RMSProp MAE 30.034
w2sm wise smass 10 32 Adam MSE 4391.042
w2sm wise smass 10 32 Adam MAE 29.858
w2sm wise smass 10 64 RMSProp MSE 4423.225
w2sm wise smass 10 64 RMSProp MAE 30.605
w2sm wise smass 10 64 Adam MSE 4433.951
w2sm wise smass 10 64 Adam MAE 29.800

Table 4.13: Hyper-parameters exploration for the single input/output models predicting
the stellar mass.
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Model Input Output Epochs Batch Size Optimizer Loss Score

i2s img subclass 10 32 RMSProp categorical crossentropy 0.771606
i2s img subclass 10 32 Adam categorical crossentropy 0.778097
i2s img subclass 10 64 RMSProp categorical crossentropy 0.767020
i2s img subclass 10 64 Adam categorical crossentropy 0.787760
f2s fits subclass 10 32 RMSProp categorical crossentropy 0.771977
f2s fits subclass 10 32 Adam categorical crossentropy 0.782177
f2s fits subclass 10 64 RMSProp categorical crossentropy 0.766183
f2s fits subclass 10 64 Adam categorical crossentropy 0.778739
s2s spectra subclass 10 32 RMSProp categorical crossentropy 0.765579
s2s spectra subclass 10 32 Adam categorical crossentropy 0.767897
s2s spectra subclass 10 64 RMSProp categorical crossentropy 0.766648
s2s spectra subclass 10 64 Adam categorical crossentropy 0.713914
ss2s ssel subclass 10 32 RMSProp categorical crossentropy 0.765764
ss2s ssel subclass 10 32 Adam categorical crossentropy 0.768824
ss2s ssel subclass 10 64 RMSProp categorical crossentropy 0.761719
ss2s ssel subclass 10 64 Adam categorical crossentropy 0.768415
b2s bands subclass 10 32 RMSProp categorical crossentropy 0.758995
b2s bands subclass 10 32 Adam categorical crossentropy 0.762148
b2s bands subclass 10 64 RMSProp categorical crossentropy 0.757720
b2s bands subclass 10 64 Adam categorical crossentropy 0.762742
w2s wise subclass 10 32 RMSProp categorical crossentropy 0.772348
w2s wise subclass 10 32 Adam categorical crossentropy 0.779303
w2s wise subclass 10 64 RMSProp categorical crossentropy 0.753348
w2s wise subclass 10 64 Adam categorical crossentropy 0.773345
Table 4.14: Hyper-parameters exploration for the single input/output models predicting

the object sub-class.

the best performance using a batch size of 32 and an Adam optimizer.

Table 4.16 illustrates the final hyper-parameters used for the single input, single output

models. The selected parameters in some cases were further fine tuned following some

manual changes and testing, besides the parameters exploration aforementioned. Also

the number of epochs for some cases had to be increased to allow for the models to con-

verge to a better solution. Besides the hyper-parameters the best score for each model

is also illustrated. Table 4.17 illustrates the final hyper-parameters used for the multi in-

put/output models. In this case the selected parameters result from some manual tuning,

no hyper-parameters explicit exploration was done. Besides the hyper-parameters, the

best score for each model on the test set for each training cycle is also illustrated while

the test set split is never seen by the model during the training process. The score in-

terpretation depends of the loss function, for MSE and MAE, since these measure the

difference between the models output and the real value, the closer the score is to zero

the better, in the case of categorical crossentropy, since this measure the accuracy of the

model to predict the correct class, the values fall between 0 and 1, the closer the score is
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Model Input Output Epochs Batch Size Optimizer Loss Score

i2g img gz2c 10 32 RMSProp categorical crossentropy 0.177365
i2g img gz2c 10 32 Adam categorical crossentropy 0.179617
i2g img gz2c 10 64 RMSProp categorical crossentropy 0.178693
i2g img gz2c 10 64 Adam categorical crossentropy 0.179261
f2g fits gz2c 10 32 RMSProp categorical crossentropy 0.278153
f2g fits gz2c 10 32 Adam categorical crossentropy 0.355011
f2g fits gz2c 10 64 RMSProp categorical crossentropy 0.273864
f2g fits gz2c 10 64 Adam categorical crossentropy 0.322159
s2g spectra gz2c 10 32 RMSProp categorical crossentropy 0.268863
s2g spectra gz2c 10 32 Adam categorical crossentropy 0.184685
s2g spectra gz2c 10 64 RMSProp categorical crossentropy 0.267045
s2g spectra gz2c 10 64 Adam categorical crossentropy 0.192330
ss2g ssel gz2c 10 32 RMSProp categorical crossentropy 0.261824
ss2g ssel gz2c 10 32 Adam categorical crossentropy 0.182151
ss2g ssel gz2c 10 64 RMSProp categorical crossentropy 0.261932
ss2g ssel gz2c 10 64 Adam categorical crossentropy 0.256818
b2g bands gz2c 10 32 RMSProp categorical crossentropy 0.246340
b2g bands gz2c 10 32 Adam categorical crossentropy 0.245495
b2g bands gz2c 10 64 RMSProp categorical crossentropy 0.245455
b2g bands gz2c 10 64 Adam categorical crossentropy 0.243466
w2g wise gz2c 10 32 RMSProp categorical crossentropy 0.257320
w2g wise gz2c 10 32 Adam categorical crossentropy 0.262387
w2g wise gz2c 10 64 RMSProp categorical crossentropy 0.258239
w2g wise gz2c 10 64 Adam categorical crossentropy 0.259943
Table 4.15: Hyper-parameters exploration for the single input/output models predicting

the GZ2 simplified class.

to 1 the better – 1 stands for 100% accuracy. The optimizers using training are RMSProp

and Adam, with the default learning rate of 0.001 except for some models, for example

concerning the single output models for predicting the redshift, in this case an adaptive

learning rate was used, mainly because the numbers can be very small and as soon as

the model starts to get near an optima it may start overshoot it, and so the idea is to start

taking smaller steps, i.e. using a smaller learning rate. The full parameters set and history

for all the training cycles are available from the astromlp-models repository in a MLflow

(Zaharia et al., 2018) database, an open-source framework for managing the ML models

life cycle. The next chapter discusses how the models and other resources are composed

together to build end-to-end applications.
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Model Input Output Type Epochs Batch Size Optimizer Loss Score

i2r img redshift r 40 32 RMSProp MSE 0.00127
f2r fits redshift r 40 64 Adam MSE 0.00111
s2r spectra redshift r 20 32 RMSProp MSE 0.00047
ss2r ssel redshift r 20 32 RMSProp MSE 0.00158
b2r bands redshift r 20 64 RMSProp MSE 0.05263
w2r wise redshift r 20 32 RMSProp MSE 0.03815
i2sm img smass r 20 64 Adam MAE 12.79310
f2sm fits smass r 20 32 Adam MAE 22.20509
s2sm spectra smass r 20 32 Adam MAE 17.62649
ss2sm ssel smass r 20 64 Adam MAE 14.04072
b2sm bands smass r 20 64 Adam MAE 15.14031
w2sm wise smass r 20 64 Adam MAE 16.90694
i2s img subclass c 20 64 Adam c.c. 0.81237
f2s fits subclass c 20 32 Adam c.c. 0.83594
s2s spectra subclass c 20 32 Adam c.c. 0.88456
ss2s ssel subclass c 20 32 Adam c.c. 0.87131
b2s bands subclass c 20 32 Adam c.c. 0.81856
w2s wise subclass c 20 32 Adam c.c. 0.80254
i2g img gz2c c 20 32 Adam c.c. 0.48929
f2g fits gz2c c 20 32 Adam c.c. 0.51504
s2g spectra gz2c c 20 32 RMSProp c.c. 0.26308
ss2g ssel gz2c c 20 32 RMSProp c.c. 0.27861
b2g bands gz2c c 20 32 RMSProp c.c. 0.25681
w2g wise gz2c c 20 32 Adam c.c. 0.26090

Table 4.16: Summary of the complete list of models with single input and output hyper-
parameters definition and best score achieved during model training. Type of problem is
abbreviated: regression (r) or classification (c), and categorical crossentropy loss function

is abbreviated as c.c.
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Model Input Output Type Epochs Batch Size Optimizer Loss Score

iFsSSbW2r

img
fits

spectra
ssel
bands
wise

redshift r 10 32 Adam MSE 0.00101
iFsSSbW2sm

img
fits

spectra
ssel
bands
wise

smass r 10 32 Adam MAE 8.93731
iFsSSbW2s

img
fits

spectra
ssel
bands
wise

subclass c 10 32 Adam c.c. 0.88171
iFsSSbW2g

img
fits

spectra
ssel
bands
wise

gz2c c 10 32 Adam c.c. 0.49667
fSbW2rSM

fits
spectra
bands
wise

redshift
smass r 10 32 Adam MSE

MAE
0.00170
9.41751

fSbW2sG

fits
spectra
bands
wise

subclass
gz2c c 10 32 Adam c.c.

c.c.
0.88372
0.48080

iFsSSbW2rSMsG

img
fits

spectra
ssel
bands
wise

redshift
smass

subclass
gz2c

r/c 10 32 Adam

MSE
MAE
c.c.
c.c.

0.00029
7.17838
0.87236
0.44916

Table 4.17: Summary of the complete list of multi input/output models hyper-parameters
definition and best score. Type of problem is abbreviated: regression (r) or classification

(c), and categorical crossentropy loss function is abbreviated as c.c.





Chapter 5

Pipelines for Characterization

The White Rabbit put on his spectacles. “Where shall I begin, please

your Majesty?” he asked. “Begin at the beginning,” the King said

gravely, “and go on till you come to the end: then stop.”

– Alice’s Adventures in Wonderland

The previous chapter discusses the creation of a dataset and a collection of Deep

Learning (DL) models for studying and inferring galaxies properties. This chapter dis-

cusses how these models can be combined together, and with the help of other tools,

provide end-to-end pipelines for galaxy characterization.

5.1 Models Composition

Following the model generic function behaviour, a similar one can be used to describe a

pipeline, for example:

pipeline ∶∶ ObjId → Result

where, a pipeline is a function that maps an object unique identifier to a result. The com-

bination of models used to infer properties is abstracted by the pipeline used, that is also

why the input is not data any more, but an object (or more specifically an object identifier).

The real input data is arbitrary, i.e. it depends on the model(s) used during processing,

hence it is inferred by the pipeline implementation in real time. This is also why there was

this particular concern to formally define models inputs and outputs, so that it is possible

to automatically prepare the real data in the correct arrangement to use as inputs.

69
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The core of a pipeline is the set of models that are used, this automatically entails the

inputs that need to be computed for a given object and also entails the outputs (properties)

the pipeline is able to infer. More than one model may be inferring the same property, by

default a pipeline uses a map-reduce approach (Dean & Ghemawat, 2008), after collect-

ing all the required data, processing is handled to the models for computing the required

intermediate results (the map step), and then the intermediate results are reduced to yield

the final pipeline output (the reduce step). The entire process is captured in the following

three steps summary:

1. Gather data: compile all the inputs required for the models

data ∶∶ ObjId → [Input]
2. The map step: for each model in the pipeline apply the model to the data, this step

yields a list of outputs for each property

map ∶∶ [Model] → [Input] → [Output]
3. The reduce step: combine all intermediate outputs into a single final result

reduce ∶∶ [Output] → Result

Using a simple function composition it is possible to define the pipeline function as

pipeline models objid = reduce(map(models, data(objid)))
where, objid is a unique object identifier, the data function maps this identifier to a set of

inputs, which themap function maps to set of outputs using the defined set of models, and

finally the reduce function builds the final result. This is a high level description, an actual

implementation is still required, but it allows for discussing the topic and clearly define the

mappings inputs and outputs. Figure 5.1 illustrates the same concept using a more visual

construct.

The data function needs to output a list of inputs that are consistent with the data types

defined in the previous chapter, making sure the arrays have the correct dimensions. The

map function has the inputs constrained by the data types definitions, and the outputs are

also enforced by the models outputs, that already follow the same data types. The only



5. Pipelines for Characterization 71

Pipeline

outputsobjid MapData Reduce

Model

Model

Model

Figure 5.1: Description of a pipeline using a map-reduce approach, each model is applied
to the relevant inputs, and the intermediate results are combined to yield the final output.

detail missing is the reduce function, i.e. how to actually combine the result of different

models or other techniques – a quick side note is that although the illustrated pipelines are

only using the devised models any arbitrary tools can contribute to the process as long as

their inputs and outputs are well defined, and there is a defined reduce operation able to

combine the output with other results. To define the reduce function it is possible to take

advantage of the models output formal definition. For example, the regression models

output a single real value, a Float, a straightforward way to combine different outputs from

different models to reduce them to a single (final) output is to apply the mean operation

for example. In case of classification models, the output is a label, the reduce operation

can be for example to select the most voted label between all the models, as this is a

strategy already used with models ensembles. And of course devise new reducers that

are able to explore more complex ways to combine different results. These reducers can

be systematically applied by default in the pipeline because the outputs of the models are

well defined.

Available Pipelines

To illustrate the aforementioned discussion three pipelines are readily available from the

astromlp library: One2One, CherryPicked and Universal. The first one applies all the

available models with a single input and a single output to infer all the galaxy properties,

while the second applies a collection of hand picked models to infer the same properties.

An Universal pipeline is also available for characterizing galaxies, where the models with

the best performance are used to estimate all the outputs. This is a baseline to use the

library, and the long term goal is to keep updating the combination of models for estimating

outputs whenever better options are available. Table 5.1 summarizes the models outputs

and corresponding models, or models ensembles, responsible for computing each one,
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recalling that the input for the pipeline is an object identifier, it is the responsibility of the

framework to infer and gather all the required data automatically.

Pipeline Input Output Models/Ensemble

One2One objid

redshift
stellar mass
sub-class

GZ2 simplified class

i2r, f2r, s2r, ss2r, b2r, w2r
i2sm, f2sm, s2sm, ss2sm, b2sm, w2sm

i2s, f2s, s2s, ss2s, b2s, w2s
i2g, f2g, s2g, ss2g, b2g, w2g

CherryPicked objid

redshift
stellar mass
sub-class

GZ2 simplified class

f2r, s2r, ss2r, iFsSSbW2r
f2sm, b2sm, w2sm, iFsSSbW2sm

iFsSSbW2s
i2g, f2g, iFsSSbW2g

Universal objid

redshift
stellar mass
sub-class

GZ2 simplified class

s2r
i2sm
ss2s
f2g

Table 5.1: Summary of the available pipelines, including their outputs, and corresponding
models or models ensembles to estimate each output.

5.2 Results & Discussion

The pipelines implementation takes advantage of all the tools and resources developed

throughout this work, but at their core are the models. The collection of models is respon-

sible for actually predicting values of interest, all the others resources act as requirements

for the models to fulfil their goal. So the accuracy of properties predictions computed by the

pipelines depend mostly on the accuracy of the models used. Table 4.16 and 4.17 sum-

marize the models performance score of the corresponding metrics on the testing slice of

the dataset, a typical way to try to assess models accuracy and ability to generalize to new

unseen data.

Concerning the redshift estimation, the final score for all single input single output mod-

els on the test set is very close to 0 in the order of 1 × 10−3 for the Mean Squared Error

(MSE) loss function. The best score, 0.00047, is achieved by the model with the full spec-

tral data as the input, which makes sense, since the spectra is theoretically the best source

for redshift information from the available data. In this case it seems that the devised mod-

els were able to capture the underlying mapping between the input data and the redshift.

Concerning the multi input single output model for predicting the redshift, the performance

score on the test set is 0.00101 for the MSE loss function, very close to the single input

results, which makes sense since all the input data is there. Concerning the multi input
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multi output models that include the redshift prediction, the performance score on the test

set is 0.00170 on the MSE loss function for the model with only the regression outputs, and

0.00029 for the model that estimates all the outputs, also on the MSE loss function. Inter-

estingly this result is better than the single input single output model. The function captured

by the network illustrated in Figure 4.18 was able to capture the mapping between the in-

puts and several outputs, hinting that there is an underlying similar structure between the

input data and the estimated parameters, but a more in-depth analysis is required to better

understand which input data is contributing to explain the model characteristics outputs.

Concerning the stellar mass estimation, the final score for all the single input single

output models, on the test set, measuring using the Mean Absolute Error (MAE) loss func-

tion is very low when compared to the range of values for the stellar mass, average of

2.53 × 1010M⊙. Interestingly the best score, 12.79310 (the stellar mass prediction are

always downscaled by a factor of 109) is achieved by the model with the RGB images

input, but since the stellar mass is related with the shining objects, there is a probable

relation between these and the image itself. All the models seem to be able to capture

the underlying mapping between the inputs and the stellar mass successfully. Concerning

the multi input single output model for predicting the stellar mass, the performance score

on the test set is 8.93731, a bit better than the best single input model, hinting that there

is some combination of inputs that actually provide better predictive information than all

the inputs by themselves. Concerning the multi input multi output models that include the

stellar mass prediction, the performance score on the test set is 9.41751 on the MAE loss

function for the model with only the regression outputs, and 7.17838 for the model that

estimates all the outputs, also on the MAE loss function. Again, it’s interesting to verify

that for the given data this is the model that achieves the best performance for estimating

the stellar mass. Hinting, as before, that there is some interesting synergy mechanism in

the data, that is not present in the individual inputs.

Concerning the prediction of the object sub-class, the final scores for all the single input

single output models measured using the categorical crossentropy function, that conveys

the models accuracy to predict the correct class, is above 80%. The best score, 88.456%,
is achieved by the model that has the spectral data as input, which makes sense, since the

spectra provides the most relevant information to determine the sub-class. All the models

achieve a good result, and seem to be able to capture the underlying mapping between all

the available inputs and the final sub-class. Concerning the multi input single output model



74 Towards a Universal Machine Learning Pipeline to Understand Galaxies

for predicting the sub-class, the accuracy score on the test set is 88.171%, very close the

the best score for the single input models. Concerning the multi input multi output models

that include the sub-class prediction, the accuracy score on the test set is 88.372% for the

model with only the classification outputs, and 87.236% for the model that estimates all

the properties. Very close accuracy values, that show that all these models were able to

successfully capture a mapping between the inputs and outputs.

Concerning the prediction of the object Galaxy Zoo 2 (GZ2) simplified class, the final

score for all the single input single output models, measured by the categorical crossen-

tropy function, that conveys the models accuracy to predict the correct class out of the

23 classes described in Appendix D, is divided between values around 20% and values

around 50%, being the best accuracy score, 51.504% achieved by the model with the spec-

tral data single input. There is a clear gap in the accuracy of the models that have as input

the RGB image and FITS data, closely related, around 50%, when compared to the models

that have as input the spectral, bands and WISE data, around 20%. Given that the manual

annotation done of the classes was done on the images maybe this can hint that there

is a bias in the dataset labels but a more in-depth analysis of the data and the models is

required to try to explain these results. Concerning the multi input single outputs model for

predicting the GZ2 simplified class, the accuracy score on the test set is 49.667%. Con-
cerning the multi input multi output models that include the GZ2 simplified class prediction,

the accuracy score on the test set is 48.080% for the model with only the classification out-

puts, and 44.916% for the model that estimates all the properties. To double check that

there was no fundamental problem with the model implementation or the dataset, an au-

tomatically generated model was created, using the Google Cloud service Vertex AI1, to

predict the GZ2 simplified class from the RGB image. The generated model achieved an

accuracy of around 50%, inline with the results from the devised models, hinting that the

models are performing as expected.

In summary, concerning the models performance, for the given test sets, randomly

extracted from the SDSSGalaxy Subset (SDSSGS) dataset and never seen by themodels

during training or validation: iFsSSbW2rSMsG, a multi input multi output model showed the

best performance (for the corresponding metrics) for estimating the redshift and the stellar

mass; s2s, a single input single output model showed the best accuracy for predicting

the sub-class; and, f2g a single input single output model showed the best accuracy for

1Available from: https://cloud.google.com/vertex-ai (last accessed: 2022-10-26).

https://cloud.google.com/vertex-ai
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predicting the GZ2 simplified class. But all these are by a small margin, some of the other

models have shown very similar performances with different combinations of inputs and

outputs. A more in-depth analysis on the relevance on the input for explaining the output

is required to have a better understanding on which features really carry the predictive

power for the intended properties.

5.2.1 Threats to Validity

The previous section discusses the models performance results, this section discusses

some possible shortcomings with the devised processes for preparing the data, defining

and training the models that may have an impact on the final results.

The first short coming with the illustrated and discussed results is the specific architec-

ture of each model, although some manual endeavour was done to come up with a model

able to capture the mappings between inputs and outputs, the model space hypotheses

is very big, so it is possible that there are more complex models (or more simple) that are

able to better capture the underlying function between inputs and outputs. Although some

hyper-parameters tuning wasmade, again a better combination may exist, like for example

the optimizers used and their corresponding parameters, e.g. the learning rate. Also, the

hyper-parameters exploration could be expanded to use a larger volume of data, and with

an increased number of epochs, because there are some hints that some of the training

process may have not converged satisfactorily, for example achieving better performance

for predicting the redshift using the image as input, as opposed to the spectra, which was

the result of the final training results. The training time, i.e. the number of epochs, can

also have an impact on the models final results, training more time may potentially provide

a better model. However the numbers of epochs used to train the discussed models was

always limited by time and hardware resources.

Another shortcomingwith the training and validation processes and results is the dataset

itself, the data may already contain some kind of bias in the target variables which makes

harder or easier for the models to converge. This is particularly true for predicting the GZ2

simplified class where the current results show that given the available data and models

it was not possible to capture a general mapping between the available inputs. Another

example is the range of values for the stellar mass of galaxies illustrated in Section 4.2,

which contains values that are clearly not expected for the stellar mass of a galaxy. The

main shortcoming here seems to be that these objects are not galaxies, i.e. incorrectly
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classified as galaxies in the SDSS database, but were chosen as part of the random se-

lection process while creating the dataset. Although these act as outliers and in a optimal

situation should not be included for training, they should not impact the performance of the

models given they are in a small number. Another possible shortcoming with the devised

dataset is some of the options made, for example the size of image cut for each individ-

ual galaxy, this can have a possible impact on the data, cutting off relevant information of

adding too much noise to the image. Also the selected data inputs may not be the more

informative ones for the target estimations. A more in-depth analysis of the correlation

between input features could help understand the impact of this shortcoming on the final

results.

From a more scientific point a view, a shortcoming with these models is that they do

not have any physics constrains on the mappings they produce between the inputs and

outputs. In practice the models may devise functions that may not be compatible with

the current knowledge of the physical phenomena that drive the studied features, i.e. the

created functions are not aware (informed) of the current knowledge on physics concerning

the studied topics.

5.3 Example Application

To illustrate the practical use of the pipelines discussed in the previous sections, a con-

crete application was devised that explores their use in a possible real world setting. The

application is divided in two main parts: (1) a restful API that uses HTTP requests to pro-

cess data and characterize objects; and, (2) a web-based online tool providing an interface

to query the API and visualize the results. The restful API is an application program in-

terface that uses the HTTP protocol in this case, to submit requests and access results,

usually used for communicating data between computer programs (Fielding, 2000). Both

the application2 and the API3 source code are made available freely under open source

licenses.

Figure 5.2 illustrates the astroMLP for Galaxies application online interface. From the

main page is obvious to see the currently available pipelines for characterizing galaxies,

i.e. infer the redshift, stellar mass, sub-class and GZ2 simplified class for SDSS objects.

2Available from: https://nunorc.github.io/astromlp-app (last accessed: 2022-10-18).
3Available from: https://github.com/nunorc/astromlp (last accessed: 2022-10-18).

https://nunorc.github.io/astromlp-app
https://github.com/nunorc/astromlp
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Figure 5.2: astroMLP for Galaxies application online interface main page.

Figure 5.3 illustrates the page to view more information about a pipeline, One-2-One En-

semble in the example, describing the models ensembles that the pipeline is using to com-

pute the final properties. Figure 5.4 illustrates the visualization of the output of executing

the pipeline for a random object.

Besides the pipelines, both the API and the visual interface provide access to the mod-

els individually, as hinted in Figure 5.2. This enables to visualize the result of applying

each model individually and also enables other applications and tools to simply contact the

API to request the results of applying a single model to use the results in more complex

workflows, or tools outside the system. Figure 5.5 illustrates the webpage for viewing the

information about a specific model, including the model network architecture, predicting

redshift from the spectra data in the illustrated example. Figure 5.6 illustrates the output

visualization of applying the model to predict the redshift from spectral data for a random

object.

The online application allows the exploration of all the available pipelines and mod-

els using a visual interface, without requiring the installation of any software or any data

download. And the API allows other applications to programmatically apply pipelines and

models to use the results in their own workflows or to build new tools. The overarching

goal of the application and API is to provide access to the models without requiring any
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Figure 5.3: astroMLP for Galaxies application information about theOne-2-One Ensemble
pipeline.

software download or installation, although all the tools are also available as packages to

include in other applications development or workflows.
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Figure 5.4: astroMLP for Galaxies application output result of applying the One-2-One
Ensemble pipeline.
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Figure 5.5: astroMLP for Galaxies application information about the model to infer the
redshift from spectral data page.
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Figure 5.6: astroMLP for Galaxies application output result visualization of applying the
model to infer the redshift form the spectral data.





Chapter 6

Conclusion

A story has no beginning or end: arbitrarily one chooses that moment

of experience from which to look back or from which to look ahead.

– Graham Greene

This dissertation describes the work done in the field of astronomy and astrophysics,

to enhance the understanding and characterization of galaxies using pipelines of Deep

Learning (DL) models and heterogeneous sources of data. This chapter discusses some

final thoughts and reflections, tries to address the initial proposed research question and

discusses some trends for future work.

6.1 Final Remarks

Overall the work followed the plan proposed in Section 1.3, during the first part of the

work plan, the goal was to build a dataset of heterogeneous data that would include the

required information, from a theoretical point of view, that could be used to estimate the

intended properties. The SDSS Galaxy Subset (SDSS GS) including around 100k objects

was built with data from the SDSS database, this includes RGB images, FITS, spectral,

bands and WISE data, and also the relevant information available for the objects, e.g.

redshift, class and stellar mass. Section 4.1 describes in more detail the content of the

dataset. The major challenge was to relate data with the intended output, i.e. which data is

more prone to include the necessary predictive power to build useful models. Some data

also required making decisions, for example the size of the image with the object, this

can have an impact on models trained using the dataset as discussed in Section 5.2.1,

83
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and other data still needs some further in depth analysis and updates and/or cleaning like

for example the objects with a stellar mass clearly outside the expected range of values,

most probably due to the objects misclassification. Another step that could help future

versions of the dataset and the devised models is a feature importance analysis for each

intended combination of inputs and outputs, since maybe not all the used features convey

the required predictive power.

During the second part of the work plan the goal was to build, train and test a col-

lection of models for estimating the variables of interest for the objects, namely redshift,

stellar mass, sub-class and Galaxy Zoo 2 (GZ2) simplified class. A total of 31 DL models

were build, trained, validated and tested, using a total of 518 layers, containing a total of

70128 689 trainable parameters, using different combinations of single and multi inputs

and outputs. Section 4.4 describes in detail all the devised models architectures using

combinations of different layers. The major challenge was the definition of the models’

network architectures able to capture the mappings between the inputs and outputs, the

selection of the loss functions and optimizers and the fine-tuning of the hyper-parameters.

Assuming that the available data includes the informative information to accurate infer the

value of a given property, the problem during this stage becomes how to define a net-

work that is able to accurately map the data (inputs) to the intended properties (outputs).

The manual hyper-parameters exploration described in Section 4.4, although time con-

suming helped with fine-tuning the parameters, and the networks itself, to enable some

of the good results. All the model architectures may be improved, either to make some

of the models more simple or more complex, this can help with the models performance,

to better generalize to new data, or simply make predictions run faster. All the models

were trained, validated and tested using the SDSS GS dataset, which entails that any

shortcoming identified with the dataset may have an impact on the models performance.

During the last part of the work plan, the goal was to devise ways to combine all the

models and resources developed in previous stages to create and deploy ready to use

pipelines for systematic galaxy characterization. Section 5.1 discusses the approach for

combining models in a more formal way, enabling the description of model ensembles and

the implementation of pipelines using a map-reduce approach, the framework adopted to

organize the tools and models application. The formal definition using the Haskell no-

tation, although seldom discussed proved to be a valuable description during the actual
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implementation of the resulting packages, enabling the creation of resources easy to in-

tegrate and update. The pipelines are immediately available to use from the astromlp

Python package, and also via a restful API illustrated in Appendix C that enables the esti-

mation of galaxy properties without any software installation or downloads. Although none

of the examples illustrates the use of tools from outside the scope of this work, using the

devised approach it is possible to easily include the contributions of other libraries and

techniques for the pipeline outputs. This is a step forward for a “universal” pipeline for

galaxy characterization, although probably there are still some iterations to go, specifically

to include more techniques and approaches for estimating individual outputs, and to add

more properties of interest to the pipeline final output. Another way to explore the models

and pipelines currently available is to visit the online application described in Section 5.3.

Concerning the initially proposed research question, and given the results illustrated in

Chapter 4 and discussed in Chapter 5 it seems safe to say that, for the analysed data, the

pipelines are able to correctly infer a collection of properties of galaxies with an adequate

success rate, maybe except for the GZ2 simplified class. The devised single input single

output models achieved a best score on the test sets of 0.00047 on the Mean Squared

Error (MSE) loss function for predicting the redshift, 12.79310 on the Mean Absolute Error

(MAE) loss function for predicting the stellar mass, an accuracy of 88.456% for predicting

the sub-class and an accuracy of 51.504% for predicting the GZ2 simplified class. Themulti

input and/or multi output models were also able to successfully infer mappings between

the inputs and outputs, achieving a best score of 0.00029 on the MSE loss function for

predicting the redshift, 7.17838 on the MAE loss function for predicting the stellar mass,

87.236% accuracy for predicting the sub-class and 49.667% accuracy for predicting the

GZ2 simplified class. In some cases outperforming the single input single output models,

hinting to some underlying synergy between the combination of input data and estimated

properties. An in-depth analysis of the measurement of the input features relevance to

explain the models output can help with a better understanding the synergy between the

features that enable themodels achieved performances. The Universal pipeline available

from the astromlp package is a first step to coming up with a generic approach for immedi-

ately and consistently process large volumes of data to characterize galaxies populations.

Another clear advantage of the use of the pipelines and their implementation approach

is how easy they can be used from other tools and included in other workflows, either as

a library or via HTTP requests using the available API. Given the huge amount of data
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currently available to process, and with the planned missions and surveys this will always

increase, reliable, consistent and systematic approaches for estimating galaxies proper-

ties enable more complete and in-depth studies to enhance our current understanding of

galaxies.

During the development of the required tools, packages and models implementation,

there was always a particular care to make sure that adding data, and models, and chang-

ing hyper-parameters and another relevant options would be not only possible but also

easy. Every little bit of code and information to reproduce the results discussed in this

work are made available from the list of shared repositories and resources. Fitting and

evaluating models may give slightly different results, given the stochastic nature of some

algorithms, initialization, evaluation procedures, etc., or differences in numerical precision.

Another relevant detail is that the collection of resources derived from this work (software,

datasets, etc.) is shared publicly under permissive licenses, specifically using the MIT or

CC license, so that anyone can use and/or continue its’ development, or use it in their own

work without restrictions or limitations. In a nutshell whenever possible, open source best

practices were followed.

6.2 Future Work

Some topics and trends for future work include:• Given the results discussion in Chapter 5 and 6 the first and upmost important fu-

ture work includes a feature importance analysis to understand which features help

better explain the results (Arrieta et al., 2020), in particular for the multi input multi

output models, to better understand the data predictive power for the properties of

interest, there are some hints that synergies between inputs can convey important

information.• Expand the dataset by increasing not only the number of objects but also by adding

more data from other sources. And also perform some statistical analysis to mea-

sure the effective power of the features, and when considering new features to add,

to provide enough information to infer the intended outputs, some of the features

may not have the required predictive power, i.e. measure feature importance and

correlations.
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advantage of the available data, and also from new data from other sources. Also

continue the work of fine-tuning the currently available models hyper-parameters and

also models architectures to improve the models performance and increase their

ability to better generalize to unseen data;• Increase the level of complexity of the pipelines strategy, for example allow the out-

put of one model to be used as inputs to another. And also include external tools

and techniques to contribute to the results workflow, this may entail updates to the

pipeline implementation or new approaches to frame the pipelines, besides map-

reduce.• Increase the performance of the pipelines implementation time-wise, i.e. make the

estimation of the properties run faster, by enabling vectorization and parallelization in

some on the calculations that are done, for example for applying model predictions.• As discussed in Section 5.2.1 the models do not have any constrains based on the

current knowledge in the physics of the studied processes, a more recent trend of

physics informed models, e.g. Aliakbari et al. (2021), Mao et al. (2020), could help

training models aware of some physical known constrains.• Compare the devised models to models generated using Automated Machine Learn-

ing methods (Hutter et al., 2019), in order not only to validate the proposed model

network architectures, but also to use the validation metrics as a baseline for new

models.





Appendix A

The astromlp Package

This section quickly introduces and illustrates the astromlp package1 developed through-

out this work. This package, written in Python, provides a framework for building pipelines

composed of DL models for astrophysics applications. For installation instructions and

more detailed documentation refer to the package website.

Start by importing the One2One class from the astromlp.galaxies package, that im-

plements one of the readily available pipelines for galaxies characterization:

from astromlp.galaxies import One2One

Next, create an instance of the One2One pipeline, the location for the models store directory

may be provided:

pipeline = One2One(model_store='./astromlp -models/model_store')

The collection of models is available from the astromlp-models repository illustrated in

Appendix B. The galaxies pipelines are based on SDSS data, so the input to the pipeline

is a SDSS object identifier (objid), for example to process the object 1237648720693755918

using the selected pipeline run:

result = pipeline.process(1237648720693755918)

The result object is an instance of PipelineResult, a generic class, the outputs of the

pipeline processing follow:

PipelineResult(redshift=0.0869317390024662, smass=23.44926865895589,

subclass='STARFORMING', gz2c='ScR')

New ensembles of models can easily be created with the map-reduce approach by using

the MapReducPipeline class, creating a new instance and providing the list of outputs and

1Available from: https://nunorc.github.io/astromlp (last accessed: 18-10-2022).
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corresponding models. For example, to create a new pipeline that computes the redshift

using the i2r and f2r models:

from astromlp.galaxies import MapReducePipeline

pipeline = MapReducePipeline({ 'redshift': ['i2r', 'f2r'] })

Other modules inside the package may be useful and used in other applications, for ex-

ample the Helper module to work with the dataset derived from SDSS data. We start by

importing the module and creating an helper instance, optionally giving as argument the

path to the dataset:

from astromlp.sdss.helper import Helper

helper = Helper(ds='../sdss-gs')

It is possible now to query and load data from the dataset using methods. For example, to

query the dataset for the identifiers of the objects that have image and FITS data available:

ids = helper.ids_list(has_img=True, has_fits=True)

To retrieve more information about a specific object the get_obj method can be used

>>> helper.get_obj(ids[0])

{'objid': 1237674649924469005, 'mjd': 51612, 'plate': 280, 'tile': 108, 'fiberid': 187,

'run': 6793, 'rerun': 301, 'camcol': 3, 'field': 65, 'ra': 170.36352, 'dec':

-0.29880776, 'class': 'GALAXY', 'subclass': 'AGN', 'modelMag_u': 19.5784, '

modelMag_g': 17.81271, 'modelMag_r': 16.87834, 'modelMag_i': 16.42507, 'modelMag_z':

16.06842, 'redshift': 0.1004738, 'stellarmass': 51983577675.799904, 'w1mag':

13.423, 'w2mag': 12.911, 'w3mag': 9.871, 'w4mag': 7.613, 'gz2c_f': 'Sb', 'gz2c_s': '

Sb'}

For example to retrieve the FITS data for a list of objects the load_fits method can be

used:

>>> data = helper.load_fits(ids)

>>> data.shape

(100054, 61, 61, 5)
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The astromlp-models Repository

This section quickly introduces the astromlp-models repository1 developed throughout

this work. This repository provides a collection of deep learning models for astrophysics

applications. For usage instructions and more detailed documentation refer to the reposi-

tory website.

The models available in this repository are implemented using Keras, illustrated in

Appendix E. To fit the models available in this repository the astromlp Python package,

illustrated in Appendix A, that includes all the helper classes is also required. To start using

the models start by cloning the repository:

$ git clone https://github.com/nunorc/astromlp -models.git

The models are readily available from the model_store directory, and can be directly used

from Keras, for example to load the i2r model:

import tensorflow as tf

model = tf.keras.models.load_model('model_store/i2r')

To fit a model using mlflow, for example to fit the i2r model using the current python, i.e.

do not create a new environment using conda, you can run from the repository directory,

and also include this run in the i2r experiment:

$ mlflow run i2r --experiment -name i2r --no-conda

It is also possible to change the parameters to fit the model, namely the number of epochs,

the batch size, the loss function and optimizer to use, for example:

$ mlflow run i2r -P epochs=10 -P batch_size=32 -P loss=mse -P optimizer=adam --

experiment -name i2r --no-conda

1Available from: https://github.com/nunorc/astromlp-models (last accessed: 07-09-2022).
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It is also possible to change the location of the dataset by setting the ds parameter:

$ mlflow run i2r -P ds=/tmp/sdss-gs --experiment -name i2r --no-conda

To view the data concerning the fitting of the available models we can use mlflow user

interface, including all the parameters and metrics:

$ mlflow ui --backend -store-uri sqlite:///mlruns.db

To view the logs data concerning the training process using tensorboard use:

$ tensorboard --logdir i2r/logs/

For more information and up to date models to the public repository.
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The astromlp API

This section briefly describes and illustrates the API provided in the astromlp package, an

expeditious way to use the models with requiring any package installation or data down-

load. The result is returned in JSON format, suitable for machines interoperability. For

example to infer the redshift for object 1237648720693755918 using the i2r model a query

is issued via HTTP to the /infer/<model>/<objid> endpoint, the following example illus-

trates the relevant snippet of the output, which actually includes more information about

the object and full input data:

$ curl https://astromlp -api.nrc.pt/infer/i2r/1237648720693755918

(...)

"output":[0.07196992635726929],"x":["img"],"y":["redshift"]}

Besides querying models it is also possible to query a pipeline using the /proc endpoint,

for example:

$ curl https://astromlp -api.nrc.pt/proc/one2one/1237648720693755918

(...)

"output": {"redshift": 0.08778927847743034, "smass": 23.494845072428387, "subclass": "

STARFORMING", "gz2c": "ScR"}}

For more examples on how to use the API and to fully explore the returned results visit

the astroMLP for Galaxies1 application. Although in these examples the API is running

on a remote server in the astromlp-api.nrc.pt domain, the API source is provided in

the astromlp package, which means anyone can run their own instance of the API in their

local or remote infrastructure.

1Available from: https://nunorc.github.io/astromlp-app (last accessed: 2022-10-18).
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Galaxy Zoo 2 Simplified Classes

Label Description

A artefact, star

Ec smooth, cigar-shaped

Ei smooth, in-between

Er smooth, completely round

SBa with features/disks, has bar, dominant bulge prominence

SBaR with features/disks, has bar, dominant bulge prominence, has spiral structure

SBb with features/disks, has bar, obvious bulge prominence

SBbR with features/disks, has bar, obvious bulge prominence, has spiral structure

SBc with features/disks, has bar, just noticeable bulge prominence

SBcR with features/disks, has bar, just noticeable bulge prominence, has spiral structure

SBd with features/disks, has bar, no bulge prominence

SBdR with features/disks, has bar, no bulge prominence, has spiral structure

Sa with features/disks, dominant bulge prominence

SaR with features/disks, dominant bulge prominence, has spiral structure

Sb with features/disks, obvious bulge prominence

SbR with features/disks, obvious bulge prominence, has spiral structure

Sc with features/disks, just noticeable bulge prominence

ScR with features/disks, just noticeable bulge prominence, has spiral structure

Sd with features/disks, no bulge prominence

SdR with features/disks, no bulge prominence, has spiral structure

Seb with features/disks, edge-on, boxy bulge

Sen with features/disks, edge-on, no bulge

Ser with features/disks, edge-on, round bulge
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The Keras API

This section briefly introduces the keras package1. Keras is am open-source framework

for building and training DL models. All the models devised throughout this work are im-

plemented using this framework inheriting all the advantages of Keras. To quickly illustrate

how to use it, let’s start by loading some modules:

from keras import models, layers, optimizers

and create a simple sequential model with two fully connected layers and a single node in

the output layer:

model = models.Sequential()

model.add(layers.Dense(64, activation='relu', input_shape=(128,)))

model.add(layers.Dense(32, activation='relu'))

model.add(layers.Dense(1))

Next, we compile the model by setting the loss function, the optimizer and any metrics that

we want to compute:

model.compile(optimizer='adam', loss='mse', metrics=['mse'])

Finally, we can fit the model to some data tensor X with a target variable y, using a batch

size of 32 for a total of 100 epochs using the fit method:

model.fit(X, y, batch_size=32, epochs=100)

This is the gist of prototyping models with Keras, for more information refer to the package

official documentation.

1Available from: https://keras.io (last accessed: 24-10-2022).
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Appendix F

SDSS SQL Queries

Query for retrieving all the information for all the objects in the SpecPhoto table:

SELECT objID,mjd,plate,tile,fiberID ,run,rerun,camcol,field,ra,dec,class,subClass ,

modelMag_u

AS u,modelMag_g AS g,modelMag_r AS r,modelMag_i AS i,modelMag_z AS z, z as redshift

INTO mydb.SpecPhoto

FROM SpecPhoto

WHERE class='GALAXY' AND subClass is not null AND zwarning=0

Query for retrieving WISE data:

SELECT s.objID, s.class, s.subClass , w.w1mag, w.w2mag, w.w3mag, w.w4mag

INTO mydb.WISE

FROM SpecPhoto s

JOIN WISE_xmatch x ON x.sdss_objid = s.objID

JOIN WISE_allsky w ON x.wise_cntr = w.cntr

WHERE s.class='GALAXY' AND s.subClass is not null AND s.zwarning=0
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Appendix G

Introduction to the Haskell Notation

Haskell is a purely functional and strongly typed programming language. A very brief

and summarized introduction to the language notation follows. More information about

the language, and detailed resources about its notation are available in the Haskell official

website1. Some of the illustrated examples use the Glasgow Haskell Compiler2 interactive

environment (ghci) to calculate expressions.

Functions Definitions and Signatures

A function in Haskell is clearly defined, and has a clear signature, that defines the type of

inputs that the function takes, and the type of results the function computes. For example,

the signature for a function called square, that given an integer computes its square, can

be as follows:

square ∶∶ Int → Int

This reads as: the square function takes and integer, and its result is an integer. Func-

tions can have arbitrary numbers of arguments, for example a function for computing the

maximum of four numbers can have the following signature:

max ∶∶ Int → Int → Int → Int → Int

To generalize this function to take as input an arbitrary list of numbers, the signature could

be changed to take as input a list of integers, and the result is the maximum integer:

1Available from: http://haskell.org (last accessed: 2022-10-26).
2Available from: http://www.haskell.org/ghc/ (last accessed: 2022-10-26).
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max ∶∶ [Int] → Int

Most of the times, function signatures can be omitted, in which case the compiler will derive

them. But still they are very useful, especially for humans reading the code, to explicitly

state which are the arguments to the function and the final result.

The function body follows the signature, for example the complete definition for the

square function could be as follows:

square ∶∶ Int → Int

square n = n ∗ n

The integer value that the function takes as argument is referred using n. The result of

the function its simply to compute the square of n. Intermediate values can be computed

inside the function definition. For example, to define a function that computes the cube

(n3) of an integer value, using the square function:

cube ∶∶ Int → Int

cube n = let

sq = square n

in

sq ∗ n

Where, the let keyword is used to start a section of intermediate calculations, and the in

keyword defines the final expression that calculates the function result.

The $ sign is used in function definitions to avoid the use of parenthesis, anything

appearing after takes precedence. The following expressions are equivalent:

ghci> square (3 + 2)

25

ghci> square $ 3 + 2

25

Declaring New Data Types

New data types can be defined in Haskell using the data keyword. For example, the

following statement defines a new data type called Point2D, which is composed of two

integers (x and y, the point coordinates):
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data Point2D = Point2D { x ∶∶ Int, y ∶∶ Int }
New members of this structure are created using the constructor (a function) that is auto-

matically available, and passing the corresponding values is order:

ghci> Point2D 4 6

Point2D {x = 4, y = 6}

The names of the fields in the data type definition are used as accessors to the values.

For example, to get the x coordinate of a point p:

ghci> let p = Point2D 4 6

ghci> x p

4

Sometimes, no new data structure is actually required, but to be more clear on values

semantics, an alias can be given to other types. For example, in the previous Point2D
data type definition, the Int value is the type for coordinates, to be more explicit an alias

for the Int type named Coordinate can be created using the type keyword:

type Coordinate = Int

Now, the Coordinate type can be used, instead of Int. Updating the previous example, the

data type definition can be written as:

data Point2D = Point2D { x ∶∶ Coordinate, y ∶∶ Coordinate }
A new data type can also be defined using possible alternatives. For example the boolean

data type has two alternatives: true or false, different alternatives are grouped together

using a vertical bar:

data Bool = True | False
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