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Abstract

Numerous domains can be represented as networks. The analysis of those networks allows for
the extraction of several conclusions about the systems they represent, and there is a lot of
work done with the goal of refining the already existing techniques and introducing new ones
so that even more insights can be taken from the same network. One of those techniques is
known as Counting Subgraphs, a problem tied to the Subgraph Isomorphism problem, which
is known to be NP-Complete. Later, this methodology branched to the discovery of Network
Motifs, over-represented subgraphs in a graph.
In this work, we introduce a richer definition for Motifs, spatial Motifs, which in their essence
correspond to Motifs with a spatial component. We present a novel concept of how a Spatial
Motif can be represented, using a partitioned bounding box of its nodes and assigning each node
to the correspondent partition, thus taking into account not only the absolute location of the
nodes but their relative position in reference to each other as well.
After that, we tested our concept on networks corresponding to the street layout of cities, where
each node is a junction of two streets, and the edges are the streets themselves. Those experiments
have the purpose of showing that our methodology is able to distinguish between “grid-like” and
“non grid-like” cities, but the concept can be further extended to different kinds of networks and
is general enough that different boxes and partitions can be defined. Finally, we make several
experiences to further understand the potential of our definition and provide a thorough analysis
of the obtained results.

Keywords: Graph Algorithms, Subgraph Counting, Motifs, Spatial Motifs
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Resumo

Inúmeros domínios podem ser representados como redes. A análise dessas redes permite a
extração de várias conclusões sobre o sistema que estas representam, e muito trabalho tem sido
desenvolvido com o objetivo de refinar as técnicas já existentes e introduzir técnicas novas de
forma a obter ainda mais informações dessa mesma rede. Uma dessas técnicas é conhecida como
Contagem de Subgrafos, e está diretamente ligada ao problema do Isomorfismo de Grafos, um
problema NP-Completo conhecido. Esta metodologia ramificou-se para a procura de Network
Motifs, subgrafos que estão sobre-representados numa rede.
Neste trabalho, introduzimos uma definição mais rica para Motifs, Motifs Espaciais, que na
sua essência correspondem a Motifs com uma componente espacial. Apresentamos um novo
conceito para a representação de Motifs Espaciais, usando a delimitação dos seus nós repartida
em partições e atribuindo a cada nó a partição correspondente, de forma a ter em conta não só a
posição absoluta de cada um dos nós, mas também a sua posição relativa entre os restantes.
Depois, testamos o nosso conceito em redes correspondentes ao esquema das estradas de cidades,
em que a junção de duas estradas corresponde a um nó na rede e as arestas correspondem às
estradas em si. Esses testes foram desenvolvidos com o intuito de mostrar que a nossa metodologia
é capaz de distinguir entre cidades com esquemas em grelha e cidades sem esse tipo de esquema,
mas o conceito pode ser extendido para diferentes tipos de redes e é suficientemente geral para
que possam ser usadas delimitações e partições diferentes. Por fim, realizamos várias experiências
para perceber melhor o potencial da nossa definição, e também fazemos uma análise minuciosa
dos resultados obtidos.

Palavras-chave: Algoritmos de Grafos, Contagem de Subgrafos, Motifs, Motifs Espaciais
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Chapter 1

Introduction

In an ever-evolving world, where technology gets developed by the day, everything around us is
more and more connected. When talking about connections, the prominent data structure are
graphs, that despite being simple models, are capable of storing a lot of information regarding
the system they are representing, especially their topology. With this, when a new knowledge
extraction method is implemented, many new things can be discovered. It is reported that the
first usage of graphs was by Leonhard Euler, in order to solve the Königsberg Bridge Problem [1].
This problem consists of trying to know if it is possible to cross the seven bridges of Königsberg,
over the river of Preger, in a single trip. The bridges are depicted in Figure 1.1.

Figure 1.1: Königsberg’s Bridges, adapted from [2].

This problem can be solved by creating a multigraph (graph where two nodes can be connected
by multiple edges) where the nodes correspond to the letters A, B, C and D in Figure 1.1 and
the edges correspond to the bridges, found in Figure 1.2.

Figure 1.2: Multigraph originated from the Königsberg’s Bridges.

1



2 Chapter 1. Introduction

Since then, the field of graph theory has been in constant progress. More recently, network
science has emerged as multidisciplinary academic field combining theories and methods from
graph theory with areas such as statistics mechanics, data mining and information visualization,
aiming to study networks from several domains with non trivial topological characteristics [3].
In fact, complex networks are a very powerful abstraction of real-world systems that allow us
to analyze their underlying interactions [4]. Many of these systems have a correspondence to
the physical world, such as transportation networks (e.g. road, train or subway), power grids or
brain networks. Their components are therefore embedded in space and topology alone does
not capture all the relevant information [5]. Being able to understand and analyze these spatial
networks is therefore a crucial task with multidisciplinary applicability [6, 7].

Subgraphs can be seen as the building blocks of networks and they are the core of rich
characterization concepts such as network motifs [8] or graphlet degree distributions [9]. Despite
extensions to incorporate dimensions such as weight [10], time [11], color [12] or multiple layers [13],
to the best of our knowledge there is no general and widespread subgraph abstraction that
incorporates the spatial dimension. We should note that for specific domains there has been
some related work, such as in football, where passing networks between different regions of the
playing field have been created [14], but these remain specialized and restricted to their own
field of study.

1.1 Goals and Contributions

In this thesis, our goal is to aim towards a general concept of spatial motifs able to characterize
networks from any domain.

Our first contribution (Section 3.1) is a novel subgraph abstraction that incorporates spatial
information in a way that is general enough to incorporate several spatial dimensions (e.g. 2D or
3D) and granularities (e.g. macroscale vs microscale regions). The key idea is to automatically
create a spatial partition of the subgraph bounding and to color the nodes according to the
region they are in.

Our second contribution (Section 3.2) is an initial methodology and fully functional framework
to detect and count these spatial motifs, based on enumerating subgraph occurrences and then
computing their spatial and topological type.

Our third and last contribution (Chapter 4) is a thorough experimental section. We first
provide a proof of concept analysis of several real-world road networks, showing that unlike purely
topological motifs, we can distinguish between grid and non grid-like layouts. Furthermore, we
showcase a generalization of our partition method and we use synthetic data to further explore
and detail our methodology.

The initial core work of this thesis, including the spatial subgraph abstraction and initial
proof of concept with 2× 2 partition in road networks, was accepted as a full paper with oral
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presentation at the 11th International Conference on Complex Networks and their Applications,
held in November 2022 [15].

1.2 Thesis Outline

This thesis structure is as follows:

• Chapter 2 - Preliminaries defines the main terminology and notation to be used
throughout this document and discusses work previously done that relates to this thesis or
that serves as background for what will be discussed in further chapters;

• Chapter 3 - Development thoroughly explains the details of our contributions and how
the produced program works;

• Chapter 4 - Results and Analysis shows the results obtained by our method with
multiple datasets of different types as well as their analysis;

• Chapter 5 - Conclusions and Future Work states the conclusions we obtained from
this work and mentions improvements that could possibly be done in the future that would
allow for an extension of what we did in this thesis.





Chapter 2

Preliminaries

In this chapter, we present all the fundamental and necessary concepts so that the reader can
have a complete understanding of the entire document. We start by defining the main notation
and terminology used throughout this thesis and, after this, we thoroughly explain the concept of
spatial networks, colored networks and motifs (the basis of this work), with examples to illustrate
and thus allow for a better understanding of said concepts. In particular, we go through the
definitions of motif finding, colored motifs and spatial motifs, all of which are frequently used
throughout this thesis. Finally, we present g-tries, a data structure that we intended to use in
the earlier stages of our work. Even though it ended up not being part of our program, we still
feel like it is worth referencing as their usage might represent a future improvement to the code.

2.1 Notation and terminology

A set S corresponds to a collection of distinct elements. The number of elements of a set, its
cardinality, is represented as |S|.

A graph G can be defined as a pair (V (G), E(G)), where V (G) is the set of vertices of
G and E(G) its set of edges. Each edge of G is represented by a pair of connected vertices
e = (i, j), where i, j ∈ V (G), and the size of G corresponds to its number of vertices, |V (G)|. If
|V (G)| = k, then we call G a k-graph.

Graphs can be either directed or undirected, and we define a graph as directed if the set of
edges E(G) is comprised of ordered pairs, that is, ∀i, j ∈ V (G), (i, j) ∈ E(G) ≠⇒ (j, i) ∈ E(G),
and undirected otherwise. In an ordered pair of vertices, we name the first node origin and
the second target (see Figure 2.1).

5



6 Chapter 2. Preliminaries

Figure 2.1: Directed graph M and its undirected counterpart.

In a directed graph, the out-degree of a node n corresponds to the number of edges with
source in n, the in-degree to the number of edges whose target is n, and the degree to the
summation of the in-degree and out-degree. Since in undirected graphs there isn’t a notion of
source and target, one can only refer to the degree of a node.

A subgraph S of G is a graph with V (S) ⊆ V (G) and E(S) ⊆ E(G), as seen in Figure 2.2.
Note that this subgraph can also be a k-graph.

Figure 2.2: Graph M and one of its size three subgraphs.

A labeled graph corresponds to an assignment of values to the vertices, edges, or both,
subject to certain conditions [16]. There has been thorough research in graph labeling for several
years [17] and there are many methods to generate it [18], each with its own characteristics. In
Figure 2.3 we can see an example of four graphs, the first one is unlabeled, and each of the others
represents a possible labeling of said graph, the last one using colors.

Figure 2.3: Graph M and three of its possible labelings.

As can be seen in the previous figure, labeling is not restricted to strings or integers. Adding
this property to graphs also allows us to retrieve more information about its characteristics, like
assigning two different nodes to the same category, as happened with the two orange nodes in
Figure 2.3.
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Two graphs G and G′ are said to be isomorphic, written G ≡ G′, if there is a match
between their vertices such that two vertices are connected by an edge in G if and only if their
corresponding vertices in G′ must also be connected by an edge, depicted in Figure 2.4. It should
also be noted that if G ≡ G′ then |V (G)| = |V (G′)| and |E(G)| = |E(G′)|. If the mapping
that creates the isomorphism also takes into account the nodes’ labels, then this definition
can be further extended to labeled graphs. Two vertices i and j are said to be structurally
indistinguishable, written i ∼ j, if there is an automorphism (an isomorphism from a graph to
itself) that maps i to j.

Figure 2.4: Two isomorphic graphs, M and J , with mapping A ∼ H, B ∼ I, C ∼ J, D ∼ F and
E ∼ G.

A subgraph Sg is said to be an induced subgraph of G if it is formed from a subset of
vertices of G and all of the edges that connect pairs of vertices in that subset. Saying that Sg is
an induced subgraph of G is interchangeable with saying that G induces Sg. In Figure 2.5, we
can see a graph G and two subgraphs, S1 that is induced by G and S2 that is not. Note that
subgraph S2 is not induced by G because the edge that connects nodes E and C is not part of
S2, and both S1 and S2 are made up of nodes B, C and E.

Figure 2.5: Graph G (on the left) and two of its subgraphs, S1 (in the middle, induced from G)
and S2 (in the right, not induced by G).

The canonical labeling of G, also known as the canonical form of G, corresponds to a
graph G′ isomorphic to G and that represents the whole isomorphism class of G. This definition
was described by Piperno [19], but, in our case, the canonical labeling does not correspond to a
graph, but to the concatenation of a set of colors with a graph. A further explanation of this
adaptation can be found in Section 3.2.3.

The fingerprint of a graph is a set of characteristics that allows us to identify a given
network. Much like the fingerprints of a person distinguish them from other people, it makes
it possible to individually tell apart two graphs, but it can also be used to create some kind of
grouping among networks. This concept is used in many areas, such as biology [20] or even the
internet, with digital fingerprinting becoming more common by the day [21]. For example, if
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we define the fingerprint of a graph to be the number of nodes and the number of edges, then
graphs M and J have the same fingerprint, whilst graph C does not, as is shown in Figure 2.6.
Here, the fingerprint consists of a set of features, in this case an array with two values, number
of nodes and number of edges. Using that definition, graph M ’s fingerprint is [5, 4], graph J ’s is
[5, 4] and graph C’s is [4, 3].

Figure 2.6: Two graphs with the same fingerprint (considering only the number of nodes and
edges), M and J , and another with a different one, C.

The subgraph frequency essentially corresponds to the number of times a given subgraph
occurs in a network. To know if a subgraph has more than one occurrence, we must first define
how to identify a match between subgraphs. When there is a set of nodes from a graph G that
induce a subgraph G′, then G′ is said to have a match in G, that is, there is a subgraph S in G

that is isomorphic to G′. With this, the frequency of G′ is the number of different subgraphs S

in G that induce G′. If no node or edge is shared, then two matches are considered different [22].
In an undirected network, there are only two possible connected subgraphs of size 3 to induce,
triangle and chain, which means that either the nodes are all connected between themselves
or that two of them are not connected. In Figure 2.7 we see subgraph G and the two possible
subgraphs, triangle and chain. There is one triangle (formed by nodes B, C and E) and six
chains (formed by nodes {A, B, C}, {A, C, D}, {C, D, E}, {A, C, E}, {A, D, E} and {B, E, D}).

Figure 2.7: Subgraph G and the frequency of its size 3 subgraphs.

A subgraph census consists in finding the frequency of all or of a subset of subgraphs of
a network [23–25]. This is closely tied to the Subgraph Isomorphism Problem (which is known
to be NP-complete [26]), which consists on, given two graphs G and H, trying to determine if
there exists a subgraph in G isomorphic to H. A lot of work has been developed regarding this
problem, including the usage of constraint programming [27] and dynamic programming [28]. In
the case of subgraph census, we are not only trying to find if an isomorphism exists, we are also
counting its occurrences, which makes this problem even harder.
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2.2 Spatial Networks

A typical graph is defined by its vertices and edges, but other factors, such as their absolute
locations or their relative location towards each other, might also be relevant, as is the example
of power grids or neural networks [5]. A lot of work concerning urban street patterns has been
done using the typical relational networks [29], but it was proven that by using spatial networks,
that is, ones with a spatial property, some features like the differentiation between planned and
self-organized cities is much more evident [30]. The importance of the spatial component in a
network is illustrated in Figure 2.8.

Figure 2.8: Simplified water (left) and ice (right) molecular structure.

We can see that in order to distinguish water from ice on a molecular level, the topology
alone is not enough, and we need to also take into account the location of the atoms, as ice is
known to have a hexagonal molecular structure, which is responsible for the higher volume with
the same mass as water. Note that in reality this molecule has a third dimension, but for the
sake of simplicity we presented it here in 2D as an approximation illustrating an idea.

The spatial component of a network might be interpreted in different ways. In some cases, the
positioning might be considered absolute, such as for instance on a power grid or road network,
where the location of the nodes might be represented by its earth coordinates. However, in other
cases, such as in a molecule or a brain network, the location of a node is relative to the locations
of other nodes, as there is no clear external origin reference.

2.3 Colored Networks

Colored networks simply correspond to networks where either the nodes, the edges or both of
them are labeled with a color. There are many applications to this type of network, and one
of the most well known is graph coloring problem. It is one of Karp’s original 21 NP-complete
problems [31], having many algorithmic contributions that try to attenuate its hardness [32–34].
For a given network, the problem consists in trying to find the least number of colors needed so
that no two adjacent nodes share the same color. This is for instance the concept used behind
register allocation in compilers. Figure 2.9 shows an example of a graph , M , colored in different
ways.
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Figure 2.9: Graph M and some of its colored counterparts.

Colored networks allow us to represent categorical properties of the nodes or edges of a network.
Note that the color does not necessarily mean a "real" color, and it is just a representation of a
label that we use to aggregate groups of nodes or edges. If we have a college network, we might
want to distinguish nodes that represent students, teaching and non-teaching staff, thus coloring
the nodes accordingly, or maybe we have a money transaction network and want to distinguish if
a transaction between two nodes is a payment or an income, coloring the edges as needed.

2.4 Network Motifs

First introduced by R. Milo et al. [8], network motifs correspond to subgraphs that are over-
represented in a network. A subgraph is considered to be over-represented if it is far more
frequent in a given network than it would be in a randomized similar one. Figure 2.10 shows an
example of a motif (for the sake of simplicity, for the rest of this work we will use the term motif
to denote a network motif ).

Figure 2.10: Schematic view of network motif detection, adapted from [8].
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In the case of Figure 2.10, the motif is represented by the small triangle in the bottom left
corner of the image. This particular directed subgraph is known as feed forward loop, and consists
of three nodes connected in a chain, one of them having an in-degree of two, another in-degree
one and out-degree one and the third one out-degree two. In the right image, we can observe
(painted in blue) five occurrences of that subgraph. When we compare that frequency with
the four randomized networks on the left, we notice that each of them contains at most one
occurrence of the subgraph, and the two bottom ones don’t have any occurrence of it. Since the
four randomized networks present a similar structure to the real network, namely the degree
distribution, we could conclude that in the real network that subgraph is over-represented, thus
corresponding to a motif. Here, the randomized networks work as null models, allowing us to
verify that the subgraph is indeed over-represented in the real network, and not simply common
in similar networks.

The motif distribution can be used as a fingerprint or to define classes of networks, since
it was proven that networks that shared some kind of hidden structure also shared the same
over-representation of motifs [35]. This kind of structure is known to have been very helpful in
many different areas such as biology [36, 37], electronics [38], the web [39], social networks [40]
and even neurology [41]. Typically, motifs are used in unweighted networks, but they can also
be applied to weighted ones. Applying an approach that uses weighted networks to find motifs,
using the geometric mean of edge weights and the ratio of their geometric to their arithmetic
mean, changes the results obtained for some financial and metabolic networks [42]. A method
was proposed to mine motifs in weighted networks without the need to generate random graphs
(which makes it more efficient), whilst having improved accuracy [10].

2.4.1 Motif Finding

In order to understand if a subgraph is over-represented, we must first define what the expected
frequency is, and for that a null model of random graphs is chosen, and the frequency of the
given subgraph is then calculated for this set of graphs. A null model consists of a model of a
network that allows for the generation of data under the null hypothesis (that is, all associations
are random), in order to help in the identification of nonrandom patterns on other networks [43].
The default approach for the generation of the null model is to keep the degree sequence [44, 45],
but a model that generates it by maintaining the frequency of subgraphs of size k − 1, where k

is the size of the motifs to be found, has been proven to have significantly better results [46].
As stated before, the frequency of a subgraph is needed to determine if a subgraph is a motif
or not. In order to obtain the frequency, one must first find the subgraph, that is, we have to
perform a subgraph census on the network. There are many subgraph census algorithms, most
of them already adapted for the counting of subgraphs, and they can be divided essentially into
three categories: exact subgraph counting, approximate subgraph counting and parallel subgraph
counting. More on those algorithms can be found in [47]. Another kind of motif discovery that
has been gaining traction over the past few years is the search for temporal motifs, that is, motifs
that incorporate a chronological component in their definition [11].
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To the best of our knowledge, there are seven main exact subgraph counting algorithms
that rely on their enumeration [48], which will be crucial for our implementation as will be
seen later. In this work, our first approach was to use G-tries (more on this data structure in
Subsection 2.5), but ended up using FanMod, also known as ESU (more information can be
found in Subsection 3.2.2). Nonetheless, we believe it is pertinent to mention the other algorithms
since even though they were not directly used in our implementation, they represent progress in
the motif finding field. With that in mind, below we can see a quick overview of the algorithms
not mentioned in further sections.

• Grochow: This algorithm was first introduced in 2007 by Grochow [49] and is a motif-
centric approach. This means that the frequency of a subgraph is obtained by searching
all possible mappings of that individual subgraph on the network. Grochow named those
subgraphs query graphs.

• MFinder: In contrast, MFinder [50] samples a k-subgraph simply by randomly appending
edges until the subgraph has size k.

• MODA: Just like Grochow, MODA [51] is motif-centric. It uses an expansion tree to
extract motifs of size k. This is a hierarchical structure that allows for the enumeration of
induced and non-induced subgraphs simultaneously.

• QuateXelero: QuateXelero [52] is very similar to ESU, but it uses a quaternary tree (a
tree where each node has four children at most) in the enumeration process. The goal of
the algorithm was to simplify the nauty process (details regarding nauty can be found in
Subsection 3.2.3).

• Kavosh: Finally, we have Kavosh [53], a network-centric approach. The process consists
of four main steps: discovery of all k-subgraphs of a network, classification into isomorphic
groups, generation of random networks using the input network, and motif finding
identification.

Due to the complexity of the problem at hand, there have been recent approaches that
incorporate machine learning techniques in motif discovery. In particular, deep learning has been
applied to the problem of subgraph counting with promising results [54], which might lead the
way to further improvements on this topic.

2.4.2 Colored Motifs

Most of the research on network motifs was focused only on the structure of the motif, that is,
every node and edge have the same type and no distinguishing is done between them. Without
the use of a label, like colors, there is the possibility that some valuable information is lost. Even
though there was already some work done with colored nodes [55–57] and there was proof that
also coloring edges could provide a lot of insight [58], there were no attempts of implementing
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the discovery of fully colored motifs, and with this in mind, Ribeiro et al. [12] proposed an
algorithm that was able to do so, with the use of g-tries. As the name suggests, a colored motif
is the combination of two previously defined concepts: network motifs and colored networks.
Essentially, by adding a color property to the default definition of motif, some new information
can be retrieved. In Figure 2.11, we can observe the same network depicted in Figure 2.10 but
with colored nodes. On the top two networks, we can see the same number of occurrences of the
feed forward loop motif. If we now say that the motif must contain an orange node with in-degree
two, a green node with in-degree one and out-degree one and a yellow node with in-degree two,
we verify that the number of occurrences is very different, as the two bottom images show.

Figure 2.11: Difference between regular motifs and colored motifs.

2.4.3 Spatial Motifs

Spatial motifs are motifs present in spatial networks, which means that the spatial component
of the network will also be a defining feature for the motifs, and they have been applied in the
recognition of protein structures [59]. When it comes to the search of motifs in this kind of
structure, the most widely known software is SPatial Arrangements of Side-chains and Main-
chain (SPASM), a program that searches for subgraph matches with a user-defined motif in a
given structural database, where the structures are represented as networks. This algorithm uses
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depth-first search with pruning as its main component to find subgraphs, and the nodes in the
motif are represented as the Cα atom (the first carbon atom that attaches to a functional group,
what causes the molecule’s characteristic chemical reaction) of the correspondent residue and the
centre of gravity of its side-chain atoms, and the spatial component derives from the calculation
of the distances between those atoms. Another well known program used in protein structure
motifs is RIGOR, and unlike SPASM, it searches for the occurrences of a single protein structure
in a database of pre-defined motifs. To the extent of our knowledge, there are no other implicit
applications of spatial motifs in different fields. To better illustrate the difference between spatial
motifs and colored motifs, Figure 2.12 recreates Figure 2.11 for that purpose.

Figure 2.12: Difference between colored motifs and spatial motifs.

In Figure 2.12, in the bottom part of the image we add a new property to the subgraph we
are trying to find. Besides requiring that the subgraphs contains an orange node with in-degree
two, a green node with in-degree one and out-degree one and a yellow node with in-degree two,
we also take into account the position of the green node: it must have a higher y-axis value
compared to the other two, considering a Cartesian Coordinate System. With this, we see that
once again, the subgraphs contain the same amount of subgraphs that follow those characteristics.
This is relevant since if it was known to be a motif, its counting would depend on the spatial
component.
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2.5 G-tries

G-tries are a data structure designed to find and count subgraphs [60, 61]. They share the same
core to their implementation as prefix trees [62] (or tries), as they use a common topology to
create a tree where nodes with the same ancestor share a substructure. An example of a prefix
tree can be found in Figure 2.13.

D

O

G O

M R

I

C

E

Figure 2.13: Prefix tree for the words dice, dog, doom and door.

When referring to a prefix tree, a path from the root to a leaf node defines a substring, with
g-tries that path defines a subgraph. Below, in Figure 2.14, an example g-trie for six graphs of
size four can be seen.

Figure 2.14: G-trie example, adapted from [63].

Unlike network-centric [53, 64, 65] or subgraph-centric approaches [66], g-tries implement
what is called a set-centric approach, this means that the structure will search for a set of
sub-graphs of fixed size, instead of trying to find all the subgraphs of the network or only
one. When we first started developing our work, the idea was to use g-tries in the subgraph
enumeration portion, but the complexity of adapting the structure to our concept ended up
being too high, and so we resorted to another method, described in Section 3.2.





Chapter 3

Development

In this chapter we introduce a novel concept of spatial motifs, that allows us to take into account
not only the absolute position of nodes but also their relative positions in reference to one another,
with the use of a bounding box of the graph and its subsequent partitioning. We also present a
fully functional framework that uses an algorithm that performs subgraph enumeration using
that same approach, thoroughly explaining each of its steps and external tools used.

3.1 A Novel Concept of Spatial Motifs

There are several possible ways to express spatial properties. For instance, the distance between
nodes can be used as edge weight [67], but this would not take into account the relative position
of the nodes. Another option would be to rely on angles between nodes, hence losing the distance
information. Our approach relies on first creating a bounding box around the found subgraph
using the nodes spatial location, and then partitioning this box into regular-sized regions, thus
taking into account both the relative position and the distance between nodes.

For the sake of simplicity and given the space constraints, we will mainly focus on a two
dimensional example divided into 2× 2 and later on 3× 3 partitions, but as explained later, our
approach is general and extends naturally to higher dimensions. The creation of the bounding
box is straight-forward: we require a set of coordinates for each node on the input, and for each
found subgraph, we calculate the maximum and the minimum of both the x and the y values,
which gives us the limits of our box, as depicted in Figure 3.1.

Figure 3.1: Bounding box creation: calculation of the box limits.

Then, we simply calculate the relative position of each node when referring to the center of

17
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the bounding box, as seen in Figure 3.2, assigning the node to a partition of the box on the form
of a color. In the case of a 2× 2 partitioning, each partition will correspond to a quadrant of the
bounding box.

Figure 3.2: Bounding box creation: assignment of nodes to partitions.

The division of the bounding box into equally sized partitions can easily be mathematically
defined. Let minx, miny be the minimum for both the x and y values of the nodes respectively
and maxx, maxy the maximum of those values. To divide an axis in k points and to get the
point in position n, that is, of coordinates (xn, yn), ∀n : 0 ≤ n ≤ k we can apply Equation 3.1.

(xn, yn) = (minx + n

k
(maxx −minx), miny + n

k
(maxy −miny)) (3.1)

Using Equation 3.1, we calculate all points in each line of the bounding box that will serve as
the endpoints of each of the line segments forming the partition of said bounding box. After
that, we just connect the dots in non-adjacent lines in a way that the resulting line segments
together form a grid-like partition of the bounding box.

Below, in Figure 3.3, we can see an example of how to divide the plane in a 3× 3 manner,
with minx = 2, maxx = 20, miny = 4 and maxy = 16.

Figure 3.3: Division of the plane in a three by three manner.

• In the first box we can see the four extreme points of the box, formed by minx, maxx,
miny and maxy.

• In box two, we start by calculating the division point in the upper axis of the box. By
applying Equation 3.1, with the parameters minx = 2, maxx = 20, miny = 16, maxy = 16
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and k = 3, we get the following points:

(x0, y0) = (2 + 0
3(20− 2), 16 + 0

3(16− 16)) = (2, 16)

(x1, y1) = (2 + 1
3(20− 2), 16 + 1

3(16− 16)) = (8, 16)

(x2, y2) = (2 + 2
3(20− 2), 16 + 2

3(16− 16)) = (14, 16)

(x3, y3) = (2 + 3
3(20− 2), 16 + 3

3(16− 16)) = (20, 16)

• In the third box we calculate the points in the lower axis of the box, using the parameters
minx = 2, maxx = 20, miny = 4, maxy = 4 and k = 3, getting the points:

(x0, y0) = (2 + 0
3(20− 2), 4 + 0

3(4− 4)) = (2, 4)

(x1, y1) = (2 + 1
3(20− 2), 4 + 1

3(4− 4)) = (8, 4)

(x2, y2) = (2 + 2
3(20− 2), 4 + 2

3(4− 4)) = (14, 4)

(x3, y3) = (2 + 3
3(20− 2), 4 + 3

3(4− 4)) = (20, 4)

• In the fourth box, for the right axis, we use the parameters minx = 20, maxx = 20,
miny = 4, maxy = 16 and k = 3, thus getting:

(x0, y0) = (20 + 0
3(20− 20), 4 + 0

3(16− 4)) = (20, 4)

(x1, y1) = (20 + 1
3(20− 20), 4 + 1

3(16− 4)) = (20, 8)

(x2, y2) = (20 + 2
3(20− 20), 4 + 2

3(16− 4)) = (20, 12)

(x3, y3) = (20 + 3
3(20− 20), 4 + 3

3(16− 4)) = (20, 16)

• The forth box corresponds to the discovery of the left axis points, with the parameters
minx = 2, maxx = 2, miny = 4, maxy = 16 and k = 3, that gives us the points:

(x0, y0) = (2 + 0
3(2− 2), 4 + 0

3(16− 4)) = (2, 4)

(x1, y1) = (2 + 1
3(2− 2), 4 + 1

3(16− 4)) = (2, 8)

(x2, y2) = (2 + 2
3(2− 2), 4 + 2

3(16− 4)) = (2, 12)

(x3, y3) = (2 + 3
3(2− 2), 4 + 3

3(16− 4)) = (2, 16)

• Finally, the last box connects the corresponding points, giving us the 9 partitions of the
bounding box.

With this, it is trivial to infer what partition a node belongs to, simply by looking at the



20 Chapter 3. Development

nodes coordinates and the partitions edges.

An example of a graph and all the 3-subgraphs it contains, each in their respective 2 by 2
bounding box, can be seen in Figure 3.4, where the original spatial network is given above, in
the blue nodes, and all its three node spatial subgraph occurrences are given below.

Figure 3.4: Example of subgraphs with spatial coloring by 2D quadrants.

Taking into account the spatial dimension of the nodes in the previous figure (Figure 3.4), we
can enumerate five different subgraph types, being the fourth ({3, 5, 6}) and the fifth occurrence
({3, 5, 7}) of the same type: they both have three nodes in the same quadrants (one orange, one
yellow and one green) and the same connections (one orange-yellow edge and another yellow-green
edge).

By contrast, if only purely topological properties were used, there would exist only two
subgraph types, as depicted in Figure 3.5, with the first five occurrences being a chain of three
nodes and the last one ({5, 6, 7}) being a triangle.

Figure 3.5: Chain (type A) and Triangle (type B) topological subgraphs.

The above example already illustrates how much richer our spatial representation is, but we
would like to emphasize how general our conceptual approach is. From a scale point of view, it
naturally extends to higher numbers of nodes (just consider more nodes in each subgraph). From
a topological point of view, it is also able to organically integrate features such as direction (just
consider that when distinguishing between different isomorphic types). From a granularity point
of view, we can also consider any regular division. Here we exemplified with 2 × 2 and 3 × 3
partitions, but we could use any n× n partition, depending on what we want to measure (and
moreover we could even use on the same analysis subgraph occurrences at different n sizes to
create a richer set of features). Finally, our approach also naturally extends to higher dimensions
(for instance, in a 3D space one could use 2× 2× 2 octants as the equivalent of 2D quadrants).
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3.2 Finding and Counting Spatial Motifs

In this section we explain our methodology for finding and counting the occurrences of spatial
motifs as defined in the previous section. The motivation for counting will become clearer in
Section 4.2, but essentially by computing subgraph frequencies we are able to obtain numerical
features characterizing the underlying network. Counting subgraphs is therefore a core network
analysis primitive. A fully detailed survey on how to count purely topological motifs can be
found in [47], including approximate and parallel approaches.

Our proposed initial approach has two steps: (i) we first enumerate all subgraph occurrences
of a given size k, obtaining sets of k connected nodes; (ii) for each occurrence we identify its
spatial type by producing a canonical labeling that is unique to each colored isomorphic type.

3.2.1 The Data Structure

In order to store the data, we created our own Graph implementation. It contains four fields:
A Boolean value that indicates whether the graph is directed or undirected (the first option
is represented by a 1 and the latter by a 0), a matrix corresponding to the graphs adjacency
matrix and two numbers that store the number of nodes and the number of edges in the Graph.
The adjacency matrix is a two dimensional array that in each cell holds a value that represents
a connection (or the lack of it) between two nodes identified by the row and column values.
We wanted to have a future proof program, and so instead of in each cell simply storing a
Boolean to check if two nodes are connected, we store a number that corresponds to the weight
of that connection. Figure 3.6 shows a graph, M , and its adjacency matrix according to our
representation.

Figure 3.6: Graph M and its corresponding adjacency matrix.

Note that since we are working with an undirected graph, the adjacency matrix is symmetric,
and because we do not currently allow self loops, the main diagonal is invalid. A value of 0
represents the lack of a connection.
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3.2.2 Enumerating Subgraph Occurrences

In order to enumerate the occurrences of subgraphs with k nodes, we opted to use Enumerate
SUbgraph (ESU) [68], a general purpose subgraph enumeration algorithm capable of finding
each occurrence only once, avoiding symmetries. The choice of using ESU was based essentially
on how well known the algorithm is and how simple it would be to adapt it to our specific
needs. In short, this is done by starting from a single node and expanding from there, using only
vertices that have an index (label at the original graph) greater than that of the original node
and that can be neighbors of a newly added vertex but not of any other one previously added.
In Figure 3.7 we illustrate this process with a small example for k = 3 and an original network of
six nodes. Inside each tree node box we indicate two node sets: first the current subgraph being
enumerated (Vsubgraph) and secondly the set of nodes which can expand it (Vextension).

Figure 3.7: Example of an ESU search tree for k-subgraph enumeration with k = 3.

The root of the search tree is a starting point to evaluate the subgraph. Its children, on
the second level, correspond essentially to one branch per node, with the extension sets being
their immediate neighbors with a larger index than the node itself. For instance, the second
branch contains Vsubgraph = {2} and Vextension = {3} (3 is a neighbor of 2 and 1 is not considered
since 1 < 2 and the subgraph with {1, 2} would be already considered in the first branch). This
process continues in the following tree levels: we add 3 to Vsubgraph and since it has two neighbors
that meet the requirements, those are added to Vextension, resulting in Vsubgraph = {2, 3} and
Vextension = {4, 5}. Now we have two possible branches, Vsubgraph = 2, 3, 4 and Vsubgraph = 2, 3, 5.
In both these cases we have |Vsubgraph| = 3 and we have reach the desired node set size.

After doing this to every single node we end up with the subgraphs of size 3 represented on
the leafs of the tree. The required conditions for a node to be added to Vextension make sure that
no subgraph is found twice.

Below we can see the pseudocode for the ESU algorithm[68].
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Algorithm 1 ESU algorithm
Input A graph G = (V, E) and an integer 1 ≤ k ≤ |V |.
Output All size-k subgraphs

1: procedure startESU
2: for each vertex v ∈ V do
3: Vextension ← u ∈ N({v}) : u > v
4: ExtendSubgraph({v}, Vextension, v)
5: end for
6: end procedure
7: procedure ExtendSubgraph(Vsubgraph, Vextension, v)
8: if |Vsubgraph| = k then
9: return G[Vsubgraph]

10: end if
11: while |Vsubgraph| ≠ 0 do
12: Remove an arbitratly chosen vertex w from Vextension

13: V ′
extension ← Vextension ∪ {u ∈ Nexcl(w, Vsubgraph) : u > v}

14: ExtendSubgraph(Vsubgraph ∪ {w}, V ′
extension, v)

15: end while
16: return
17: end procedure

3.2.3 Subgraph Types and Canonical Labeling

After having the node sets that correspond to each subgraph occurrence, we still need to discover
the spatial type of each one, so that we can increment its frequency. For instance, as we could
observe in Figure 3.4, the fourth and fifth subgraphs belong to the same type.

In our approach, we first determine the bounding box of each occurrence by computing the
minimum and maximum values of each spatial dimension. We then partition the box into the
desired number of regions and we “color” the nodes according to the region in which each one lies,
effectively obtaining what could be considered a colored subgraph [12]. Afterwards, we compute
a canonical labeling such that two subgraph occurrences will have the same labeling if and only
if they correspond to the same (colored) isomorphic type.

Figure 3.8: The first two subgraphs are of the same type and should have the same canonical
labeling; the third one should have a different labeling.

Figure 3.8 illustrates the need for a canonical labeling that takes node colors into account. From
a purely topological point of view, all three subgraphs are chains and therefore indistinguishable.
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However, when incorporating spatial information, this is not the case. We want the first and
second subgraphs to have the same label, as they have the same colored topological properties:
one node in each quadrant except the fourth one (represented by the colors orange, red and
yellow), and two connections (an orange-red edge and an orange-yellow edge). The third subgraph
has different spatial properties that correspond to different colored nodes and edges.

In general, even without colors, computing canonical labelings is a very hard computational
task, closely related to the graph isomorphism problem [69]. We therefore resorted to nauty [70],
a third-party and very efficient set of procedures to determine the automorphism group of a
vertex-colored graph. Since nauty has built-in support for colored nodes, a call to the default
method with the required arguments and the quadrant as color is enough to give us the canonical
label. To achieve a labeling using colors, nauty requires the colors to be given in some order,
and the edge labels will be returned in the order the colors were provided, that is, first the edges
with the first color, then the ones with the second color, and so on. There are several parameters
that the default method requires, which we will now explain. A standard call takes 12 arguments:
g, lab, ptn, active, orbits, options, stats, workspace, worksize, m, n and finally canong. To better
understand how we use this program, each of these parameteres is described below:

• g: The input graph, that is, the one we are labeling;

• lab and ptn: We are grouping these two parameters as they are dependent on each other to
work. They are both of sizen and their usage depends on the options set in the options
parameter. In our case, they define the initial coloring of the graph. After the call, the
value of lab will contain the vertices of g in the order that they need to be relabelled so
that canong is achieved;

• active: This is an array of m setwords specifying the initially active colors, but nauty
does not actually require this argument, and so we pass it the value NULL;

• orbits: An array that holds the automorphism group of the graph. This is a write-only
parameter and since we do not require the automorphism group of the graph, we do not
use it;

• options: This constitutes the default options to use. Besides the default options, we override
some options that are needed in order to work with colors and to obtain the canonical label-
ing. We set getcanon to true in order to retrieve the canonical labeling, writeautoms
to false as we don’t need the automorphism group generators and defaultptn also set
to false and we intend to define different colors to each node, and by letting this value be
true, nauty will assume every node has the same color;

• stats: This structure provides some statistics regarding the operations performed by nauty
under the hood;

• workspace and worksize: These two values correspond to the address and length of working
storage array used by nauty;
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• m: The number of setwords in sets;

• n: The number of vertices;

• canong: This corresponds to the canonically labelled g.

As the other values are somewhat constant, independently of what subgraph we are analyzing,
let us focus on the generation of g, lab and ptn. Since our implementation of the graph is different
from the one required by nauty, we must first parse ours into nauty’s. We did this by traversing
our adjacency matrix and adding the graph rows and elements using functions provided by
nauty. Let adjm be our adjacency matrix, n the number of vertices of the graph, m the setwords
needed and g the final graph form. The parsing can be seen below in Algorithm 2.

Algorithm 2 Graph Parsing Algorithm
1: procedure Parse
2: adjm← getAdjencyMatrix()
3: n← getVertices()
4: m← getSetwords()
5: for i← 0 to n do
6: gv ← GRAPHROW(g, i, m)
7: EMPTYSET(gv, m)
8: for j ← 0 to n do
9: if adjm[i][j] then

10: ADDELEMENT(gv, j)
11: end if
12: end for
13: end for
14: end procedure

With this, we have the required graph, that is, our g. The generation of lab and ptn is not as
trivial. In order to obtain the canonical labeling with colors, lab must contain the vertices in
some order and ptn the division into colors. If ptn[i]=0, that means a color class ends at that
vertex. For instance, if we have the following color partition: [{0, 8}, {1}, {2, 3, 4, 5, 6}, {7, 9, 10}]
in which nodes in the same set have the same color, then one possible definition of lab and
ptn would be lab=[0,8,1,2,3,4,5,6,7,9,10] and ptn=[1,0,0,1,1,1,1,0,1,1,0].
Because we can not define what the colors are exactly, the canonical labelling we use is not only
defined by the one returned by nauty. Even though we provide the colors always in the same
order, that does not mean that two different graphs will not have the same canonical labeling if
the only thing they differ in is the colors themselves, and not the number of colors or connections.
As an example, take the two graphs in Figure 3.9. Even if we try to sort the nodes by the
same color order (Red, Orange, Yellow, Green), we still end up with the same labeling. This is
because, to nauty, both subgraphs have three nodes, of three different colors, having two with
one connection and another with two connections.

In order to mitigate this unwanted behaviour, we always append the colors of the nodes,
(with a consistent order throughout all the subgraphs) in the beginning of the label.
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Figure 3.9: Example of two subgraphs that would generate the same canonical labelling, even
using nauty.

Using the example in Figure 3.9, nauty would generate the label 010101010 for both
subgraphs. Since in the left images of Figure 3.9 the nodes are in quadrants 2, 3 and 4
and in the right image the nodes are in quadrants 1, 3 and 4, then by adding the colors at
the beginning of the original label will generate the labels 234 ∪ 010101010 = 234010101010
and 134 ∪ 010101010 = 134010101010 (where the symbol ∪ represents concatenation), thus
distinguishing the subgraphs. It should be noted that nauty produces the same labeling because
the adjacency matrix of the three nodes is the same. In reality, the label corresponds to the
different rows of the adjacency matrix concatenated. Both subgraphs in Figure 3.9 have the
adjacency matrix represented in Figure 3.10.

Figure 3.10: Adjacency matrix of subgraphs in Figure 3.9.

3.2.4 Subgraph Output

Once our program finishes the subgraph enumeration process, the output is sent to a file in
a JavaScript Object Notation (JSON) format, to be read by a motif visualization program,
described in Subsection 3.2.5. It consists of an object with three attributes: the name of the
network, an indication of whether the network is directed or not and an array of subgraph
structures. Those structures are, again, an object, but have more complexity. They contain the
subgraphs label, their nodes, edges, number of occurrences and the relative frequency of their
count. Each node stores information regarding the ID of the node, the color it should be painted
with and its position in a Cartesian Coordinate System. Finally, the edges simply consist of a
pair of values that represent the connections between nodes.
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As an example, for the undirected graph M shown in Figure 2.1, the subgraph {A, B, C} the
following code is generated:� �

"subgraphs": [

{

"label": 138001001110,

"nodes": [

{

"id": 0,

"color": 1,

"pos": [3,19]

},

{

"id": 1,

"color": 3,

"pos": [19,19]

},

{

"id": 2,

"color": 8,

"pos": [11,3]

}

],

"edges": [

[0,2],

[1,2],

[2,0],

[2,1]

],

"occurrences": 1,

"percentage": 0.333333

}� �
3.2.5 Motif Visualization

In order to better visualize the results obtained in the previous sections, we developed a simple
script that generates a visualization of the subgraphs found, along with a label (to allow for an
easier comparison between outputs of different cities), the number of occurrences of said subgraph
and its relative frequency. The input of this script is the output defined in Subsection 3.2.4.

We keep a database of all previously found subgraphs and assign a numeric label to each
subgraph that is found: if the subgraph was already found before, it keeps the same number,
otherwise a new entry is created. With this approach, even if the size of the subgraphs we are
trying to find or the number of partitions increases, the labeling is always possible. This is of
the utmost importance, as manually labeling each possible subgraph would be very complex
when those values increase. For a better visualization, let us consider a size 3, a size 4 and a
size 5 subgraph without taking into account our approach (that further increases the number of
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possible permutations). If all the graphs are directed, the total number of possible subgraphs
of size 3 is 13, but when we increase that number to 4, then the total is 199, and with 5 nodes
we already have 9364 possible subgraphs [71], and using our proposed coloring, this number
increases even more drastically.

Every time we run our program, an Hypertext Markup Language (HTML) page is created
with a button to switch the visualization order. The subgraphs found can either be sorted
by label or by number of occurrences, as shown in Figures 3.11 and 3.12 that represent the
first 8 subgraphs found in Espinho sorted by occurrences and label respectively. It should be
noted that the depiction of the subgraph is not based on their actual spatial arrangement, but
on the generic class representative subgraph. Depending on the type of bounding box, the
representative subgraphs of the main classes are described in Figure 4.5 for a 2× 2 bounding box
or in Figures 4.12 and 4.13 for the 3× 3 case. More on this can be found in Sections 4.2 and 4.3.

Figure 3.11: Visualization of subgraphs found sorted by number of occurrences.

Figure 3.12: Visualization of subgraphs found sorted by label.
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Results and Analysis

In this chapter, we describe the experiences we performed in order to validate our concept, as
well as the results obtained from said experiences. First, in Section 4.1, we start by showing how
we obtained the main datasets used in the experiences. After this, in Section 4.2 we describe
experiments performed using a 2× 2 bounding box, followed by experiments with a bigger box, of
size 3× 3 in Section 4.3. In Section 4.4 we perform some additional tests in different cities with
different layouts, in order to take further conclusions from our work. Section 4.5 shows a stress
test we performed on our program using different portions of Tokyo as input. Finally, Section 4.7
shows experiments using synthetic data. All the experiments performed in this section used the
same computer, with an Intel Core i7-8750H processor, an NVIDIA GeForce GTX 1060 with
6GB of memory size and 16GB of RAM.

4.1 Dataset

In order to test our implementation and showcase the applicability of our proposed subgraph
abstraction, we now provide a proof of concept. We use real world road networks, which can be
considered one of the quintessential spatial network examples to which everyone can relate to.
We selected several cities with very different layouts, but we will be focusing on the analysis of
two cities with “grid-like” street layouts (Espinho, Portugal and Detroit, USA) and two with
“non grid-like” layouts (Porto, Portugal and Oxford, UK), aiming to distinguish between these
two layout groups through the usage of our proposed approach. It is worth noting that we did
not use the entirety of the cities as input, since that would bring around a lot of noise to the
input. Instead, we selected parts of the city that represent what we want to show in the results.

Our original source of raw street data was OpenStreetMap (OSM) [72], which is a collaborative
project that aims to provide a free editable geographical database of the entire world. The
process of collecting the data is straight forward: we do a query to get all the points that belong
to streets with two sets of coordinates, corresponding to the top left and the bottom right
corners of the area we wish to analyze but, as with any real dataset, we had to clean the input

29
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before using it in our program, this includes fixing incorrect, duplicate and even incomplete data,
which in our case translated to removing nodes that have degree 0, as those would never form
a subgraph of size more than 1, and removing duplicate nodes. The input our code requires
consists of a Boolean that indicates if we want an undirected (value 0) or a directed (value 1)
graph. After this, an integer v (the number of nodes in the graph) must be provided, followed by
v lines containing the coordinates of said nodes. Then, an integer e, the number of edges and e

consecutive lines containing three integers (ID from the origin node, ID from the destination
node and weight of the connection) should be given. It is worth noting that we do not currently
support weighted edges, but this part of the feature was already implemented for future work.
The way we retrieved data from OSM gives us a list of a data structure known as ways. Each
way has nodes that represent points where a street either connects to another or has a change
in direction, and each node has two properties, lat and lon that correspond to its latitude
and longitude respectively. Figure 4.1 shows an example of what would be the nodes of a way

in OSM, each of them being represented with a blue circle.

Figure 4.1: Representation of nodes in OSM.

As we can see from Figure 4.1, if we take as an example Rua da Tabuaça, only three nodes
are, in fact, needed, and the total number of nodes found is six. To mitigate this, we created a
function that traverses the nodes of all the ways found and discards the ones that are simple
turning points in the streets. We always consider the first and last nodes, as they are always an
endpoint of the street, and thus must correspond to an edge in the graph. Our next step is to
traverse all of them and remove the ones that only appear once, since if they are not a limit of
the way, in order to appear only once they must be a turning point of the street. This can be
seen in Algorithm 3. Note that the set valid represents the nodes that will be used in our code
as input, as those are the only ones that actually represent a junction between streets (or one of
their ending points).
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Algorithm 3 Get Valid Nodes Algorithm
1: procedure GetValidNodes
2: counter ← {}
3: valid← {}
4: for way in result.ways do
5: for id,node in way.nodes do
6: if id = 0 or id =getSize(way.nodes) then
7: valid← addNode(node.lat, node.lon)
8: else
9: counter[(node.lat, node.lon)] + +

10: if counter[(node.lat, node.lon)] > 0 then
11: valid← addNode(node.lat, node.lon)
12: end if
13: end if
14: end for
15: end for
16: end procedure

To generate the edges, we traverse the results object once again, but this time we connect
consecutive valid nodes, as is shown in Algorithm 4, always checking that the nodes to evaluate
are valid.

Algorithm 4 Get Edges Algorithm.
1: procedure GetEdges
2: edges← {}
3: for way in result.ways do
4: for id,node in way.nodes do
5: if isValid((node.lat, node.lon)) then
6: for i← id + 1 to getSize(way.nodes) do
7: newNode← (way.nodes[i].lat, way.nodes[i].lon)
8: if isValid(newNode) then
9: edges← addEdge((node.lat, node.lon), newNode)

10: end if
11: end for
12: end if
13: end for
14: end for
15: end procedure

In Figure 4.2, we show an image of the approximate area used for each of the cities mentioned
above, taken from OSM, which clearly indicates the nature of the road layouts that are being
analyzed.
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(a) Espinho (b) (Northwest) Detroit

(c) Porto (d) Oxford

Figure 4.2: Layout of the four cities used as input, taken from OSM and accessed in August 31st,
2022.

In Table 4.1 we can see the characteristics of the four networks, as well as the time the program
took to compute the results (without taking into consideration input and output operations).

City Nodes Edges Processing Time (s)
Espinho 520 788 0.0684531
Detroit 16029 24773 33.5919
Porto 2040 3206 0.476797

Oxford 1711 2213 0.303629

Table 4.1: Network characteristics of Espinho, Detroit, Porto and Oxford
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4.2 Experimental results with a 2x2 Box

From the raw data we create a network in which the nodes are true road intersections and edges
represent roads between them (this implied the creation of an automated script that given a
geographical bounding box will extract all OSM features from it, which are further processed
and simplified to create the desired intersection network).

In this network, we fix the subgraph size to k = 3 and count the number of occurrences of each
spatial subgraph. Figure 4.3 exemplifies this process for a small portion of a map, illustrating
the extracted network and all its occurring subgraph occurrences, some of them belonging to the
same spatial type. For instance, {1, 2, 3} and {3, 4, 5} are of the same type, and the same can be
said for {1, 2, 7} and {3, 4, 6}.

Figure 4.3: The network corresponding to a map and its subgraph enumeration.

To better understand and visualize the differences in subgraph occurrences, we opted to
further divide spatial types into classes (families of subgraphs), that corresponds to the four 90
degrees rotations of the same simple type. Figure 4.4 illustrates this concept and one class of
subgraphs.

Figure 4.4: Subgraph class 1 and its four spatial subgraph types,
corresponding to 90 degree rotations.

Figure 4.5 illustrates representatives of the six most frequent classes of subgraphs that we
found in the studied road networks (the frequency of the other possible classes is residual and
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their very low relative frequency does not impact the conclusions of our analysis).

(a) Class 1 (b) Class 2 (c) Class 3 (d) Class 4 (e) Class 5 (f) Class 6

Figure 4.5: Representatives of the most frequent classes of subgraphs considered.

It should be noted that not all permutations of colors are possible. If we take the example in
Figure 4.6, we can see that if a bounding box were to have two green nodes and one red, then it
must be wrong, as the limits of the bounding box would imply the existence of a fourth node
stretching it outside of the box generated by nodes 1, 2 and 3 in the figure.

Figure 4.6: Incorrect bounding box (left) and its correct counterpart (right).

4.2.1 Results for “grid-like” street layouts

Figure 4.7 represents the top-4 (in order, from left to right) of the subgraphs with most occurrences
in Espinho and Detroit. The results are as expected and capture the grid-like nature of the
layout. Even if the exact order of simple types is not exactly the same, this top-4 corresponds to
class 1 subgraphs, whose representation resembles a right angle, that is, where each node is in a
different quadrant and the subgraph is a chain that connects nodes in consecutive quadrants.

(a) Espinho (b) Detroit

Figure 4.7: Top-4 of subgraphs with most occurrences in the two grid-like cities. Note that all
the subgraphs are of class 1 (as defined in Figure 4.5).

The difference in frequency from the 5th to the 4th most common subgraph is noticeable,
particularly in the case of Espinho. In both cases, subgraph types from the 5th to the 8th
positions are of class 2. Tables 4.2 and 4.3 give more detail on the results, showing the relative
frequency (percentage of total occurrences) of the 10 most common subgraph types and their
associated class. In total, there were 22 different subgraph types found for Espinho and 32 for
Detroit.
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Subgraph Subgraph Relative
Rank Type Frequency

1 1 0.178258
2 1 0.167738
3 1 0.161894
4 1 0.160140
5 2 0.089421
6 2 0.080070
7 2 0.046756
8 2 0.044418
9 4 0.010520
10 3 0.009351

Top-10 total — 0.948567

Table 4.2: Spatial subgraph
frequencies in Espinho

Subgraph Subgraph Relative
Rank Type Frequency

1 1 0.139369
2 1 0.138028
3 1 0.135329
4 1 0.134110
5 2 0.108859
6 2 0.097870
7 2 0.086585
8 2 0.083102
9 3 0.019452
10 3 0.019208

Top-10 total — 0.961913

Table 4.3: Spatial subgraph
frequencies in Detroit

4.2.2 Results for “non grid-like” street layouts

On the other hand, if the city does not have a well defined grid layout, we can observe that
the most frequent subgraphs are very different, as can be seen in Figure 4.8. In fact, the top-4
for these two cities does not have any subgraph type in common with the grid-like cities. Here,
the topological chain type of subgraph is still the most common, which means that if only the
topological information of the subgraphs was used, conclusions with this level of detail would
not be possible, but in this case instead of having each node in a different quadrant, two nodes
share a quadrant, there is a connection between them, and one of them connects to a node in
the opposite quadrant, with the entire top-4 of most frequent subgraphs being of the same class.

(a) Porto (b) Oxford
Figure 4.8: Top-4 of subgraphs with most occurrences in the two non grid-like cities. Note that

all the subgraphs are of class 2 (as defined in Figure 4.5).

As in the previous section, we give detailed results of the top-10 most common subgraph
types in Tables 4.4 and 4.5. Again there is a noticeable increase in frequency from the 5th to the
4th most common subgraph, and the same class appears from rank 5 to rank 8. In total, there
were 28 different subgraphs found for both Porto and Oxford.
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Subgraph Subgraph Relative
Rank Type Frequency

1 2 0.133904
2 2 0.131815
3 2 0.118655
4 2 0.118446
5 1 0.081888
6 1 0.080426
7 1 0.079590
8 1 0.075621
9 3 0.023605
10 3 0.022143

Top-10 total — 0.866095

Table 4.4: Spatial subgraph
frequencies in Porto

Subgraph Subgraph Relative
Rank Type Frequency

1 2 0.149768
2 2 0.148675
3 2 0.133916
4 2 0.121618
5 1 0.074064
6 1 0.071331
7 1 0.070511
8 1 0.066684
9 4 0.024050
10 4 0.022683

Top-10 total — 0.883302

Table 4.5: Spatial Subgraph
frequencies in Oxford

4.2.3 Comparison between cities

In Figure 4.9 we can observe a bar chart of the relative frequency of each subgraph class per city
mentioned in the previous sections, with the usage of their spatial properties.
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Figure 4.9: Spatial subgraph fingerprint of each of the studied cities.

If we remove the spatial component from the subgraphs, we are left with only two types
of subgraphs: chains and triangles. This means that spatial classes 1 to 4 will be of the single
topological type A (chain), and classes 5 and 6 will be of the topological type B (triangle). Using
the same data as the previous plot but ignoring the spatial properties results in the bar chart
depicted in Figure 4.10.
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Figure 4.10: Purely topological subgraph fingerprint of each of the studied studies.

We can observe from Figure 4.9 that the distribution of the subgraph classes clearly shows
a predominance of class 1 in the two grid-like cities, whilst class 2 is more common in the two
cities without this layout, which allows us to easily distinguish them, using only this distribution.
Conversely, using the data from Figure 4.10 it is not possible to make that distinction, as all
cities show a clear dominance of type A subgraphs with around the same difference in frequency
when compared to type B, which is really uncommon in street networks. It is also interesting to
note that cities without a grid layout have a bigger frequency of other types of subgraphs other
than classes 1 and 2, even though those types are still by far the most relevant.

As a final note, we would like to remark that using a normal laptop the subgraph counting
and labeling phase takes less than a minute to compute even in the largest considered network
(Detroit, with 16 029 nodes and 24 773 edges). A potential drawback of our proposed strategy is
that increasing the size k of the subgraph will inevitably lead to an exponential growth of the
number of subgraph occurrences and hence on the execution time. However, in this paper we
were mainly concerned with proving that the concept could be useful and there are still many
improvements that can be made regarding efficiency.

4.3 Using a Bounding Box with a different number of partitions

In order to get more results, we extended our code to be capable of handling different partition
numbers for the bounding box. After this, we ran the same input as the previous section but
for a 3× 3 bounding box. In Figure 4.11 we can see the difference in the resulting subgraphs
between using a 2 × 2 and a 3 × 3 bounding box. Note that only the first, second and sixth
maintain the same properties.
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Figure 4.11: Resulting subgraphs from using a 2× 2 and a 3× 3 bounding box.

With the use of more partitions, comes the need to define more classes for the subgraphs
found. With that in mind, we made an extension to the classes defined in Figure 4.5. Before
creating new classes, there was the need to adapt the 2× 2 classes to the new model. Figure 4.12
reflects that adaptation.

(a) Class 1 (b) Class 2 (c) Class 3 (d) Class 4 (e) Class 5 (f) Class 6

Figure 4.12: Classes of Figure 4.5 adapted to a 3× 3 bounding box.

In Figure 4.13, we can see the new representatives of the new classes. Note that once again
the elements of a class correspond to a 90º rotations of another member of that class.

(a) Class 7 (b) Class 8 (c) Class 9 (d) Class 10 (e) Class 11

Figure 4.13: Newly defined classes of subgraphs.

As stated in Section 4.2, not all permutations of colors are possible. From this point, every
time subgraph classes are mentioned, we are referring to the ones in Figures 4.12 and 4.13, unless
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stated otherwise.

4.3.1 Results for “grid-like” street layouts

Following the same logic as in the figures of Section 4.2, we will be now showing the top four
subgraphs found for both Espinho and Detroit, ordered from left to right with the rightmost
being the most frequent subgraph.

(a) Espinho (b) Detroit

Figure 4.14: Top-4 of subgraphs with most occurrences in the two grid-like cities. Note that all
the subgraphs are of class 1 (as defined in Figure 4.12).

As we can see in Figure 4.14, all the top four subgraphs are still of class 1, as was verified in
Figure 4.7. Since there is a direct mapping from the class 1 presented in Figure 4.5 to the one
shown in Figure 4.12 and all the properties are kept between the two of them, we can say that
the top subgraphs maintained the same class. The relative frequency of those subgraphs can be
found in Tables 4.6 and 4.7.

Subgraph Subgraph Relative
Rank Type Frequency

1 1 0.142607
2 1 0.139100
3 1 0.139100
4 1 0.139100

Top-4 total — 0.559907

Table 4.6: Spatial subgraph
frequencies in Espinho (3× 3 bounding box).

Subgraph Subgraph Relative
Rank Type Frequency

1 1 0.112707
2 1 0.111436
3 1 0.109364
4 1 0.109242

Top-4 total — 0.442749

Table 4.7: Spatial subgraph
frequencies in Detroit (3× 3 bounding box).

It is worth noting that the ordering amongst the ranking of each city varied when using a
2× 2 and a 3× 3 bounding box, but this is due to the increase in the granularity of the results.
In Figure 4.15, we can see an example of a subgraph that did not preserve the colors of its nodes
when the bounding box with more partitions was used, and thus now begins to a distinct class of
subgraph.
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Figure 4.15: Class change upon usage of a 3× 3 Bounding Box.

In the top images, we can see the actual placement of the nodes in their respective bounding
box, and in the bottom images their class representation. As node 2 was very close to the
red-green edge when compared to node 3 in the real node location inside the 2× 2 box, when the
number of divisions is increased, node 2 ends up in the pink partition instead of the green one,
thus changing the subgraph to a class other than 1.

4.3.2 Results for “non grid-like” street layouts

Once again we resorted to the same principle we used in Section 4.2, now showing the four
subgraphs with the most occurrences of the cities of Porto and Oxford.

(a) Porto (b) Oxford
Figure 4.16: Top-4 of subgraphs with most occurrences in the two non grid-like cities. Note that

all the subgraphs are of class 2 (as defined in Figure 4.12).

In Figure 4.16, we can observe the same behaviour stated in Section 4.3.1. The top four
subgraphs maintain the same equivalent class, but this time there was no shifting in the ranking
of the subgraphs, they kept the same ordering they had in the 2× 2 Bounding Box. The relative
frequency of those subgraphs can be found in Tables 4.8 and 4.9.
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Subgraph Subgraph Relative
Rank Type Frequency

1 2 0.087947
2 2 0.082724
3 2 0.078755
4 2 0.069981

Top-4 total — 0.319407

Table 4.8: Spatial subgraph
frequencies in Porto (3× 3 bounding box).

Subgraph Subgraph Relative
Rank Type Frequency

1 2 0.096201
2 2 0.091555
3 2 0.081443
4 2 0.075704

Top-4 total — 0.344903

Table 4.9: Spatial subgraph
frequencies in Oxford (3× 3 bounding box).

4.4 Additional Results

In this section, we will be showing more general results obtained by running our code (using
both a 2× 2 and a 3× 3 box) with five more cities and special locations inside cities. Like before,
each city is categorized as being “grid-like”, “non grid-like”. For the “grid-like” cities, we used
Kyoto in Japan and Barcelona in Spain, and for the “non grid-like” we used Gent in Belgium,
Brøndby Haveby in Denmark and Plaza del Ejecutivo, in Ciudad de México in Mexico. These
last two places have a circular layout, which is very different from the other cities we analyzed,
but we assessed that the results were very similar to those of “non grid-like” cities, and as they
don’t have a grid layout, we considered them to be of that type. Below, in Figure 4.17 we can
see how Plaza del Ejecutivo looks like from above.

Figure 4.17: Plaza del Ejecutivo, taken from OSM and accessed in 5th September, 2022.

Using a 2 × 2 bounding box, the results were the ones we expected: Subgraphs of Class 1
dominate in Kyoto and Barcelona, while the other cities have Class 2 as the most frequent. The
frequency of Classes 3 and 4 is relevant in all test cases, even though they appear to be more
common in “non grid-like” cities, as they tend to have a more balanced subgraph distribution,
that is, the difference in frequency between different classes is not as relevant as it is in the ones
with a “grid-like” layout. In the case of Classes 5 and 6, the frequency is negligible in both cases.
This information can be seen below, in Figure 4.18.
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Figure 4.18: Spatial subgraph fingerprint, 2× 2 bounding box.

In Table 4.10 we observe the number of nodes, edges and processing time of the five networks.

City Nodes Edges Average Node Degree Processing Time (s)
Gent 2405 3353 2.7884 0.713091

Brøndby Haveby 97 97 2.0000 0.0033111
Plaza del Ejecutivo 369 558 3.0244 0.0378826

Barcelona 2323 3512 3.0237 0.796847
Kyoto 4914 7303 2.9723 3.3063

Table 4.10: Network characteristics and run-times for Gent, Brøndby Haveby, Plaza del
Ejecutivo, Barcelona and Kyoto, 2× 2 box.

Using a 3× 3 box the same behaviour occurred, which further supports the claim that our
work is able to differentiate between these two types of cities, as is shown in Figure 4.19. Using
this variation, the distribution of the subgraph classes is even more distinct: the relative frequency
of the Class 1 subgraphs in Barcelona and Kyoto is overwhelmingly superior to that of Gent,
Brøndby Haveby or Plaza del Ejecutivo.
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Figure 4.19: Spatial subgraph fingerprint, 3× 3 bounding box.

Using this number of partitions allows us to draw further conclusions. In Figure 4.19 we
can observe that Classes 7, 8 and 9 are also very relevant. When we divided the box into four
quadrants, the most common Classes were 1 and 2. If we look at Class 2 in particular, when we
add the extra granularity of using more partitions, one of the two nodes in the same quadrant
can either stay in the same partition as the other one or “move” to one of its three adjacent
partitions. In the latter case, we obtain either Class 7, 8 or 9. Classes 10 and 11 have a relatively
big number of occurrences but they do not allow us to make any conclusion about the networks,
although they appear to be more common in cities without a grid pattern.

Figure 4.20 represents the execution times of the program, comparing the usage of a 2× 2
bounding box with a 3×3. By observing the figure, we can conclude that for small scale networks,
the difference in execution time between the box sizes is not very big, but it appears that the
disparity increases as networks get bigger and more dense. This is the case in Barcelona and
Kyoto, where we can see a clear lower execution time with the 2 × 2 box, represented by the
blue squares, but Figures 4.26 and 4.28 contradict this statement. We further explain why the
first premise is incorrect in Subsection 4.7.

The locations are sorted by average node degree, as that was observed to be the main factor
responsible for the increase in execution time. This is due to the fact that a higher average
node degree directly translates to a denser network, and consequently to a bigger number of
possible subgraphs, and while this is also true simply applied to the number of nodes, Enumerate
SUbgraph (ESU) works by searching for possible edges starting from a node, thus making a
more dense network have more impact in the performance. It is interesting to note that the
average degree of all the cities tends to be of around 3, meaning that each intersection point is,
in average, connected to 3 different roads.
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Figure 4.20: Execution times for 2× 2 and 3× 3 real networks.

4.4.1 A different dataset

We want to extend our work to other domains, but there is a substantial lack of networks with
spatial information to be found online. We were able to retrieve the network of Central Chile’s
power grid system and applied our concept to that network. It contains a total of 347 nodes
and 444 edges, with an average node degree of 2.55. The distribution of the classes of subgraphs
found resembles that of “non grid-like” cities, as there is a very high concentration of Class 2
when compared to others. The results can be found in Figure 4.21.
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Figure 4.21: Subgraph class distribution in Central Chile’s power grid system.
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4.5 Real Network Stress testing

Upon analyzing the results shown in the previous sections, we decided to test the limists of our
program. To do that, we used increasingly wider portions of the city of Tokyo as input. In
Table 4.11 we can see the points used in each iteration (represented as a set of coordinates where
each value corresponds to the latitude and longitude of the point respectively), as well as the
number of nodes and edges that resulted in. All the tests performed in this section used the
3× 3 bounding box.

Point 1 Point 2 Nodes Edges Total Subgraphs Found
(35.7005,139.6822) (35.6816,139.7293) 8644 12577 26260
(35.7005,139.6822) (35.6799,139.7451) 11131 16147 33704
(35.7016,139.6664) (35.6799,139.7451) 14079 20443 42869
(35.7092,139.6548) (35.6799,139.7451) 22671 33237 68620
(35.7136,139.6345) (35.6799,139.7451) 31382 46075 95595

Table 4.11: Characteristics of each iteration (Real Network Stress Test).

Figure 4.22 represents the execution time in function of the number of edges of the network.
As expected, the bigger the network, the longer the execution time. We can observe that this
growth is exponential, but this is to be expected, since as stated before, the problem of finding a
subgraph (to which our task is directly related) is a known NP-complete problem.

0 12,57716,147 20,443 33,237 46,0750

30

60

90

120

Number of edges

Ex
ec

ut
io

n
tim

e
(s

)

Execution time in function of number of edges

Figure 4.22: Execution times for real network stress testing.

In order to show that the complexity of the program is, in fact, exponential, Figure 4.23
presents the same plot as Figure 4.22 but on a logarithmic scale. As we can observe, the functions
grows linearly, thus allowing us to conclude that there is an exponential factor in the complexity
of the code.

We noticed from the data in Table 4.11 that the total number of subgraphs found is around
the double of the number of edges of the network. This is due to the fact that Tokyo has a
very “grid-like” layout, which means that there are a lot of cycles on the roads, thus generating
more subgraphs as most of the times each road is part of at least two subgraphs, each one
forming around each of the edges of that road. An example of why that happens can be seen
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Figure 4.23: Execution times for real network stress testing (logarithmic scale).

in Figure 4.24. Using only a nine node cyclic graph with twelve edges, we ended up finding 22
subgraphs, and the difference increases if we try to increase the number of nodes of the network
whilst keeping the same characteristics. This behaviour is shown in Table 4.11, as the difference
between the total subgraphs found and the double of the number of edges increases as the number
of edges grows.

Figure 4.24: Cyclic “grid-like” network.
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4.6 Overview

To summarize, Figure 4.25 shows a diagram of the workflow of our code.

Figure 4.25: Program workflow.

Below can be found a description of the steps in more detail:

• In step 1, we retrieve the data from OSM using the overpass Application Programming
Interface (API);

• In step 2, we transform that data into the input that our program requires;

• In step 3, we create a graph from the input;

• In step 4, we use ESU to traverse the graph and find subgraphs. When one is found, we
calculate its corresponding bounding box, in order to assign colors to each node, and then
proceed to step 5;

• In step 5, we parse the subgraph to one suitable for nauty and generate its canonical label;

• In step 6, we increment the frequency of subgraphs with the received label. We go back to
step 4 when the graph is not fully traversed.

4.7 Experiences with synthetic data

When using real networks, there is always a lot of noise in the data. With the usage of synthetic
data, we are able to show the true potential of our work. With that in mind, we implemented
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methods capable of generating certain types of networks, with special characteristics useful to
showcase insightful results.

4.7.1 Grid networks

We started by creating pure ”grid-like“ networks. For the sake of simplicity, we created a program
that is only able to generate networks with the same number of nodes on the x and the y axis
and where the space between two adjacent nodes is always the same. In Algorithm 5 we can see
the pseudo-code for our function, where s represents the total number of edges in the network,
that is, its size. Since we are creating networks with a square configuration, we take the square
root of its size to assert the limits of each row and column, represented by the function sqrt
in the code. The first procedure generates the set of coordinates of each node and the second
procedure calculates which nodes are connected, first producing horizontal connections, followed
by vertical ones. Essentially, we traverse the nodes from left to right, top to bottom and connect
nodes in the same row and nodes in the same column. We do this efficiently by labeling the
nodes in that same order, so that we can easily know what position a certain node belongs to.

Algorithm 5 Grid Network Generation Algorithm
1: procedure Generate Nodes(s)
2: sq ←sqrt(s)
3: for i← 0 to sq do
4: for j ← 0 to sq do
5: print(i,j)
6: end for
7: end for
8: end procedure
9: procedure Generate Edges(s)

10: sq ←sqrt(s)
11: for k ← 0 to sq do
12: for i← k × sq + 1 to (k + 1)× sq do
13: print(i,i + 1)
14: end for
15: end for
16: for k ← 1 to (sq − 1) ∗ (sq + 1) do
17: for i← k × sq + 1 to (k + 1)× sq by sq do
18: print(i,i + sq)
19: end for
20: end for
21: end procedure

We used in total 5 networks, of size 2500 to 62500 with steps, increasing the side of the square
by 50 in each iteration. It should be noted that these networks are very dense, in the sense that
each node is connected to potentially four other nodes, and to at least two. In Table 4.12 we can
see that the number of edges (and of subgraphs found) is overwhelmingly superior to those of
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Figure 4.26: Execution times for synthetic grid networks.

real networks of similar size. For instance, if we compare the third network, with 22500 nodes to
the fourth portion taken from Tokyo, with 22671 nodes, we can see that there is a big difference
in the number of edges, with 44700 in the pure grid network compared to only 33237 in Tokyo,
which is further justified if we consider the average node degree for each network: Tokyo’s portion
has an average degree of 2.93 whilst the random network has an average degree of 3.973. This
difference increases as the number of edges gets higher.

Nodes Edges Total Subgraphs Found
2500 4900 14404
10000 19800 58804
22500 44700 133204
40000 79600 237604
62500 124500 372004

Table 4.12: Characteristics of each iteration (Synthetic Grid Network).

We can have a better perception of how the algorithm scales by using equivalent networks of
varying sizes.

At first glance, one might think that all the subgraphs found are of class 1, as the network is
purely ”grid-like“, but this is not the case, as a vertical and horizontal line that connects three
nodes is also a subgraph, as we can see in Figure 4.27. For the sake of simplicity, we named
each labeled each network with a number: The network with 2500 nodes with the number 1, the
one with 10, 000 nodes with 2, the one with 22, 500 nodes with 3, the one with 40, 000 nodes
with 4 and the one with 62, 500 with 5. The name of the networks will be networkk, where k

corresponds to the label of the network.
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Figure 4.27: Spatial subgraph fingerprint, 3× 3 bounding box on grid networks.

With this, two thirds of the subgraphs found are of class 1, and the others are of an undefined
class, as they were not common in the real networks, but consist of straight lines (both vertical
and horizontal). Figure 4.24 better illustrates this characteristic.

4.7.2 Random Networks

After the grid ones, we generated completely random networks. We pass as input the number of
nodes we want the network to have, and from there the program connects each of them to an
arbitrary number of edges that are at least the size of the network and at most double its size.
Each node has a set of coordinates associated, with each one corresponding to an integer value
between −100, 000 and 100, 000, which allows for a total of 200, 000× 200, 000 = 40, 000, 000, 000
possible sets of coordinates. There are no loops, and the graph is, again, undirected. The
pseudo-code for the function can be seen in Algorithm 6. As was the case with the grid network
generator in Algorithm 5, s represents the network’s size, the first procedure generates the nodes
and the second one the edges.
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Algorithm 6 Random Network Generation Algorithm
1: procedure Generate Nodes(s)
2: for i← 0 to s do
3: x←rand(-100000,100000)
4: y ←rand(-100000,100000)
5: while is_used((x, y)) do
6: x←rand(-100000,100000)
7: y ←rand(-100000,100000)
8: end while
9: print(x,y)

10: mark_used((x, y))
11: end for
12: end procedure
13: procedure Generate Edges(s)
14: e←rand(s,s× 2)
15: for i← 0 to e do
16: a←rand(1,s)
17: b←rand(1,s)
18: while is_used((a, b)) or a = b do
19: a←rand(1,s)
20: b←rand(1,s)
21: end while
22: print(a,b)
23: mark_used((a, b))
24: end for
25: end procedure

In Algorithm 6, lines 5 and 10 make sure that no two nodes have the same set of coordinates,
whilst lines 18 and 23 do not allow for edges to repeat or for self loops to happen. With this, we
have a set of random networks to serve as a base case, in order to allow for comparisons with
other types of networks. For the sake of consistency, we created random networks with the same
amount of nodes as the ones represented in Table 4.12. The details for these random networks
can be found in Table 4.13. The same labeling used in Figure 4.27 for the networks will also be
used in further figures.

Nodes Edges Average Node Degree Total Subgraphs Found
2500 2604 2.0832 5357
10000 11217 2.2434 25012
22500 42226 3.7534 158136
40000 69480 3.4740 240628
62500 114018 3.6485 416690

Table 4.13: Characteristics of each iteration (Synthetic Random Network).

It is clear from Table 4.13 that the first two random networks have a relatively low number
of edges compared to the number of nodes, whilst the last three are very dense, as shown by the
average node degree suggests.
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Figure 4.28: Execution times for synthetic random networks.

Figure 4.28 shows the execution times for these networks in function of the number of edges.

As stated in Subsection 4.5, Figures 4.26 and 4.28 argue against the idea that increasing the
size or density of the graph also increases the difference in execution times when comparing the
usage of a 2× 2 and a 3× 3 bounding box. In fact, there are some cases where the 2× 2 box was
even slower. It is expected that the bounding box will not affect the execution times since the
complexity of the program is dominated by the ESU algorithm.

Since we are now working with random networks, the classes of subgraphs found have very
different distributions when compared to previous scenarios. Now, there is almost an even
distribution of the frequencies of the subgraphs amongst the first four classes, and they keep
being the most relevant in all networks. Figure 4.29 allows for a better visualization of these
results.
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Figure 4.29: Spatial subgraph fingerprint, 3× 3 bounding box on random networks.

It is interesting to notice that even though the networks were generated completely at
random, they have similar distribution of subgraph classes among themselves. One could use that
distribution as a null model, that is, as the basis on which comparisons are made to distinguish
types of networks. Because of the more balanced distribution, Classes 10 and 11 end up being
more relevant in the overall analysis of subgraphs found compared to the cities, where they were
dominated by the first two classes.

4.7.3 Fingerprint analysis

As previously stated, network fingerprints allow us to have a representation of the graph, that
can be used in graph mining tasks, like classification. We will be deriving a subgraph fingerprint
for two graphs, to show that a fingerprint with a spatial component is able to differentiate two
otherwise similar subgraphs. In Figure 4.30 we can see two subgraphs, R and P , that will be
used to test our previous assumption.

Figure 4.30: Graphs R and P .
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As seen before, if we don’t consider any spatial component or coloring of the nodes and
edges in undirected networks, there are only two possible subgraph types, triangles and chains.
Figure 4.31 shows the fingerprints of R and P considering only if a subgraph is either a triangle
or a chain.
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Figure 4.31: Network fingerprint of R and P without spatial component.

As can be seen in Figure 4.31, both networks have a very similar fingerprint, and would
then be considered similar. When we take into account the spatial component, that is no longer
the case. Figure 4.32 shows the fingerprint using the subgraph classes defined in Figures 4.12
and 4.13, extracted using the 3× 3 box.
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Figure 4.32: Network fingerprint of R and P with spatial component, 3× 3 box.

Even though there are similarities, the networks no longer have the same fingerprint, as there
is a very noticeable difference in subgraphs of Classes 1, 3, 5 and 8.
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Even if the simpler bounding box is used, the same conclusion can be extracted, as can be
seen in Figure 4.33. The results are not as evident, but there is a clear difference between the
frequency of Classes 2, 3 and 4 in networks R and P , further proving our point.
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Figure 4.33: Network fingerprint of R and P with spatial component 2× 2 box.





Chapter 5

Conclusions and Future Work

With this, we reach the end of this thesis. In our work, we present a set of contributions aiming
to incorporate spatial properties into subgraph analysis. We first offer a novel abstraction that
relies on a bounding box and regular spatial partitions to attribute node colors that describe
the relative position of nodes within the subgraph. We defined a set of classes to be used to
characterize the subgraphs found, thus allowing for a higher level of grouping when compared to
individually classify a subgraph occurrence. We then describe an implementation of a framework
capable of discovering and counting these spatial subgraphs, based on enumerating occurrences
and then discovering their type using a specialized canonical labeling mechanism that assigns
nodes to their respective partition of a bounding box, coloring them appropriately and allowing
for their visualization, with the usage of Enumerate SUbgraph (ESU) and nauty. We also provide
a proof of concept experiment using real-life data in which we show that our approach is able to go
beyond classical topological motifs, capturing enough information to distinguish between different
road network layouts. Finally, we performed some extra tests with synthetic networks that allow
for the extraction of even more conclusions about our concept, such as the computational limits
and patterns of networks that are harder to grasp when using real data.

We believe these are promising results that could lead to new insights on the characterization
and comparison of networks with spatial information. Our end goal is to be able to provide a
universal spatial concept of network motifs that can be generally applicable to networks of any
domain and a definition as general as the one proposed in this work is a big step towards that
goal.

5.1 Future Work

In order to further extend our work, we intend to study the incorporation of higher dimensional
data, such as 3D brain networks (as depicted in Figure 5.1), and we want to make an extensive
evaluation of the role of the granularity in the information gained, by carefully analysing what
happens when we use more or less and bigger or smaller spatial partitions. Furthermore, we want

57
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to study how changing the point of reference would impact the results (e.g. what happens to the
patterns when we make arbitrary rotations?) and we intend to explore different symmetries and
subgraph families that could provide classes that are invariant to spatial transformations (e.g.
mirror symmetry).

Figure 5.1: Brain network, taken from [73].

The idea is also general enough that it can be applied to a variety bounding box geometries
and with different sized partitions. For instance, one could use an octagonal format to define the
box, assigning three different partitions that correspond to the top, middle and bottom of the
octagon, as is shown in Figure 5.2.

Figure 5.2: Octagon box with different sized partitions.

It should be noted that partitions can represent many different things. If we think of a
Football field, partitions could be the attack, middle and defense sections of the field, in the
case of a brain network, partitions could represent the brain’s different parts, and if we have a
flight network, the partitions could be the countries an airport belongs to. With that said, one
should not think of them as being simple divisions of the space, but as divisions that do in fact
aggregate nodes (or even edges) into groups.

Besides changing the box and the partitions, we also intend to use different sources of
data. In the case of the cities, we were able to assert the layout its streets have, and so some
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interesting conclusions might be derived from applying that same methodology to brain networks,
molecular structures or even transportation networks. The amount of real-life systems that can
be represented as networks is vast and we believe our concept might be useful to provide new
knowledge in some of those systems, as long as there is a spatial component attached to the
network.

We also want to understand how we can assess statistical significance of the subgraph
frequencies by studying what could be appropriate spatial null models. Having a defined null
model, one might be able to characterize and assign a certain network to a group without needing
to compare it with other examples, unlike what was necessary in the case of the cities.

Finally, we want to improve the efficiency, not only by improving the exact counting
computation, but also by trading accuracy for speed (e.g. using sampling) or using parallelism
(e.g. using several threads in multicore machines).
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