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Abstract

Cold electrons in crystals can have their quantum nature unveiled as an oscillatory behavior
driven by uniform fields. Oscillating currents, referred to as Bloch Oscillations, are well-known
to appear as transport regimes of electrons that move across periodic lattices in the presence
of static electric fields. Moreover, the eigenstates of such a system (Wannier-Stark states) are
well localized in a region of space inversely proportional to the electric field strength. These
Bloch Oscillations can also occur on mesoscopic transport systems for high potential biases,
clashing with the zero current predicted by the Landauer formula at long times. Conversely,
a correspondence with the Landauer formula is expected for biases below a certain threshold.
In this work, we seek to smoothly connect such oscillations to the steady-state, with and
without disorder, by numerically time-evolving an initially thermalized mixed state using a
Chebyshev method. In view of such goal, the current response to an electric bias in one-
and two-dimensional tight-binding samples coupled to finite leads with open boundaries is
analyzed. For high applied voltages, we observe an emergent oscillating current and a proper
connection to the localization of the Wannier-Stark states of the potential ramp is drawn.
Notwithstanding, this oscillations are seen to be a result of the existence of bound states inside
the sample. To mitigate said states, the energy bounds of the propagating states in the leads
is accounted for and controlled with the leads’ hopping parameter. The proper choice of this
parameter is then responsible for making of Bloch Oscillations a merely transient phenomenon
which eventually relax towards a steady-state current given by the Landauer prediction, despite
the time needed for this equilibration being much larger than that available to a simulation.
Finally, the introduction of disorder in one- and two-dimensions is analyzed and, regardless
of it not having much effect on the former, in bidimensional materials a Landauer current’s
growth from zero to a finite value is observed with the increasing of the disorder parameter,
associated with a disorder-induced delocalization of the Wannier-Stark states, with a simple
semi-classical intuition for such effect being provided.
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Resumo

Eletrões frios em cristais podem ter a sua natureza quântica desvendada como um compor-
tamento oscilatório impulsionado por campos uniformes. Correntes oscilantes são conhecidas
por aparecerem como regimes de transporte em estado estacionário de eletrões que se movem
através de redes periódicas na presença de campos elétricos estáticos. Para além disto, os
estados próprios de tal sistema (estados de Wannier-Stark) estão bem localizados numa região
do espaço inversamente proporcional à intensidade do campo elétrico. Estas oscilações de
Bloch também são detetadas em sistemas de transporte mesoscópicos, como a configuração de
Landauer sem partição, para fortes diferenças de potencial, colidindo com o valor de Landauer
calculado para os parâmetros do sistema correspondente. Por outro lado, a correspondência
com a fórmula de Landauer é esperada para pequenos potenciais. Neste trabalho, procu-
ramos conectar subtilmente tais oscilações ao resultado de Landauer, com e sem desordem,
através da evolução numérica de um estado misto inicialmente termalizado usando o método
de Chebyshev. Em prol de tal objetivo, é analisada a resposta de corrente a uma perturbação
elétrica em amostras uni e bidimensionais acopladas a terminais finitos com condições fron-
teira abertas. Para altas tensões, observamos uma corrente oscilante emergente e uma conexão
adequada para a localização dos estados Wannier-Stark da rampa de potencial é concebida.
Não obstante, essas oscilações são vistas como um artefato da existência de estados ligados
dentro da amostra. Para mitigar esses estados, os limites de energia dos estados de propagação
nos terminais são tidos em conta e controlados com o parâmetro de hopping dos terminais.
A escolha adequada deste parâmetro é então responsável por tornar as oscilações de Bloch
num fenômeno meramente transiente que eventualmente relaxa em para o valor de Landauer
correspondente, apesar do tempo necessário para este equilíbrio ser muito maior do que o
disponível para uma experiência. Por fim, analisa-se a introdução da desordem em uma e duas
dimensões e, apesar de não ter muito efeito sobre a primeira, em materiais bidimensionais
observa-se um crescimento da corrente de Landauer de zero a um valor finito com o aumento
da parâmetro de desordem , associado a uma deslocalização induzida por desordem dos estados
de Wannier-Stark, e é fornecida uma intuição semi-clássica simplista para tal efeito.
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1. Introduction

It is of common knowledge that, within a classical framework, an application of a constant
electric potential difference through a sample originates a constant current response, to which
the term direct current (DC) response has been keyed. The relation between current and
potential is often formulated by means of equations such as Ohm’s Law, where another ex-
tensive quantity R representing the resistance of the material to the electric current flow, and
denominated resistance, is present. The reciprocal of such quantity is referred as conductance
G and, in such a classical framework, it scales with the dimensions of the sample as

G = g
A

L
, (1.1)

where L and A are the length and the cross sectional area of the sample, respectively, and g
a well defined intensive property of the material, called conductivity. However, diminishing
the size and temperature of the sample may unveil different behaviors from what is classically
expected. The emergence of these novel phenomena is understood to be due to the quantum,
wave-like features of the charge carriers. The actual observation of such effects requires the
wavefunctions of the particles to remain coherent for long enough times and lengths. The
catch is that coherence is progressively lost in time and space due to interactions of the
carriers between each other and with the underlying lattice vibrations. Notwithstanding, if
the length scale of this coherence loss is much larger than the characteristic length scale of the
quantum problem at hand, the observation of this quantum effects is still feasible [1]. Among
these are Anderson localization [2], mesoscopic transport [3,4] and Bloch Oscillations [5], each
of which I will now proceed to briefly review.
Disorder might be more generically defined as imperfections on an otherwise periodic lattice.

These imperfections may vary morphologically from one another: impurities, vacancies and
even lattice deformations are all different types of disorder. These lattice defects can scatter the
electronic propagating states associated with the underlying pristine lattice. In the absence of
disorder, the eigenstates of a periodic lattice are known to obey Bloch’s theorem [6], which has
the consequence of their wave-function being periodic and therefore extending throughout the
entire lattice. States like these are called extended sates. The presence of disorder, however,
enables scattering between equienergetically Bloch states and thus destructive interference
phenomena between these states emerge, which can lead to the localization of the eigenstates.
In 1958, Philip Anderson proposed a model to study such effects [2]. The model was com-

1



1 Introduction 2

prised of a tight binding lattice with random on-site energies sampled from an uniform distri-
bution in the interval [−W/2,W/2], where W is the disorder strength. He sought to mimic
scattering and destructive interference by means of this random on-site energies. He found
that, for sufficiently strong disorder, the system undergoes a transition from metallic to in-
sulator due to the eigenstates becoming localized in space [2]. It was later found that for
1D systems, this transition happens for an infinitesimally small disorder strength [7]. Higher
dimensions, however, proved to be a much harder beast to tackle. This led to the develop-
ment of a one parameter scalling theory, which showed that, in two dimensions, any degree of
disorder also localizes the wave-functions, and only in three dimensions do we get a transition
for finite disorder strength [8, 9]. Throughout this work, we will restrain ourselves to one and
two dimensions.
As I have mentioned, the interference phenomenon will result in a decaying amplitude in

space for the new eigenstates. The decayment, howbeit, is of a particular form, it being an
exponential law of the form [2]

Ψ(r) ∼ e−r/ξA , (1.2)

where ξA is defined as the localization length. Analytical studies show that, for quasi-1D
systems, the localization length of such electronic states is given by [10–12]

ξA ∼ N`, (1.3)

with ` being the mean free path and N the number of conducting channels. For purely 1D
wires, the computation of the mean free path may be performed, boiling the above equation
down to

ξA ∼W−2. (1.4)

These results have been backed numerically by the powerful transfer matrix method [13].
Anderson localization transitions were already extensively studied, and very good reviews can
be found in [14,15], and a more recent and broad review is found in Ref. [16].
Mesoscopic transport is another case where a quantum description is needed for an accurate

modeling. It consists on the obtainance of transport quantities of samples at the mesoscopic
scale, which in turn is defined as an intermediate scale separating the microscopic and the
macroscopic. More specifically, it aims to study transport through samples smaller than the
dephasing length `φ of the problem, i. e., where wave coherence is maintained throughout the
entire carrier transportation along the sample [1]. Such devices ergo range from the nanoscale
to the micrometer, and the transport quantities cease to be intrinsic to the type of the material
and begin depending on the geometrical shape and disorder configuration as well. This shape
and disorder dependency renders intrinsic properties like conductivity ill-defined. In such

2



1 Introduction 3

transport setups, a formalism created by Landauer [17] and later enhanced by Büttiker [18]
was put forward to describe the steady-state current flowing through a device connected to
two particle reservoirs, which will be henceforth referred to as leads. This formalism has had
wide success, with the first instances of it being ballistic transport [19], quantized conductance
[20, 21], quantum point contacts [22] and cold-atom systems [23, 24]. This non-equilibrium
steady state dynamics may also be obtained by time-evolving a system subject to a certain
perturbation, for which purpose many different methods have been devised [25–29]. However,
transient phenomenon has not received as much attention until more recent years, where it
was studied more extensively in samples attached to infinite [30–37] and finite leads [38–40],
and a good amount of effort will be spent at describing transient regimes in this thesis.
Lastly, Bloch Oscillations (BO’s) are, as the name suggests, a coherent oscillation of a

particle’s average position and velocity when subject to a periodic potential and a constant
electric field, as per this Hamiltonian.

H = H0 + eEx =
p2

2M
+ V (x) + eEx, V (x+ d) = V (x). (1.5)

One would classically expect a particle subject to a constant electric field to move uniformly
accelerated through space, but the introduction of a periodic potential actually subverts this
picture, with the particle performing an oscillatory motion instead. We will soon see that
although this behavior is present either in the semi-classical limit or in a purely quantum
problem, the nature of this phenomenon is the same, as it arises, in essence, from the consid-
eration that a particle is described by wave-like properties and that the normal modes of a
periodic Hamiltonian obey Bloch’s theorem [6].
The ultimate goal of this thesis is to study the emergence of BO’s in a one and two-

dimensional mesoscopic device with an applied uniform and static electric field connected to
two leads, with and without Anderson disorder, and measure their effect in the transport quan-
tities of a particular setup. Previous work on this model has shown, for the one-dimensional
case, that for small electric fields, the current relaxes to the predicted Landauer value [41].
However, for sufficiently potential biases, we arrive at a stage where the current oscillates ad
infinitum [5], clashing with the Landauer formula, which predicts a constant current response.
Throughout this work, we will be seeking to reconcile these two results, as well as uncover,
in one- and two-dimensional samples, the effect of Anderson disorder to BO’s in this setup.
To achieve this, given that Bloch Oscillations are a dynamical phenomenon, the Landauer
formula wont suffice and we will need to evolve a certain system in time. For this purpose, we
employ a time-evolution scheme with finite leads [41] based on the Chebyshev time-evolution
operator expansion [42] for numerical enhancement.
This document is structured as follows: Chapter 2 is dedicated to Bloch Oscillations and

their properties in one-dimensional finite and infinite systems and, particularly, the proper-
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1 Introduction 4

ties of the eigenstates of the infinite system are extracted. Chapter 3 aims to describe the
appearance of BO’s in a one-dimensional two-terminal mesoscopic device, with a thorough
characterization of the clean sample as well as the study of the disorder’s effect on the former.
Chapter 4 does the same to a two-dimensional two-terminal mesoscopic device, this time with
a much stronger focus on the disordered case. Finally, chapter 5 will conclude and briefly
describe future work.

4



2. Bloch Oscillations

2.1. Semi-Classical Description

Bloch Oscillations were first predicted by Felix Bloch and Clarence Zenner in their seminal
papers [6, 43] as a consequence of the semi-classical Band Theory equations. To understand
the nature of these oscillations, we must also delve into how these semi-classical equations
come about. In what follows, we will merely motivate the set of semi-classical equations
of motion [44] and the reader interested in a rigorous and fulfilling proof is urged to check
reference [45].
As mentioned in the introductory chapter, these equations of motion are a consequence of

the wave-like nature of electrons, particularly Bloch’s Theorem, stating that the solutions for
the Schrödinger equation in a periodic potential take the form of a plane wave modulated by
a periodic function [6]

ψk (r) = eik·ru (r) , (2.1)

where u (r) is a periodic function with the same periodicity as the periodic potential. Let us
then consider an Hamiltonian diagonalizable by such waves

H0 |ψk〉 = ε(k) |ψk〉 . (2.2)

Taking the mean velocity v(k) = ~
m 〈ψk| p̂ |ψk〉 of a Bloch wave originates the equation

v(k) =
1

~
dε(k)

dk
. (2.3)

This can be traced back as the familiar assertions that the group velocity of a wave-packet is
given by ∂ω/∂k. This equation then tells us how the mean velocity of a particle is obtained
assuming we know the dispersion relation ε (k). Adding an electric field will generate an
equation of motion for the quasi-momentum k. The Hamiltonian will now look like

H = H0 + φ (x) , (2.4)

such that −∇φ = eE, where E is the electric field and e is the charge of the particle. The
motivation to obtain the second semi-classical equation is done by arguing that, since energy
must be conserved, the wave-packet must move in a way such that the energy introduced by

5



2 Bloch Oscillations 6

the potential φ(x (t)) from instant t to t+dt into the system must correspond to the variation
of ε (k (t)) in the same interval. By denoting the variation of φ(x (t)) and ε (k (t)) in this
interval as dφ(x (t)) and dε (k (t)) respectively, this translates to saying

dε (k (t))− dφ (x (t)) = 0. (2.5)

Dividing by dt and taking the limit dt→ 0 gives us

d

dt
ε (k (t))− d

dt
φ (x (t)) = 0. (2.6)

which gives rise to the equation

dε (k)

dk
· k̇−∇φ (x) · ẋ = 0. (2.7)

Having already identified ẋ = 1
~
dε(k)
dk , the equation above is only satisfied if

~k̇ = −eE, (2.8)

thus obtaining a close set of differential equations that describe the average motion of a particle
in a periodic potential and a constant and uniform electric field, which in one dimension are
simply written as

~
dk

dt
= −eE, (2.9)

v(k) =
1

~
dε

dk
. (2.10)

It is worth noticing that, coming from its definition in equation 2.1, ka is defined modulo 2π

with a being the lattice constant, and we may choose in which interval to define this variable,
which we will choose to be ka ∈ [−π, π]. If one chooses a tight binding system, for example,
with a dispersion relation of

ε (k) = −2w cos ka, (2.11)

the solution of these equations yields, by defining k0 ≡ k (0),

k (t) =
k0 − eEt

~
, (2.12)

v(t) = 2w
a

~
sin
(a
~

(k0 − eEt)
)
, (2.13)

6



2 Bloch Oscillations 7

(a) First Brillouin Zone (b) Evolution of the average position x of a particle
subjected to a constant and uniform electric poten-
tial.

Figure 2.1.: Semi-Classical evolution of a particle in an 1D Tight Binding chain

which, when integrating the second equation, results in an oscillation of the particle in space:

x(t) = x0 +
2w

~eE
cos
(a
~

(k0 − eEt)
)
. (2.14)

This dynamic is due to the Bragg reflection occurring at the edge of the Brillouin Zone: as seen,
the dynamics of the system are such that a particle will traverse the First Brillouin Zone with
an uniform motion, and when it reaches the edge, it will pop out the other side. When this
happens, the group velocity changes continuously from a positive to a negative value, causing
the oscillation in space seen in figure 2.1b. These oscillations in space are characterized by the
period

TBO =
2π~
eaE

, (2.15)

which is inversely proportional to the electric field. The amplitude of the oscillation

ABO =
2w

~eE
, (2.16)

is itself inversely proportional to the electric field, which means that the region to which the
particle is confined decreases with the electric field.

2.2. Quantum-Mechanical Description

Even though the oscillation of a particle in space might not be easily viewed when we are
talking about extended states, Bloch Oscillations still exist as a coherent dynamic between
the particles of a mixed state and can be spotted via oscillations in the current whose period
scales with the electric field the same way as those of the semi-classical space oscillations do.

7



2 Bloch Oscillations 8

To demonstrate this, let us begin by writing out the Hamiltonian of a one dimensional tight
binding ring with periodic boundary conditions

Ĥ0 = −w
L−1∑
i=0

(
ĉ†i+1ĉi + ĉ†i ĉi+1

)
, (2.17)

where we conventionally say that i = L is to be understood as i = 0 as to satisfy periodic
boundary conditions. This system can be perturbed by the introduction of a flux φ (t) through
the loop, giving rise to a time-dependent Hamiltonian

Ĥ(t) = −w
L−1∑
i=0

(
e
i2π φ

φ0L ĉ†i+1ĉi + e
−i2π φ

φ0L ĉ†ici+1

)
, (2.18)

where the phase factors arise via the Peierls substitution [46], φ0 = h/e is the quanta of
magnetic flux and φ the flux inside the ring that can be related with the electric field by the
relation

φ (t) =

∫ L

0
dxA (t) = −ELat, (2.19)

where a is the lattice parameter and A is the vector potential which is chosen as A (t) = −Etêx.
This basically follows from the Third Maxwell Equation∫

C
E · d` = −

∫
A

(
∂B

∂t

)
· dS, (2.20)

with dS denoting the differential vector element of surface area S, normal to surface C. The
initial Hamiltonian is easily diagonalizable with Bloch states due to translational symmetry

ĉn =
∑
k

e−ikn√
L
ĉk

ĉ†n =
∑
k

eikn√
L
ĉ†k

, k ∈
{
− π

2a
,
π

La

(
−L

2
+ 1

)
, . . . ,

π

La

(
L

2
− 1

)}
. (2.21)

Writing the time-evolution Hamiltonian in this basis entails

Ĥ(t) = −w
∑
k

(
e
i
(

2π
φ(t)
φ0L

+ka
)

+ e
−i

(
2π

φ(t)
φ0L

+ka
))

ĉ†k ĉk

= −2w
∑
k

cos

(
2π
φ (t)

φ0L
+ ka

)
ĉ†k ĉk. (2.22)

Note that, because we are in a system with periodic boundary conditions, the position operator

X̂ =
∑
n

nc†ncn (2.23)

8



2 Bloch Oscillations 9

is ill-defined at the borders, since the difference between the last and initial position should
be 1 and is, instead, L. Therefore, we call for a different definition of the current operator

ĵ(t) = −δĤ
δA

= − e

aL

∑
k

vk(t)(t)ĉ
†
k ĉk, (2.24)

with
vk(t) =

2wa

~
sin(k (t) a) (2.25)

and
k (t) = k + 2π

φ (t)

Lφ0
. (2.26)

The attentive reader might have noticed the familiar form of the equations above. In fact, it
reflects the behavior described by the semi-classical equations (equations 2.9 and 2.10). The
time evolution of the density matrix is simply

dρkk′(t)

dt
=
i

~
[Ĥ(t), ρ̂(t)]kk′

=
i

~
[Ĥ(t)ρ̂(t)]kk′ − [ρ̂(t)Ĥ(t)]kk′ . (2.27)

The fact that the Hamiltonian is diagonal in this basis allows us to write

dρkk′(t)

dt
=
i

~
Ĥkk(t)ρ̂kk′(t)− ρ̂(t)kk′Ĥk′k′(t)

=
i

~

(
Ĥkk(t)− Ĥk′k′(t)

)
ρ̂kk′(t)

= −2w
i

~

(
cos

(
2π
φ (t)

φ0L
+ ka

)
− cos

(
2π
φ (t)

φ0L
+ k′a

))
ρ̂kk′(t). (2.28)

Let us then start with a thermalized state at t = 0

ρkk′(0) = f (εk) δkk′ , (2.29)

where f (εk) is the Fermi-Dirac distribution (equation A.46). Time evolution then generates

ρkk′ (t) =

{
0 k 6= k′

ρk(0) k = k′
(2.30)

9



2 Bloch Oscillations 10

and, more importantly, the average current in such a state is

〈j〉 (t) = Tr (ρ̂j(t)) = −2we

~
∑
k

f(εk) sin

(
2π
φ (t)

φ0L
+ ka

)
(2.31)

= −2we

~

(
sin

(
2π
φ (t)

φ0L

)∑
k

f(εk) cos (ka) + cos

(
2π
φ (t)

φ0L

)∑
k

f(εk) sin (ka)

)
.

(2.32)

The fact that the Hamiltonian displays time inversion symmetry results in a symmetric dis-
persion relation, which in turn yields f(εk) = f(ε−k). This implies that the second term is
zero since the sine function is anti-symmetric. This finally yields

j(t) = −2we

~
sin

(
2π
φ (t)

φ0L

)∑
k

f(εk) cos (ka)

=
e

~
sin

(
2π
φ (t)

φ0L

)∑
k

f(εk)εk. (2.33)

This final result is the product of perturbing the initial thermalized state with a uniform
electric field, generating non-equilibrium oscillatory dynamics in the measured current. It is
to be noticed that the argument of the sine function

2π
φ (t)

φ0L
= −eEat

~
, (2.34)

meaning the period of this oscillations is TBO = ~
eEa , the same as that of the Bloch Oscillations,

allowing us to identify this current oscillations as such.
The local current operator, which describes the current through a single bond n→ n+ 1, is

defined as
Ĵn = −we i

~

(
−ei2π

φ(t)
φ0L c†n+1cn + e

−i2π φ(t)
φ0L c†ncn+1

)
. (2.35)

Calculating the evolution of its average gives us

Tr
(
ρ̂Ĵn(t)

)
= −we i

~
∑
k

f (εk)

(
−ei2π

φ(t)
φ0L e−ika + e

−i2π φ(t)
φ0L eika

)
= −we2

~
∑
k

f (εk) sin

(
2π
φ (t)

φ0L
− ka

)
, (2.36)

which displays the same oscillations, as it should, given the system is uniform. We have
formulated the time evolution of a 1D periodic chain subject to a constant and uniform electric
field within the so called velocity gauge, where the electric field is described in terms of a time-

10
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dependent vector potential.

2.2.1. Wannier-Stark states

A static electric field may also be described as a scalar potential added to the on-site
energies of the Hamiltonian. Therefore, BO’s also appear in an infinite chain subject to a
electric potential ramp added to the on-site energies, recasting the Hamiltonian into a time-
independent one. The advantage of formulating such problem is that it allows for an intuition
built upon the eigenstates of the full Hamiltonian, which actually proved fundamental in our
understanding of the mesoscopic transport setup studied in chapters 3 and 4 (for more details,
see [47–49]). To do so, we begin by writing this Hamiltonian in its first quantization

H = −w
+∞∑

n=−∞
(|n〉〈n+ 1|+ |n+ 1〉〈n|) + aeE

+∞∑
n=−∞

n|n〉〈n|, (2.37)

where e is the electric charge of the particle. We can once again express this Hamiltonian in
the Bloch basis, which we will be denoting by

|k〉 =
+∞∑

n=−∞
|n〉〈n | k〉 =

√
a

2π

+∞∑
n=−∞

|n〉einka, (2.38)

this time having in mind that this momentum basis is continuous since we have an infinite
system, giving rise to the identities

+∞∑
n=−∞

〈
k′ | n+ 1

〉
〈n | k〉 = e−ik′a a

2π

+∞∑
n=−∞

ein(k−k′)a = δ
(
k′ − k

)
e−ika, (2.39)

+∞∑
n=−∞

n
〈
k′ | n

〉
〈n | k〉 =

a

2π

+∞∑
n=−∞

nein(k−k′)a = δ
(
k′ − k

) i

a

d

dk
, (2.40)

which we will use to write the Hamiltonian like

H =

∫ π/a

−π/a

∫ π/a

−π/a
dkdk′ |k〉

〈
k′
∣∣ δ (k′ − k)(−we−ika − weika + ieE

d

dk

)
(2.41)

=

∫ π/a

−π/a
dk |k〉 〈k|

(
−2w cos (ka) + ieE

d

dk

)
. (2.42)

The eigenstates of the problem are then given by the Schrödinger equation

−2w cos (ka) Ψm(k) + ieE
d

dk
Ψm(k) = EmΨm(k), (2.43)
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with the periodic condition
Ψ(k + 2π/a) = Ψ(k). (2.44)

Writing the equation like

d

dk
Ψm(k) =

Em
ieE

Ψm(k) +
2w

ieE
cos (ka) Ψm(k), (2.45)

it is clear that the function

Ψm(k) = A exp

[
−i
(
Em
eE

k +
2w

aeE
sin (ka)

)]
(2.46)

satisfies the differential equation. The boundary condition 2.44 then allows us to discover the
eigenenergies

exp

[
−i
(
Em
eE

k +
2w

aeE
sin (ka)

)]
exp

[
−i
(
Em
eE

2π

a

)]
= exp

[
−i
(
Em
eE

k +
2w

aeE
sin (ka)

)]
.

(2.47)
To satisfy the equality above, the eigenenergies must then be determined as

Em = aeEm , m ∈ Z, (2.48)

meaning the eigenenergies of the system are separated by multiples, or “steps”, of aeE, forming
the so called Wannier-Stark “ladder”. Finally, the normalization condition then yields

A =

√
a

2π
. (2.49)

The eigenstates, which are known as Wannier-Stark states, are then, in the momentum space,
given by

Ψm(k) =

√
a

2π
exp

[
−i
(
amk +

2w

aeE
sin (ka)

)]
. (2.50)

Having performed this diagonalization, the time-evolution operator in momentum space is
given as

Uk′k(t) =
〈
k′|U(t)|k

〉
=
∑
m

〈
k′ | Ψm

〉
e−iEmt/~ 〈Ψm | k〉 (2.51)

=
a

2π
e−iγ[sin k′d−sin kd]

∑
m

e−im(k′−k+eEt/~)a (2.52)

= e−iγ[sin k′a−sin ka]δ
(
k′ − k + eEt/~

)
. (2.53)
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Once again, the semi-classical acceleration theorem 2.10 has emerged from yet another con-
sideration of a different gauge

k′ = kt = k − eEt/~. (2.54)

We may now verify the appearance of coherent oscillations in the current for an initially fixed
thermalized system, with an initial density matrix

ρ (0)kk′ = f (εk) δ
(
k − k′

)
. (2.55)

The definition of the current operator is this time made easy, since this time the position
operator

X̂ = a
+∞∑

n=−∞
n |n〉 〈n| (2.56)

is well defined, and the current operator is then obtained by the Heisenberg equation

Ĵ = eV̂ = e
i

~

[
Ĥ, X̂

]
(2.57)

= e
iaw

~

+∞∑
n=−∞

|n+ 1〉 〈n| − |n〉 〈n+ 1| (2.58)

= 2
eaw

~
∑
k

sin (ka) |k〉 〈k| . (2.59)

The evolution of the averaged current is then

〈
Ĵ
〉

(t) = Tr (ρ (0) J (t)) =

∫ π/a

−π/a

∫ π/a

−π/a
dkdk′ρkk (0)Ukk′ (t) Jk′Uk′k (−t) (2.60)

= 2
eaw

~

∫ π/a

−π/a
dkf(εk) sin

((
k + eE

t

~

)
a

)
(2.61)

=
ea

~
sin

(
−eEa t

~

)∫ π/a

−π/a
dkf(εk)εk, (2.62)

where we have used the same symmetry argument as in the previous subsection in step 2 to
step 3. The oscillations are thus the same as in equation 2.33 with the visible promotion of
the sum to in k-space to an integral over the entire FBZ.
Wannier-Stark states will prove more useful in the Wannier basis. To unveil their properties

13
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in real space, we must perform a Fourier transformation, which yields

Ψm(n) = 〈n | Ψm〉 =

∫ π/a

−π/a
dkak〈n | k〉 〈k | Ψm〉 =

a

2π

∫ π/a

−π/a
dkei[(n−m)ka−γ sin(ka)]

=
1

2π

∫ π

−π
duei[(n−m)u−γ sinu]. (2.63)

A Bessel function of the first kind of argument γ and order n is denoted as Jn(γ) and has an
integral representation of the form [50]

Jn(γ) =
1

2π

∫ π

−π
ei(nu−γ sinu)du, (2.64)

leading us to identify this eigenstates as

Ψm(n) = Jn−m(γ), (2.65)

which we may write in the Wannier basis, yielding the so called Wannier-Stark states [49,51]

|Ψm〉 =
∑
l

Jl−m (2w/eEa) |l〉. (2.66)

We can extract some useful properties from this space representation of the eigenstates from
general properties of Bessel functions [50]. Particularly, we know that Jl−m (γ) is mainly
localized in the interval |l −m| < γ and, outside this interval, decays exponentially as Jn (γ) ∼
γn. This allows us to define a localization length as

ξWS =
2w

eEa
, (2.67)

which as we can see in Figure 2.2 (red dashed line in the right panel) actually describes the
states localization fairly well. We can also see that there is a Wannier-Stark state centered
around each Wannier site. The symmetry property of Bessel functions [50]

J−n(γ) = (−1)n Jn(γ) (2.68)

tells us the squared modulus of the state is symmetric around its center.
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Figure 2.2.: Wannier-Stark state and its modulus squared, respectively, centered around site
500, for a system of size L = 1024 and E = 0.08 (in units of aand w/ea respec-
tively).

The orthogonality and completeness of the Wannier-Stark states is guaranteed by the addi-
tion theorem of Bessel functions [49]

+∞∑
k=−∞

Jk(z)Jk+p(z) exp(ikα) = Jp(2z sin(α/2)) exp(ip(π − α)/2), (2.69)

with α = 0 as input. Such proof is a straightforward task, however, we need to make use of
the following results regarding Bessel functions of the first kind [50]:

Jν (0) = 0, |ν| > 0, (2.70)

Jν (0) = 1, ν = 0. (2.71)

Using equation 2.69 with α = 0 gives us

+∞∑
k=−∞

Jk(z)Jk−p(z) = J−p(0) exp(−ipπ/2) = 〈Ψl | Ψl−p〉 . (2.72)

Using the relations above allows us to get

〈Ψl | Ψl−p〉 = 0, p 6= 0, (2.73)

〈Ψl | Ψl〉 = 1, (2.74)

Which is sufficient to prove the orthogonality and completeness of the Wannier-Stark states.
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2 Bloch Oscillations 16

2.3. Time-Evolution of Gaussian Wave-packets in a 1-band
system

Before proceeding to the discussion of this oscillations in a mesoscopic system, it will be
crucial to develop an intuition on the evolution of Gaussian wave-packets in systems with
an applied electric field. For Gaussian wave-packets sufficiently localized in both real and
reciprocal space, their evolution will be governed by the semi-classical equations. Therefore, it
will provide us with a good simulation of semi-classical behavior in a purely quantum system,
which will serve us later as useful intuition in chapters 3 and 4. We will be retracing the
calculations done in references [48,49,51].

2.3.1. Spatial Propagator

We define the spatial propagator as

Kl,l′ (t) = 〈l| e−iHt/~
∣∣l′〉 . (2.75)

We may introduce the set of Wannier-Stark states and use 2.69 to obtain [49,51]

Kl,l′ (t) =
∞∑

m=−∞
〈l | Ψm〉

〈
Ψm | l′

〉
exp (−iEmt/~)

=
∞∑

m=−∞
Jl−m (2w/eEa)

∑
l

Jl′−m (2w/eEa) exp (−iaeEmt/~) . (2.76)

By applying the addition theorem 2.69 to equation 2.76 (which is only possible due to the
energetically equidistant spectrum of the Wannier-Stark states), one arrives at the expression

Kl,l′ (t) = Jl−l′

(
4w

eEa
sin

(
aeEt

2~

))
exp

(
i
(
l − l′

)(π − aeEt/~
2

)
− il′aeE

~
t

)
.

The obtained result is very telling on the dynamics of the system: the final equation shows
that the spatial propagator is periodic in time with the Bloch period TOB = 2π~/eaE and
consequently any wave-packet will realize a periodic motion.

Wave-Packet Dynamics

We may then use the result previously obtained to our advantage in order to regain semi-
classical motion by considering the evolution of a Gaussian wave-packet with initial momentum
k0 [48, 49]

ψl(0) =

(
a2

2πσ2

)1/4

exp

(
− l

2a2

4σ2
+ ik0la

)
. (2.77)
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2 Bloch Oscillations 17

The evolution of this coefficients is given by

ψl (t) =
∑
l′

Kl,l′ (t)ψl′ (0) . (2.78)

We can Fourier transform the above formula and use the generating function for the Bessel
functions of the first kind [50]

exp[iz sin(ϕ)] =
+∞∑

k=−∞
exp(ikϕ)Jk(z) (2.79)

to obtain the more convenient relation

ψ̂(k, t) =
∑
l,l′

exp(−ikla)Kl,l′(t)ψl′(0)

= exp

[
i

4w

eaE
sin

(
eaEt

2~

)
cos

(
ka+

eaEt

2~

)]
×
∑
l′

exp
(
−i (k + eEat/~) l′

)
ψl′(0). (2.80)

Let us assume that σ/a � 1 so that the spatial localization of the initial wave-packet is
sufficiently weak to allow us to approximate this summation by an integral and arrive at

ψ̂(k, t) ≈
(

8πσ2

a2

)1/4

exp

[
i

4w

eaE
sin

(
eaEt

2~

)
cos

(
ka+

eaEt

2~

)]
× exp

(
−2σ2

(
k − k0 +

eEt

~

)2
)
. (2.81)

At this point we can make contact with a familiar notion: The resulting wave-packet evolution
in the reciprocal space is itself a periodic function modulated by a Gaussian whose mean
is moving uniformly with velocity eE/~. This observation is congruent with the first semi-
classical equation 2.9. Though it may seem we have lost the periodicity of the motion equation
2.81, we need not forget that k is only defined modulo 2π/a, restoring the temporal periodicity
in the equation above. But we can go even further by casting the evolution of the wave-packet
in real space

ψl (t) =
a

2π

∫ π/a

−π/a
dkψ̂ (k, t) exp (ikla) . (2.82)

The assumption that a/σ � 1 will once again come in handy, since it means that the momen-
tum distribution function ψ̂(k, t) is sharply localized around k (t) ≡ k0 − eEt

~ in the reciprocal
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space. This is good enough a reason to expand cos
(
ka+ eaEt

2~
)
around k (t)

cos

(
ka+

eaEt

2~

)
≈ cos

(
ak0 −

eaEt

2~

)
− a sin

(
ak0 −

eaEt

2~

)
(k − k (t)). (2.83)

The computation needed to arrive at the final result is omitted for the sake of brevity, and the
curious reader is referred to the appendix C for a more detailed derivation. With this said, we
arrive at [49]

ψl(t) ≈
(

a2

2πσ2

)1/4

exp

(
i

(
k0 − eE

t

~

)
la− iΦ(t)− a2

4σ2
(l − l̄(t))2

)
, (2.84)

with

Φ(t) =
2w

eEa

[
sin

(
k0a− eEa

t

~

)
− sin (k0a)

]
, (2.85)

and

l(t) =
2w

eEa

[
cos

(
k0a− eEa

t

~

)
− cos (k0a)

]
. (2.86)

The last equation tells us the center of the gaussian in space is oscillating with an amplitude and
period inversely proportional to the electric field, as the semi-classical equations had foreseen.
In fact, not only do they have the same functional dependence on E, they are exactly the
same, and we can therefore confidently say that we reobtained the semi-classical behavior of
Bloch Oscillations.

2.3.2. Numeric Simulation on a Finite Chain with Open Boundaries

Even though it might seem intuitive that a Gaussian wave-packet should behave the same
in an open chain as it does in an infinite system as long as it does not reach the boundaries,
it is still instructive to see this numerically to make sure the boundary conditions do not
meaningfully alter the dynamics. The Hamiltonian for a 1D tight binding chain with an
uniform and constant electric field is

H = −w
N−2∑
n=0

(|n〉〈n+ 1|+ |n+ 1〉〈n|) + aeE
N−1∑
n=0

n|n〉〈n|. (2.87)

An analytical study of the eigenstates of such a system has been performed in [52] with the
conclusion that the eigenstates and eigenvalues at the center of the finite system are essentially
Wannier-Stark states by calculating the corresponding eigenvalues for a given chain size N
and see their fast convergence to the Wannier-Stark energy ladder with N →∞. In fact, the
eigenstates between the two only differ meaningfully if the area described by the Wannier-Stark
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localization length reaches the edge of the system.

Figure 2.3.: Comparison between exact Wannier-Stark states and eigenstates of a finite system
at the edge, for L = 256 and E = 0.035, in units of a and w/ea, respectively. We
can see that these only differ when the state is no longer fully localized inside the
system.

We performed a time-evolution of a Gaussian wave-packet in such a system by expanding
the time evolution operator in Chebyshev Polynomials with the method described in A.1.7
and obtained satisfying results, with the wave-packet performing an oscillatory motion with
the amplitude and frequency predicted in the previous subsections (Fig. 2.4).

Figure 2.4.: Evolution of a Gaussian wave-packet of variance σ = 20a initially centered at
l̄0 = 1500a in an 1D finite tight binding Hamiltonian subject to a constant and
uniform electric field E = 0.005w/ea.
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3. Bloch Oscillations in One-Dimensional
Two-Terminal Mesoscopic Devices

In what follows, we will be aiming at studying the emergence of Bloch Oscillations in two-
terminal mesoscopic systems: the case where the sample has no disorder will be studied
thoroughly to characterize the appearance of this oscillations in terms of the different param-
eters of the system. They will appear both as an infinite oscillatory current response to a dc
potential and as a transient regime relaxing to a constant current response. The dependence
of this two different realizations of BO’s on the system’s parameters is something we shall
discuss in the following subsections.
Furthermore, the effect of Anderson disorder in the average current inside and outside a

sample with an applied constant electric field is also analyzed. Because of the many possible
types of disorder, it is difficult to classify any encountered disorder-induced effect as universal.
The most immediate intuition is that there will be some kind of interplay between the different
localization lengths introduced by the electric field (ξWS) and disorder (ξA), but as for what
actually happens it is not clear at all. Fortunately, we will later see that this effects are backed
by a simplistic semi-classical view on particles being scattered in the First Brillouin Zone,
keeping us optimistic on the possibility of generalizing this results to other types of disorder.

3.1. The Model

The Hamiltonian of the model follows the usual one dimensional tight binding scheme

H (t) = HCC (t) +
∑
α=L,R

(Hα (t) +HCα (t)) , (3.1)

where HCC stands for the central sample’s Hamiltonian, HL(R) is the Hamiltonian for the
left (right) lead and HCL(R) is the coupling term between the left (right) lead and the central
sample. This coupling terms will from now on be included in the respective lead’s Hamiltonian
for simplicity. We will throughout this work only be working with clean leads. For simplicity,
we will work in units of ~ = e = a = 1, with e and a being the particle’s charge and the lattice
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3 Bloch Oscillations in One-Dimensional Two-Terminal Mesoscopic Devices 21

parameter, respectively. The expansion of this matrices in the Wannier basis then yields

HCC (t) =

(L−1)/2∑
n=−(L−1)/2

(vn (t) + ξn) c†ncn − w
(L−3)/2∑

n=−(L−3)/2

(
c†n+1cn + h.c.

)
,

HL (t) =

−(L+1)/2∑
n=−∞

vn (t) c†ncn − wl
(
c†n+1cn + h.c.

)
,

HR (t) =

+∞∑
n=(L+1)/2

vn (t) c†ncn − wl
(
c†n+1cn + h.c.

)
,

(3.2)

where L is the size of the sample, w is the hopping parameter inside the sample, wl is both
the leads’ hopping and the hopping term connecting the leads to the sample and ξn is the
disordered potential that we will eventually add to study the disordered case. To develop
the non-equilibrium dynamics, we employ the partition-free approach [53, 54]: the sample is
initially already connected to, and in thermal equilibrium with the leads, with no potential
applied, meaning

vn (t < 0) = 0, ∀n, (3.3)

And the initial mixed state is thus

ρ(t < 0) =
∑
k

f (εk) |ψk〉 〈ψk| (3.4)

with |ψk〉 being the eigenstates eigenstates of the initial Hamiltonian, εk their energy and
f (εk) the Fermi-Dirac distribution. At t = 0, the system is perturbed with an electric potential
bias along the entire system. The actual shape of this potential, however, is the fundamental
part of this work: the potential in the leads is constant and symmetric but in the sample it’s
a ramp, guaranteeing we only have a non-zero electric field applied inside the sample:

vn (t > 0) =


nE, −L−1

2 ≤ n ≤ L−1
2 ,

−∆V
2 , n < −L−1

2 ,

∆V
2 , L−1

2 < n,

(3.5)

With E being the electric field. This field is crucial given it is the mechanism responsible
for BO’s in an infinite lattice, as we will see in the following section.
The detection of BO’s will then consist of measuring the average local current through a

specific bond 〈
Ĵn

〉
(t) = Tr

(
ρ (0) Ĵn (t)

)
, (3.6)
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Figure 3.1.: Model used for the of non equilibrium transport in 1 dimension.

with
Ĵn =

w

i~

(
c†n+1cn − c

†
ncn+1

)
. (3.7)

Such computation can be made very numerically efficient by truncating the leads to a finite
size and implementing an expansion of the time-evolution operator in Chebyshev polynomials
[42], with the tradeoff that an eventual reflexion at the boundaries of the leads will contaminate
the results [41] (See Appendix A.1 for details). In the remainder of this document, the leads
are made sufficiently large to avoid this reflexion in the time intervals considered. As for the
disorder type, we employ the usual Anderson disorder and add random on-site energies in the
sample’s sites drawn from the uniform distribution. In other words, the probability density
function of each on-site energy will be given by

p (ξn) =

{
1/W, εn ∈ W

2 [−1, 1]

0 otherwise
. (3.8)

Finally, the results from such time evolution will be compared to the Landauer formula [17]
for the current:

IL→R =
e

2π~

∫
dε

(
fL

(
ε− ∆V

2

)
− fR

(
ε+

∆V

2

))
T (ε) , (3.9)

Where T (ε) is the inter-lead transmission coefficient, which is numerically calculated using
the Kwant python package [55]. A full derivation of this coefficient as well as of the Landauer
formula can be found in appendix B.

3.2. Homogeneous hoppings (wl = w) for a Clean System

To first introduce Bloch Oscillations in the mesoscopic transport context, we will begin with
the simplest case by setting the leads’ hopping parameter equal to that of the central sample,
that is, w = wl, and setting W = 0 to study a clean sample. This choice of wl will have
consequences we will later see, but for now this helps to understand a particular mechanism,
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ξWS
ξWS ξWS

ξWS
Figure 3.2.: Depictions of Wannier-Stark states inside the sample as we increase their local-

ization length, with the corresponding current response shown below.

the localization of the Wannier-Stark states inside the sample, and the emergence of the Bloch
Oscillations instead of the Landauer steady current prediction.

3.2.1. Bloch Oscillation’s Existence Condition

We being this subsection by depicting the eigenstates of a sample connected to leads for
different electric fields. This states are shown in figure 3.2, where the central-most state is
depicted in red and two more states are depicted in a lack dashed line. In subsection 2.2.1
we discussed the eigenstates of an infinite lattice subject to a static and uniform electric field.
These eigenstates are called Wannier-Stark states. Such states are very well localized in space
and described by the localization length given in equation 2.67. We have also seen that the
eigenstates of a finite lattice are very similar to said Wannier-Stark states as long as the
region where they are predominantly non-zero is not touching the boundary of the system.
Analogously, the eigenstates of the two-terminal device will be approximately Wannier-Stark
states inside the sample coupled to propagating states in the leads, provided that the area
where the Wannier-Stark state is significantly non-zero is far from the edge of the sample.
This means that the average local current at the center of the sample with a sufficiently
strong electric field (i.e, well localized Wannier-Stark states) will behave very similar to that
of the infinite system, since the Wannier-Stark states that contribute to this current are well
localized, thus originating Bloch Oscillations in the local current.(Left panel of figure 3.2). As
we decrease the electric field, the states begin to extend, leading to more and more of them
to effectively deform and “escape” the sample. This will obviously have an impact on the
oscillatory motion of the current, but since some states in the vicinity of the center are still
completely localized, we will still be able to spot some oscillation (Central panel of figure 3.2).
Once we get the last state, which is the central one, to be completely delocalized, we will no
longer get BO’s, and a constant, Landauer-valued current will take place instead (Right panel
of figure 3.2). Based on this image, we can then obtain a condition for the existence of BO’s

23



3 Bloch Oscillations in One-Dimensional Two-Terminal Mesoscopic Devices 24

inside the sample, which is, simply put [5]:

ξWS ≤
L

2
, (3.10)

where L is the size of the central sample. We can expand the Wannier-Stark localization length
with equation 2.67 and perform some algebra to cast the condition into a more conventional
form

4w ≤ ∆V. (3.11)

This way of expressing the condition in terms of the potential difference and the central hopping
parameter will prove more useful for following considerations.

3.2.2. Bound States Inside the Sample

Condition 3.11 allows one to know the minimum potential bias needed for a given system
to display BO’s, either deformed or not, and it has already been seen in Ref [5]. However,
in that same reference, this oscillations do not decay in time to a constant value: they os-
cillate infinitely, which is a direct confrontation to the Landauer prediction. Underneath the
obtainance of the Landauer formula, however, is the assumption that the system does not
exhibit any bound states, meaning every eigenstate of the full Hamiltonian is a propagating
state inside both leads and not an evanescent one. In fact, if bound states exist inside the
sample, given they cannot propagate outside the leads, they will prevent the system from
achieving a steady-state dynamic flow and will be responsible for oscillations in the current
instead [31, 56, 57]. To probe our system for bound states, it is useful to look at the problem
in terms of its energetic bounds. Particularly, one is to look at the bandwidths of the leads to
find a justification for the observed infinite BO’s.

Energy

ΔV
2 4w

ΔV < 4w

Overlap Region
− ΔV

2

Figure 3.3.: Diagram of the energy bands of the leads for a system with ∆V < 4w.

Let us draw out the electric bias and represent the energy bands of the leads as depicted in
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figure 3.3, where the black lines limit the energy of the propagating states in the leads. For
∆V < 4w, the width of the energy band of the leads, we will always have an overlap between
the bands’ leads, which means that by the energy conservation law, it is possible to couple
propagating states in the left lead to those of the right lead. However, setting ∆V to be equal
to this width will cause these bands to not overlap, meaning there won’t be any coupling
between leads and, consequently, no current, as seen in figure 3.4.

Energy

− ΔV
2

ΔV
2 4w

ΔV = 4w

No transmission between  
the leads!

Figure 3.4.: Diagram of the energy bands of the leads for a system with = ∆V < 4w.

It is now clear where the infinite BO’s originate from: for potential biases stronger than
4w, the gap between the top of the left lead’s band and the bottom of the right lead’s band
is populated with states inside the sample that do not couple to the propagating states of the
leads. These bound states will then originate an infinite oscillatory motion in the current.
Coincidently, this limit for when bound states start being generated inside the sample is the
same as the one found in the previous subsection (equation 3.11), where the eigenstates inside
the sample begin to localize and become very similar to Wannier-Stark states. Therefore, the
bound states generated are actually Wannier-Stark states, and thus the oscillations observed,
albeit eventually deformed, will be Bloch Oscillations, whose period is given by the usual BO
period (equation 2.15).

3.2.3. Numeric Results

The discussion performed up until now is corroborated by numerical evidence obtained from
the time-evolution of the system using the partition-free approach: plotting the average local
current evolution in the center of the sample for different Wannier-Stark localization lengths,
it is clear that Bloch Oscillations emerge for sufficiently localized states and get deformed as
we decrease the localization length (i.e increase the electric field), eventually ceasing and being
replaced by a constant, steady-state current response congruent with the Landauer prediction
for ξWS = L/2 (Figure 3.5.a)). It is worth noticing that the time in this figure has been
rescaled for each curve by the respective ξWS , allowing the collapse of the oscillations in terms
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of their periods. This is because both ξWS and the period TBO of Bloch Oscillations are both
inversely proportional to the electric field, and thus, by dividing the time by the localization
length, one eliminates the dependency of the period on the electric field. This is a strong
indication that the bound states generating this oscillations are indeed Wannier-Stark states,
since the periods of the oscillations in figure 3.5.a) are all given by TBO for their respective
electric field values.
Furthermore, the current inside one of the leads follows the same behavior , with the excep-

tion that we do not see the BO’s and instead see the current decay to zero for ξWS < L/2 as
expected, since in this regime the leads’ bands do not overlap, preventing the coupling between
their propagating states and, therefore, the existence of any transmission (Figure 3.5.b)).

Figure 3.5.: a) and b) - Plots of the current time-evolution measured inside and outside a
sample of size L = 256 (in units of a)and compared to their the Landauer values
in dashed grey, respectively. c) - Landauer current as a function of the Wannier-
Stark localization length divided by the size of the sample, for various sizes. The
dashed grey lines depict the place where ξWS/L = 1/2 and ξWS/L = 1.

Finally, all of this can be summarized by plotting the total inter-lead transmission (to which
we have labeled Landauer Current) as a function of ξWS/L and see that, in fact, it is zero
until we reach ξWS/L = 1/2, in which point we get an increase in the total transmission. It
is also interesting to notice that the total current increases with the decrease of the electric
field between ξWS/L = 1/2 and ξWS/L = 1, which is already not expected from a purely
classical point of view. Such behavior is due to more and more Wannier-Stark states getting
completely delocalized, meaning they strongly couple to both left and right propagating states,
which increases transmission. After every single state is completely delocalized, which happens
for ξWS/L = 1, we regain the usual behavior of current diminishing with the decrease of the
electric field.
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3.3. Inhomogeneous hoppings (wl > w)

In the previous subsection, we have seen that BO’s arise as persistent oscillations in a
mesoscopic two-terminal device for sufficiently strong potential biases because of the bound
states generated inside the sample. However, it is also shown in references [31,56,57] that, by
guaranteeing there are no bound states in the system, a steady state exists, at which point
the Landauer formula should accurately describe the attained steady-state current. Naturally,
the question arises: is it possible to get inter-lead transmission and Bloch Oscillations at the
same time? We will delve deeper in such affairs by now increasing wl > w arbitrarily as to
control the width of their energy bands.

3.3.1. Mitigation of Bound states by Broadening the Leads’ Energy Bands

As seen in the right depiction of figure 3.6, we can maintain ∆V = 4w to have Wannier-
Stark states localized inside the sample. Increasing wl promotes the overlap between the
bands, thus granting transmission and Bloch Oscillations in one setting. This will guarantee
that the previously detected bound states will now couple to propagating states in the leads
and the oscillations will cease oscillating infinitely and will have to be eventually replaced by
a steady-state current described by the Landauer formula.

ΔV = 4w
Energy

− ΔV
2

ΔV
2 4w

ΔV = 4w

No transmission between  
the leads!

− ΔV
2

ΔV
2 4wl

Overlap

ΔV = 4w

Transmission + Bloch 
Oscillations!

EnergyEnergy

− ΔV
2

ΔV
2 4w

ΔV = 4w

No transmission between  
the leads!

Energy
Energy

− ΔV
2

ΔV
2 4w

ΔV = 4w

No transmission between  
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wl = w wl > w
4w

Energy

− ΔV
2

ΔV
2 4w

ΔV = 4w

No transmission between  
the leads!

Figure 3.6.: Diagrams of the energy bands of the leads for a system with ∆V = 4w. On the
left, a system where the leads’ hopping parameter wl equals that of the central
sample w, resulting in no inter-lead transmission. On the right, whilst keeping
∆V = 4w , a system with wl > w such that there is overlap between the leads.

We complement our analysis using the Kwant package [55] to obtain information about
total current transmission between the leads. To do this, we simply plot the transmission
coefficient as a function of the energy, for different lead hoppings. The results clearly indicate
that transmission is possible only for wl > ∆V/4, in accordance with the general image of the
leads’ bandwidths we have built so far. In the transmission regime, for a sufficiently strong
electric field, lorentzian-shaped peaks around the energies of the Wannier-Stark states emerge
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Figure 3.7.: Transmission coefficient curves as function of energy for a 1D chain of size L=25
(in units of a) and different lead hoppings for a) dV = 6 and b) dV = 5 (in units
of w). The broadening of the peaks with the decreasing of the potential difference
is clear.

out of the null flat curve that was in place for wl < dV/4 (Fig 3.7.a)), with their widths being
larger with the decreasing of the electric field (Fig 3.7.b)).
As we shall see in the next subsection, the width of a peak can be associated with a time

uncertainty, which can in turn be interpreted as an estimation for the relaxation time of the
whole system’s eigenstate at the given energy. Ergo, stronger electrical fields will reduce the
coupling between the Wannier-Stark states and the reservoirs, leading to thinner transmission
peaks and, consequentially, larger relaxation times. It is not unreasonable, therefore, to con-
ceive of a setup with a length and an electric field that, even though the Landauer calculation
for the transmission is non-zero, the time to detect a non-zero current in the laboratory would
be virtually infinite. The obtained evolution with a proper choice of wl that mitigates this
bound states is shown in figure 3.8. It is now clear that BO’s are a transient regime that decay
towards a steady-state current given by the Landauer formula, as expected.
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Figure 3.8.: Average current evolutions divided by their respective Landauer prediction for a
system os size L = 25 (in units of a) and wl = (1/4 + 1/16) ∆V , for different
potential biases in units of the central hopping w. It is clear that, with this choice
of wl, we have BO’s decaying to a steady-state current given by the Landauer
formula, shown clearly in the inset plot.

We can further notice in figure 3.7 that the highest peak clocks in at zero energy, which
corresponds to the transmission associated to the central Wannier-Stark state in the sample,
and these peaks decrease in value with the distance of the Wannier-Stark states to the central
sample’s site. Indeed, the central state has a transmission coefficient of 1 independently of the
size of the sample, whereas the other peaks decrease with the increasing of the sample’s size,
as per figures 3.7.a) and 3.7.b), respectively. Such effect is due to the spatial symmetry of the
Bessel function given in equation 2.68.
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Figure 3.9.: Transmission coefficient curves as function of energy for a 1D chain different sizes
centered around for a) zero energy and b) = E. While the second peak decreases
with the increasing of the size, the central one has transmission one at energy zero
for any size.

3.3.2. Relating the Lorentzian’s Width to Wannier-Stark Half-Life Times

We have vaguely stated in the previous subsection that the width of the Lorentzian peaks
may be associated with the characteristic decaying times of the Wannier-Stark states inside
the sample. In the following subsection, we will proceed to motivate that claim as well as
obtain the scaling of these decaying times with the potential bias as a power law. The purpose
for this study is to be able to later characterize the time of the transient regimes of the current.

3.3.2.1. Analytical Expression for Decaying Times with First Order Perturbation Theory

For this subsection, we will be working with the self-energy introduced by the leads in the
central sample’s Green function. For the derivation of this self-energy, the reader is urged to
the appendix B.6. From now on, we will be denoting operators which are solely written in the
central sample’s Wannier basis as bold.
As we previously noted, the decay of BOs with time is inextricably linked to the fact that,

if wl is allowed to exceed ∆V/4, the central sample has a finite transmission. Therefore, our
theory starts off from a study of the central sample’s quantum transmittance, T (ε), in the
strong bias regime. As first shown by Caroli et al. [29], this quantity can be expressed using
a Green’s functions formalism, as follows:

T (ε) = Tr
[
G†CC(ε)ΓR(ε)GCC(ε)ΓL(ε)

]
, (3.12)
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where Tr [· · · ] is a trace over the central sample’s Hilbert space, Γα(ε) = −2ImΣα is the level-
width function associated with lead α, Σα is the self-energy of lead α and GCC(ε) is the Green
function of the central sample connected to the leads. The latter is defined as the solution of

[εI−HCC −ΣL (ε)−ΣR (ε)]GCC (ε) = I. (3.13)

At this point, it is important to remember that the eigenstates of HCC will be very similar
to the exact Wannier-Stark states (as long as they are not to close to the boundaries) and we
will henceforth be taking this states to be described by equation 2.66. Let us define Vα as the
on-site energy of the corresponding lead α. In our particular case, this will be VL = −∆V/2

and VR = ∆V/2. Then, the one dimensional tight binding semi-infinite leads actually have a
fairly simple analytical expression for the self-energy in the Wannier basis [58]

Σα =

{
1
2 (ε− Vα − iβα) |nα〉 〈nα| , |ε− Vα| ≤ 2wl

1
2 (ε− Vα − sgn (ε− Vα)β′α) |nα〉 〈nα| , |ε− Vα| > 2wl

(3.14)

where nα = −L−1
2 (L−1

2 ) for the left (right) lead and

βα =

√
4w2

l − (ε− Vα)2, (3.15)

β′α =

√
(ε− Vα)2 − 4w2

l . (3.16)

Hence, the level-width functions are, for |ε− Vα| ≤ 2wl,

ΓL(ε) = βL (ε)

∣∣∣∣−L− 1

2

〉〈
−L− 1

2

∣∣∣∣ , (3.17)

ΓR(ε) = βR (ε)

∣∣∣∣L− 1

2

〉〈
L− 1

2

∣∣∣∣ , (3.18)

And zero otherwise. From now on, we will define Γ (ε) = ΓL (ε) +ΓR (ε). The sample’s Green
function is written as

GCC(ε) = (ε−HCC −Σ)−1 , (3.19)

with Σ = ΣL + ΣR. This Green function may be written in its eigenbasis, with the caveat
that this matrix is now non-hermitian, meaning the right-eigenstates

∣∣ΦR
n

〉
do not necessarily

form a complete orthogonal set. We have to therefore consider the left-eigenstates
∣∣ΦL

n

〉
as the

dual basis for the former set, and now we can write

GCC(ε) =
∑
n

1

ε− ε̃n − iγn
∣∣ΦR

n

〉 〈
ΦL
n

∣∣ , (3.20)

with ε̃n = Re
〈
ΦL
n

∣∣HCC + Σ
∣∣ΦR

n

〉
and γn = 1

2

〈
ΦL
n

∣∣Γ ∣∣ΦR
n

〉
. The transmission function is can
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thus be written as

T (ε) =βLβR

∣∣∣∣〈−L− 1

2
|GCC(ε)| L− 1

2

〉∣∣∣∣2
=βLβR

∑
n

〈
−L−1

2 | ΦR
n

〉2 〈
ΦL
n | L−1

2

〉2

(ε− ε̃n)2 + γ2
n

+βLβR
∑
n

m 6=n

〈
−L−1

2 | ΦR
n

〉 〈
ΦL
n | L−1

2

〉
ε− ε̃n − iγn

×
〈
−L−1

2 | ΦR
m

〉 〈
ΦL
m | L−1

2

〉
ε− ε̃m + iγm

(3.21)

After arriving at this exact expression, it is time to make some simplifying assumptions that
will allow us to describe our regime of interest: the central Wannier Stark state of the sample is
only weakly coupled to the leads. In spectral terms, this essentially means that the quantum
transmittance function of the sample is made up of a set of sharp lorentzian-shaped peaks
centered at around the exact Wannier-Stark energies. To describe this weak coupling limit, we
must make two assumptions about the spectrum of the effective Hamiltonian:

1. The broadenings vary slowly across the spectrum around each peak, i.e., γn(ε)'γn(ε̃n),

2. These peaks are sufficiently far apart so that they do not overlap significantly, that is
ε̃n−ε̃m≥γn for every n 6=m.

These two conditions guarantee that, for any value of ε, at least one of the factors in each term
of the double summation is close to zero. Hence, the quantum transmittance is approximately
given by a sum of lorentzian peaks (resonances), of the form

T (ε) ' βL (ε)βR (ε)
∑
n

〈
−L−1

2 | ΦR
n

〉2 〈
ΦL
n | L−1

2

〉2

(ε− ε̃n)2 + γ2
n

, (3.22)

resulting in γn being the Half Width at Half Maximum (HWHM) of the Lorentzian peaks.
Note that this approximation does not require the leads’ bandwidth to be much larger than
that of the sample, as in the Wide Band Limit. It merely requires that each individual peaks’
width is small enough to allow us to ignore the variation of γn for each Lorentzian. As we
shall see, this coefficients can be made arbitrarily small with the increasing of ∆V .
The second approximation is based on the intuition that each lorentzian peak and width

should approximately describe the energy and the decaying time of a Wannier-Stark state.
This assumption entails that for every Wannier-Stark state |Ψn〉 there exists an eigenstate∣∣ΦR

n

〉
such that

〈
Ψm | ΦR

n

〉
' Cnδmn, with Cn being a complex number. This in turn allows
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the Green function to be expandable in the Wannier-Stark basis as

GCC(ε) '
∑
n

〈
Ψn | ΦR

n

〉 〈
ΦL
n | Ψn

〉
ε− εn −∆n − iγn

|Ψn〉 〈Ψn| , (3.23)

with ∆n being a small correction to theWannier-Stark energy coming from ∆n = Re
〈
ΦL
n

∣∣Σ ∣∣ΦR
n

〉
. On the other hand, a straight-forward connection of these HWHMmay be obtained by Fourier
transforming the sample’s Green function GCC , which entails

GCC(t > 0) '
∑
n

Ane−i(εn−∆n)t/~e−γnt/~ |Ψn〉 〈Ψn| , (3.24)

with An =
〈
Ψn | ΦR

n

〉 〈
ΦL
n | Ψn

〉
. This means that each γn should describe the decaying rate

of each Wannier Stark state |Ψn〉 inside the sample, i.e, it should describe the rate at which
the corresponding Wannier-Stark state escapes the sample through the leads. To see that this
is indeed the correct interpretation, we use the KPM time-evolution algorithm with the entire
system (sample and the leads) described by the total Hamiltonian H defined in equation 3.1.
The initial state

∣∣Ψ̄0

〉
is then defined as a Wannier-Stark state inside the samples and zero in

the leads. In other words:

〈
n | Ψ̄0

〉
≡

{
Jn (2w/eEa) |n〉 , |n| ≤ (L− 1) /2

0 |n| > (L− 1) /2
(3.25)

and we calculate the time evolution of such state projected onto this same state, i.e,

G00 (t) =
〈
Ψ̄0

∣∣ e−iHt/~ ∣∣Ψ̄0

〉
. (3.26)

The results confirm this time evolution’s exponential decay with a characteristic time given
by τ0 = ~/γ0, with γ0 being the HWHM coefficient obtained from the central Lorentzian in
the transmission function, as shown in figures 3.10 a), b) and c). This in turn confirms that
the Wannier-Stark state inside the sample escapes the sample with a rate described by γ0.

Furthermore, by Fourier transforming this function for long times originates a lorentzian with
the width given by γ0, as expected (3.10.d)).
We then sought to describe how this decaying times scale with the parameters of the system

∆V ,L and wl. An initial attempt to describe this would be to use first order perturbation
theory to obtain the complex shift of the matrix Γ in the sample’s Hamiltonian spectrum,
which would yield 〈

ΦL
n

∣∣Γ ∣∣ΦR
n

〉
' 〈Ψn|Γ |Ψn〉 . (3.27)

Unfortunately, we need not even finish the computation to see why this would ultimately
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Figure 3.10.: a), b) and c) - G00(t) evolution with time for different ∆V (in units of w) with a
logarithmic scale in the y axis for a system of size L = 25a. The black dashed line
is the exponential function e−t/τ0 with τ0 being the characteristic decaying time
for the corresponding system. d) - Fourier transform of G00(t) for ∆V = 6w,
which originates a Lorentzian with width ~/τ0.

fail: In the RHS of the equation above, since |Ψn〉 has no dependence on wl whatsoever, the

originated width from this computation would depend on wl as βα (ε) =
√

4w2
l − (ε− Vα)2,

which increases with wl. However, it is clear from figure 3.7 that the width should actually
decrease with wl. This discrepant behavior on the leads’ hopping parameter is encoded in

∣∣ΦL
n

〉
and

〈
ΦR
n

∣∣ themselves, which have their tips in the spatial basis to be very dependent on the Γ

matrix. Ergo, such strong dependence on wl cannot be mimicked by first order perturbation
theory, or for any practical finite order for that matter. We may, however, circumvent this by
assuming that the contribution of |Ψn〉 for the width’s dependence on ∆V and L should be the
strongest out of all the states, and therefore we make the educated guess

〈
ΦL
n

∣∣Γ ∣∣ΦR
n

〉
' hn (wl,∆V,L) 〈Ψn|Γ |Ψn〉 , (3.28)

where hn (wl,∆V,L) are slow varying functions on ∆V and L compared to 〈Ψn|Γ |Ψn〉 but
may have a strong dependence on wl. The scalar product of the WS-states with the level-width
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function can be promptly calculated by using equation 2.66 and the symmetry property 2.68

〈Ψn|Γ |Ψn〉 = (βL (ε̃n) + βR (ε̃n))

(
J2
L−1
2

+n

(
2w

∆V
(L+ 1)

)
+ J2

L−1
2
−n

(
2w

∆V
(L+ 1)

))
.

(3.29)
To get the asymptotic value of such function for stronger potential biases, it will be useful to
express the Bessel functions of the first kind Jν(z) in the limit |ν| > z, which is [50]

Jν(z) ∼ 1√
2πν

( ez

2ν

)ν
(3.30)

With this, we obtain, if the state is well localized within the sample,

〈Ψn|Γ |Ψn〉 ' (βL (ε̃n) + βR (ε̃n))
1

π

 1

L− 1 + 2n

(
e 2w

∆V (L+ 1)

L− 1 + 2n

)L−1+2n

+
1

L− 1− 2n

(
e 2w

∆V (L+ 1)

L− 1− 2n

)L−1−2n
 . (3.31)

We are now in place to calculate the coefficients γ0, γ1 and γ−1 given by equation 3.28 for the
central-most Wannier-stark states, |Ψ0〉, |Ψ−1〉 and |Ψ1〉. These coefficients will of particular
importance for the characterization of the transient time of the current in the next subsection.
Firstly, for |Ψ0〉 we have (for L−1

2 � 2w
dV (L+ 1), which in this case is the same limit as the

BO’s existence condition ∆V � 4w),

〈Ψ0|Γ |Ψ0〉 ∼
4β

π (L− 1)

(
2we (L+ 1)

∆V (L− 1)

)L−1

, (3.32)

where β ≡ βL (0) = βR (0) =
√

4w2
l −∆V 2/4. One can then study the h0 function numerically

and obtain that h0 (α∆V,∆V,L) = C (α), meaning that h0 (wl/∆V ) will be solely a function
of wl/∆V . By plotting h0 as a function of wl/∆V for different values of ∆V (Fig. 3.11 a)),
one can actually conclude that

h0 (wl/∆V ) = A0

( wl
∆V

)−ν
, (3.33)

where ν ' 2. A small dependence of the amplitude coefficient A on ∆V can be observed, but
this will ultimately be negligible when compared to the power law dependence of the other
term obtained in equation 3.32, and thus the amplitude assumes the value of A ' 0.1514712.
Combining equations 3.32 and 3.33, one can then rebuild an expression for the decaying time
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τ0 = ~
γ0

as

τ0 '
2~
A0
w2
l

π (L− 1)
(

(L−1)
2we(L+1)

)L−1

√(
4wl
∆V

)2 − 1
(∆V )L−4 , (3.34)

which for high enough ∆V , scales with the potential bias as a power law of L−4. The validity
of such analytical result is confirmed numerically by plotting this expression against the the
HWHM of the central Lorentzian of the transmission function for various potential biases and
system sizes, showing a good correspondence (Fig. 3.11.b)).

Figure 3.11.: a) - h0 (α) as a function of wl/∆V with wl = α∆V for different values of ∆V , with
the dashed lines being curve fits of the form given in equation 3.33. b) - Inverted
central Lorentzian’s HWHM coefficients from the transmission functions (points)
against the inverse of the analytical expression obtained via perturbation theory
(dashed lines) as a function of ∆V for various system sizes, with wl = 2∆V and
a system of size L = 25a.

Furthermore, it is now seen in this figure that τ0 varies over 6 orders of magnitude with
∆V spanning from 11.8 to 22, which completely annihilates the dependence of the amplitude
coefficient A on the potential bias seen in figure 3.11.a). Finally, the obtainance of larger times
is capped only by machine error (which is of order of 10−16), making it impossible to probe
for higher potential biases.
Analogously, we can calculate the decaying time of the Wannier-Stark states |Ψ−1〉 and |Ψ1〉.
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Equation 3.29 for these states then yields a slightly more cumbersome expression:

〈Ψ1|Γ |Ψ1〉 = 〈Ψ−1|Γ |Ψ−1〉

' (βL (ε1) + βR (ε1))

π

[
1

L+ 1

(
e

2w

∆V

)L+1

+

+
1

L− 3

(
e 2w

∆V (L+ 1)

L− 3

)L−3
 . (3.35)

In a similar manner, numerically analyzing the function h1 (tl,∆V,L) originates identical re-
sults to the previous function h0 (tl,∆V,L), i.e,

h1 (wl/∆V ) ' A1

( wl
∆V

)−2
, (3.36)

shown in figure 3.12 a). The main difference from the previous function h0 is that, this time,
the explicit dependence on ∆V is larger, albeit still small when compared to the dependence
of equation 3.35 on ∆V . This is, nevertheless, expected, since these states are more strongly
coupled to the leads than |Ψ0〉, and thus the approximation is valid for higher values of ∆V .
τ1 is then obtained as

2~
τ1
' A1

( wl
∆V

)−2
(βL (ε1) + βR (ε1))

1

π

[
1

L+ 1

(
e

2w

∆V

)L+1

+
1

L− 3

(
e 2w

∆V (L+ 1)

L− 3

)L−3
 . (3.37)

And thus τ1 scales with ∆V , for large enough L, as

τ1 '
1

A1

w2
l 4~π (L− 3)

(
L−3

2we(L+1)

)L−3

√(
4wl
∆V

)2 − 1
(∆V )L−7

The comparison of such times with those obtained from the Lorentzian peaks are, now for
the state |Ψ1〉, represented in figure 3.12 b), showing a good correspondence once again.
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Figure 3.12.: a) - h1 (α) as a function of wl/∆V with wl = α∆V for different values of ∆V ,
with the dashed lines being curve fits of the form given in equation 3.36. b) -
Inverted central Lorentzian’s HWHM coefficients for the peak centered around
ε = aeE (points) against the inverse of the analytical expression obtained via
perturbation theory (dashed lines) as a function of ∆V for various system sizes,
with wl = 2∆V and a system of size L = 25.

3.3.3. Transient BO’s in the Current

We now have everything we need to characterize the transient regime of the central average
current evolution for ∆V > 4w and a proper choice of wl that mitigates the bound states inside
the sample. We may use the sample’s Green function GCC (t) to obtain the contribution to
the average current evolution through a specific bond from the states that are escaping the
sample. It is worth to notice that this quantity cannot account for incoming states from the
leads, and therefore will not describe the constant asymptotic Landauer prediction for the
current j (t→ +∞). To this specific current we will call the transient current, and define it
as jTransn (t) ≡ jn (t) − j (t→ +∞), where jn (t) is the average current evolution if we were
accounting for incoming states of the leads. Such current can then be expressed as

jTransn (t) = Tr
[
f(H0

CC)GCC (t) ĴnG
†
CC (t)

]
, (3.38)

where H0
CC is the unperturbed Hamiltonian and f(H0

CC) is the Fermi-Dirac distribution of
the initially thermalized state

f(H0
CC) =

∑
k

1

e−β(εk−µ) + 1
|ψk〉 〈ψk| , (3.39)
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where |ψk〉 is the initial eigenbasis of H0
CC . Using the Wannier-Stark basis to perform the

trace, this function will be responsible for the mixing of the different components of the two
Green functions, coupling different exponentials with different decaying times. Assuming that
the Wannier-Stark energies εn are much larger than the energetic shift introduced by the leads
ε̃n (which is a valid assumption for sufficiently large ∆V ), the transient current can thus be
written as

jTransn (t) ∼
∑
nm

Anme
−i(εn−εm)te−(1/τn+1/τm)t. (3.40)

The dominating decaying time scale should therefore be τ0/2., since the central Wannier-
Stark state is the least coupled to the leads. However, one should remember that Wannier-
Stark states are real states, meaning the states themselves do not carry any current, i.e,
〈Ψn| Ĵn |Ψn〉 = 0. This leads to

Ann = 〈Ψn| f
(
H0
CC

)
|Ψn〉 〈Ψn| Ĵn |Ψn〉 = 0, (3.41)

Therefore, we could never see a decayment of τ0/2 in the current, and the largest non-zero
decaying time scale is given by (1/τ0 + 1/τ1)−1 = τ0τ1/ (τ0 + τ1).
By plotting the average central current time evolution for different potential biases with an

appropriate choice of the leads’ hopping parameter (in this case, wl = (1/4 + 1/16) ∆V ), it is
clear that Bloch Oscillations cease to be a permanent phenomenon and instead take part as a
transient phase, decaying to the corresponding Landauer value (Fig 3.13.a)).

Figure 3.13.: a) Average current evolution divided by the respective Landauer value for differ-
ent potential biases (in units of w) for a sample of size L = 25a. b) Same current
evolutions with time scaled by the inverse of HWHM coefficients and amplitudes
adjusted. The dashed brown line denotes Current/Landauer = 1.
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Furthermore, by scaling the time by the respective τ0τ1/ (τ0 + τ1) value, it is possible to
obtain a similar decaying behavior across the different curves (Fig 3.13.b)). It is to be noted
that the BO’s should not be expected to collapse to the same curve, because their frequency
depends only on ∆V while the decaying time depends on both ∆V and wl.

Figure 3.14.: a) Real and b) complex part of the Fourier transform of the current for different
potential biases (in units of w) for a system of size L = 25a. The dashed lines
are the corresponding fits of the functions in equations 3.43 and 3.44. c) Ω
values obtain from the fit for different ∆V (blue points) compared to the BO’s
frequency for the corresponding ∆V (dashed blue line). d) τ values obtain from
the fit for different ∆V (blue points) compared to the corresponding values of
τ0τ1/ (τ0 + τ1) (dashed blue lines).

We would still like to further instill the notion that the observed oscillations are in fact
Bloch Oscillations decaying exponentially and τ0τ1/ (τ0 + τ1) is indeed the dominating time
scale of such decayment. If this is true, then for large times the average current should be a
sinusoidal function with the frequency of the BO’s modulated by an exponential, i.e.,

jn (t� 0) ' A cos (Ωt+ φ) e−t/τ + j (t→ +∞) . (3.42)

We can then remove the Landauer value from the current and try to fit such function to
the current curves. Unfortunately, sinusoidal functions are known to be prone to many fitting
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errors because of their periodic nature. A more sophisticated analysis may then be put forward
by Fourier transforming the signal. It can be shown from a simple calculation that the real
and complex components of the Fourier transform of the current are given by

Re [j (ω)] = Aτ
cosφ+ τ sinφ (ω − Ω)

1 + τ2 (ω − Ω)2 (3.43)

Im [j (ω)] = Aτ
sinφ− τ cosφ (ω − Ω)

1 + τ2 (ω − Ω)2 . (3.44)

The result of fitting this expressions to the Fourier transform is shown in figure 3.14, where
it is seen that the fits are actually quite good and increase for stronger potential biases.
From this fits, Ω may be extracted and compared to the BO’s frequency 2π/TBO. As seen

in figure 3.14 c), such Ω’s are in accordance with the BO’s frequency, allowing us to identify
this oscillations as such.The τ coefficient may also be extracted, with it corresponding to the
respective values of τ0τ1/ (τ0 + τ1) (Fig. 3.14 c)).
To see this more clearly, we plot the transient current for ∆V = 6.2w and the corresponding

exponential enveloping function exp [− (1/τ0 + 1/τ1) t] in figure 3.15. In this figure, it is easily
seen that such exponential function describes the decay of the transient current extremely
well.

Figure 3.15.: Time evolution of the average current minus the Landauer prediction through
the central bond of a sample of size L = 25a with ∆V = 6.2w and tl =
(1/4 + 1/16) ∆V . The envelope function exp [− (1/τ0 + 1/τ1) t] is represented
with the dashed black curve, showing a perfect correspondence with the decay-
ing of the transient current.
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3.3.4. Phase Identification

As a compact way to summarize the results, we have constructed a phase diagram depicting
the different states of the transport phenomenon.

Landauer

Unstable BO’s

Stable BO’s

ΔV = 4w

δB = 0

No  
Transport

Figure 3.16.: Phase diagram in terms of the leads’ hopping and lead overlap.

In this diagram, four different phases are then identifiable. “Stable” and “Unstable BO’s”
refer to Bloch Oscillations which occur infinitely or as a transient phenomenon respectively,
whereas “Landauer” is a regime where no BO’s are to be detected, i.e, all Wannier-Stark states
are completely delocalized from the sample, and we get a constant current response instead.
Finally, The “No Transport” phase refers to the phase where there is no overlap between leads
and no Wannier-Stark states localized inside the sample. In this phase, because we still have
bound states, we will have infinite oscillations in the current, but they will not correspond to
BO’s, since there is no Wannier-Stark state inside the sample. The diagram is drawn in terms
of wl/w and δB/w, where δB is the total overlap between the leads’ bands, given by

δB = −∆V + 4wl (3.45)

The dashed line between the “Unstable BO’s” and the “Landauer” phases denotes a continuous
cross-over rather than a phase transition.

3.4. Disordered Samples

With this extensive characterization of the clean case performed, we are free to move on to
the effect of disorder in a one-dimensional two-terminal mesoscopic device and, in particular,
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its effect on the originated Bloch Oscillations and on the Landauer current. Because disorder
is known for localizing states, we sought to see the effect of disorder on the already localized
Wannier-Stark states, which should be telling on the dependency of the inter-lead current on
the disorder parameter. Hence, it is absolutely instructive to explore the interplay between
these two length scales.

3.4.1. State’s Localization with Disorder

Firstly, let us discuss what happens to the Wannier Stark states of a one dimensional chain
with an electric field when we introduce Anderson disorder with strengthW . What we find by
plotting the eigenstates of said system is that, up to a certain value of W , the disorder does
not alter the extent of the Wannier-Stark states, i.e, their Wannier-Stark localization lengths
(Figs. 3.17 a), b) and c)). At some point with the increasing W , the disorder will dominate
the Hamiltonian’s diagonal, which translates in the effect from the potential ramp becoming
negligible. In this limit, the localization of the eigenstate will be dictated by disorder, which
gets smaller with the increase ofW [2,16] (Fig.3.17 d)). This is the limit where the interference
effects have a strong role in the localization of the eigenstates.

Figure 3.17.: Eigenstates of a 1D chain of length L = 125a with potential bias of ∆V = 9w for
disorder strengths of a)W = 0, b)W = 0.5w, c)W = 1.2w and d)W = 3w. The
red dashed lines delimit the space interval from −35a to 35a. As can be seen,
this interval roughly corresponds to the length where the eigenstate is non-zero
for a), b) and c), but it is much larger than the corresponding length for the
state in figure d). This should happen for a sufficiently strong disorder, where
the dominance of the disordered potential makes the eigenstates localized in a
length scale that is in accordance to the Anderson theory for localization.

There are, therefore, two different regimes: The one where interference effects are negligible,
and the localization of the states remains described by the Wannier-Stark localization length
and unaltered by disorder, and the one where interference is important, where the localization
of the eigenstates is dictated by disorder and therefore diminishes with the disorder strength.
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Figure 3.18.: Time evolution of a Gaussian wave-packet of variance σ = 20a initially centered
at l̄0 = 1000a in a one-dimensional tight-binding chain of size L = 2000 with
E = 0.01w/ea and a) a single impurity added to site 750a with on-site energy
1w (the blue dashed line denotes the impurity position) b) Anderson disorder
with a disorder parameter W = 0.5w.

The crossover between these two different regimes therefore occurs when the Anderson lo-
calization length becomes of the same order of magnitude as the Wannier-stark localization
length.
The fact that, in the former regime, the eigenstates remain with the same localization may

actually be viewed semi-classically. We now evoke our intuition built on sections 2.3 for the
evolution of Gaussian wave-packets in 1D lattices subject to an electric field to develop the
following line of reason: In a 1D clean chain, a gaussian wave-packet will realize sinusoidal
oscillations and confine itself to a region of space given by the Wannier-Stark localization
length, 2w/E. By introducing an impurity in its path, the conservation of energy allows merely
two possibilities for the scattering of the electron - forward scattering and backscattering - both
of which preserve the modulus of the momentum, k. The forward scattering will obviously
maintain the dynamics of the Gaussian wave-packet, not leading to any change in the region
of confinement. The backscattering is less obvious, but one can determine its effect by noting
that the dynamics generated at a given point with velocity of v or −v are the same apart from
a phase factor in its space-time diagram (Fig 3.18 a)). Thus, in 1D, the introduction of an
impurity wont change the confinement region of the oscillation.

3.4.2. Numeric Results

The main observation to pay attention to is that in the BO’s regime, the introduction of
disorder kills off the oscillations to zero, as seen in figure 3.19. In the left panel of this figure,
it is worth noticing that, although the disorder localization length is larger than the sample,
the oscillations still decay to zero. To explain this effect, we need to keep in mind that BO’s
are a coherent dynamical phenomenon between the states, and the scattering provided by this
disorder strength is sufficient to dephase the oscillations, killing them to zero [59].
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Figure 3.19.: Plots of the current time-evolution measured inside the sample for a sample of
size L = 256a and ∆V = 0 with Left - W = 0.3w and Right - W = 0.7w, with
Anderson localization lengths of 533.13a and 97.76a, respectively, for a single
realization of disorder.

As is has been stated, for a proper choice of wl it is possible to obtain a non-zero asymptotic
current predicted by the Landauer formula. We thus plot such asymptotic current as a function
of the disorder parameter W in figure 3.20.

Figure 3.20.: Total Landauer current through the sample as a function of the disorder param-
eter averaged over 240 different realizations of disorder. Such a large averaging
is needed because of the problematic resolution of the thin Wannier-Stark states,
originating very big fluctuations at this current’s scale. To see how the curve for
a single realization of disorder looks like, the reader is referred to Appendix D.1
to figures D.1a and D.1b to see the curves for a single realization of disorder.

We can explain the results in terms of the localization of the eigenstates inside the sample.
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In the weak disorder regime, the localization of the eigenstates will be similar to the Wannier-
Stark localization length (see figure 3.17 a), b) and c)), and therefore the current should not get
meaningfully altered, which explains the fairly constant regime of the plot up to W ' 1w. For
strong enough disorder, however, the eigenstates will start to localize even further (figure 3.17
d)), which will lead to a decay of the current. Notice that the current is already extremely
small, which will be worthy, as for this entire result in general, to keep in mind when we
compare it to the 2D case.
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4. Bloch Oscillations in Two-Dimensional
Two-Terminal Mesoscopic Devices

As the title reveals, this chapter aims to study BO’s in two-dimensional two terminal meso-
scopic devices. The model will be similar to the previous case, with the difference that now
the sample and the leads will be two-dimensional square lattices with a specific width (figure
4.1).

⃗E

Left Lead Sample Right Lead

Figure 4.1.: Depiction of the model for the 2D case, where both the leads and the sample are
a square lattice with the same width, where the electric field is non-zero only in
the sample.

The two-dimensional clean sample will display the same behaviors as in the 1D case, with
the difference being that the bandwidths of the leads are now different and dependent on the
system’s width, thus changing the condition for BO’s existence and for the mitigation of the
bound states. Regardless, we would still be studying infinite and transient BO’s, which have
already been studied in the previous chapter. This chapter will therefore be solely focused in
studying the disordered case, which is where the interesting physics lies, and we will be doing
this by studying the effect of disorder in the localization of the states and on the coupling
of the conduction channels, which will pose much more interesting results than in the one-
dimensional disordered sample.

47



4 Bloch Oscillations in Two-Dimensional Two-Terminal Mesoscopic Devices 48

4.1. State Localization with Disorder: An interesting Twist!

We will start by noticing something interesting: diagonalizing the Hamiltonian of a clean
sample, we get states that are Wannier Stark states in the x direction and propagating states
in the y direction as expected, since the problem is separable in both this axis. Plotting a
density plot of such states in space reveals that they are indeed localized in the x direction
with the usual Wannier Stark localization length. However, introducing disorder in the system
actually has the opposite effect of the usual: it delocalizes the states, leading them to have a
larger localization length. One can then hypothesize that for a certain disorder parameter fine
tuned to the length of the sample, we might be able to completely delocalize the states inside
the sample, obtaining a non-zero current response.

x

y

W=0. W=0.5

a) b)

Figure 4.2.: Density plots of eigenstates of a 2D system with dimensions 71x71 for E = 0.143
(in units of w/ea) and for disorder parameters of a) W = 0 and b) W = 0.5 (in
units of w). The blue lines delimit the spatial extent of the states.

To see how this comes about, we once again borrow the intuition built from gaussian wave-
packet propagation to interpret this result. Contrarily to the 1D case, in a 2D tight-binding
lattice the impurity has a different effect on the wave-packet: Because there are now other
accessible kx values via energy and momentum conservation laws, the dynamic of the scattered
electron in the x direction will change accordingly. In particular, we can imagine an electron
in a given position xa with momentum kx > 0 being scattered to kx = 0, at which point
the oscillatory motion will restart and the electron will be able to travel outside the original
confinement region (Fig 4.3).
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Figure 4.3.: Time evolution of a Gaussian wave-packet of variance σ = 20a initially centered at
l̄0 = 250a in a two-dimensional tight-binding square lattice of length Lx = 500a
and Ly = 40a with an applied electric field of E = 0.05w/ea and a) a single
impurity added to site 250a with on-site energy 2.5w (the blue dashed line denotes
the impurity position) b) Anderson disorder with a disorder parameterW = 1.2w.

Given this picture, we can now suppose that the introduction of Anderson disorder, being
spatially uncorrelated, will have similar effects on 1D and 2D tight binding lattices, that is, it
will preserve the confinement region of a gaussian wave-packet in 1D and broaden this region
in 2D. Furthermore, since we can reasonably assume that the eigenstates of such systems
will still each be centered around each of the sites and confined to a certain spatial region
on average, we are able to deduce that the eigenstates of the 2D system get enlarged by the
introduction of Anderson disorder. However, as it has been stated in the one-dimensional case,
this picture will not hold for sufficiently strong disorder, as interference effects will diminish
the localization length. Nonetheless, the regime where the eigenstates get larger with disorder
in a two-dimensional system will radically change the behavior of the Landauer current with
the disorder parameter when compared to the one-dimensional system.

4.2. Coupling Different Conduction Channels via Disorder

Before moving on the the numeric results, another mechanic is at play that need to be taken
into account for us to get the full picture. For a broad enough mesoscopic setup, the dispersion
relation for the leads will be

ε (kx, ky) = −2wl cos kxa− 2wl cos kya (4.1)

The leads will then have an energy band spanning from −4wl to 4wl. To see the formation of
Bloch Oscillations inside the sample, we need a potential ramp ∆V > 4w and to get overlap
between the bands of the leads we need ∆V > 8wl, so for wl = w we have a regime where
we could potentially have Bloch Oscillations inside the sample and transmission between the
leads. However, because the translation symmetry in the y-direction is conserved throughout
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the entire system in the absence of disorder, the y component of the momentum of an ingoing
propagating state must match that of the outgoing state for them to couple. Therefore, for
a clean sample, a propagating state in the left lead with, say, ky = 0 will only couple to a
propagating state in the right lead if this state also has ky = 0, and with the momentum and
energy conservation laws, this amounts precisely to the 1D case, where it is only possible to
have transmission for ∆V < 4wl.

Figure 4.4.: a) Transmission as a function of energy in the clean system for different values of
wl in units of w. System’s width = 61, length = 25 (in units of a) and ∆V = 8.2,
such that ξWS = 6.34 (in units of w and a, respectively). It is immediate to see
that for values of wl < ∆V/4 there is no transmission between the leads, with the
transmission acquiring non-zero values around E = 0 for wl > ∆V/4. b) Same
system as a) but with a disorder parameter W = 1.2 (in units of w), where now
we get non-zero transmission for wl > ∆V/8, meaning the effective bands are
destroyed.

One can thus conceptualize this problem by means of two effective bands of the same width
as the 1D leads’ bands, and the propagating states in the leads will only couple if these
bands overlap. Plotting the transmission coefficient as a function of energy (Fig.4.4.a)) does,
forsooth, corroborate this hypothesis, as we see that for wl < ∆V/4 we get no transmission
and for wl > ∆V/4 we get the usual peak around zero energy. The introduction of disorder in
the sample breaks the y-translation symmetry, thus coupling propagating states with different
ky and obtaining non-zero transmission for wl > ∆V/8.(Fig.4.4.b)

4.3. Numeric Results

Up until now, we have discussed two effects that can potentially induce an increase in
current with the introduction of disorder, but we are still to confirm this is actually the case.
Fortunately, both of this effects allow for a fine-tuning of a system where we can actually see
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this increase: In figure 4.5, we measure the current in a single bond inside a 2D sample for no
disorder (left panel) and disorder of strength W = 0.5w (right panel), and what we end up
observing is that, indeed, while for the former case we spot obvious Bloch Oscillations, which
will induce a small Landauer current with very large relaxation times, in the latter we observe
that, with a proper choice of the leads’ hopping, these BO’s decay elegantly to a non-zero,
constant current plateau.

Figure 4.5.: Time evolution of the current for a single bond inside a 2D sample of length
Lx = 25 and width Ly = 61 for a) W = 0 and b) W = 0.5w. The inset zooms in
in a region closer to zero current to show that the red curve decays to a non-zero
value while the black curve slightly oscillates around zero.

We have included two curves in each case to point out the importance of the increase of
the leads’ hopping: In the disordered sample, even though we have broad enough states to
mitigate the oscillations to a non-zero constant current, we can not see this increased response
for wl = w, where instead we only observe the decay of the oscillations to zero. As for the
clean sample, this augment on wl decreases the amplitude of the oscillations, which is expected
once we understand that when we increase the bands’ width, we allow for the former bound
states that were contributing to the oscillation to escape, which diminished the amplitude
of the current. Nevertheless, these are still identifiable as Bloch Oscillations because its the
period the BO’s period TBO.
We can double down on these facts by plotting the current inside one bond of one of the

leads for a clean sample and a disordered sample, shown in figure 4.6 a) and b) respectively.
The inset in figure 4.6 b) zooms in in a region closer to zero current to show that the red
curve (wl = ∆V/4) decays to a non-zero value while the black curve (wl = 1) decays to zero,
demonstrating once more the importance of the choice of wl. Furthermore, the obtainance of
a non-zero current response is only possible for a disordered sample, as in the clean sample
(figure 4.6 a)) the currents for both wl = 1 and wl = ∆V/4 decay to zero because the effects
mentioned in subsections 4.1 and 4.2 are not present.
As a take home message, we compute the Landauer current of a system divided by the width
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Figure 4.6.: Time evolution of the current for a single bond inside the right lead for a sample
of length Lx = 25a and width Ly = 61a for a) W = 0 and b) W = 1.2w. c) Total
Landauer current through the sample divided by the width on a sample of length
Lx = 25a and ∆V = 6w as a function of the disorder parameter for different
widths and a single disorder realization.

of the sample as a function of the disorder parameter averaged over ten different realizations
of disorder (Fig. 4.6 c)). The choice for this averaging is to characterize a mean behavior of
the system with the disorder, however, the current curve for a single realization clearly has
the same behavior as these ones. To view such curves, the reader is referred to the Appendix
D.2 to figures D.2 a) and b). The results are promising: The currents go from virtually zero
to a maximum value of an order of magnitude above its initial value, which is a more than
clear indication that the effects described previously are in action. Furthermore, the current
curves for Ly > 15 collapse to a single curve . This means the only effect that contributes for
the increase of the current with the increase of Ly is purely the addition of more transversal
channels, and the current’s functional dependence on the disorder parameter is essentially the
same, which is an interesting result by itself. With everything we have discussed so far, we are
now in a position to develop an interpretation of this figure: Up until W ∼ 1.7w, the current
increases rather rapidly, due to the delocalization of the Wannier-Stark states and the mixing
of propagating states with different momentums in the y direction. Interestingly enough, all
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of the curves peak at around the same value ofW , and then decrease in the same way for large
enough Ly. Conversely to the one-dimensional case, in a two-dimensional system we have two
different length scales introduced by disorder: The Anderson localization length ξA and the
mean free path `. We cannot therefore conclude, as we did in the one-dimensional case, that
the reason for the decay of the current is solely due to the interplay between the Wannier-Stark
localization length and the Anderson localization length. Although a thorough examination
on this front is lacking, it is still intuitive that such decay comes from the interference effects
that are described by the Anderson localization length.
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5. Conclusion and Outlook

Throughout this work, we sought to connect the Landauer constant current value to the
observed oscillations for high potential biases. This was successfully done when considering
a system without bound states, i.e, where the leads’ energy bands are overlapping, and we
have concluded that the oscillations will decay exponentially to a constant current given by
the Landauer formula. These decaying oscillations in the transient regime were effectively
identified as Bloch Oscillations. The exponential decaying time of this transient regime was
characterized in terms of the escaping rates of the three central-most Wannier-Stark states.
An analytical expression for such escaping rates was found, allowing one to obtain a power
law scaling of these rates with the potential bias’ strength.
We have further studied the behavior of the system with disorder, and found that in 1D,

before interference effects start taking place inside the sample, disorder does not, on average,
alter the localization length of the eigenstates. This is backed by a simplistic semi-classical view
in terms of the evolution of gaussian wave-packets. When this interference effects start taking
place, corresponding to the strong disorder limit, the localization length diminishes. This has
obvious impact on the Landauer current, which decreases with disorder in this regime. For 2D,
however, this picture gets subverted, as we are able, by increasing the disorder parameter W ,
to increase the inter-lead current from virtually zero to a finite value, and is mainly associated
with the disorder-induced delocalization of the Wannier-Stark states. This interesting result is
once again explained semi-classically by extending the same intuition built on one-dimensional
materials to this case.
Although the results in this thesis were interesting and new, particularly when considering

two dimensional disordered samples, we are all but finished: The transient Bloch Oscillations
decaying with the escaping time scale of the center-most state is still to be seen. This may
be attainable by increasing the leads’ size and the time-evolution in the numerical simulation.
As for the disordered case, it is mandatory to quantitatively define the increase in the extent
of the Wannier-Stark states with disorder, and study how the Anderson localization length
enters the equation. In order to do so, we need to find a good way to define the extent of the
eigenstates so we can automatically compute it numerically. With that done, we could also
study the effect with the rising of the temperature. It would also prove an interesting, although
demanding problem if, instead of a classical electrical potential introduced phenomenologically
in the Hamiltonian, we were to solve such transport setups with the Coulomb interaction term.
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A. Numeric Methods

A.1. Kernel Polynomial Method

A.1.1. Chebyshev Polynomials and the Recursion Relation

The Chebyshev polynomials is an orthogonal set of functions defined in the interval ]− 1, 1[

and are defined as

Tn(x) = cos(n arccos(x)). (A.1)

The first polynomials are then found to be

T0(x) = 1,

T1(x) = x,

T2(x) = 2x2 − 1,

T3(x) = 4x3 − 3x,

(A.2)

At first one might miss the utility of such functions given there are other polynomial basis
with a much simpler analytical expression, however, this set presents an advantage since they
can be recursively written in terms of previous polynomials like

Tm+1(x) = 2xTm(x)− Tm−1(x), (A.3)

which can be proven directly like

Tn+1(cos(θ)) + Tn−1(cos(θ)) = cos((n+ 1)θ) + cos((n− 1)θ)

= cos(nθ) cos(θ)− sin(nθ) sin(θ) + cos(nθ) cos(θ) + sin(nθ) sin(θ)

= 2 cos(nθ) cos(θ) = 2 cos(θ)Tn(cos(θ)).

(A.4)

Therefore, by explicitly calculating the first two polynomials, all others can be constructed
from this recursive relation.
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A.1.2. Orthogonality

The orthogonality relation is given in this case by∫ 1

−1

dx

π
√

1− x2
Tn(x)Tm(x) =

1 + δn0

2
δnm. (A.5)

To prove this, let us formulate this integral in terms of their analytical form:∫ 1

−1

dx

π
√

1− x2
cos(n arccos(x)) cos(m arccos(x)). (A.6)

Let us now perform the variable substitution x = cos θ∫ 0

π

1

π sin(θ)
cos(nθ) cos(mθ)[− sin(θ)]dθ =

1

π

∫ π

0
cos(nθ) cos(mθ)dθ =

1 + δn0

2
δnm. (A.7)

This orthogonality relation follows from the orthogonality of the Fourier series. The fact
they are so closely related explains why the Chebyshev Polynomials actually inherit a lot of
properties from the Fourier series. This orthogonality, as we will see, will allow for an easy
expansion of any function into this polynomials.

A.1.3. Function Expansion

Because this is a completely orthogonal basis, we can describe any function f(x) defined in
the interval ] − 1, 1[ in terms of these Chebyshev polynomials and apply the Fourier trick to
obtain the expansion coefficients. This expansion is then written as

f(x) =
∞∑
n=0

anTn(x) (A.8)

Where the coefficients are found by making use of the orthogonally relation, hence giving

an = (1 + δn0)

∫ 1

−1

dx

π
√

1− x2
Tn(x)f(x). (A.9)

It will come in handy to define

f(x) =

∞∑
n=0

2bn
π (1 + δn0)

Tn(x) (A.10)

purely to get rid of the multiplicative factor behind the integral

bn =

∫ 1

−1

dx√
1− x2

Tn(x)f(x). (A.11)
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For elucidative purposes only, we could also define

f(x) =
1√

1− x2

∞∑
n=0

2cn
π (1 + δn0)

Tn(x) (A.12)

which would eliminate the square root in the integral

cn =

∫ 1

−1
dxTn(x)f(x), (A.13)

but this will not be necessary.
This characteristic, together with the recursion relation, is highly useful for a fast writing

of functions of operators.

A.1.4. Truncated Series

The need for calculating this summation numerically will eventually call for a truncation of
the series, which can lead to some problems, specially around a point where the function, or
at least its derivative, is discontinuous. For such functions, the approximated sum will result
in appearance of oscillations around this points, denominated Gibb’s Oscillations. To smooth
these out, one can introduce additional coefficients wn as to better approximate the truncated
series to the original function, meaning the expansion would assume the form

f(x) =
N∑
n=0

wn
2bn

π (1 + δn0)
Tn(x). (A.14)

The form of these new coefficients wn can depend on the truncation degree N . We will not
delve further into detail around these coefficients and will instead show the formula which
works best, named Jackson Kernel, and given by

wJn =
(N − n+ 1) cos πn

N+1 + sin πn
N+1 cot π

N+1

N + 1
. (A.15)

To illustrate the power of such coefficients, it is shown in figure A.1 an expansion of a square
wave with and without these coefficients.

A.1.5. Writing Functions of Operators in terms of the Chebyshev Polynomials

Let us now move on to an Hermitian operator, living in a given Hilbert space of dimension
L, Ĥ. So we will be performing the change from a real variable to an operator

x→ Ĥ. (A.16)
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(a) Truncated Chebyshev expansions for a square
wave without the Jackson Kernel

(b) Truncated Chebyshev expansions for a square wave
with the Jackson Kernel

Figure A.1.: Truncated Chebyshev expansions at different orders of a square wave compared
to the original function

A function with no singularities may always be expressed in terms of its Taylor expansion

f (x) =
∞∑
n=0

anx
n. (A.17)

A function of an operator is then defined through its Taylor expansion, i.e, using the coefficients
obtained in the usual expansion to write

f
(
Ĥ
)

=
∞∑
n=0

anĤ
n. (A.18)

We are interested in expanding a certain function of this operator in terms of the Chebyshev
polynomials. Luckily, since the function itself is only a function of the the operator alone, it
is easy to see that the result will be diagonal in the eigenbasis of the operator, allowing us to
write

f(Ĥ) =

L∑
l=1

∞∑
n=0

2bn
π (1 + δn0)

Tn(εl) |εl〉 〈εl| . (A.19)

There is, however, an important caveat to be taken into account: Since the Chebyshev poly-
nomials are only defined in the interval ] − 1, 1[, the expansion above only converges if, in
this case, −1 < εl < 1, for every l. Since this is not generically true, one has to rescale the
spectrum to fit this interval and allow the expansion to converge. So, in truth, we will be
expanding a different operator:

ˆ̃H =
Ĥ

λ
, (A.20)
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where λ is chosen to make every eigenvalue obey −1 < ε̃l < 1, as to make sure that the
expansion is now well defined:

f( ˆ̃H) =
L∑
l=1

∞∑
n=0

2bn
π (1 + δn0)

Tn(ε̃l) |ε̃l〉 〈ε̃l| . (A.21)

It comes from the definition of a function of an operator that the coefficients bn are the same
as those of the function of a real variable, and so are obtained in the usual form using equation
A.11.

A.1.6. Truncated Series of Operators

We are now in a place to consider the application of a function of an operator to a vector,
or state, |Ψ〉. We will be promptly employing the Kernel Jackson to transform the expansion
into a finite sum. In terms of the Chebyshev Polynomials, such an operation would be

f( ˆ̃H) |Ψ〉 =
L∑
l=1

N∑
n=0

wJn
2bn

π (1 + δn0)
Tn(ε̃l) |ε̃l〉 〈ε̃l | Ψ〉 . (A.22)

We have gained some computational advantage since the Chebyshev series might converge
faster that the Taylor series, but this way we still need to diagonalize the operator Ĥ to obtain
the corresponding eigenvectors and eigenvalues. However, we may notice that the Chebyshev
Polynomials are themselves a function of the operator,

L∑
l=1

Tn(ε̃l) |ε̃l〉 〈ε̃l| = Tn( ˆ̃H) (A.23)

and the action of the function on a state its then written as

f( ˆ̃H) |Ψ〉 =

L∑
l=1

N∑
n=0

wJn
2bn

π (1 + δn0)
Tn( ˆ̃H) |Ψ〉 . (A.24)

The recursion relation is valid for operators as well

Tm+1( ˆ̃H) = 2 ˆ̃HTm( ˆ̃H)− Tm−1( ˆ̃H), (A.25)

which can be proven by expanding the LHS in the eigenbasis of the operator
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Tm+1( ˆ̃H) =

L∑
l=1

Tm+1(ε̃l) |ε̃l〉 〈ε̃l|

=
L∑
l=1

(2ε̃lTm(ε̃l)− Tm−1(ε̃l)) |ε̃l〉 〈ε̃l|

= 2H̃Tm( ˆ̃H)− Tm−1( ˆ̃H) (A.26)

and using the already known recursion relation A.3 from the second to the third step.
Let us define

Tm( ˆ̃H) |Ψ〉 = |Ψm〉 . (A.27)

Then the expansion is

f( ˆ̃H) |Ψ〉 =

N∑
n=0

wJn
2bn

π (1 + δn0)
|Ψn〉 . (A.28)

Then we can write
|Ψm+1〉 = 2 ˆ̃H |Ψm〉 − |Ψm−1〉 . (A.29)

Evoking the first two Chebyshev Polynomials written as functions of an operator:

T0( ˆ̃H) = 1, (A.30)

T1( ˆ̃H) = ˆ̃H, (A.31)

Assuming we know how the operator ˆ̃H acts on state |Ψ〉, then |Ψ2〉 is completely determined
by making use of the recursion relation

|Ψ2〉 = 2 ˆ̃H |Ψ1〉 − T0( ˆ̃H) |Ψ0〉

= 2 ˆ̃H ˆ̃H |Ψ〉 − |Ψ〉 . (A.32)

This means we may now retrieve each state |Ψm〉 iteratively and add their contributions to
the expansion A.28. This algorithm can be exploited in numeric calculations, since we now do
not have to diagonalize the operator ˆ̃H to find the action of the function. In particular, if the
operator ˆ̃H is represented by a sparse matrix, its action upon a state can be explicitly written
in a few lines of code, saving us a lot of memory from storing the whole matrix.

60



A Numeric Methods 61

A.1.7. Expansion of the Time-Evolution Operator

The expansion of the evolution operator e−iĤt/~ of a time independent Hamiltonian will be
central for the algorithm we are aiming to build. It was first put forward in [42] by Tal Ezer
to avoid Range-Kutta-like methods of evolving differential equations. If such an expansion is
successful, we will be able to evolve large systems without ever diagonalizing the Hamiltonian.
To do so, Let us first find out the coefficients for the expansion of the such a function by
expanding its real variable form first:

e−ixt/~ =
∞∑
n=0

2bn
π (1 + δn0)

Tn(x). (A.33)

The coefficients are thus given by

bn =

∫ 1

−1
dx
e−ixt/~Tn(x)√

1− x2

=

∫ 1

−1
dx
e−ixt/~ cos(n arccos(x))√

1− x2
. (A.34)

Performing the change of variable x = cos θ leads us to

bn =

(∫ π

0
dθeit/~ cos θ cos(nθ)

)∗
. (A.35)

One integral representation of a Bessel function of the first kind is [50]

Jn(z) =
i−n

π

∫ π

0
dteiz cos(t) cos(nt)/;n ∈ N+, (A.36)

which we can use to express the coefficients for n > 0 as

bn = π

(
inJn(

t

~
)

)∗
= π (−i)n Jn(

t

~
), n > 0. (A.37)

For n = 0, the integral is simply

b0 =

∫ 1

−1
dx
e−ixt/~T0(x)√

1− x2

=

∫ π

0
dθ cos (it/~ cos θ)

= πJ0(
t

~
), (A.38)
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(a) Real part of the time-evolution function compared
to its truncated expansions at different orders.

(b) Complex part of the time-evolution function com-
pared to its truncated expansions at different or-
ders.

Figure A.2.: Time-evolution operator compared to its truncated expansions at different orders.

where we have used the fact that sin(−ixt/~)√
1−x2 is an odd function and have identified the last

equation as such because of [50]

J0 (z) =
1

π

∫ π

0
cos(z cos θ)dθ (A.39)

To extend this to expansion of the time evolution operator written as a function of the Hamil-
tonian, we must once more be careful enough to normalize the Hamiltonian by a factor λ to
make sure the series converges. This is equivalent as writing

exp

(
−iĤ t

~

)
= exp

(
−iĤ

λ
λ
t

~

)
= exp

(
−i ˆ̃Hλ

t

~

)
(A.40)

and the expansion will now look like

e−iĤt/~ =

∞∑
n=0

2 (−i)n Jn(λt~ )

(1 + δn0)
Tn( ˆ̃H). (A.41)

I urge the reader to notice that the factor of normalization of the Hamiltonian is accounted for
in the Bessel function, meaning the final operator we get is not affected by the normalization.
Of course, if we are to evolve times numerically, we will need to end the expansion at

some point. Fortunately, because the time-evolution operator is a continuous function with
continuous derivative, the Jackson Kernel wont be needed and the truncated Chebyshev series
actually converges rather quickly with the number of polynomials, as seen in Figure A.2. Thus,
to evolve a state over time, one merely needs to run the algorithm described in A.1.6 with the
expansion of the time evolution operator and t as the time wished for the system to evolve.
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A.1.8. Current Average Evolution with KPM

We will see in the next chapter that the detection of Bloch Oscillations in a system at non-
equilibrium may be done by measuring oscillations in the current. In what follows, we will
seek to develop an efficient algorithm to effectively measure the current average evolution in
time with the ultimate goal of performing this measurement.
The model is described by a nearest neighbors tight-binding Hamiltonian with an initially

thermalized state which is perturbed with an electric potential at time t = 0. The Hamiltonian
will then have the generic form

Ĥ (t > 0) = −t
N−2∑
n=0

|n+ 1〉 〈n|+ |n〉 〈n+ 1|
N−1∑
n=0

εn |n〉 〈n|︸ ︷︷ ︸
Ĥ0

+
N−1∑
n=0

ξn |n〉 〈n|︸ ︷︷ ︸
V̂

, (A.42)

where we have used open boundary conditions and ξn are the onsite energies of the tight binding
Hamiltonian. The calculation of the current operator has already been done in subsection 2.2.1
and thus the local current operator is written as

Ĵn = −t i
~

(|n〉 〈n+ 1| − |n+ 1〉 〈n|) . (A.43)

The evolution of the average local current of a state described by a density matrix ρ̂ is

〈jn〉 (t) = Tr
(
ρ̂(t)Ĵn

)
= Tr

(
eiĤt/~ρ̂(0)e−iĤt/~Ĵn

)
.

(A.44)

Let us then introduce the assumption that the initial state is thermalized with the initial
Hamiltonian Ĥ0. This means that the density matrix can be written as

ρ̂(0) =
∑
k

f (εk, β, µ) |k〉 〈k| , (A.45)

where f (εk, β, µ) is the Fermi-Dirac function

f (εk, β, µ) =
1

eβ(ε−µ) + 1
, (A.46)

and the states |k〉 are to be understood as the eigenstates of the initial Hamiltonian indexed
by the quantum number k and εk their corresponding eigenenergies. This allows us to express
the mean current value as

〈jn〉 (t) = Tr

(
eiĤt/~

∑
k

f (εk, β, µ) |k〉 〈k| e−iĤt/~Ĵn

)
(A.47)
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Realizing the trace in the eigenbasis of Ĥ0 would entail diagonalizing such matrix, which
would, numerically speaking, be very costly as we increase the system’s size. To avoid such
a conundrum, we use the Wannier basis instead, and write the Fermi-Dirac function as a
function of the initial Hamiltonian:

〈jn〉 (t) =
N−1∑
m=0

〈m| eiĤt/~f
(
Ĥ0, β, µ

)
e−iĤt/~Ĵn |m〉

= −t i
~
〈n+ 1| eiĤt/~f

(
Ĥ0, β, µ

)
e−iĤt/~ |n〉 − 〈n| eiĤt/~f

(
Ĥ0, β, µ

)
e−iĤt/~ |n+ 1〉

= −t i
~

(
〈n+ 1 (t)| f

(
Ĥ0, β, µ

)
|n (t)〉 − 〈n (t)| f

(
Ĥ0, β, µ

)
|n+ 1 (t)〉

)
= 2t

1

~
Im
(
〈n+ 1 (t)| f

(
Ĥ0, β, µ

)
|n (t)〉

)
. (A.48)

We have reduced the problem of the diagonalization of both Hamiltonians Ĥ0 and Ĥ to that
of the time-evolution of two states |n (t)〉 and |n+ 1 (t)〉 with initial conditions |n (0)〉 =

|n〉 and |n+ 1 (0)〉 = |n+ 1〉 , which can be performed with the already described method.
Unfortunately, we are still left with a Fermi-Dirac function to deal with, but since it is a
function of Ĥ0, we may once again expand it in the Chebyshev Polynomial basis:

f
(

ˆ̃H0, β̃, µ̃
)

=
M∑
n=0

wJn
2bn

π (1 + δn0)
Tn( ˆ̃H0), (A.49)

where we have already attended for the Hamiltonian’s spectrum to be normalized:

f (ε, β, µ) =
1

eβ(ε−µ) + 1
=

1

eλβ(ε/λ−µλ) + 1
=

1

eβ̃(ε̃−µ̃) + 1
= f

(
ε̃, β̃, µ̃

)
, (A.50)

with the changes

β̃ = βλ (A.51)

µ̃ = µ/λ (A.52)

ε̃ = ε/λ (A.53)

We have also included the Jackson Kernel coefficients wJn for a better approximation of the
function due to the function approximating a step function for high β values, which is compu-
tationally cumbersome because of Gibb’s oscillations. The coefficients bn are obtain with the
usual method at the start of the computation.
So the final algorithm is as follows:

1. Start with the initial states |n (0)〉 = |n〉 and |n+ 1 (0)〉 = |n+ 1〉.

2. For each time evolution step dt, evolve the states |n (t− dt)〉 and |n+ 1 (t− dt)〉 to |n (t)〉
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and |n+ 1 (t)〉, respectively, with the operator e−iĤt/~.

3. Then, act with f
(

ˆ̃H0, β̃, µ̃
)
on |n (t)〉 via the Chebyshev recursion method and perform

the scalar product x = 〈n+ 1 (t)| f
(
Ĥ0, β, µ

)
|n (t)〉.

4. The result 2t1
~ Im (x) will entail the average value of the local current 〈jn〉 (t) at the bond

n→ n+ 1 at time t.
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B. Landauer Formula

The Landauer formula describes the total current that is transmitted through a sample
connected to two semi-infinite leads in the steady-state regime. The main idea is that these
leads will actually be acting as waveguides, and so the solution of a particular setup is described
by the transmission and reflexion coefficients of each of these existing waves, recasting the usual
transport problem into a scattering problem.

http://www.phy.bme.hu/~ujsaghy/StudentSeminar/1.pdf

Figure B.1.: Depiction of the setup considered for the derivation of the Landauer formula.

The physical quantities of interest are therefore described in terms of this reflexion and
transmission coefficients. In particular, the total current traversing the sample is given by the
celebrated Landauer Formula, which is also written in terms of these coefficients [17,60]:

IL→R =
e

2π~

∫
dε

(
fL

(
ε− ∆V

2

)
− fR

(
ε+

∆V

2

))
T (ε) , (B.1)

where T (ε) is the transmission coefficient at a certain energy ε which already accounts for
different conduction channels and fL (ε) and fR (ε) are the Fermi-Dirac distribution functions
for the left and right leads, respectively. In this brief appendix, we will deduce the the Landauer
formula for a generic two-dimensional system, as per references [61,62].

B.1. Scattering Matrix

For the generic 1D or 2D tight binding system made of a sample connected to two semi-
infinite leads, we can write the Hamiltonian in terms of smaller matrices representing the
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Hamiltonian of each of the the cross-sections of the system comprised by the unitary cells hn

and the coupling between these different smaller hamiltonians vn,n+1 (we will assume a nearest
neighbor tight binding Hamiltonian is in place), forging the Hamiltonian onto the form

H =



. . . . . .

. . . hL vL

v†L hL v0,1

v1,0 h1
. . .

. . . . . . . . .
. . . hN vN,N+1

vN+1,N hR vR

v†R hR
. . .

. . . . . .



(B.2)

where vL and vR are the hoppings for the left and right leads which are made constant
assuming the leads are translational invariant in the x direction. This in turn will generate an
infinite set of identical equations for the eigenstates in each lead of the form

hΨn + vΨn+1 + v†Ψn−1 = EΨn, (B.3)

which can be recast as a transfer matrix equation[
0 1

−v† (E − h)

][
Ψn−1

Ψn

]
=

[
1 0

0 v

][
Ψn

Ψn+1

]
. (B.4)

Meanwhile, because of the translation invariance in the leads, the eigenstates will also be
eigenstates of the translation operator, meaning

TΨn = λΨn. (B.5)

On the other hand
TΨn = Ψn−1, (B.6)

giving
Ψn−1 = λΨn. (B.7)

The normalization condition forces |λ| ≤ 1. States where |λ| = 1 are denominated propagating
states and states with |λ| < 1 are called evanescent states and decay exponentially to zero with
the distance from the sample. With this said, we can rewrite equation B.4 as a generalized
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eigenvalue problem (Ax = λBx)[
0 1

−v† (E − h)

][
Ψn−1

Ψn

]
= λ

[
1 0

0 v

][
Ψn−1

Ψn

]
. (B.8)

The current operator is defined as

dρn
dt

= In−1→n − In→n+1, (B.9)

giving us

In→n+1 =
i

~

[
0 vn,n+1

−vn+1,n 0

]
. (B.10)

For propagating states, we have

〈Φ |In→n+1|Ψ〉 =
i

~

(
Φ†nvn,n+1Ψn+1 − Φ†n+1vn+1,nΨn

)
=
i

~
Φ†n (λΨvn,n+1 − λ∗Φvn+1,n) Ψn. (B.11)

B.2. Orthogonality of Propagating States

Let us consider two propagating states obeying equation B.8 or, simply put,(
λΨvL + λ−1

Ψ v†L

)
Ψn = (E − hL) Ψn, (B.12)(

λΦvL + λ−1
Φ v†L

)
Φn = (E − hL) Φn. (B.13)

By taking the hermitian conjugate of the second equation and act with Ψn we get

Φ†n

(
λ∗Φv

†
L + (λ∗Φ)−1 vL

)
Ψn = Φ†n (E − hL) Ψn = Φ†n

(
λΨvL + λ−1

Ψ v†L

)
Ψn, (B.14)

which can be written as

[
λ∗Φ − λ−1

Ψ

]
Φ†nv

†
LΨn =

[
λΨ − (λ∗Φ)−1

]
Φ†nvLΨn. (B.15)

Multiplying by λΨλ
∗
Φ and making use of the fact that λΨλ

∗
Ψ = λΦλ

∗
Φ = 1, we arrive at

[λΨλ
∗
Φ − 1]λ∗ΦΦ†nv

†
LΨn = [λΨλ

∗
Φ − 1]λΨΦ†nvLΨn, (B.16)

which can be written as

[λΨλ
∗
Φ − 1] Φ†n

(
λΨvL − λ∗Φv

†
L

)
Ψn = 0. (B.17)
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So, if λΨλ
∗
Φ 6= 1, we immediately obtain

〈Φ |In→n+1|Ψ〉 =
i

~
Φ†n

(
λΨvL − λ∗Φv

†
L

)
Ψn = 0. (B.18)

Otherwise, if λΨλ
∗
Φ 6= 1, we can choose our states such that

〈Φ |In→n+1|Ψ〉 =
i

~
Φ†n

(
λΨvL − λ∗Φv

†
L

)
Ψn = vΨδΨ,Φ. (B.19)

B.3. Propagating States

It is important to note, nevertheless, that the propagating states have, in the general case,
two degrees of freedom and therefore two distinct components for the momentum. In what
follows, we will fix an energy for a state and use greek letters to index the different propagating
states at that energy. With that said, an eigenstate propagating to the right can be expanded
in the leads’ propagating states in the following way:

|Ψ+,α (E)〉 =


∣∣∣Ψ+

L,+,α (E)
〉

+
∑

β r
R←L
βα |ΨL,−,β (E)〉 , Left lead

? , Sample∑
γ t

R←L
γα |ΨR,+,γ (E)〉 , Right lead

(B.20)

Similarly, an eigenstate propagating to the left is

|Ψ−,γ (E)〉 =


∑

α t
L←R
αγ

∣∣∣Ψ−L,α (E)
〉

,Left lead

? , Sample

|ΨR,−,γ (E)〉+
∑

δ r
L←R
δγ

∣∣∣Ψ+
R,+,δ (E)

〉
,Right lead

(B.21)

B.4. Current Conservation

Writing out the current flowing in the right lead due to |Ψ+,α (E)〉 gives us

I+
R (E,α) =

〈
Ψ+
α (E) |IN+1→N+2|Ψ+

α (E)
〉

=
∑
γ,δ

(
tR←Lδα

)∗
tR←Lγα

〈
Ψ+
R,δ(E) |IN+1→N+2|Ψ+

R,γ(E)
〉

=
∑
γ,δ

(
tR←Lδα

)∗
tR←Lγα vγ,Rδγ,δ

=
∑
γ

vγ,R
∣∣tR←Lγα

∣∣2 , (B.22)
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with the current in the left lead due to the same state being

I+
L (E,α) =

〈
Ψ+
α (E) |IN+1→N+2|Ψ+

α (E)
〉

=
〈

Ψ+
L,α(E) |IN+1→N+2|Ψ+

L,α(E)
〉
− e

∑
δ,δ′

(
rR←Lδ′α

)∗
rR←Lδα

〈
Ψ−L,δ′(E) |IN+1→N+2|Ψ−L,δ(E)

〉

=

(
vα,L −

∑
δ

vδ,R
∣∣rR←Lδα

∣∣2) . (B.23)

The current flux conservation gives us

I+
L (E,α) = I+

R (E, γ)(
vα,L −

∑
δ

vδ,R
∣∣rR←Lδα

∣∣2) =
∑
γ

vγ,R
∣∣tR←Lγα

∣∣2
vα,L =

∑
γ

∣∣tR←Lγα

∣∣2 vγ,R +
∑
δ

∣∣rR←Lδα

∣∣2 vδ,L. (B.24)

Analogously we get, for left-propagating states,

vγ,R =
∑
δ

vδ,L
∣∣rL←Rδγ

∣∣2 +
∑
α

vα,R
∣∣tL←Rαγ

∣∣2 , (B.25)

or, in its most generic form, √vα,L
vβ,L

rR←Lαβ

√
vα,L
vδ,R

tL←Rαδ√
vγ,R
vβ,L

tR←Lγβ

√
vγ,R
vδ,R

rL←Rγδ

[ Ψ+
L,β(E)

Ψ−R,δ(E)

]
=

[
Ψ−L,α(E)

Ψ+
R,γ(E)

]
(B.26)

is unitary.

B.5. Landauer-Büttiker Formula

The current contribution from a given state propagating to the right |Ψ+
α (E)〉 is

I+
L→R(E,α) =

〈
Ψ+
α (E) |IN+1→N+2|Ψ+

α (E)
〉

=
∑
γ,δ

(
tR←Lδα

)∗
tR←Lγα

〈
Ψ+
R,δ(E) |IN+1→N+2|Ψ+

R,γ(E)
〉

=
∑
γ,δ

(
tR←Lδα

)∗
tR←Lγα vγ,Rδγ,δ

=
∑
γ

vγ,R
∣∣tR←Lγα

∣∣2 (B.27)
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To sum these current contributions over all propagating states, we write

I+
L→R =

∑
ky

∫
dkx(E)

2π
fL(E)I+

L→R(kx, ky), (B.28)

at which point we perform a change of variable in the energy:

dkx(E) = dE
dkx
dE

= dE
1

~vky ,L(E)
, (B.29)

with vky ,L(E) being the group velocity at a fixed ky and energy, giving us

I+
L→R =

∑
ky

∫
dE

2π

1

~vky ,L(E)
fL(E)I+

L→R(E, ky). (B.30)

We are now in a position to realize that indexing the states at a given energy by ky or by α
is the same, allowing us to revert to the previous notation:

I+
L→R =

∑
α

∫
dE

2π

1

~vα,L(E)
fL(E)I+

L→R(E,α) (B.31)

=
1

~
∑
α,γ

∫
dE

2π
fL(E)

vγ,R(E)

vα,L(E)

∣∣tR←Lγα

∣∣2 . (B.32)

Conversely, for a state propagating to the left |Ψ−,γ〉 the current is

I−L→R(E, γ) =
〈
Ψ−γ (E) |IN+1→N+2|Ψ−γ (E)

〉
=
〈

Ψ−R,γ(E) |IN+1→N+2|Ψ−R,γ(E)
〉

+
∑
δ,δ′

(
rL←Rδ′γ

)∗
rL←Rδγ

〈
Ψ+
R,δ′(E) |IN+1→N+2|Ψ+

R,δ(E)
〉

=

(
−vγ,R +

∑
δ

vδ,R
∣∣rL←Rδγ

∣∣2) . (B.33)

Evoking equation B.25 allows us to write

I−L→R(E, γ) =
∑
α

vα,L
∣∣tL←Rαγ

∣∣2 . (B.34)

We thus obtain

IL→R = I+
L→R − I

−
L→R

=
1

~
∑
α,γ

∫
dE

2π

(
fL(E)

vγ,R
vα,L

∣∣tR←Lγα

∣∣2 − fR(E)
vα,L
vγ,R

∣∣tL←Rαγ

∣∣2) . (B.35)
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The equation is now close to its final form, but by implying thermodynamic equilibrium we
are able to further discern one last property of the the eigenstate problem: In thermodynamic
equilibrium, and therefore a system with a uniformly defined chemical potential, the system
must display a null net current, meaning

IL→R = I+
L→R − I

−
L→R = 0

⇔ 1

~
∑
α,γ

∫
dE

2π
f(E)

(
vγ,R
vα,L

∣∣tR←Lγα

∣∣2 − vα,L
vγ,R

∣∣tL←Rαγ

∣∣2) = 0, (B.36)

the only difference from the previous equation being that now we have the same Fermi-Dirac
distribution defined in all the system. This allows us to get a final relation which is independent
of the thermodynamic state the system is:

vγ,R
vα,L

∣∣tR←Lγα

∣∣2 − vα,L
vγ,R

∣∣tL←Rαγ

∣∣2 . (B.37)

Substituting this into equation B.35 then finally gives us the Landauer-Büttiker formula for
the nearest-neighbor tight-binding model:

1

~
∑
α,γ

∫
dE

2π
(fL(E)− fR(E))

vγ,R
vα,L

∣∣tR←Lγα

∣∣2 . (B.38)

Defining the transmission coefficient as

T (E) =
∑
α,γ

vγ,R
vα,L

∣∣tR←Lγα

∣∣2 (B.39)

allows us to see that we have regained the Landauer Formula B.1 presented in section 3.1.
The calculation of the coefficients tR←Lγα may be done numerically through various methods.
To achieve this computation, we have utilized the Kwant package, a python package optimized
for such calculations using wave-function matching [55].

B.6. Self Energy introduced by the Leads

In this short section, we will express the effect the leads have on the central sample as a self-
energy introduced in the central sample’s Green function. We will be tracing out the Wannier
states of the leads and thus obtain a Green function GCC written solely in the Wannier basis
of the central sample. In doing so, we lose the hermiticity of this Green function: because it
is coupled to an environment (in this case, the leads), GCC will describe the dynamics of an
open system.
The system in question has the Hamiltonian
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Ĥ = ĤL + ĤR + ĤC + V̂LC + V̂CR, (B.40)

where

ĤL = ĤL − Left Lead Hamiltonian,

ĤR − Right Lead Hamiltonian,

ĤC − Central Sample Hamiltonian,

V̂LC − Connecting term between left lead and sample,

V̂CR − Connecting term between right lead and sample.

(B.41)

To make the subsequent calculations simpler and more compact, we will define Ĥp ≡ ĤL+ĤR

and V̂ ≡ V̂CR + V̂LC . It is easier to understand what will follow if we expand this operators
in terms of the Wannier basis of the system. It is therefore important to notice the operator
ĤC is written solely in terms of the Wannier states of the central sample, Ĥp is written in
terms of the Wannier basis of the leads exclusively and V̂ is the only matrix that has Wannier
states from both basis. Written more explicitly, we have

ĤC =
∑
iC ,i
′
C

(
ĤC

)
iC ,i
′
C

|iC〉
〈
i′C
∣∣ , (B.42)

Ĥp =
∑
ip,i′p

(
Ĥp

)
ip,i′p
|ip〉

〈
i′p
∣∣ , (B.43)

V̂ =
∑
iC ,ip

(
V̂
)
iC ,ip
|iC〉 〈ip|+ h.c, (B.44)

where iC , i′C index solely the Wannier states of the sample and ip, i′p index those of the leads.
The retarded Green function of such a system is expressed as

GR (ε) = [(ε+ i0+)I−H]−1. (B.45)

Such equation may be explicitly written as[
(ε+ i0+)I− Ĥp V̂

V̂† (ε+ i0+)I− ĤC

] ĜR
pp (ε) ĜR

Cp (ε)(
ĜR
Cp

)†
(ε) ĜR

CC (ε)

 = I. (B.46)

This allows us to get two different equations(
(ε+ i0+)I− Ĥp

)
ĜR
Cp (ε) + V̂ĜR

CC (ε) = 0, (B.47)

V̂†ĜR
Cp (ε) +

(
(ε+ i0+)I− ĤC

)
ĜR
CC (ε) = I. (B.48)
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We may identify the inverse of the free Green function of the leads in the first equation because
of its definition

ĝRpp (ε) =
(

(ε+ i0+)I− Ĥp

)−1
(B.49)

and using such equation leaves us with

ĜR
Cp (ε) = −gRppV̂ĜR

CC (ε) . (B.50)

Substituting this into the first equation yields(
(ε+ i0+)I− ĤCC − V̂†gRppV̂

)
ĜR
CC (ε) = I. (B.51)

This calculation unveils the added self-energy term arising from the coupling of the leads to
the central sample, which we’ll write as

ΣR (ε) = V̂†gRppV̂. (B.52)

One may think we have gained little to no advantage since gRpp is obtained by inverting an
infinite matrix, however, since it it the Green function associated with the unperturbed Hamil-
tonian, it can be usually be solved analytically. It’s also worthy to notice that the self-energy
is purely written in the Wannier basis of the central sample alone: because gRpp is composed
only of the Wannier states of the leads, the matricial products in equation B.52 are equivalent
to tracing out the leads’ Wannier states. Put in mathematical terms,

ΣR (ε) =
∑
iC ,i
′
C

∑
ip,i′p

V †ip,iC |iC〉 〈ip | ip〉
(
gRpp
)
ip,i′p

〈
i′p | i′p

〉
Vi′p,i′C

〈
i′C
∣∣

=
∑
iC ,i
′
C

ViC ,i′C |iC〉
〈
i′C
∣∣ , (B.53)

where ViC ,i′C =
∑

ip,i′p
V †ip,iC

(
gRpp
)
ip,i′p

Vi′p,i′C . Operators that live in the Hilbert space spawned
by the Wannier states of the central sample will now be denoted in bold (this means that
operators such as ΣR (ε), ĜR

CC and ĤCC are all written in the Wannier basis of the sample).
The sample’s Green function is then written as the solution of the equation(

(ε+ i0+)I− ĤCC −ΣR (ε)
)

ĜR
CC (ε) = I. (B.54)

which lives purely in the hilbert space of the central sample. Analogously, for the advanced
Green function we get (

(ε+ i0+)I− ĤCC −ΣA (ε)
)

ĜR
CC (ε) = I, (B.55)
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where ΣA (ε) = V̂†gAppV̂. It is important to notice that ΣR/A (ε) is, in general, non-hermitian,
therefore making Ĝ

R/A
CC (ε) non-hermitian as well. This means that the time-evolution operator

will no longer be unitary, because the states inside the sample are allowed to couple with those
of the environment and “escape”, leading for a decay of such states. Nevertheless, it is a useful
tool to express the sample’s green function in this way which served us well in section 3.3.2,
since the Caroli Formula for the transmission coefficient [29] is written in terms of the matrices
ĜR
CC(ε), ĜA

CC(ε), ΓL(ε) and ΓR(ε), which all live in the central sample’s Hilbert space.
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C. Calculations

In this chapter, we calculate the expression for the evolution of a gaussian wave-packet in
real space. We do so by Fourier transforming ψl (t) = a

2π

∫ π/a
−π/a dk ψ̂(k, t) exp ikla

The expression for the wave-packet in the reciprocal space with the expansion of cos
(
ka+ eaEt

2~
)

around k (t) yields

ψ̂(k, t) ≈
(

8πσ2

a2

)1/4

exp

[
i

4w

eaE
sin

(
eaEt

2~

)[
cos

(
a

(
k (t) +

eEt

2~

))
−a sin

(
a

(
k (t) +

eEt

2~

))
(k − k (t))

]]
(C.1)

× exp

(
−2σ2

(
k − k0 +

eEt

~

)2
)
. (C.2)

Let us first work the first term in the first exponential who will not get transformed by the
integral. This term is then

i
4w

eaE
sin

(
eaEt

2~

)
cos

(
a

(
k0 −

eEt

2~

))
= i

4w

eaE

(
cos (ak0) sin

(
eaEt

2~

)
cos

(
−eaEt

2~

)
.

+ sin (ak0) sin2

(
eaEt

2~

))
By using sin (α) cos (α) = 1

2 sin (2α) and sin2 α = 1−cos 2α
2 on the first and second term respec-

tively, we get

= i
2w

eaE

(
cos (ak0) sin

(
eaEt

~

)
+ sin (ak0)− sin (ak0) cos a

eEt

~

)
= i

2w

eaE

(
sin (ak0)−

(
cos (ak0) sin

(
−eaEt

~

)
− sin (ak0) cos

(
−eaEt

~

)))
= i

2w

eaE

(
sin (ak0)− sin

(
ak0 −

eaEt

~

))
. (C.3)
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The second term involves the Fourier Transform, which yields

a

2π

∫ π/a

−π/a
dk exp (β(k − k (t)))× (C.4)

a

2π

∫ π/a

−π/a
dk exp (β(k − k (t)))× exp

(
−2σ2 (k − k (t))2

)
exp (ikla)

=

√
π

2σ2
exp

(
ikla− (al − iβ)2

8σ2

)
(C.5)

where β is defined as

β ≡ −i 4w

eaE
sin

(
eaEt

2~

)
a sin

(
a

(
k (t) +

eEt

2~

))
(C.6)

we then have

iβ =
4w

eaE
sin

(
eaEt

2~

)
a sin

(
a

(
k (t) +

eEt

2~

))
=

4w

eE
sin

(
eaEt

2~

)(
sin (ak0) cos

(
−eaEt

2~

)
+ cos (ak0) sin

(
−eaEt

2~

))
=

4w

eE

(
sin (ak0) sin

(
eaEt

2~

)
cos

(
eaEt

2~

)
− cos (ak0) sin2

(
eaEt

2~

))
.

Using the same tricks as before gives us

iβ =
2w

eE

(
sin (ak0) sin

(
eaEt

~

)
− cos (ak0) + cos (ak0) cos

(
eaEt

~

))
=

2w

eE

(
cos (ak0) cos

(
−eaEt

~

)
− sin (ak0) sin

(
−eaEt

~

)
− cos (ak0)

)
=

2w

eE

(
cos

(
ak0 −

eaEt

~

)
− cos (ak0)

)
. (C.7)

Putting equations C.3, C.5 and C.7 together finally gives us the wanted expression for the
Fourier transform of ψ̂ (k, t):

ψl(t) ≈
(

a2

2πσ2

)1/4

exp

(
i

(
k0 − eE

t

~

)
la− iΦ(t)− a2

4σ2
(l − l̄(t))2

)
, (C.8)

with

Φ(t) =
2w

eEa

[
sin

(
k0a− eEa

t

~

)
− sin (k0a)

]
, (C.9)
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and

l(t) =
2w

eEa

[
cos

(
k0a− eEa

t

~

)
− cos (k0a)

]
. (C.10)
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D. Single Disorder Realization Curves

D.1. 1 Dimension

Two different plots of current VS disorder parameter are presented in figures D.1a and
D.1b, each corresponding to a unique disorder realization. The current curve is clearly very
dependent on the disorder configuration at this scale due to it being so small. The current
always ends up decaying to zero nonetheless.

0 1 2 3 4 5
W

0.00

0.02

0.04

0.06

0.08

Cu
rr
en

t/L
y(
et
d
2 /ħ

)

(a)

0 1 2 3 4 5
W

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

Cu
rr
en

t/L
y(
et
d
2 /ħ

)

(b)

Figure D.1.: Total Landauer current through the 1D sample of size L = 25a and ∆V = 6t as a
function of the disorder parameter. Each graph is a different disorder realization.
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D.2. 2 Dimensions

The plots of current VS disorder parameter for a single realization of disorder are presented
in figures D.2 a) and b), corresponding to the total and divided by width currents, for different
system sizes. Contrary to the one-dimensional case, the current curves do not alter meaning-
fully with the disorder configuration and they preserve the essential behavior, it being, for
example, the place where the maximal value is met. In figure b), we can see that the curve
gets smoother with increasing width, a result of the self-averaging properties of the current
with increasing sample size.

0 1 2 3 4 5
W (w)

0

5

10

15

20

25

30

35

Cu
rre

nt
 (e

w
a
/ħ

)

a) Ly = 1
Ly = 4
Ly = 15
Ly = 30
Ly = 60
Ly = 110

0 1 2 3 4 5
0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

Cu
rre

nt
/L
y 

(e
w
/ħ

)

b)

Figure D.2.: a) Total Landauer current through the sample and b) Landauer current through
the sample divided by the width on a sample of length Lx = 25a and ∆V = 6w
as a function of the disorder parameter for different widths and a single disorder
realization.
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