
Feature Selection in
Imbalance Domain
Learning Problems:
A Case Study on
Scrapping of Tires
Pedro Unas
Master in Data Science
Department of Computer Science
Faculty of Sciences, University of Porto
2022

Supervisor
Rita P. Ribeiro, Assistant Professor, Faculty of Sciences, University of Porto

External Supervisors
José Luís Mourão, Lúcia Moreira

Todas as correções determinadas

pelo júri, e só essas, foram efetuadas.

O Presidente do Júri,

Porto, / /

Sworn Statement

I, Pedro Manuel Moreira Unas, enrolled in the Master Degree Data Science at the Faculty

of Sciences of the University of Porto hereby declare, in accordance with the provisions

of paragraph a) of Article 14 of the Code of Ethical Conduct of the University of Porto,

that the content of this dissertation reflects perspectives, research work and my own

interpretations at the time of its submission.

By submitting this dissertation, I also declare that it contains the results of my own

research work and contributions that have not been previously submitted to this or any

other institution.

I further declare that all references to other authors fully comply with the rules of

attribution and are referenced in the text by citation and identified in the bibliographic

references section. This dissertation does not include any content whose reproduction

is protected by copyright laws.

I am aware that the practice of plagiarism and self-plagiarism constitute a form of

academic offense.

Pedro Manuel Moreira Unas

16th of December 2022

Abstract

In the tire-producing factories of the company Continental, one of the major issues they face
is the scrapping of tires which contributes to increased waste and loss of profit. The data that
can be used to determine whether a tire should be scrapped preemptively is high-dimensional
and hard to interpret. In this work, we study how filter out key features and sampling can
produce models to help better determine if a tire should be scrapped. We develop a pipeline
that comprehends a two-stage approach for the pre-processing strategies: feature selection and
sampling. Through an experimental study on benchmark data and real data, we study how the
order of application of these strategies can impact the performance of models on the prediction
of scrap tires.

Keywords: Industry 4.0; Data Science; Machine Learning; Feature Selection; Sampling; Tire
Production.

i

Resumo

Nas fábricas de produção de pneus da empresa Continental, um dos principais problemas que
enfrentam é o descartar de pneus, o que contribui para o aumento do lixo causado pela produção
e a perda de lucros. Os dados que podem ser utilizados para tentar determinar antecipadamente
se um pneu deve ser descartado são grandes em dimensão e difícieis de interpretar. Neste trabalho
estudamos como filtrar features chave e como o uso sampling pode potencialmente produzir
modelos que ajudem a melhor determinar se um pneu deve ser descartado. Desenvolvemos uma
pipeline que utiliza uma abordagem de dois passos para as estratégias de pré-processamento:
feature selection e sampling. Através de um estudo experimental em dados benchmark e dados
reais, estudamos como a ordem de aplicação destas estratégias pode ter impacto na performance
dos modelos e na previsão da descartagem de pneus.

Palavras-Chave: Indústria 4.0; Ciência de Dados; Machine Learning; Feature Selection;
Sampling; Produção de Pneus.

iii

Acknowledgments

I would like to thank Rita P. Ribeiro for her supervision of this dissertation and the countless
hours of meetings and discussions during the dissertation’s completion. I would also wish to
thank Lúcia Moreira and José Luís Mourão who dedicated their time, effort and knowledge of
the tire production business and the field of Data Science and were always present whenever
necessary.

To my parents, whose support, love and interest were always present in my studies and in
particular this dissertation.

A special thank you to Inês, my girlfriend, who motivated and encouraged me to keep going,
even at the most difficult moments.

v

Contents

Abstract i

Resumo iii

Acknowledgments v

Contents ix

List of Tables xii

List of Figures xiv

Acronyms xv

1 Introduction 1

1.1 Objectives . 1

1.2 Organization . 2

2 State of the Art 3

2.1 Feature Selection Methods . 3

2.1.1 Overview . 3

2.1.2 Maximum Relevance and Minimum Redundancy 4

2.1.3 Mutual Information . 6

2.1.4 Signal 2 Noise . 6

2.1.5 Boruta . 7

vii

2.1.6 Sequential Feature Selection . 8

2.1.7 Recursive Feature Elimination . 8

2.2 Imbalanced Learning . 9

2.2.1 Data-level Approaches Overview . 9

2.2.2 Random Undersampling (RUS) and Oversampling (ROS) 11

2.2.3 ClusterCentroids . 11

2.2.4 Condensed Nearest Neighbors (CNN) . 12

2.2.5 Tomek Links . 12

2.2.6 Synthetic Minority Oversampling Technique (SMOTE) 12

2.2.7 Borderline SMOTE . 13

2.2.8 SMOTE Tomek Links . 14

2.3 Tools . 14

3 Feature Selection in Imbalanced Binary Classification 17

3.1 Pipelines for Feature Selection and Sampling . 17

3.2 Experimental Study . 18

3.2.1 Experimental Setup . 18

3.2.2 Results . 20

3.3 Discussion . 23

4 Case Study on Scrapping of Tires 25

4.1 Methodology . 25

4.2 Business Understanding . 26

4.3 Data Understanding . 27

4.4 Data Preparation . 29

4.5 Modeling . 30

4.6 Evaluation . 31

4.6.1 Performance . 31

4.6.2 Execution Time . 35

viii

4.7 Discussion . 38

5 Conclusion 41

5.1 Main Contributions . 41

5.2 Future Work . 42

A Benchmark Results 43

B Clinton 2021 Data 47

B.1 Variables Description . 47

B.2 Variables Distribution . 49

C Clinton 2021 Results 51

Bibliography 57

ix

List of Tables

2.1 Different mRMR methods [26], based on Relevance, Redundancy and Scheme. The
Scheme is Difference when Relevance - Redundancy and Quotient when Relevance
/ Redundancy. 5

3.1 Information about the datasets used for the early development of the pipeline. . 19

3.2 Best performing pairs and orders for each selected feature percentage for the
King’s Rook vs King’s Pawn dataset. 21

3.3 Best performing pairs and orders for each selected feature percentage for the
German Credit dataset. 22

3.4 Best performing pairs and orders for each selected feature percentage for the Bank
Fraud dataset. 23

3.5 Best performing pairs and orders for each selected feature percentage for the APS
Failure at Scania dataset. 23

4.1 Number of columns with a given percentage of missing values in the initial iteration
of the Clinton dataset. 28

4.2 Best performing pairs and orders for each selected feature percentage for the
Clinton 2021 dataset. The control value appears in the last row of the table. . . . 33

4.3 Average sampling time for each sampling method, aggregated by percentage of
selected features and order. 36

4.4 Average feature selection time for each feature selection method, aggregated by
the percentage of selected features and order. 38

B.1 Description of the variables in the Clinton 2021 dataset. 47

C.1 Results of the pipeline for the Clinton 2021 dataset when selecting 1% of features. 51

xi

C.2 Results of the pipeline for the Clinton 2021 dataset when selecting 25% of features. 52

C.3 Results of the pipeline for the Clinton 2021 dataset when selecting 50% of features. 53

C.4 Results of the pipeline for the Clinton 2021 dataset when selecting 75% of features. 54

C.5 Results of the pipeline for the Clinton 2021 dataset when selecting 100% of features. 55

xii

List of Figures

2.1 F-test Correlation Quotient (FCQ) Flowchart. 5

2.2 Mutual Information Flowchart. 6

2.3 Example of a single run of Boruta on a synthetic dataset [18] 7

2.4 Boruta Flowchart. 7

2.5 Example of the spacial distribution of a dataset before and after ClusterCentroids [12].
On the left we see the distribution of a target variable with 3 possible values,
where the yellow dots are the majority. On the right, we see the distribution after
ClusterCentroids is applied to the data and all three classes have the same number
of entries. 11

2.6 Graphical representation of SMOTE [21]. a) represents the set of points in the
minority class (green) and majority class (blue). b) selects a point of the minority
class (black) and its 3 nearest neighbours (yellow, k=3). c) selects the nearest
neighbours (brown), and a new synthetic point is created (red) from the line
between the black and brown point. 13

2.7 Graphical representation of Borderline SMOTE [11]. 14

3.1 Results of the benchmark datasets on different combinations of feature selection
and sampling methods. The results for FCQ are in the first row, and the results
for Boruta are in the second. 20

4.1 Map of the different Continental factories and offices around the world. [4] 26

4.2 Pearson Correlation matrix for the variables of the Clinton data. 29

4.3 Histogram for the variables related to the tire weight. 30

4.4 Results of the pipeline for the Clinton 2021 calendar year data using F1-Score as
a metric. 32

xiii

4.5 Results of the pipeline for the Clinton 2021 calendar year data using MCC as a
metric. 34

4.6 Breakdown of the average time taken for each order of the pipeline to complete,
aggregated by the percentage of selected features. 35

4.7 Average time taken for each individual sampling method to complete the sampling
process, aggregated by the percentage of selected features. 36

4.8 Average time taken for each individual feature selection method to complete the
feature selection process, aggregated by the percentage of selected features. . . . 37

4.9 Average time taken for each order of the pipeline to complete, excluding entries
where SFS was used, aggregated by the percentage of selected features. 37

4.10 Comparison between average Random Forest Classifier training and testing time
of entries using RUS as the sampling method and the rest, aggregated by the
percentage of features selected. 38

A.1 Results of the pipeline for the King’s Rook vs King’s Pawn dataset. 43

A.2 Results of the pipeline for the German Credit dataset. 44

A.3 Results of the pipeline for the Bank Fraud dataset. 45

A.4 Results of the pipeline for the APS Failure at Scania dataset. 46

B.1 Bar plots of the categorical variables in the Clinton 2021 dataset. 49

B.2 Histograms of the numerical variables in the Clinton 2021 dataset. 50

xiv

Acronyms

.csv Comma-Separated-Value

APS Air Pressure System

AUC Area Under Curve

AWS Amazon Web Services

CNN Condensed Nearest Neighbors

CPU Central Processing Unit

CRISP-DM CRoss Industry Standard
Process for Data Mining

EC2 Elastic Compute

FCQ F-test correlation quotient

FS Feature Selection

kNN k-Nearest Neighbors

MCC Matthews Correlation Coefficient

mRMR Maximum Relevance and Minimum
Redundancy

MI Mutual Information

NDA Non-Disclosure Agreement

RAM Random Access Memory

RFE Recursive Feature Elimination

ROC Receiver Operating Characteristic

ROS Random Oversampling

RUS Random Undersampling

S2N Signal 2 Noise Ratio

SBFFS Sequential Backward Floating
Feature Selection

SBFS Sequential Backward Feature Selection

SFFFSS Sequential Forward Floating Feature
Selection

SFFS Sequential Forward Feature Selection

SFS Sequential Feature Selection

TN True Negatives

xv

Chapter 1

Introduction

For any for-profit company, one of its main goals is to improve its profit margins and reduce any
type of wasted or scrap being produced. In the case of tire production, tens of millions of tires
are manufactured each year, and with this vast amount of production, there is bound the be
a large number of tires being scrapped each year for several reasons. Reducing the percentage
of scrap would be beneficial for the company in two major ways: first, it would mean less raw
material being wasted, decreasing the overall cost of producing each tire, and secondly, it would
reduce the company’s carbon footprint as less garbage would be produced something critical
given the current environmental concerns.

The main problem the company faces however is that there is no real way to predict if a tire
is scrapped or not until it reaches the end of its production and the decision can be made using
mostly a tire’s weight compared to the target weight, where it is decided if it should move forward
or be scrapped. It would be in the company’s best interest to develop a way to preemptively
scrap a tire if necessary to avoid waste of time and resources.

1.1 Objectives

In this dissertation, our overall goal is to resort to machine learning techniques to leverage
production data that is currently collected to help with the prediction of scrapping tires. Still,
two major data problems pose additional challenges to the machine learning task: the high-
dimensionality and the imbalanced domain. Sensors and operators record data and thus suffer
from high-dimensionality and data quality issues. At the same time, the proportion of scrap
tires is much smaller than the all-produced tires. The ultimate goal of this case study is to
create a tool that tackles these challenges indicating a set of features that will be selected with
streaming data to determine which tires should be scrapped earlier in the process and deployed
in a real-time scenario.

Nonetheless, it is important to study beforehand how different machine learning strategies
can help in this task. For that purpose, in this dissertation, our objective is to analyze how

1

2 Chapter 1. Introduction

different feature selection and sampling techniques impact the performance of models if taken in
a different order as pre-processing steps. With that intent, we design an experimental comparison
on benchmark data and on real data from the scrapping tires case study.

1.2 Organization

This dissertation is organized as follows. In Chapter 2, we showcase some fundamental concepts
necessary for the work developed, highlighting the different types of feature selection and sampling
techniques. We also briefly overview the tools used to develop the work. In Chapter 3, we present
the preliminary study of our proposed pipeline on benchmark datasets. In Chapter 4, we apply
the developed pipeline to the data provided by the company. It addresses several issues related
to the business and data and discusses the obtained results. Chapter 5 concludes with an overall
analysis of the study and point possible future work directions.

Chapter 2

State of the Art

In this chapter, we introduce some of the key concepts surrounding this work regarding feature
selection and imbalanced learning, highlighting some state-of-the-art methods. We finish by
referring to the tools used in the implementation.

2.1 Feature Selection Methods

2.1.1 Overview

The curse of dimensionality, a term created by Richard Bellman in 1957, was coined to express
the difficulty of using brute force to optimize a function with too many input variables. Currently,
the meaning of this curse can be applied to high dimensionality datasets whose sheer size presents
complications when working with them. As the dimension of the data increases, it tends to
become sparser, making it more difficult for machine learning models to separate different clusters
of data, leading to worse performance. Another issue in data with many features is overfitting,
where a model will be well fitted to the training data but will not perform well when new data
deviates from the data it has seen during the training process.

Data with high dimensionality also hinders computational performance since as the number
of features and entries increases, so does the memory required to store it and the computational
horsepower to perform tasks, such as training a machine learning model. Reducing the number
of features can be important when working with real-life datasets since they can have many
features. There are two major fields of work in this area: feature extraction and feature selection.
The first transforms the original high-dimensionality feature set into a dimensionality set of new
features based on the data and will not be explored further in this study. Feature selection takes
the original set of features and removes a given number, with the features and the number of
features removed depending on the method one uses.

The advantages of reducing the dimensionality of the data are mostly centered around
computational performance, both in terms of training speed and reducing the memory required

3

4 Chapter 2. State of the Art

to store the data. However, it can also help to train models with less likelihood to overfit as
models trained with high dimensionality data can have subpar performance on new, unseen data.

Feature selection can be used for both regression and classification problems, and its goal
is always the same, to select a subset of features that can produce an approximation of the
target value in regression problems or predict the correct class in classification problems. Feature
selection methods have three broad categories: filter, wrapper, and embedded, and the feature
selection process varies depending on what category the method being used belongs to. It is
better to divide the data into a train and test set in all three categories, but from there, the
process diverges.

In filter methods, the selection process is not related to the training portion of the pipeline as
features are selected based on the data itself and its relation to the target variable to determine
the importance of a feature. These methods are, in most cases, the most efficient process speed
but can cause some machine learning algorithm loss of performance as the selected features
are not tailored to any specific algorithm. Filter methods first rank all the features via some
evaluation criteria, which varies from method to method, before filtering out the bottom-ranked
features, which may vary from removing a given number of features or removing features whose
importance is below a certain threshold.

Wrapper methods, unlike filter methods, use the performance of a machine learning model
to measure the quality of the selected subset of features. The specifics will vary, but wrapper
methods have two big steps in their pipeline that are repeated until a stopping criterion is reached.
The first step is to generate a subset of features to train and test a model with, the second step is
to evaluate the performance of a model on that subset of features. The stopping criteria can be a
specific number of features to select, of which the best subset can be selected, or stopping when
there are no more performance gains, similar to early stopping in neural networks. Compared to
filter methods, the time it takes to produce the selected subset of features in wrapper methods
can be quite large in particular on datasets with high dimensionality.

Embedded methods combine the positive qualities of filter and wrapper methods by integrating
the feature selection process in the machine learning portion of a given method. A typical
embedded method will contain ways to quantify the importance of a feature and ways to select
the features it considers most important, removing redundant or unimportant features. This
process helps fix the wrapper’s major downside, which is the time taken to retrain the machine
learning algorithms constantly.

2.1.2 Maximum Relevance and Minimum Redundancy

Initially proposed by Peng et al. [19] Maximum Relevance and Minimum Redundancy (mRMR)
are a type of filter feature selection methods that try to select features taking into account their
relevance in predicting the target variable and the redundancy of the feature itself. There are
some methods based on this principle, with Zhao et al. [26] providing an overview of a selected

2.1. Feature Selection Methods 5

number of methods as seen in Table 2.1. The various methods differentiate themselves in the
way they calculate the two parts of the problem, the relevance, and the redundancy, as well as
the scheme they combine the two values.

Table 2.1: Different mRMR methods [26], based on Relevance, Redundancy and Scheme. The
Scheme is Difference when Relevance - Redundancy and Quotient when Relevance / Redundancy.

Method Relevance Redundancy Scheme

MID Mutual Information Mutual Information Difference
MIQ Mutual Information Mutual Information Quotient
FCD F Statistic Correlation Difference
FCQ F Statistic Correlation Quotient
FRQ F Statistic RDC Quotient
RFCQ Random Forests Correlation Quotient
RFRQ Random Forest RDC Quotient
RF Random Forests N/A N/A

For this work, we selected the FCQ (F-test Correlation Quotient) proposed by Ding and
Peng [5], which uses the F-test value between each feature and the target variable to calculate
the relevance of the feature and calculates the Pearson correlation of each feature compared to
the others to calculate the redundancy of that feature before calculating the quotient of those
two values, as shown in Equation 2.1.

fF CQ = F (Y,Xi)/[
1
|S|

∑
Xs∈S

ρ(Xs, Xi)] (2.1)

where Y is the target variable, Xi is the feature, S is the set of features, F the F-test score
between the target variable and a given feature and ρ the correlation between a given variable
and the rest of the variables in the feature set.

Starting with an empty set of selected features, this method will iteratively calculate the
FCQ score of each non-selected feature and select the feature whose score is the largest until the
given number of features is selected (cf. Figure 2.1).

Figure 2.1: F-test Correlation Quotient (FCQ) Flowchart.

This method was used as it is constantly among the top performers in terms of AUC (Area

6 Chapter 2. State of the Art

Under Curve) in [26] and is computationally efficient, as it calculated both the F-test value and
Pearson correlation values for each feature before starting the iterative part.

2.1.3 Mutual Information

Mutual Information (MI) is used to measure the dependence between two random variables by
using the concept of entropy, a measure of randomness or surprise that tries to quantify the how
deterministic a variable is and how much information there is in it. Its values range from 0 to 1
where lower values indicate more certain events, i.e. if there is a 100% chance of an outcome and
0% of the contrary outcome then the entropy value will be 0, and more random events scoring
higher entropy, i.e. a balanced coin flip has an entropy value of 1.

Mutual information was first proposed in 1987 by Claude Shannon [22] with the term Mutual
Information only being given later by Robert Fano [13] and was originally used only for datasets
with discrete variables. The work done in [20] allowed the use of Mutual Information in datasets
where the non-target and target variables can be discrete or continuous. It measures the difference
between the entropy of a feature and the entropy of a feature given the target variable, as can be
seen in Equation 2.2 with an overview visible in Figure 2.2.

MutualInformation(X,Y) = H(X)−H(X|Y) (2.2)

where H(X) represents the entropy value of a given feature and H(X|Y) the entropy value of
the feature given the target variable.

Figure 2.2: Mutual Information Flowchart.

2.1.4 Signal 2 Noise

Signal 2 noise ratio (S2N) is a measure used in signal processing and statistics to describe the
ratio of a signal to the amount of noise in the signal. In the context of feature selection, S2N can
be used as a metric to evaluate the relevance of a given feature in relation to the outcome of
interest. For example, in a dataset used to predict the stock price of a company, the S2N of a
given feature could be used to determine whether that feature is a strong predictor of the stock
price, or whether it is dominated by noise and therefore not useful for prediction. Generally,

2.1. Feature Selection Methods 7

features with a high S2N are considered to be more relevant and useful for prediction, while
features with a low S2N are less useful and may be removed from the dataset.

2.1.5 Boruta

Boruta is a wrapper filter selection method proposed by Kursa & Rudnicki [14] back in 2010
with a differentiating premise where instead of measuring the performance of features against
other features, in Boruta features compete against randomized versions of themselves, which are
called “shadow features”. After creating these random “shadow features” they are appended to
the dataset creating a new one with twice the number of features of the original. The method
employs the Random Forest Classification algorithm to measure the performance, fits the new
dataset and target variable to the algorithm, and retrieves the feature importance values of each
feature, only considering that a feature is useful then it must be more important than the best
of the randomized features. To make sure that a feature actually matches this idea it runs a
number of iterations of the method and records each time a feature performs better than the best
shadow feature as a “hit”, as can be seen in Figure 2.3 where a single run of Boruta is showcased
on a synthetic dataset.

Figure 2.3: Example of a single run of Boruta on a synthetic dataset [18]

The selection criteria for this method can vary, with the original proposal using a two-sided
test of equality with the maximum scoring shadow feature to determine if a feature is important
or not, removing those that are considered non-important. In our implementation, as we wanted
to select a certain number of features, instead of using the two-sided test of equality we instead
recorded the number of hits and the average feature importance value recorded in the Random
Forest Classifier model and selected the top-K features with the highest number of hits, using
the average feature importance value in case of a tie (cf. Figure 2.4).

Figure 2.4: Boruta Flowchart.

8 Chapter 2. State of the Art

2.1.6 Sequential Feature Selection

Sequential Feature Selection (SFS) is a family of wrapper methods that perform a greedy search
to select a certain number of features proposed by Ferri et al. [6]. The two most used Sequential
Feature Selection methods are Sequential Forward Feature Selection (SFFS) and Sequential
Backward Feature Selection (SBFS), whose approach is the opposite of each other, with SFFS
starting with an empty set of features, and at each iteration, it selects the feature that maximizes
the cross-validated score of a given estimator, with the method stopping when the given number
of features to select is reached. On the other hand, SBFS starts with the full set of features and
at each iteration removes the feature that provides the biggest increase in the cross-validated
score of a given estimator, i.e. the method calculates for each feature the cross-validated score of
the estimator without that given feature.

A more complex variation for both Sequential Forward Feature Selection and Sequential
Backward Feature Selection introduces a floating concept where features that were once removed
from consideration can be added back to the selected subset of features. In Sequential Forward
Floating Feature Selection (SFFFS) after the original step of selecting the best feature is complete,
a second step is done where we can remove already selected features from the selected subset
if they improve the performance of the model when removed. This step does not result in the
removal of a feature if there is no performance gain or if the number of selected features is two.
In Sequential Backward Floating Feature Selection (SBFFS) the new step can bring back a
removed feature if it improves the performance of the model with the current subset of selected
features. Just like in SFFFS it not is mandatory to add a removed feature if the performance
of the model is not improved or the number of selected features is equal to two. The obvious
disadvantage of the floating variations is the increased computational hit of having to train new
models for each feature in the second step.

2.1.7 Recursive Feature Elimination

Similar to Sequential Backward Feature Selection discussed in the previous subsection, Recursive
Feature Elimination (RFE) [7] is a simple to use wrapper method that starts with the full set
of features in the dataset and, as the name suggests, recursively removes features until only a
given number of them remain. Much like in the SFS methods, it is necessary to train a model to
know which features to remove but, unlike in SFS methods, RFE requires the use of models that
calculate the importance of a feature, like Random Forest, since the performance of the model is
not measured but instead the importance of each feature according to the model, similar to what
Boruta does.

But unlike Boruta there is no comparison with other features or “shadow” features with the
logic of RFE simply removing the features that have the lowest importance value according to
the model. This is done until there is a subset of features equal to the required number. Much
like most wrapper methods the main downside of RFE is the necessity to re-fit the model at

2.2. Imbalanced Learning 9

each iteration, which depending on the current number of features, can be very computationally
expensive.

2.2 Imbalanced Learning

One of the major issues that arise when working on classification problems with a real-world
dataset is the imbalance in the distribution of the classes in the target variable. Imbalanced
domains pose challenges for machine learning algorithms because the most relevant cases are
underrepresented in the training set. Standard machine learning algorithms try to optimize the
performance in the overall domain. This means that the model will disregard the performance in
rare cases as they have a residual impact on the overall performance. Nonetheless, such models
are useless from the domain perspective.

Strategies to tackle this type of problem include data-level, algorithm-level and hybrid
approaches that ultimately bias the models for being accurate at predicting the less frequent but
more relevant, target values. Data-level approaches act on the data distribution before giving it
as input to any machine learning algorithm. Algorithm-level approaches act on changing the
preference criterion of the machine algorithm that focuses on the performance in rare cases.
Many approaches have been proposed that combine the two. Because data-level approaches allow
for the use of any machine learning algorithm, they are far more explored within the research
community, like in Li, et al [15]. For the same reason, this is also the approach we will use in our
study and will detail more.

Another very important topic when tackling an imbalanced domain learning problem is
the choice of appropriate evaluation metrics to estimate the performance of models. In the
case of binary classification tasks, a specific set of metrics is commonly used, such as precision,
recall, AUC, and MCC, among others. Precision calculates the ratio of true positive values
predicted concerning the total number of predicted positive values. Recall calculates the ratio
of positive predictions concerning all the positive examples. The Area Under Curve (AUC)
uses the Receiver Operating Characteristic (ROC) curve and calculates its area to measure how
well the model can separate a positive example from a negative example, considering multiple
thresholds. F1-Score is another commonly used metric that combines precision and recall by
the harmonic mean to leverage the tradeoff of these two metrics. Its idea is taken further by
Matthews Correlation Coefficient (MCC) [17] that considers true positives and negatives and
false positives and negatives, meaning that it can be used even for highly imbalanced data.

2.2.1 Data-level Approaches Overview

A common approach to counteract highly imbalanced data is to sample the data to remove or
add entries to, most commonly, produce equal distributions or classes or another ratio that one
desires. There are two major techniques in data sampling, undersampling and oversampling. In

10 Chapter 2. State of the Art

the next two subsections, more detail will be given on both major groups.

A commonly used metric to measure the imbalance of the dataset is the imbalance ratio.
The notation of the imbalance ratio varies but in this work, we consider the imbalance ratio as
the quotient of the total number of entries in the minority over the total number of entries in
the dataset as shown in Equation 2.3. Using this metric, a binary dataset can be considered
balanced if its ratio is 0.5.

imbalance = m

N
(2.3)

where m represents the number of entries in the minority class and N the total number of entries

2.2.1.1 Undersampling

Undersampling methods remove entries in a dataset to balance the classes. These types of
methods are traditionally less used as the loss of information is a concern that comes with
removing entries in the data. However if the dataset one is working it is large enough, it can be
more or less cut down mainly for computational reasons and remove redundancy in the data
that is sure to happen with big data. In most undersampling techniques applied to binary
classification problems, the more prevalent class will have some of its entries removed until the
target class balance ratio is reached, usually 0.5 This means that if a binary classification dataset
has ten thousand entries, with the majority class being in nine thousand of them and the minority
class being the rest one thousand then if we want to reach a 0.5 ratio, the majority class will
lose eight thousand entries until we are left with a two thousand entry dataset. The logic by
which entries are removed varies from method to method, varying from totally random to using
distance metrics as we will see next.

2.2.1.2 Oversampling

Contrary to undersampling, oversampling adds new entries to the dataset to balance the classes.
This is more commonly used to increase the level of information present by creating synthetic
data. The major drawback of oversampling is that the new entries, however similar to the
existing ones, are not real which means that oversampling may not give any benefits even in
highly imbalanced datasets. Another drawback is that the larger dataset created by oversampling
will hinder computational performance. For the majority of oversampling techniques in binary
classification problems, the methods will create fake entries of the minority class until the desired
balance ratio is reached, so in the same ten thousand entry dataset with a 0.1 imbalance ratio,
the minority class will this time gain eight thousand entries, creating a new dataset with eighteen
thousand entries and a 0.5 ratio. Like undersampling, the sampling logic varies from method to
method, with some key methods being explored as will see next.

2.2. Imbalanced Learning 11

2.2.2 Random Undersampling (RUS) and Oversampling (ROS)

The most basic type of sampling possible is random sampling, which can be applied to
undersampling and oversampling. Random Undersampling (RUS) simply removes entries from
the majority class or classes until the desired ratio is achieved. This method does not employ any
type of heuristic. The biggest downside is that it can easily remove entries containing important
information and result in a more noisy dataset, making it harder to apply a classifier further
down the pipeline.

Random Oversampling (ROS) random selects examples from the minority class or classes
with replacement and copies them several times to achieve the target ratio, with entries possibly
being copied multiple times. Much like RUS, there is no kind of logic involved in this method.

2.2.3 ClusterCentroids

ClusterCentroids [1] is an undersampling method that takes the original data and creates, as the
name suggests, centroids based on a clustering method, more commonly kMeans [16]. To start
there needs to be a definition of the number of clusters N to generate, which if class balance is
the goal will equal the number of entries of the minority class. Then the kMeans method, or any
other clustering method, will generate these N clusters for the majority class before selecting the
centroid of each cluster of the majority class and removing the remaining entries, achieving a
class balance that way. A visual representation of this can be seen in Figure 2.5.

Figure 2.5: Example of the spacial distribution of a dataset before and after Cluster-
Centroids [12]. On the left we see the distribution of a target variable with 3 possible values, where
the yellow dots are the majority. On the right, we see the distribution after ClusterCentroids is

applied to the data and all three classes have the same number of entries.

One of the advantages of ClusterCentroids is that it can remove redundant entries in the
data as multiple extremely similar entries will most likely be removed with only one being left.
The major downside is the possible loss of outliers as there is little chance of outliers being the
centroid of any cluster and will be removed.

12 Chapter 2. State of the Art

2.2.4 Condensed Nearest Neighbors (CNN)

Condensed Nearest Neighbors (CNN) [9] is another undersampling method used in conjunction
with the k-Nearest Neighbors (kNN) machine learning algorithm for classification. Unlike most
sampling methods, this one does not offer the guarantee that an equal number of samples from
each class will be achieved, as its focused purpose for use with kNN means that its goal is to
produce a dataset where a 1NN classifier (kNN classifier using 1 neighbour) can produce almost
similar performance with the sampled data as it would with the full training data.

CNN does this by creating a subset of entries U and by iteratively searching through all
elements of the dataset, only those of the minority class by default, and selecting entries that
have its nearest neighbour with a different class label. It then removes this entry from the original
data and adds it to the U subset, repeating this process until no more entries can be added
to U. The largest disadvantage of Condensed Nearest Neighbors is its focus on one machine
learning method, meaning its results may not apply to other machine learning methods. Another
disadvantage is not being able to achieve class balance ratio if it is desired.

2.2.5 Tomek Links

An undersampling method introduced by Ivan Tomek in 1976 [23], Tomek Links is a modification
of the Condensed Nearest Neighbors (CNN) method that differentiates itself from CNN by
introducing a set of rules that must be followed for an entry to be removed. Instead of randomly
selecting features whose nearest neighbor is of a different class, Tomek Links looks at selected
samples in pairs (i, j) and these pairs must follow three rules: The entry i is the nearest neighbor
of entry j, the entry j is the nearest neighbor of entry i and finally entries i and j belong to
opposing classes. If selected pairs of entries follow all three rules then they are considered to be
a Tomek Link and the entry that belongs to the majority class is then removed.

This process will be repeated until no more pairs are available to be selected, meaning that
much like Condensed Nearest Neighbors it does not guarantee a class equilibrium. Still, since
this method is not fully focused on being used in conjunction with kNN it does also have that
disadvantage.

2.2.6 Synthetic Minority Oversampling Technique (SMOTE)

Synthetic Minority Oversampling Technique or SMOTE, as it is more commonly referred to, is
the go-to approach to oversampling in the current day. First proposed back in 2002 by Chawla,
et al. [3], SMOTE synthesizes new entries to a dataset based on existing examples, balancing the
data by randomly selecting a minority class entry and finding its nearest k neighbours that are
also in the minority class. Then one of its nearest neighbours is again chosen randomly, and a
new entry is created by "drawing" a line in the feature space from the original chosen entry to
the selected nearest neighbours and stopping at a certain point in that line. This process, which

2.2. Imbalanced Learning 13

can be visually seen in Figure 2.6, is then repeated as many times at it is required to achieve
class balance and is very effective at oversampling as new entries are not the same as previous
ones, unlike in Random Oversampling, but instead are entries that are generated from plausible
values based on the data.

Figure 2.6: Graphical representation of SMOTE [21]. a) represents the set of points in the
minority class (green) and majority class (blue). b) selects a point of the minority class (black)
and its 3 nearest neighbours (yellow, k=3). c) selects the nearest neighbours (brown), and a new

synthetic point is created (red) from the line between the black and brown point.

The major downside with SMOTE is that if a selected point only has majority class points
as its nearest neighbours, it will introduce new synthetic minority class points inside a cluster
of majority class points, thus making separating classes harder to discern in the feature space.
With SMOTE as a basis, there are also many variations, some of which were used during this
study and are described next.

2.2.7 Borderline SMOTE

This variation was proposed in [8] and aims to fix the major downside of SMOTE, previously
discussed, of sometimes causing the border between classes to begin to disappear. Borderline
SMOTE classifies some of the minority class points in the feature space into Border points and
Noise points. Border points are points with both majority and minority class neighbours and sit
on the border between the two classes, while noise points are points whose closest neighbours
belong to the majority class. This method ignores all noise points it selects and only selects
border points, hoping to improve the separation of classes. The downside is that it only pays
attention to these points, neglecting most of the points in the minority class (cf. Figure 2.7).

14 Chapter 2. State of the Art

Figure 2.7: Graphical representation of Borderline SMOTE [11].

2.2.8 SMOTE Tomek Links

This method combines undersampling and oversampling methods, in this case, Tomek Links
and SMOTE as the name suggests. It was introduced by Batista et al. [2] and combines the
synthetic data creation of a SMOTE with the ability to select entries whose closest neighbour is
of the opposing class of Tomek Links, thus aiming to solve the separation of classes problem that
SMOTE has. The first step of the method is to apply the standard SMOTE method, creating
synthetic entries until the class balance or other class proportion, as explained in subsection
2.2.6. Once this process is complete, we then move on to the Tomek Link portion, which like the
standalone method searches for pairs of entries that follow all three rules outlined in subsection
2.2.5, but in SMOTE Tomek Links the difference is that both entries in the Tomek Link pair are
removed instead of only removing the majority class entries, thus maintaining the class balance
achieved with SMOTE.

2.3 Tools

The work developed in this thesis was implemented using Python 3.9, one of the world’s more
widely used programming languages. It was the language selected for three primary reasons: the
students’ previous knowledge and comfort with the language, the ease of integration with the
infrastructure provided by the company, which will be outlined next, and the suitability of the
language for the project in terms of availability of libraries.

The coding was done using Project Jupyter notebooks, an interactive computing platform
used for developing and executing Python code; Jupyter allows for code to be independently
run using cells inside documents called notebooks that each execute a standalone Python kernel.
This allows for a better development process as it removes the need to execute a whole Python
code file each time a small change is done, making the coding process more efficient.

The most popular Cloud service provider, Amazon Web Services (AWS), was used to develop

2.3. Tools 15

and execute the Jupyter notebooks created. The company provided the ability to create Elastic
Compute (EC2) instances designed to specifically run Jupyter notebooks by launching a Jupyter
service when the instance was active. These instances provided massive computing power and
could be customized to suit the current needs in terms of virtual central processing units (CPU),
random access memory (RAM) and storage space.

The most important Python library used for the development phase was pandas, the go-to
library for data handling. It provided an easy and powerful way to parse, manipulate and analyze
the data used for this work and create new structured files that suited our needs. It was almost
exclusively used with comma-separated-value files (.csv) but also for text and Excel files.

To help implement the feature selection methods, sampling methods and machine learning
algorithms used, two libraries were essential: scikit-learn and Imbalanced-learn. The first one
provided the user with a wide variety of methods to use in machine learning projects and was
used as the basis for some of the strategies implemented in the pipeline’s feature selection and
machine learning portion and the evaluation portion. The second key library, Imbalanced-learn,
is a library that uses scikit-learn as a base to provide tools for dealing with imbalanced data. Its
implementation of various sampling methods was used in this work. Finally, to help produce some
of the visualizations seen in the later chapters of this work, Matplotlib, and more specifically, its
pyplot module, was used.

Chapter 3

Feature Selection in
Imbalanced Binary Classification

In this chapter, we present the pipeline designed for this study. We devise an experimental study
on benchmark data and discuss the obtained results.

3.1 Pipelines for Feature Selection and Sampling

We aim to study how different feature selection methods and sampling techniques can interact to
tackle the challenges of high-dimensionality and imbalanced data.

For this purpose, our initial idea was to follow two different approaches to feature selection.
The idea of the first approach was to introduce a sampling step to create a balanced distribution of
the target variable before applying any feature selection method, with the hope of counteracting
the original imbalanced data on a machine learning algorithm that could be applied further down
the pipeline. For this approach, the feature selection methods would be “traditional ones”, i.e.
not particularly suited for imbalanced data. The second approach would ignore the sampling
part of the pipeline and instead focus on applying feature selection methods for imbalanced data
before training and evaluating a machine learning algorithm.

What we found was that there was a large availability of feature selection and sampling
methods that we could apply to our data if we were not focused on methods more suitable for
highly imbalanced, as it was hard to find methods for this type of data and even harder to
implement them in a reasonable time fashion.

For this reason, we decided to focus on the study of the first approach. The first step in
implementing this approach was determining which methods would be used for Sampling and
Feature Selection. On the first iterations of the pipeline, we focused primarily on sampling
methods, all available in the Imbalanced-learn Python package, to implement six different sampling
methods more uniformly and correctly. These six methods were: Random Undersampling, Cluster

17

18 Chapter 3. Feature Selection in Imbalanced Binary Classification

Centroids, Random Oversampling, SMOTE, BorderlineSMOTE, and SMOTE Tomek Links. As
for the feature selection methods, the initial pipeline only contained two, F-Test Correlation
Quotient and Boruta, as these were the first two methods we looked at and implemented in
Python.

To quantify the results of our pipeline we employed a Random Forest Classifier machine
learning model from the scikit-learn Python library with default hyperparameters. This model is
one of the more used for classification problems and was used for its simplicity in implementation.
The first metric to measure the model’s performance was the Matthews correlation coefficient.

In [25], the authors propose a direct comparison between two approaches applied to a similar
problem. Still, instead of only considering sampling and feature selection in this order, the
authors compare the performance of doing feature selection before sampling, something we had
not yet done. Based on this work, we decided to devise two different pipelines for our initial
approach: one where feature selection and then sampling was applied (FS → S) and the reverse
happened (S → FS). The goal was to directly compare the performance of the two pipelines to
try to narrow down the best course to apply to the real-world data subject of this study.

Using our initial approach as the starting point, there was a clear necessity to increase the
number of feature selection methods being evaluated to provide a complete overview of the field
of study. The methods we found and applied to both approaches were: Mutual Information and
Recursive Feature Elimination. The first new method was implemented by ourselves while the
other Recursive Feature Elimination used scikit-learns’ built-in method to simplify the process.
As for the sampling methods, this did not change.

3.2 Experimental Study

3.2.1 Experimental Setup

The first step for experimentally testing our pipelines was to determine what data we would
be given in terms of the number of features, the types of those features and the total number
of entries. In the early stages, a generic overview of the case-study-data was outlined, and we
determined that we would be working on a binary classification problem with a highly imbalanced
target variable that had a mix of continuous and discrete variables supporting it. For this, we
resort to one of the better resources for datasets, the University of California, Irvine Machine
Learning Repository [24] that contains over 600 datasets, some uploaded in 1987. After looking
inside this collection of datasets, we found one dataset stood out as it resembled our future data
regarding the number of features and the imbalance of the target variable. The APS Failure at
Scania Trucks Dataset uploaded in 2016 by Tony Lindgreen, and Jonas Biteus focuses on the Air
Pressure System (APS) of a Scania truck. The dataset contains 171 features and 60000 entries
with a binary target variable that is positive if a failure is connected to an APS component or
negative if it is not connected, the dataset has 1000 positive entries and 59000 negative entries.

3.2. Experimental Study 19

For additional testing, we felt it was also a good idea to find additional datasets that were
binary classification problems but varied in terms of the distribution of the target variable. In
the same University of California, Irvine Machine Learning Repository we found three additional
datasets. King’s Rook vs King’s Pawn dataset, a chess-related dataset, has 3196 entries and 36
features and an imbalance ratio of 0.48 (the most balanced of the four datasets). German Credit
is a small dataset with 100 entries, 24 features and an imbalance ratio of 0.30. And finally Bank
Fraud, a transactional analysis dataset, with 20468 entries, 112 features and an imbalance ratio
of 0.27. In Table 3.1 we can observe this information summarized.

Table 3.1: Information about the datasets used for the early development of the pipeline.

Dataset Entries Features Imbalance Ratio

King’s Rook vs King’s Pawn 3196 36 0.48
German Credit 1000 24 0.30
Bank Fraud 20468 112 0.27
APS Failure at Scania 60000 170 0.02

Creating the pipeline was done in Python using Jupyter Notebooks hosted a r6g.4xlarge
instance in the companies’ AWS Datalake with 16 virtual CPUs and 128GiB of RAM. The
data was then split into a train/test split of 70% data for training and 30% for testing using
scikit-learn’s train_test_split method, using stratification to ensure that the distribution of the
target variable was the same in both the training and testing data. After that, we defined five
different thresholds for the number of features that would be selected with these thresholds being:
1% of features being selected, 25% of features being selected, 50% of features being selected, 75%
of features being selected and 100% of features being selected.

As for the pipelines FS → S and S → FS experimental testing, we decided for each threshold
of selected features, take all of the available feature selection and sampling methods and apply
them to the data in pairs, first doing feature selection then sampling and next the other way
around. Afterwards, the resulting data set would be used to train a machine learning model,
Random Forest Classifier. This model was then used on the testing data to make predictions,
which were recorded to be compared to the true values.

For our initial approach, we used four different feature selection methods, the two used in
the initial version of the two-step pipeline previously mentioned and two new methods, Mutual
Information and Recursive Feature Extraction. As for the sampling methods the same ones
were used except for Cluster Centroids, whose subpar results when compared to the rest led
to their removal, meaning that our sampling methods were: Random Undersampling, Random
Oversampling, SMOTE, Borderline SMOTE and SMOTE Tomek Links.

20 Chapter 3. Feature Selection in Imbalanced Binary Classification

3.2.2 Results

In this section, we will discuss the results obtained from both the preliminary approach and the
two proposed pipelines (FS→S and S→FS) to the four benchmark datasets.

3.2.2.1 Preliminary Results

We started by testing our initial approach. The results, depicted in Figure 3.1, show us that
despite being able to match and even surpass the results of our control test, none of the sampling
methods could produce a better MCC score on the most imbalanced dataset, the APS Failure at
Scania dataset. More so, only undersampling could improve the time taken in feature selection
and model training. Still, undersampling methods produced the worst MCC values of the tested
methods meaning that the gain in computational performance came at the cost of prediction
performance. Our early experiments concluded that the Boruta, being a wrapper method, was
slower than FCQ. This conclusion matches up with the current literature when comparing the
computational performance of wrapper methods and filter methods.

Figure 3.1: Results of the benchmark datasets on different combinations of feature selection
and sampling methods. The results for FCQ are in the first row, and the results for Boruta are

in the second.

3.2.2.2 Results obtained by FS→S and S→FS Pipelines

The results being discussed are of a single run of the pipeline and each combination of sampling
method, feature selection method, order and number of features selected. Random Forest obtains
the predicted values for test data.

3.2. Experimental Study 21

To make the comparison more uniform the same results graphic was produced for each dataset
and will be the backbone of this results analysis. The graphic aims to highlight differences
between different types of sampling and feature selection methods, with the same combinations
on all the graphics, with each subplot representing the average result score of the feature selection
and sampling methods that are a part of that combination in the different order of operations,
this approach was inspired by a similar aggregation of results performed in [25]. The only change
between them is the dataset and range of the Y-axis, representing the F1-Score, to fit each
dataset better. For each dataset, we aim to highlight which combination of methods and the
order performs best for each feature percentage. We consider the control result, the result of
applying the machine learning model to each dataset without any type of feature selection and
sampling being applied, in any order.

King’s Rook vs King’s Pawn

Being our most balanced dataset, 0.48 imbalance ratio, with some amount of information in
terms of the number of entries it is somewhat expected that a robust machine learning model can
perform well for this dataset and looking at Figure A.1 we see that with our control F1-Score
(marked as the red star) being near the perfect value of 1, having a value of approximately 0.997.
Looking at the figure, we can also observe that all of the combinations of methods performed
extremely well in terms of F1-Score values from the selection of 25% of features and up and were
able to reach the F1-Score of the control for both orders of the pipeline when selecting 100% of
the features.

Another conclusion we can draw is that the wrapper methods generally perform better than
filter methods regardless of the sampling type used, particularly in the 25% and 50% selected
feature threshold. For this dataset the order of operations, i.e. sampling then feature selection or
feature selection then sampling did not matter with the differences between the two being hard
to discern. As for the combination of methods and order that performed best for this dataset,
we can observe that in Table 3.2, where we see that there is no clear best combination for all of
the % features with Borderline SMOTE and Recursive Feature Extraction (RFE) performs best
for a lower percentage of selected features while Mutual Information performs best for the 75%
features selected.

Table 3.2: Best performing pairs and orders for each selected feature percentage for the King’s
Rook vs King’s Pawn dataset.

% of Features Sampling Method FS Method Order F1-Score

1% Borderline SMOTE RFE FS → S 0.498
25% Borderline SMOTE RFE FS → S 0.985
50% RUS Boruta S → FS 0.992
75% Borderline SMOTE Mutual Information FS → S 0.994

22 Chapter 3. Feature Selection in Imbalanced Binary Classification

German Credit

In the case of our smallest dataset in terms of entries and number of features the results in Figure
A.2 show that as can be expected, the small amount of information that a dataset of this scale
can have affected the machine learning model with both the control F1-Score and the pipeline
results being significantly worse than in the previous dataset. Observing the results however we
see despite reducing the information even further, under-sampling proved effective at providing
the best results overall, at least for our single run. An explanation is that the random seed for
our pipeline run helped remove some outliers of the former majority class and thus helped the
Random Forest classifier a little bit.

In terms of feature selection methods, there is no clear difference between filter and wrapper
methods and the same can be said for the order of operations different pairings present different
winners and no clear conclusion can be reached. Looking at Table 3.3 we see that the results
match the conclusion from the graphics that under-sampling was most effective here. Still, the
1% of features had RUS as the sampling method in the best-performing entry.

Table 3.3: Best performing pairs and orders for each selected feature percentage for the German
Credit dataset.

% of Features Sampling Method FS Method Order F1-Score

1% SMOTE Boruta FS → S 0.585
25% RUS Boruta FS → S 0.586
50% RUS FCQ S → FS 0.621
75% RUS Mutual Information S → FS 0.614

Bank Fraud

Having a nice amount of information in terms of entries and number of features and an average
imbalance ratio of 0.27, Figure A.3 shows that this dataset produced consistent results between
the different pairings and had a nice performance in terms of F1-Score. As was the case with the
first dataset in this section, we see no clear difference between the different types of sampling.
Still, a difference is visible in the comparison between filter and wrapper methods in the 25%
feature range, with the wrapper methods proving more effective for this range of features.

The order of operations only presented a noticeable difference when 25% of the features were
selected with sampling and then feature selection had the best average performance. Looking at
Table 3.4 we see that despite not being visible in the graphics, ROS was the sampling method on
all of the best pairs, with the two wrapper methods here also being present in all of the pairs.
We can also observe that the order in the best performing pair is always sampling then feature
selection and that the best result was achieved when selecting 25% of features.

3.3. Discussion 23

Table 3.4: Best performing pairs and orders for each selected feature percentage for the Bank
Fraud dataset.

% of Features Sampling Method FS Method Order F1-Score

1% ROS Boruta S → FS 0.663
25% ROS RFE S → FS 0.866
50% ROS RFE S → FS 0.865
75% ROS RFE S → FS 0.864

APS Failure at Scania

Being our largest dataset in terms of entries and features and the most imbalanced, this dataset
presents the results closest to the ones we expect when applying the pipeline to the real dataset.
Looking at Figure A.4 we see that overall the pipeline results cannot match those of the control
test, with under-sampling, in particular, creating subpar results. As is the case in other datasets
we see, those wrapper methods have a strong relative performance when selecting 25% of features,
with them, combined with oversampling being the ones closest to reaching the control F1-Score
at 25%.

The results also show that all of the cases feature selection then sampling performs better than
the other order, a conclusion that is also supported by Table 3.5 where all of the best-performing
pairs are in the feature selection then sampling order, however, we can see also see that the best
performing pair overall in terms of F1-Score was the pair FCQ and ROS at 25% of selected
features, opposing what the graphic in Figure A.4 showcased, while also being the best pair for
50% and 75% features, leading to the conclusion that Mutual Information performed poorly in
this dataset and thus reduced the mean of the filter method results.

Table 3.5: Best performing pairs and orders for each selected feature percentage for the APS
Failure at Scania dataset.

% of Features Sampling Method FS Method Order F1-Score

1% ROS Boruta FS → S 0.391
25% ROS FCQ FS → S 0.775
50% ROS FCQ FS → S 0.768
75% ROS FCQ FS → S 0.769

3.3 Discussion

Looking at our results on the used datasets in this section, we can see mixed results, varying
from dataset to dataset. In our most balanced dataset, King’s Rook vs King’s Pawn, we see
that in the majority of cases the results of the pipeline at the 25% and 50% thresholds and the

24 Chapter 3. Feature Selection in Imbalanced Binary Classification

Bank Fraud dataset surpass those of the control pipeline or come extremely close to matching,
an observation that also occurs in the Bank Fraud dataset, a more imbalanced dataset but one
with more information.

When there is not enough data and a small feature set, as in the German Credit dataset, we
can see that the results are hard to interpret and draw conclusions from, as they are better in
some cases and worse in others. Finally, for the dataset that most resembles ours, APS Failure at
Scania, we see that some combinations of pairs provided a lot more effective than others, coming
close to matching the control even at lower selected feature thresholds.

Overall, we see that this systematic study can help obtain insight conclusions. Still, there is
no clear answer on the best combinations of methods to use and the order since, for the most
part, the "best" order of operations varies from dataset to dataset, from pairing to pairing and
threshold to threshold.

Chapter 4

Case Study on Scrapping of Tires

In this chapter, we focus on the scrapping tires problem. We perform a basic exploratory data
analysis on the data and discuss how it was transformed from raw data to the data used in our
proposed pipelines. Finally, we discuss some of the key results we found.

4.1 Methodology

The methodology followed in this work can be described as a modified Cross Industry Standard
Process for Data Mining (CRISP-DM) methodology. CRISP-DM [10] is commonly used in the
field of data science and consists of six key phases:

1. Business Understanding

2. Data Understanding

3. Data Preparation

4. Modeling

5. Evaluation

6. Deployment

It is important to highlight we did not concentrate so much on the modelling step. The main
focus of this study is on applying the developed pipeline to the data and not on creating and
optimizing a traditional machine learning model. The second note is that no deployment will be
discussed in this work as it was not carried out.

25

26 Chapter 4. Case Study on Scrapping of Tires

4.2 Business Understanding

The first part of working with real-world data is defining our goal. Since our data is related to the
scrapping of tires, the obvious goal was to produce a pipeline of feature selection and/or sampling
that could improve the computational performance of a given machine learning algorithm without
minimal or even without a hit in key performance metrics. Ideally, this work would cover both
the feature selection pipeline and the model training portion.

The next step was to determine which of the many Continental tire production plants to use
for applying the comparison pipeline developed in the previous chapter. In Figure 4.1 we can
see some of the company’s locations. After some discussion, we settled on two factories, chosen
for opposite reasons. The first choice was the plant located in Lousado, Portugal as this plant
produced a large number of tires each year and had a scrap rate, i.e. the percentage of tires
that are sent back to be scrapped, of about 2%, meaning that it was among the best-performing
factories of the whole Continental group. On the opposite end of the spectrum, there is the
Clinton plant located in the United States of America. This plant produces much fewer tires
yearly than the Lousado plant and has a much higher scrap rate of around 10%.

Figure 4.1: Map of the different Continental factories and offices around the world. [4]

4.3. Data Understanding 27

This opposing factor regarding scrap rate meant that reducing the scrap rate in both plants
would be for different reasons. For the Lousado plant, due to its sheer volume of production,
reducing the scrap rate would result in a massive amount of tires being saved each year, further
increasing the quality of production in the plant and saving money for it the company. On the
other hand, the Clinton factory having its scrap rate reduced even for a slight amount would
allow for the plant to have its scrap rate close to the company average among all factories, which
is around 6%.

We settled on applying the pipeline first on the Clinton plant, mostly due to its lower volume
of data, hoping to draw conclusions on the best methods to use both for feature selection and
sampling.

4.3 Data Understanding

The data we dealt with in this work was obtained from a combination of tables inside SQL
databases that the company has for each of its plants. This data is extremely large in size both
in terms of entries and in terms of possible features to use. Due to the large nature of the feature
space and the complex distribution of SQL tables the relationship between the data was not
studied in the scope of this work.

The SQL databases were housed in the companies’ AWS Datalake and queried using a
previously developed Python script, being stored as csv file using pandas to make it easier to
use and discarding the need for a query every time we wanted to use the data. For development
and testing in the Clinton plant, we queried every entry whose curing date was between the 1st
of January and the 31st of December 2021, producing a complete dataset for the calendar year
of 2021. The resulting dataset contained 295 features and 247199 entries and become the first
iteration of the data that would be used in the pipeline.

With our raw dataset being established there was early filtering of features done to remove
those not relevant to the problem applying the knowledge from members of the Continental
team. This process was done by hand and reduced the number of features from the initial 295 to
82 features. After this filter of features, we ran a basic missing value analysis on the remaining
features, discovering that all but five columns had missing values. We grouped the columns into
their percentage of missing values, grouping them into five different groups: 0% to 24%, 25%
to 49%, 50% to 74% and 75% to 100%, with the results of this being visible in Table 4.1, here
we can observe that around 40% of the original columns had more than 75% of its values as
missing values, meaning that these columns if kept for the final dataset would have little to no
meaningful information due to their lack of data.

After repeating the same missing value analysis for the entries of the dataset, we saw that
all of them had missing values which meant that at least some of the features were completely
empty. We confirmed this and found that out of the 82 features we were currently working with,
28 of them were full of missing values and should be removed. With removing these features, we

28 Chapter 4. Case Study on Scrapping of Tires

Table 4.1: Number of columns with a given percentage of missing values in the initial iteration
of the Clinton dataset.

Percentage of Missing Values 0%-24% 25%-49% 50%-74% 75%-100%

Number of Columns 46 3 0 33

had 54 remaining.

After this iteration of the dataset, we decided to remove the columns that had more than
75% features missing, resulting in the removal of another five features. Finally to achieve the
dataset used for the pipeline another manual removal of the columns was done by the team at
Continental. To finalize the dataset we would be working on, we also decided to remove entries
from the dataset that had more than 75% of its columns empty and at the end of it we were left
with a dataset containing 32 features plus the target variable (overallgrade) and 245562 entries.
The list and short description of the variables can be found in Appendix B.1.

Having defined our dataset we can perform some exploratory data analysis on it. To start,
we can look at the distribution of the target variable to determine the imbalance ratio of the
data using the metric defined in Eq. 2.3, and we see that for our dataset we have 222161 entries
with the label 0 (meaning no scrapping) and 23401 entries with the label 1 (meaning that they
were scrapped), giving us an imbalance ratio of around 0.10.

We can observe the correlation between the variables by looking at Figure 4.2 showcasing the
Pearson Correlation between the variables displayed, where a value closer to 1 indicates a strong
positive linear correlation, a value closer to -1 indicates a strong negative linear correlation and
values close to 0 indicates no linear correlation between variables. The first conclusion we can
draw is there is no clear variable that is highly correlated with the target variable (overallgrade),
with the highest positive correlation being with the variable ct_workcenter with a value of around
0.014 and the highest negative correlation being with the variable bead_shift_date having a
value of around 0.011.

Overall, we can see that there exists a strong positive correlation between a lot of variables
that are related to the shift data, work center or lot of the various processes that occur during
the production of a tire. Only the variable bead_workcenter appears to present a negative
correlation with most variables with the remaining variables where negative correlation seems to
occur being close to zero. Calculating the average correlation value for each variable (excluding
itself), we see that our target variable has an average coefficient value of -0.001 and that 11 of
our variables have an average correlation higher than 0.40, with the highest being first_ply_lot
with a value of 0.445. On the other hand, no variable has a negative correlation lower than -0.40
as the highest is bead_workcenter having a value of -0.350, almost -0.30 lower than the second
variable with the highest negative correlation.

The dataset has 1153 duplicate rows present, possibly due to the removal of unique identifier
variables. Our 33 variables are divided into 23 numerical and 10 categorical variables. In

4.4. Data Preparation 29

Figure 4.2: Pearson Correlation matrix for the variables of the Clinton data.

Appendix B.2 we can see the bar plots and histograms for all of the variables of the data. In the
bar plots, we see that some of the variables do not have a lot of unique values within themselves
as it is the case with most workcenter related variables. As for the histograms, using the default
setting for the bin construction, which is 10 bins, we can see that some of the variables appear to
present a more or less even distribution of variables, such is the case with some of the variables
representing the lots used in the various processes, while others have a skewed distribution.
Taking a closer look at the two variables that in theory have an impact if a tire is scrapped or not
(tire_weight_target and tire_weight_actual) in Figure 4.3 we can see that their distributions
are somewhat close, something that is confirmed by their correlation which is around 0.995.

4.4 Data Preparation

Preparing our data for ingestion in the pipeline in the pipeline meant that the first step was to
make sure it was ready to be handled by all methods, both feature selection and sampling as well
as our Random Forest Classifier model. Since a portion of these methods only works for features

30 Chapter 4. Case Study on Scrapping of Tires

Figure 4.3: Histogram for the variables related to the tire weight.

containing only numeric values, it meant that we had to try and convert our non-numeric values
to numerical ones. Our solution was to use Label Encoding, using the scikit-learn implementation,
to convert our non-numerical categorical features into numerical categorical features, as Label
Encoding assigns each category of a feature a sequential number. This solved the problem with
ingesting as all we had to do was ensure all of the features were numeric.

As for the missing values, there were some options for us to use in this case. With the more
common one we could have used mean or median value imputation. However, it does not work
very well for encoded features and can lead to confusing results in this case. Another option
considered and discarded was to use k-Nearest Neighbors or a similar neighbouring algorithm to
approximate these missing values using the closest entries to the one with the missing values.
This was discarded as the number of missing values was quite considerable, and this would
decrease the "real life" aspect of the data in the sense that it could cause a lot of the entries to
be more synthetic than real. So we settled on the most simple approach that still uses all of the
available entries and performed zero imputation, where each missing value was replaced by zero.

4.5 Modeling

With our dataset finalized and ready to be processed we settled on applying a similar approach
to the one done for the benchmark data as discussed in Section 3.2 by creating a stratified
train-test split with a 70/30 distribution for training and testing using the scikit-learn package.
We kept the same percentage of the number of features to be selected of 1%, 25%, 50%, 75%
and 100%, which in this case represented 1, 8, 16, 24 and 32 features respectively. We used the
same sampling methods but introduced two new feature selection methods: S2N and SFS. The
execution of the developed pipeline is as straightforward as it had already been built and used
on similar data in the last chapter and the same r6g.4xlarge AWS instance was used, hoping
its computational power would achieve quick results. However, this was not the case since, as

4.6. Evaluation 31

expected, as the number of features being selected increased the total time for each pair of
feature selection and sampling methods to run increased, something to discuss further in this
chapter. This meant that the pipeline took over two weeks to produce the complete results and
that mistakes found after the execution had concluded had major time costs as it could mean
running the complete pipeline again.

The pipeline would, for every pair of feature selection and sampling methods, store two csv
files, where one contained the selected columns and another that contained the predicted values
for the testing data as the output of our Random Forest Classifier model. In addition, a log
containing the time taken for three key stages of the pipeline (feature selection, sampling and
training and testing the model) was also recorded in a structure that allowed for easy ingestion
for analysis. In the end, the pipeline produced 300 csv files of selected columns and 300 csv for
the predictions.

4.6 Evaluation

In this section, we discuss the results achieved when applying the developed comparison pipeline
to the clean Clinton plant data for the year 2021. To facilitate the understanding and discussion
of the results, this section will be divided into three subsections: Performance, Time and Selected
Features. In each of the three subsections, we will discuss in more detail the results in those
particular categories.

4.6.1 Performance

To begin our analysis of the performance of the pipeline in terms of metrics, we can look at
performing a similar analysis to the one done in Section 3.2.2 by observing the F1-Score of the
possible combinations of types of feature selection and sampling methods and plotting them to
try and draw any conclusions. The control model, where no feature selection and sampling was
applied to the original data, did not produce a very good F1-Score, approximately 0.153. In
observing Figure 4.4 we can see that all pairings of methods managed to outperform the control
F1-Score at the 50% and 75% selected feature mark, with all but three pairings: All sampling
methods + only wrapper methods (FS → S), combined sampling methods + wrapper methods
(FS → S) and under-sampling and filter methods (S → FS), outperforming the control F1-Score
at the 25% feature selected mark.

Overall, Figure 4.4 did not showcase any clear winner in terms of the pairing of methods.
However, Table 4.2 shows that SMOTE Tomek Links was a common factor in the best pair per
percentage of selected features, discarding the 1% selected features. This sampling method and
Mutual Information combined proved effective for the 25% and 50% marks only being beaten by
Sequential Feature Selection at the 75% mark, with the sampling then feature selection proving
to be the best strategy for the three percentages of selected features.

32 Chapter 4. Case Study on Scrapping of Tires

Figure 4.4: Results of the pipeline for the Clinton 2021 calendar year data using F1-Score as a
metric.

4.6. Evaluation 33

Table 4.2: Best performing pairs and orders for each selected feature percentage for the Clinton
2021 dataset. The control value appears in the last row of the table.

% of Features Sampling Method FS Method Order F1-Score

1% ROS RFE FS → S 0.217
25% SMOTE Tomek Links Mutual Information S → FS 0.223
50% SMOTE Tomek Links Mutual Information S → FS 0.222
75% SMOTE Tomek Links Sequential FS S → FS 0.226
100% N/A N/A N/A 0.153

Looking at the complete results in Appendix C, we can see that 274 out of the 300 entries (60
entries for each percentage of selected features) or approximately 91.33% of entries outperformed
the control F1-Score. We can breakdown these figures further by calculating the percentage of
features that surpasses the control score at each percentage of selected features, and we see that
for 1% of selected features that value is around 63.33%, for 25% the value was around 93.33%. It
was 100% for the remaining percentages of selected features, which was also concluded before
looking at Figure 4.4.

To make sure that the results are actually an overall improvement over the control results,
we can use a different metric that is more suited for imbalanced datasets, it being Matthews
Correlation Coefficient (MCC). This metric is similar to F1-Score since it uses the confusion
matrix as a basis for its produced value. However, it does not ignore the True Negatives (TN)
entries of the confusion matrix like F1-Score does, and also has a larger interval of values ranging
from -1 to +1, where the value of 0 is considered to be a random predictor and -1 an inverse
predictor.

Applying Matthews Correlation Coefficient to our results we obtain a control MCC value of
around 0.126, meaning that our control Random Forest model is a little better than a random
predictor (MCC=0) according to the metric. In Figure 4.5 we can see that unlike the results of
the F1-Score metric, using MCC indicates that the pipeline produced results slightly worst than
the control model with the control MCC value only being beaten on 19 out of the 300 entries,
with 11 of those entries being when 75% of the features were selected. None of them was when
1%, 25% and 50% of the features were selected.

Overall the best-performing entry in terms of Matthews Correlation Coefficient value occurred
when selecting 75% of the features using SMOTE Tomek Links first followed by Sequential
Feature Selection having a value of around 0.131. At the same time, the worst entry excluding
those who selected 1% of features, was Boruta followed by Borderline SMOTE when selecting 25%
of features, obtaining an MCC value of 0.003, being pretty much equal to randomly predicting
outcomes according to the metric.

34 Chapter 4. Case Study on Scrapping of Tires

Figure 4.5: Results of the pipeline for the Clinton 2021 calendar year data using MCC as a
metric.

4.6. Evaluation 35

4.6.2 Execution Time

We now highlight some results obtained regarding the execution time taken to perform each
pipeline portion. Due to constraints in terms of the overall time taken for the pipeline to run,
the results showcased here are of a single run of the pipeline for six different feature selection
methods and five sampling methods.

For clarity reasons the large portion of the graphics showcased in this subsection will be in
pairs or two-by-two grids, where the left graphics refer to results obtained when doing feature
selection first and sampling second, while graphics on the right refer to the contrary order. This
however will always be highlighted both in the title of each graphic and its caption, not excluding
the appearance of graphics that follow other guidelines. For each pair of feature selection methods
and sampling methods in the pipeline the time taken to select the features, sample the dataset,
train and infer a Random Forest Model, as well as total time (a sum of the previous values) was
recorded for each order of operations.

Our first aim is to determine if a difference exists in the total execution time taken for the
pipeline to execute between the two orders of operations. Visually we can do this by averaging
the total time taken for all entries of the results of each order, breaking down the total time into
each specific task to help draw further conclusions. In Figure 4.6, we see that sampling caused
the feature selection time to increase by a lot skewing the difference between the two orders
greatly when selecting 25% of more features. This effect is expected to be much more noticeable
on wrapper methods as the increased dataset size will cause them to take longer to complete.

Figure 4.6: Breakdown of the average time taken for each order of the pipeline to complete,
aggregated by the percentage of selected features.

Taking a detailed look at the sampling results presented in Figure 4.7 where only sampling
time is taken into account and split by the sampling method used, we can see that, as expected,
in the right-hand graph showing sampling first entries the time taken for each method is linear,
and that SMOTE Tomek Links had a much worse performance when looking at time taken than

36 Chapter 4. Case Study on Scrapping of Tires

the rest of entries. As for the other methods, we can also see that Borderline SMOTE was the
worst, with the remaining being nearly indistinguishable on that figure.

Figure 4.7: Average time taken for each individual sampling method to complete the sampling
process, aggregated by the percentage of selected features.

Using Table 4.3 we see that both random sampling methods (RUS and ROS) are extremely
close in terms of time taken while SMOTE falls slightly behind both. These results indicate to
us that if time is any concern when applying any of these methods, then the execution time
showcased here by SMOTE Tomek Links is not fit for any application of that type. As for the
rest of the methods if there is the need for a more robust method that is not pure randomness
for oversampling, then SMOTE or Borderline SMOTE appears to be the most correct method
among the tested ones.

Table 4.3: Average sampling time for each sampling method, aggregated by percentage of
selected features and order.

Percentage of Selected Features 25% 50% 75% 100%

Order FS → S S → FS FS → S S → FS FS → S S → FS FS → S S → FS

Sa
m
p.

M
et
ho

d RUS 0.04 0.06 0.05 0.07 0.05 0.07 0.07 0.07
ROS 0.06 0.18 0.11 0.18 0.14 0.18 0.19 0.19
SMOTE 0.20 7.84 7.73 7.84 7.71 7.82 7.83 7.85
Borderline SMOTE 1.38 87.1 87.35 86.93 86.82 87.12 87.44 87.24
SMOTE Tomek Links 32.71 1943.27 1934.07 1939.61 1939.51 1936.68 1945.86 1944.31

Applying a similar approach to the feature selection methods, done in Figure 4.8, it becomes
clear that the performance of Sequential Feature Selection was abysmal in terms of time taken,
in particular when performing sampling first, with its average feature selection time surpassing
the 15-hour mark when selecting 75% or more features.

These results for SFS are so poor that removing the entries where this method was used for
the data and plotting the average time taken similar to Figure 4.6 without the breakdown, we
see that Figure 4.9 show us that both orders are now much closer and in much more reasonable

4.6. Evaluation 37

time ranges.

Figure 4.8: Average time taken for each individual feature selection method to complete the
feature selection process, aggregated by the percentage of selected features.

Figure 4.9: Average time taken for each order of the pipeline to complete, excluding entries
where SFS was used, aggregated by the percentage of selected features.

Looking at Table 4.4, where the results are shown in a table format, we see that, as expected, all
wrapper methods required more time than the filter methods, with Recursive Feature Elimination
being faster as the percentage of selected features increases, due to starting with the full set of
features as opposed to other methods. We can also see that for other methods the percentage of
features selected does not affect them as they always produce a complete feature set and select
the top-K features. F-Test Quotient’s result is extremely fast and paired with a random sampling
method can be a productive and efficient two-step pipeline in any given order.

Finally, we can look at our pipeline’s effect when training and testing a machine learning
model. As expected, the only entries that beat the recorded control time for a Random Forest
model were those that used RUS as its sampling method. These entries decreased the dataset

38 Chapter 4. Case Study on Scrapping of Tires

Table 4.4: Average feature selection time for each feature selection method, aggregated by the
percentage of selected features and order.

Percentage of Selected Features 25% 50% 75% 100%

Order FS → S S → FS FS → S S → FS FS → S S → FS FS → S S → FS

FS
M
et
ho

d

F-Test Quotient 0.62 0.91 1.11 1.63 1.42 2.07 1.55 2.26
Mutual Information 35.45 53.57 35.55 53.59 35.49 53.45 35.61 53.56
Signal 2 Noise 37.29 51.01 37.44 51.32 37.7 51.9 37.63 51.64
Boruta 2379.92 3226.47 2383.03 3241.46 2374.47 3234.70 2379.95 3207.48
Sequential Feature Selection 6091.97 35192.04 10528.10 47264.20 14601.00 56579.61 17190.07 60815.73
Recursive Feature Selection 1197.42 1749.22 835.76 1243.61 436.56 659.79 138.47 211.82

size, making it faster for the model to train with. Observing Figure 4.10 where we separate
entries that use RUS from the rest, we can conclude that some other entries that didn’t use RUS
managed to be faster than the control time at 25%, 50% and 75% of selected features. In total,
28 of these entries outperformed the control time at these feature selection steps.

Figure 4.10: Comparison between average Random Forest Classifier training and testing time
of entries using RUS as the sampling method and the rest, aggregated by the percentage of

features selected.

4.7 Discussion

Our results showed us that different metrics could draw different conclusions regarding perfor-
mance. The results using the F1-Score metric appeared to as a positive result on the pipeline,
as we saw a large majority of entries at multiple thresholds being able to outperform a poor
control F1-Score, sometimes providing close to a 33% boost in performance when compared to
the control, with these improvements even going as far as occurring in the 1% threshold in some
cases. The F1-Score results also highlighted some apparent differences in the order of operations
in some combinations, most visible in Combined Sampling + Wrapper Methods, which was not
as visible in the results of the previous chapter.

4.7. Discussion 39

The positive results, however, were not as visible when using the MCC metric, with only 19
entries beating the control value. The results also showcased a much steeper curve in terms of
MCC value increase over the feature selection thresholds when compared to the F1-Score results,
as in almost all of the combinations, we saw a large increase, at least for our interval range,
in MCC value when looking at the 1%, 25% and 50% thresholds. In contrast, in the F1-Score
results, there was a little slope after reaching the 25% feature threshold in most cases.

In terms of time, as discussed previously, performing sampling first caused a visible increase
in the time taken for the feature selection methods to execute, except FCQ. The gap in run time
between filter and wrapper methods in terms of time was noticeable, with iterative methods
being the worst of them all. The results in modelling and testing time were as expected, with the
Random Undersampling’s smaller dataset helping increase the model training and testing speed.

Overall we can conclude that if the single pairing of the feature selection method and
sampling method is implemented, any of the filter methods could be used in combination with
SMOTE Tomek Links, as it provided the best overall performance in both metrics. If a streaming
solution was required, then SMOTE Tomek Links could be replaced with Random Undersampling
combined with F-Test Quotient, providing the fastest oversampling solution.

Chapter 5

Conclusion

This section concludes our study by highlighting the main contributions and outlining some
possible future research directions.

5.1 Main Contributions

Our study led us to conclude that the applied pipeline did not provide a massive increase in terms
of performance when observing the F1-Score and did not provide almost any improvement if the
considered metric was Matthews Correlation Coefficient, when applied to the Clinton plant 2021
data. However, many features were removed from this data due to the initial manual filtering of
features. As such, the feature selection portion became less critical since the dimension of the
data in terms of features became smaller.

Another interesting point was the fact that for most cases of both the benchmark data
presented in Chapter 3 and the real data presented in Chapter 4, we could see many of the
combinations of feature selection and sampling methods achieving similar results in terms of
F1-Score, or even surpassing, the control results when the percentage of selected features was
25% or 50% leading us to believe that the pipeline could have the possibility to work well in
feature-rich datasets that are not as imbalanced as the real-world data or the APS Failure at
Scania dataset.

The work done here was able to showcase, in particular, the massive difference that exists in
terms of time between the wrapper methods used here and the filter methods, as it was clear
observing the results in terms of time taken for the Clinton 2021 data that filter methods were
the ones to be used if any streaming solution was considered, in particular with F-Test Quotient
being able to select the features quickly. The easier to discard methods for any future work would
have to be Sequential Feature Selection, in terms of feature selection methods, and SMOTE
Tomek Links, in terms of sampling, with the first being extremely slow at selecting the features
and the latter, despite being usually among the best-performing methods, was visibly slower
than the remaining sampling methods.

41

42 Chapter 5. Conclusion

5.2 Future Work

In terms of future work that could be done using this work as a basis, the most obvious would
be to apply the pipeline, or a more narrowed-down selection of methods, to the data provided
by the Lousado plant as the data itself, should be more evident in terms of missing values and
provides an even more imbalanced challenge for any model.

Another interesting challenge could create a solution hosted in the cloud that could predict
the tires being produced in real-time. This could have the features being selected previously and
filtered out as the data is ingested or as an evolving set of selected features being determined as
the data comes in.

The other initial approach of feature selection specially devoted to imbalanced classification
scenarios was tried but not followed through. The reason was that not enough methods were
applied to our case study and could be implemented reasonably. Future work could conduct
more thorough research on these methods and implement some.

And finally, a more intensive exploratory data analysis could have provided a better
understanding of the data overall and have allowed for more ways of tackling this problem
and different ways to pre-process the real-world data.

Appendix A

Benchmark Results

Figure A.1: Results of the pipeline for the King’s Rook vs King’s Pawn dataset.

43

44 Appendix A. Benchmark Results

Figure A.2: Results of the pipeline for the German Credit dataset.

45

Figure A.3: Results of the pipeline for the Bank Fraud dataset.

46 Appendix A. Benchmark Results

Figure A.4: Results of the pipeline for the APS Failure at Scania dataset.

Appendix B

Clinton 2021 Data

B.1 Variables Description

Table B.1: Description of the variables in the Clinton 2021 dataset.

Variable Name Description

0 bead_lot Lot of the bead used for the tire
1 bead_shift_date Recorded date of the bead production process
2 bead_workcenter Equipment ID of the machine where the bead process
3 bladder Identifer for the blader used when molding the tire
4 ct_shiftdate Recorded date of when the tire was cured
5 ct_shiftid Shift during which the tire was cured
6 ct_workcenter Identifier of the machine where the tire was cured
7 customer Company or customer that the tire is being produced for.
8 first_breaker_lot Lot used in the first breaker process
9 first_breaker_shift_date Recorded date for the first breaker process
10 first_breaker_workcenter Equipment ID of the machine in the first breaker process
11 first_ply_lot Identifier for the lot used in the first ply process
12 first_ply_shift_date Recorded date for the first ply process
13 first_ply_workcenter Equipment ID used in the first ply process
14 gt_shiftdate Date of the last operation on the green tire (before curing)
15 gt_shiftid Shift ID that made the last operation on the green tire
16 gt_workcenter Equipment ID used in the last operation on the green tire
17 inner_liner_lot Lot of the sheet used in the calendering process
18 inner_liner_shift_date Recorded date of the calendering process
19 inner_liner_workcenter Equipment ID of the calendering process
20 mold Identifer for the mold used when molding the tire.
21 second_breaker_lot Lot used in the second breaker process
22 second_breaker_shift_date Recorded date for the second breaker process
23 second_breaker_workcenter Equipment ID of the machine in second breaker process
24 sidewall_lot Identifer for the lot used in the sidewall process

Continued on next page

47

48 Appendix B. Clinton 2021 Data

Table B.1:Description of the variables in the Clinton 2021 dataset (cont.).

Name Explanation

25 sidewall_shift_date Recorded date of the sidewall process
26 sidewall_workcenter Equipment ID used in the sidewall process
27 tire_weight_actual Measured weight for the tire.
28 tire_weight_target Ideal weight for the produced OE tire.
29 tread_lot Lot of the tread used in the tire
30 tread_shift_date Recorded date that the tread was added to the tire
31 tread_workcenter Equipment ID of the machine used to add the tread
32 overallgrade Determines whether a tire is scrapped, replaced or approved.

B.2. Variables Distribution 49

B.2 Variables Distribution

Figure B.1: Bar plots of the categorical variables in the Clinton 2021 dataset.

50 Appendix B. Clinton 2021 Data

Figure B.2: Histograms of the numerical variables in the Clinton 2021 dataset.

Appendix C

Clinton 2021 Results
Table C.1: Results of the pipeline for the Clinton 2021 dataset when selecting 1% of features.

F1-Score MCC

FS Method Sampling Method FS → S S → FS FS → S S → FS

F-Test Quotient RUS 0.172465 0.172452 0.027966 0.026404
ROS 0.170290 0.170290 0.021811 0.021811
SMOTE 0.162798 0.169844 0.002649 0.021447
Borderline SMOTE 0.162798 0.164848 0.002649 -0.001430
SMOTE Tomek Links 0.162798 0.169844 0.002649 0.021447

Mutual Information RUS 0.207270 0.208283 0.093168 0.095152
ROS 0.216959 0.171615 0.108752 0.003266
SMOTE 0.005018 0.171615 0.003370 0.003266
Borderline SMOTE 0.005023 0.171615 0.004136 0.003266
SMOTE Tomek Links 0.003917 0.215842 0.001888 0.105423

Signal 2 Noise RUS 0.027917 0.027917 0.001756 0.001756
ROS 0.027917 0.027917 0.001756 0.001756
SMOTE 0.027917 0.027917 0.001756 0.001756
Borderline SMOTE 0.027917 0.027917 0.001756 0.001756
SMOTE Tomek Links 0.027917 0.027917 0.001756 0.001756

Boruta RUS 0.164387 0.164175 0.007663 0.006976
ROS 0.161791 0.163188 0.004018 0.006752
SMOTE 0.008512 0.157089 0.004521 0.001342
Borderline SMOTE 0.008512 0.160354 0.004521 -0.000426
SMOTE Tomek Links 0.008512 0.156327 0.004521 -0.000412

SFS RUS 0.206540 0.209375 0.091168 0.096359
ROS 0.216273 0.210219 0.107572 0.097134
SMOTE 0.005299 0.209090 0.004827 0.095730
Borderline SMOTE 0.005027 0.199782 0.004828 0.079075
SMOTE Tomek Links 0.003920 0.209281 0.002699 0.095976

RFE RUS 0.208137 0.164722 0.094738 0.008060
ROS 0.217244 0.162741 0.109250 0.005619
SMOTE 0.005582 0.156572 0.006328 -0.000191
Borderline SMOTE 0.004747 0.160633 0.003543 0.000049
SMOTE Tomek Links 0.003919 0.157063 0.002346 0.001382

51

52 Appendix C. Clinton 2021 Results

Table C.2: Results of the pipeline for the Clinton 2021 dataset when selecting 25% of features.

F1-Score MCC

FS Method Sampling Method FS → S S → FS FS → S S → FS

F-Test Quotient RUS 0.193933 0.186541 0.068411 0.054342
ROS 0.187208 0.188697 0.061771 0.060633
SMOTE 0.181523 0.186327 0.076704 0.057912
Borderline SMOTE 0.188499 0.185719 0.089116 0.057639
SMOTE Tomek Links 0.181075 0.185631 0.076259 0.056749

Mutual Information RUS 0.208946 0.207816 0.096026 0.093999
ROS 0.171508 0.213457 0.082148 0.101427
SMOTE 0.196024 0.222381 0.101612 0.123587
Borderline SMOTE 0.199068 0.222530 0.105649 0.122373
SMOTE Tomek Links 0.194722 0.223074 0.103490 0.124162

Signal 2 Noise RUS 0.170013 0.167874 0.017980 0.015926
ROS 0.167526 0.167522 0.017852 0.017843
SMOTE 0.163946 0.167456 0.010799 0.017646
Borderline SMOTE 0.163112 0.165998 0.010446 0.006073
SMOTE Tomek Links 0.163946 0.167418 0.010799 0.017471

Boruta RUS 0.205871 0.206824 0.089848 0.091575
ROS 0.175897 0.176979 0.105865 0.106633
SMOTE 0.165289 0.177696 0.102945 0.103404
Borderline SMOTE 0.165327 0.180096 0.103685 0.106708
SMOTE Tomek Links 0.167231 0.178969 0.111808 0.106938

SFS RUS 0.214365 0.209468 0.104955 0.096343
ROS 0.152895 0.210341 0.094396 0.097310
SMOTE 0.030153 0.209751 0.007663 0.096511
Borderline SMOTE 0.027148 0.202125 0.005071 0.083176
SMOTE Tomek Links 0.026149 0.209649 0.003442 0.096324

RUS 0.206831 0.207393 0.091605 0.092535
RFE ROS 0.176870 0.177792 0.107049 0.107400

SMOTE 0.167792 0.176301 0.105288 0.102231
Borderline SMOTE 0.173009 0.179689 0.105781 0.1061990
SMOTE Tomek Links 0.164559 0.180196 0.106436 0.108125

53

Table C.3: Results of the pipeline for the Clinton 2021 dataset when selecting 50% of features.

F1-Score MCC

FS Method Sampling Method FS → S S → FS FS → S S → FS

F-Test Quotient RUS 0.209719 0.210011 0.096545 0.097033
ROS 0.176380 0.173474 0.110602 0.105717
SMOTE 0.168562 0.19117 0.096448 0.107196
Borderline SMOTE 0.156971 0.190668 0.078917 0.109928
SMOTE Tomek Links 0.168215 0.194084 0.102885 0.110426

Mutual Information RUS 0.210572 0.207379 0.098653 0.092961
ROS 0.174981 0.213347 0.087185 0.100834
SMOTE 0.192478 0.221322 0.120778 0.129116
Borderline SMOTE 0.191538 0.220336 0.121053 0.125038
SMOTE Tomek Links 0.191495 0.221604 0.120431 0.127539

Signal 2 Noise RUS 0.204785 0.203318 0.088131 0.085511
ROS 0.203004 0.203578 0.100264 0.100891
SMOTE 0.205232 0.208600 0.112022 0.114606
Borderline SMOTE 0.205905 0.206875 0.113410 0.112699
SMOTE Tomek Links 0.204645 0.208333 0.111686 0.114662

Boruta RUS 0.212520 0.212504 0.101427 0.101416
ROS 0.182919 0.182175 0.112248 0.111364
SMOTE 0.186737 0.181730 0.121390 0.109981
Borderline SMOTE 0.185588 0.183374 0.120412 0.112263
SMOTE Tomek Links 0.189339 0.184839 0.127274 0.115747

SFS RUS 0.209412 0.211399 0.096456 0.100315
ROS 0.162196 0.215186 0.102677 0.104761
SMOTE 0.167017 0.216989 0.104197 0.106282
Borderline SMOTE 0.169435 0.215630 0.106703 0.104287
SMOTE Tomek Links 0.169636 0.219511 0.112332 0.110017

RFE RUS 0.213358 0.212701 0.102841 0.101652
ROS 0.186544 0.183878 0.116958 0.114708
SMOTE 0.185777 0.184679 0.120769 0.115815
Borderline SMOTE 0.185667 0.187040 0.120560 0.119915
SMOTE Tomek Links 0.185452 0.190103 0.123605 0.122849

54 Appendix C. Clinton 2021 Results

Table C.4: Results of the pipeline for the Clinton 2021 dataset when selecting 75% of features.

F1-Score MCC

FS Method Sampling Method FS → S S → FS FS → S S → FS

F-Test Quotient RUS 0.214072 0.213927 0.104099 0.103820
ROS 0.190332 0.188049 0.117435 0.114892
SMOTE 0.187490 0.197048 0.117741 0.119136
Borderline SMOTE 0.188476 0.199082 0.121948 0.121994
SMOTE Tomek Links 0.187553 0.199833 0.121115 0.121895

Mutual Information RUS 0.211208 0.208737 0.099421 0.095308
ROS 0.177683 0.213646 0.090563 0.101264
SMOTE 0.193616 0.221743 0.122143 0.130757
Borderline SMOTE 0.194755 0.221219 0.125120 0.128508
SMOTE Tomek Links 0.195094 0.222096 0.125174 0.130844

Signal 2 Noise RUS 0.208494 0.208697 0.094572 0.094998
ROS 0.202542 0.201510 0.105291 0.104051
SMOTE 0.209868 0.191337 0.120097 0.112718
Borderline SMOTE 0.204454 0.192852 0.115477 0.114468
SMOTE Tomek Links 0.208397 0.195468 0.118983 0.117706

Boruta RUS 0.215344 0.215041 0.106342 0.105765
ROS 0.185875 0.187996 0.115402 0.117966
SMOTE 0.187746 0.188682 0.120475 0.121095
Borderline SMOTE 0.188419 0.191650 0.121968 0.125199
SMOTE Tomek Links 0.191448 0.192038 0.126965 0.126785

SFS RUS 0.215117 0.211749 0.105998 0.100843
ROS 0.178532 0.214824 0.111056 0.103447
SMOTE 0.187258 0.225667 0.121074 0.124402
Borderline SMOTE 0.188676 0.225556 0.123465 0.125572
SMOTE Tomek Links 0.189746 0.225684 0.127083 0.124149

RFE RUS 0.216074 0.214629 0.107528 0.104967
ROS 0.188210 0.187101 0.118009 0.116925
SMOTE 0.188894 0.189664 0.122222 0.122653
Borderline SMOTE 0.191391 0.189707 0.125588 0.123475
SMOTE Tomek Links 0.191396 0.194208 0.126354 0.129041

55

Table C.5: Results of the pipeline for the Clinton 2021 dataset when selecting 100% of features.

F1-Score MCC

FS Method Sampling Method FS → S S → FS FS → S S → FS

F-Test Quotient RUS 0.216257 0.216443 0.107840 0.108144
ROS 0.188744 0.189650 0.118289 0.118574
SMOTE 0.188058 0.190802 0.120682 0.123402
Borderline SMOTE 0.189527 0.189908 0.122769 0.123473
SMOTE Tomek Links 0.194526 0.192826 0.129009 0.127116

Mutual Information RUS 0.214701 0.213945 0.105057 0.103806
ROS 0.188260 0.188036 0.117873 0.117582
SMOTE 0.187963 0.187010 0.120141 0.119488
Borderline SMOTE 0.188401 0.187783 0.121560 0.121041
SMOTE Tomek Links 0.193276 0.191649 0.128071 0.126065

Signal 2 Noise RUS 0.210992 0.212273 0.098952 0.101092
ROS 0.202767 0.202906 0.110039 0.110154
SMOTE 0.196347 0.194367 0.119782 0.118067
Borderline SMOTE 0.194531 0.194770 0.118708 0.118838
SMOTE Tomek Links 0.195773 0.193363 0.119263 0.117192

Boruta RUS 0.216593 0.215532 0.108415 0.106579
ROS 0.187652 0.190437 0.116560 0.119977
SMOTE 0.191658 0.187859 0.124245 0.120071
Borderline SMOTE 0.189815 0.191315 0.122808 0.124828
SMOTE Tomek Links 0.195192 0.194245 0.129986 0.128986

SFS RUS 0.215513 0.214166 0.106542 0.104293
ROS 0.187996 0.187820 0.117966 0.112961
SMOTE 0.186933 0.198327 0.118980 0.125846
Borderline SMOTE 0.188724 0.199550 0.122912 0.128154
SMOTE Tomek Links 0.191992 0.198179 0.126953 0.125987

RFE RUS 0.215720 0.215139 0.106900 0.105868
ROS 0.187103 0.189081 0.116248 0.118334
SMOTE 0.186582 0.189463 0.118947 0.122652
Borderline SMOTE 0.191382 0.191363 0.125447 0.124916
SMOTE Tomek Links 0.191473 0.191832 0.125991 0.126910

Bibliography

[1] Hakan Altincay and Cem Ergün. Clustering based under-sampling for improving speaker
verification decisions using adaboost. volume 3138, pages 698–706, 08 2004. ISBN: 978-3-
540-22570-6. doi:10.1007/978-3-540-27868-9_76.

[2] Gustavo Batista, Ana Bazzan, and Maria-Carolina Monard. Balancing training data for
automated annotation of keywords: a case study. pages 10–18, 01 2003.

[3] N. V. Chawla, K. W. Bowyer, L. O. Hall, and W. P. Kegelmeyer. SMOTE: Synthetic
minority over-sampling technique. Journal of Artificial Intelligence Research, 16:321–357,
jun 2002. doi:10.1613/jair.953.

[4] Continental. Headquarters & plants. https://www.continental-tires.com/transport/
company/businessunit/headquarters-plants. Accessed: 21/09/2022.

[5] C. Ding and H. Peng. Minimum redundancy feature selection from microarray gene expression
data. In Computational Systems Bioinformatics. CSB2003. Proceedings of the 2003 IEEE
Bioinformatics Conference. CSB2003, pages 523–528, 2003. doi:10.1109/CSB.2003.1227396.

[6] F.J. Ferri, Pavel Pudil, and M. Hatef. Comparative study of techniques for large-scale
feature selection. Pattern Recognition in Practice, IV: Multiple Paradigms, Comparative
Studies and Hybrid Systems, 16, 12 2001. doi:10.1016/B978-0-444-81892-8.50040-7.

[7] Isabelle Guyon, Jason Weston, Stephen Barnhill, and Vladimir Vapnik. Gene selection for
cancer classification using support vector machines. Machine Learning, 46:389–422, 01 2002.
doi:10.1023/A:1012487302797.

[8] Hui Han, Wen-Yuan Wang, and Bing-Huan Mao. Borderline-smote: A new over-sampling
method in imbalanced data sets learning. In De-Shuang Huang, Xiao-Ping Zhang, and
Guang-Bin Huang, editors, Advances in Intelligent Computing, pages 878–887, Berlin,
Heidelberg, 2005. Springer Berlin Heidelberg. ISBN: 978-3-540-31902-3.

[9] P. Hart. The condensed nearest neighbor rule (corresp.). IEEE Transactions on Information
Theory, 14(3):515–516, 1968. doi:10.1109/TIT.1968.1054155.

[10] IBM. Crisp-dm help overview. https://www.ibm.com/docs/en/spss-modeler/saas?topic=dm-
crisp-help-overview. Accessed: 12/12/2022.

57

http://dx.doi.org/10.1007/978-3-540-27868-9_76
http://dx.doi.org/10.1007/978-3-540-27868-9_76
http://dx.doi.org/10.1613/jair.953
http://dx.doi.org/10.1613/jair.953
https://www.continental-tires.com/transport/company/businessunit/headquarters-plants
https://www.continental-tires.com/transport/company/businessunit/headquarters-plants
http://dx.doi.org/10.1109/CSB.2003.1227396
http://dx.doi.org/10.1109/CSB.2003.1227396
http://dx.doi.org/10.1016/B978-0-444-81892-8.50040-7
http://dx.doi.org/10.1016/B978-0-444-81892-8.50040-7
http://dx.doi.org/10.1023/A:1012487302797
http://dx.doi.org/10.1023/A:1012487302797
http://dx.doi.org/10.1109/TIT.1968.1054155
https://www.ibm.com/docs/en/spss-modeler/saas?topic=dm-crisp-help-overview
https://www.ibm.com/docs/en/spss-modeler/saas?topic=dm-crisp-help-overview

58 Bibliography

[11] Bob Rupak Roy II. Borderline smote. https://bobrupakroy.medium.com/borderline-knn-
svm-and-adaysn-smote-1d74756fb049. Accessed: 12/07/2022.

[12] Imbalanced-learn. Compare under-sampling samplers. https://imbalanced-learn.org/stable/
auto_examples/under-sampling/plot_comparison_under_sampling.html#sphx-glr-auto-
examples-under-sampling-plot-comparison-under-sampling-py. Accessed: 06/07/2022.

[13] J. Kreer. A question of terminology. IRE Transactions on Information Theory, 3(3):208–208,
1957. doi:10.1109/TIT.1957.1057418.

[14] Miron Kursa and Witold Rudnicki. Feature selection with boruta package. Journal of
Statistical Software, 36:1–13, 09 2010. doi:10.18637/jss.v036.i11.

[15] Jundong Li, Kewei Cheng, Suhang Wang, Fred Morstatter, Robert P. Trevino, Jiliang
Tang, and Huan Liu. Feature selection. ACM Computing Surveys, 50(6):1–45, nov 2018.
doi:10.1145/3136625.

[16] S. Lloyd. Least squares quantization in pcm. IEEE Transactions on Information Theory, 28
(2):129–137, 1982. doi:10.1109/TIT.1982.1056489.

[17] B.W. Matthews. Comparison of the predicted and observed secondary structure of t4 phage
lysozyme. Biochimica et Biophysica Acta (BBA) - Protein Structure, 405(2):442–451, 1975.
ISSN: 0005-2795. doi:https://doi.org/10.1016/0005-2795(75)90109-9.

[18] Samuele Mazzanti. Boruta explained exactly how you wished someone explained to
you. https://towardsdatascience.com/boruta-explained-the-way-i-wish-someone-explained-
it-to-me-4489d70e154a. Accessed: 06/07/2022.

[19] Hanchuan Peng, Fuhui Long, and C. Ding. Feature selection based on mutual
information criteria of max-dependency, max-relevance, and min-redundancy. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 27(8):1226–1238, 2005.
doi:10.1109/TPAMI.2005.159.

[20] Brian C. Ross. Mutual information between discrete and continuous data sets. PLOS ONE,
9(2):1–5, 02 2014. doi:10.1371/journal.pone.0087357.

[21] Max Schubach, Matteo Re, Peter Robinson, and Giorgio Valentini. Imbalance-aware machine
learning for predicting rare and common disease-associated non-coding variants. Scientific
Reports, 7, 06 2017. doi:10.1038/s41598-017-03011-5.

[22] C. E. Shannon. A mathematical theory of communication. The Bell System Technical
Journal, 27(3):379–423, 1948. doi:10.1002/j.1538-7305.1948.tb01338.x.

[23] Ivan Tomek. Two modifications of cnn. IEEE Transactions on Systems, Man, and Cybernetics,
SMC-6(11):769–772, 1976. doi:10.1109/TSMC.1976.4309452.

[24] Irvine Machine Learning Repository University of California. Uci machine learning repository.
https://archive.ics.uci.edu/ml/index.php. Accessed: 21/09/2022.

https://bobrupakroy.medium.com/borderline-knn-svm-and-adaysn-smote-1d74756fb049
https://bobrupakroy.medium.com/borderline-knn-svm-and-adaysn-smote-1d74756fb049
https://imbalanced-learn.org/stable/auto_examples/under-sampling/plot_comparison_under_sampling.html#sphx-glr-auto-examples-under-sampling-plot-comparison-under-sampling-py
https://imbalanced-learn.org/stable/auto_examples/under-sampling/plot_comparison_under_sampling.html#sphx-glr-auto-examples-under-sampling-plot-comparison-under-sampling-py
https://imbalanced-learn.org/stable/auto_examples/under-sampling/plot_comparison_under_sampling.html#sphx-glr-auto-examples-under-sampling-plot-comparison-under-sampling-py
http://dx.doi.org/10.1109/TIT.1957.1057418
http://dx.doi.org/10.18637/jss.v036.i11
http://dx.doi.org/10.1145/3136625
http://dx.doi.org/10.1109/TIT.1982.1056489
http://dx.doi.org/https://doi.org/10.1016/0005-2795(75)90109-9
http://dx.doi.org/https://doi.org/10.1016/0005-2795(75)90109-9
https://towardsdatascience.com/boruta-explained-the-way-i-wish-someone-explained-it-to-me-4489d70e154a
https://towardsdatascience.com/boruta-explained-the-way-i-wish-someone-explained-it-to-me-4489d70e154a
http://dx.doi.org/10.1109/TPAMI.2005.159
http://dx.doi.org/10.1109/TPAMI.2005.159
http://dx.doi.org/10.1371/journal.pone.0087357
http://dx.doi.org/10.1038/s41598-017-03011-5
http://dx.doi.org/10.1038/s41598-017-03011-5
http://dx.doi.org/10.1002/j.1538-7305.1948.tb01338.x
http://dx.doi.org/10.1109/TSMC.1976.4309452
https://archive.ics.uci.edu/ml/index.php

Bibliography 59

[25] Chongsheng Zhang, Jingjun Bi, and Paolo Soda. Feature selection and resampling in class
imbalance learning: Which comes first? an empirical study in the biological domain. In
2017 IEEE International Conference on Bioinformatics and Biomedicine (BIBM), pages
933–938, 2017. doi:10.1109/BIBM.2017.8217782.

[26] Zhenyu Zhao, Radhika Anand, and Mallory Wang. Maximum relevance and minimum
redundancy feature selection methods for a marketing machine learning platform. In 2019
IEEE International Conference on Data Science and Advanced Analytics (DSAA), pages
442–452, 2019. doi:10.1109/DSAA.2019.00059.

http://dx.doi.org/10.1109/BIBM.2017.8217782
http://dx.doi.org/10.1109/BIBM.2017.8217782
http://dx.doi.org/10.1109/DSAA.2019.00059
http://dx.doi.org/10.1109/DSAA.2019.00059

	Abstract
	Resumo
	Acknowledgments
	Contents
	List of Tables
	List of Figures
	Acronyms
	1 Introduction
	1.1 Objectives
	1.2 Organization

	2 State of the Art
	2.1 Feature Selection Methods
	2.1.1 Overview
	2.1.2 Maximum Relevance and Minimum Redundancy
	2.1.3 Mutual Information
	2.1.4 Signal 2 Noise
	2.1.5 Boruta
	2.1.6 Sequential Feature Selection
	2.1.7 Recursive Feature Elimination

	2.2 Imbalanced Learning
	2.2.1 Data-level Approaches Overview
	2.2.2 Random Undersampling (RUS) and Oversampling (ROS)
	2.2.3 ClusterCentroids
	2.2.4 Condensed Nearest Neighbors (CNN)
	2.2.5 Tomek Links
	2.2.6 Synthetic Minority Oversampling Technique (SMOTE)
	2.2.7 Borderline SMOTE
	2.2.8 SMOTE Tomek Links

	2.3 Tools

	3 Feature Selection in Imbalanced Binary Classification
	3.1 Pipelines for Feature Selection and Sampling
	3.2 Experimental Study
	3.2.1 Experimental Setup
	3.2.2 Results

	3.3 Discussion

	4 Case Study on Scrapping of Tires
	4.1 Methodology
	4.2 Business Understanding
	4.3 Data Understanding
	4.4 Data Preparation
	4.5 Modeling
	4.6 Evaluation
	4.6.1 Performance
	4.6.2 Execution Time

	4.7 Discussion

	5 Conclusion
	5.1 Main Contributions
	5.2 Future Work

	A Benchmark Results
	B Clinton 2021 Data
	B.1 Variables Description
	B.2 Variables Distribution

	C Clinton 2021 Results
	Bibliography

