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Resumo 

Os andorinhões-pálidos, tal como outras espécies de andorinhões, são aves 

extremamente bem-adaptadas a um estilo de vida aéreo, exibindo adaptações únicas 

que lhes permitem voar quase continuamente. Estes voos contínuos, por vezes a 

elevadas altitudes, e a sua restrita área de distribuição dificultam o estudo detalhado da 

ecologia alimentar desta espécie. A dieta destas aves era até recentemente estudada a 

partir da identificação visual das presas presentes em fezes, bolos alimentares 

entregues às crias e conteúdo estomacal. Estas técnicas, que não permitem 

identificações taxonómicas de elevada resolução, têm sido substituídas por técnicas 

moleculares inovadoras, como o DNA metabarcoding. Esta abordagem molecular 

permite identificar espécies com alto rendimento, reduz o enviesamento que as 

identificações morfológicas geram, apesar dos seus próprios artefactos, e evita que seja 

necessário conhecer previamente a presa a ser identificada. 

Esta tese teve como objetivo estudar a dieta do andorinhão-pálido durante a sua época 

de reprodução, avaliando e caracterizando as variações temporais ao longo deste 

período e analisando as potenciais diferenças entre a dieta de machos e fêmeas, 

relativamente à riqueza e composição da dieta e ao tamanho das presas ingeridas. Para 

tal, foi usado DNA metabarcoding para analisar amostras fecais recolhidas 

mensalmente ao longo da época de reprodução de 2021 numa colónia de andorinhão-

pálido em Vila Nova de Famalicão. Utilizou-se o conjunto de primers fwh2 da região COI 

para identificar os artrópodes presentes nos excrementos e o conjunto de primers P2P8 

da região CHD para sexar as aves. 

Das presas analisadas, foram identificadas 74 famílias pertencentes a 16 ordens de 

artrópodes, sendo as ordens Hymenoptera, Hemiptera, Coleoptera, Diptera e Psocodea 

as mais consumidas. Foram também encontradas variações temporais na riqueza e 

composição da dieta e no tamanho dos artrópodes predados. Em junho, a dieta foi 

composta principalmente por formigas (Hymenoptera: Formicidae) e foi neste mês em 

que se registou um dos valores mais baixos de riqueza específica e o segundo valor 

mais elevado no tamanho das presas capturadas. Em julho, pelo contrário, registou-se 

os valores de riqueza específica mais elevados, com os andorinhões-pálidos a 

alimentarem-se das presas mais pequenas. Em agosto e setembro, as dietas 

amostradas apresentaram uma maior incidência de Hemiptera e Coleoptera, sendo que 

setembro apresentou um dos valores mais baixos de riqueza específica, a par de junho, 

e os valores mais elevados no tamanho das presas consumidas. Por fim, a dieta 

consumida em outubro foi predominantemente composta por Diptera. Relativamente à 
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dieta dos machos e das fêmeas, embora não se tenham encontrado diferenças entre a 

dieta dos dois sexos na sua riqueza e composição, foram observadas diferenças no 

tamanho dos artrópodes consumidos pelos diferentes sexos, com os machos a 

alimentarem-se de presas maiores. 

A variação da dieta do andorinhão-pálido durante a época de reprodução resultou 

provavelmente de acumulações de artrópodes, que foram oportunisticamente predados 

pelos andorinhões. Embora não se tenham encontrado diferenças significativas na 

riqueza e composição da dieta entre os sexos, o facto de os machos consumirem presas 

maiores pode sugerir a existência de segregação alimentar sexual neste grupo de aves. 

Este estudo encontrou ainda várias espécies de pragas na dieta dos andorinhões, 

sugerindo assim o seu importante papel ecológico na regulação de artrópodes nocivos. 

Finalmente, estes resultados mostram como as espécies parecem moldar o seu 

comportamento alimentar, provavelmente em resposta a mudanças na disponibilidade 

alimentar. Quando as potenciais presas ótimas estavam disponíveis, os andorinhões-

pálidos aparentemente exploraram esses invertebrados, reduzindo o seu nicho 

alimentar. Contudo, quando as condições ambientais se deterioraram e as presas 

ótimas deixaram de estar disponíveis, estes começaram a alimentar-se de presas 

subótimas, alargando assim o seu nicho alimentar, o que resultou numa dieta mais 

variada. 

 

Palavras-chave: Alimentação aérea, Apus pallidus, DNA metabarcoding, Ecologia 

alimentar, Variação temporal da dieta. 
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Abstract 

Pallid Swifts, as other swifts, are birds extremely adapted to an aerial lifestyle, showing 

unique adaptations that allow them to fly almost continuously. This non-stop high-altitude 

flight along with their restricted distribution breeding area hampers the detailed study of 

this species’ feeding ecology. The diet of these highly aerial birds was until recently 

studied from the visual identification of prey items present in faeces, food boluses 

delivered to nestlings or stomach contents. These techniques, that fail to produce high 

taxonomic resolution identifications, have been replaced by avant-garde molecular 

techniques, such as DNA metabarcoding. This molecular approach allows high-

throughput species identification, reduces the bias generated by morphological 

identifications, despite its own artefacts, and avoids the requirement of prior knowledge 

of the identified prey. 

This thesis aimed to study the diet of the Pallid Swift during its breeding season, 

evaluating and characterising temporal variations throughout this period and assessing 

potential differences between the diets of males and females, with regard to diet 

richness, composition and prey size. For that, DNA metabarcoding was used to analyse 

faecal samples collected monthly during the 2021 breeding season, from a Pallid Swift 

colony in Vila Nova de Famalicão. The primer set fwh2 COI was used for the identification 

of arthropods present in the faecal droppings and P2P8 CHD primer set for birds’ sexing.  

From the prey items retrieved, 74 families were identified belonging to 16 arthropod 

orders, with Hymenoptera, Hemiptera, Coleoptera, Diptera and Psocodea being the 

most consumed prey orders. There were temporal variations in diet richness, 

composition and prey size. The diet in June was mainly composed of ants (Hymenoptera: 

Formicidae), and this month registered one of the lowest values of prey richness and the 

second highest of prey size. In July, by contrast, prey richness values were the highest, 

with Pallid Swifts feeding on the smallest prey items. In August and September, the 

sampled diets showed a higher incidence of Hemiptera and Coleoptera, with September 

showing one of the lowest values of prey richness, and the highest values of prey size. 

Finally, the diet consumed by these swifts in October was predominantly composed of 

Diptera. Regarding the diet of males and females, although no differences were found 

between the diet of males and females in composition and richness, there were 

differences in the size of arthropods preyed by the different sexes, with males feeding, 

on average, upon larger arthropods. 

The temporal variation in Pallid Swifts’ diet during the breeding season likely resulted 

from spatiotemporally accumulations of aerial prey, which were opportunistically 
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predated by swifts. Although no significant differences were found in diet richness and 

composition between sexes, the fact that males consume larger prey may suggest the 

existence of sexual dietary segregation in this group of birds. In addition, this study has 

recorded the consumption of multiple pest species by swifts, thus suggesting their 

important ecological role in regulating harmful arthropods. At last, these results show 

how species appear to shape their feeding behaviour, likely in response to changes in 

food availability. When potential optimal prey were available, the Pallid Swifts apparently 

exploited these invertebrates, reducing their food niche. However, when environmental 

conditions deteriorated and the optimal prey were no longer available, Pallid Swifts 

started to feed on sub-optimal prey, thus widening their food niche, which resulted in a 

more diverse diet. 

 

Keywords: Aerial foraging, Apus pallidus, Dietary temporal variation, DNA 

metabarcoding, Feeding ecology.  
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1. Introduction 

1.1 Swifts (Apodiformes: Apodidae) 

Swifts (Apodiformes: Apodidae) are insectivorous birds extremely well-adapted to an 

aerial lifestyle, displaying unique morphological, behavioral, and physiological 

adaptations to this distinct way of living. High aspect ratio wings, provided by short arm-

wings and very long hand wings, allow a leading-edge vortex which significantly 

increases lift on the wings, resulting in more agile and aerodynamic performances (Ben-

Gida et al., 2020; Henningsson & Hedenström, 2011; Lentink et al., 2007; Videler et al., 

2004). Stream-lined compact body suitable for both high-speed and energy-efficient 

flights (Henningsson et al., 2008; Lentink et al., 2007; Videler et al., 2004). Energy-saving 

flap-gliding flight, an intermittent flight mode of flapping movements intermingled with 

gliding phases that save them much-needed energy, allowing them to roost during flight 

(Muijres et al., 2012; Sachs, 2017). High hematocrit and hemoglobin concentration fulfill 

the oxygen requirements, in these birds with high metabolic rates (Palomeque et al., 

1980). Thermoregulation during flight, through leg trailing and panting, promotes 

effective heat dissipation that is crucial for birds that spend most of their time in flight and 

are therefore particularly susceptible to solar radiation (Neumann & Neumann, 2016), 

are some of these adaptations.  

The above mentioned traits allow these highly mobile and fast birds, that can ascend 

several hundred meters high (Gustafson et al., 1977; Meier et al., 2018), to fly almost 

continuously (up to 10 months) during the nonbreeding period (Hedenström et al., 2019; 

Hedenström et al., 2016; Liechti et al., 2013; Lockley, 1969). During the breeding period, 

collection of material to build nests, sleeping, mating, drinking and invertebrates’ foraging 

occurs during flight (Brunton, 2018; Hedenström et al., 2016; Henningsson et al., 2009; 

Orłowski & Karg, 2013; Rattenborg, 2006). Invertebrates are one of the most abundant 

and diverse food resource, being particularly exploited by avian predators, among which 

insectivorous aerial birds, such as swifts, stand out as they are one of the few that can 

hunt flying invertebrates on the wing (Nebel et al., 2010; Nyffeler et al., 2018). Studying 

the ecology of swifts and in particular their diet is highly difficult, not only due to their 

aerial lifestyle but also because most nesting places are hard to access and some 

species are very difficult to distinguish since they have very similar body silhouette and 

plumages (Marin-Aspillaga, 1998).  
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1.1.1 Pallid Swift (Apus pallidus) 

In the Western Palaearctic region (Cramp, 1985), there are six breeding species of swifts 

(del Hoyo, 2020) (Figure 1), of which Pallid Swift (Apus pallidus) is one of the most 

abundant. Pallid Swifts are medium-sized swifts, with a body length ranging from 16 to 

18 cm, wingspan between 39 to 44 cm (Svensson et al., 2010), and 30 to 46 g in body 

weight (Cramp, 1985). The breeding range of this species is restricted to the 

Mediterranean region, Asia Minor, and adjoining areas (Chantler & Driessens, 2000; 

Keller et al., 2020), with some resident populations in Niger, Chad, and Egypt (BirdLife 

International, 2022b) (Figure 2). The Pallid Swift’s breeding season is particularly long, 

often including a second clutch laid in summer, leading to a reproductive period that 

extends into autumn, lasting up to 8 months (Antonov & Atanasova, 2001; Boano & 

Cucco, 1989; Cramp, 1985). Usually, this species nests in either natural landscapes, 

using caves and cliffs, or in urban areas, using preferentially cavities under the eaves or 

ceilings of old and tall buildings (Antonov & Atanasova, 2002; Cucco & Malacarne, 1987; 

Thibault et al., 1987). Although the migration of this long-distance migrant is not well 

studied, the species is known to cover vast areas during its nonbreeding period and to 

winter in Western Africa (Chantler & Driessens, 2000; Finlayson et al., 2021; Hedenström 

et al., 2019; Kearsley et al., 2022). 

 

 

 

 

 

 

 

 

 

 

 

Figure 1 – Western Palaearctic region’s swifts breeding species: Alpine Swift (Thachymarptis melba), Common Swift (Apus 

apus), Pallid Swift (Apus pallidus), White-rumped Swift (Apus caffer), Little Swift (Apus affinis) and Plain Swift (Apus unicolor). 

Adapted from andorin (2022). 
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The Pallid Swift is phenotypically very similar to the Common Swift (Apus apus) 

(Pellegrino et al., 2017), with evidence of gene flow between the two species (Cibois et 

al., 2022). Despite the need of a prolonged observation under good lighting to obtain a 

proper identification in the field (Malacarne et al., 1989), these species display very 

distinct biological traits (Pellegrino et al., 2017). Common Swifts, unlike most Pallid 

Swifts, only lay one clutch (Sicurella et al., 2015), thus leaving breeding grounds earlier 

and having longer non-breeding seasons (Boano & Cucco, 1989; Cramp, 1985; 

Hedenström et al., 2016). Their moulting, i.e., feather replacement,  period is also 

dissimilar: Pallid Swifts initiate moulting at breeding sites and suspend it for the autumn 

migration (Boano et al., 2015; Chantler & Driessens, 2000), while the majority of 

Common Swifts’ populations moult at wintering sites (Jukema et al., 2015). Regarding 

distribution, Common Swifts’ breeding range is far more extensive, covering Europe, 

north of Morocco, Algeria and Tunisia, the northern Middle East, and temperate regions 

of Asia (BirdLife International, 2022a), being the most abundant and widespread swift in 

the Western Palaearctic region. Due to these differences in distribution, studies on 

Common Swifts are much more abundant than those on Pallid Swifts, with many aspects 

of the latter’s ecology being poorly understood. Besides, the misidentification of flying 

birds, with many Pallid Swifts being mistakenly identified as Common Swifts, undermines 

the reliability of distribution data (Costa & Elias, 1998).  

Although both species are listed as Least Concern by the International Union for 

Conservation of Nature (IUCN) Red List (BirdLife International, 2016, 2019), in Portugal 

Figure 2 – Pallid Swift’s geographical distribution, based on the data available at Keller et al. (2020) and at BirdLife 

International (2019). 
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(Cabral et al., 2005), European Common Swift’s populations are in decline, and the 

species is now considered Near Threatened by the European Red List of Birds (BirdLife 

International, 2021). On a local scale, the situation is even more alarming, with Spain’s 

and United Kingdom’s Red Lists considering this species as Vulnerable and 

Endangered, respectively (SEO/BirdLife, 2021; Stanbury et al., 2021). There are several 

causes for the swifts’ decline, namely: decline in invertebrate populations as a result of 

land use changes and pesticides application; destruction of nests or breeding colonies, 

through the restoration and demolition of old buildings; development of new building 

techniques and materials that do not allow birds to settle and build nests; and climate 

change that affects broods’ growth and survival (Molina, 2021). Unlike the Common 

Swift, the European Pallid Swift’s populations are listed as Least Concern (BirdLife 

International, 2021; SEO/BirdLife, 2021; Stanbury et al., 2021). Despite the positivity of 

these assessments, these data may be biased by the smaller distribution of the Pallid 

Swift and frequent confusion with the Common Swift. In addition, the known geographical 

distribution of Pallid Swift appears to be expanding northwards, but this expansion can 

be a reflection of more thorough and accurate identifications in recent times rather than 

a properly natural expansion of this species, as suggested by Elias (2022). If these 

scenarios are confirmed we may be witnessing the silent decline of the Pallid Swift’s 

breeding populations, as the threats mentioned above affect both Common and Pallid 

Swifts. This lack of knowledge about the Pallid Swift is particularly notorious in the Iberian 

Peninsula, where the species is very abundant. Thus, studying the ecology of this highly 

mobile and fast predator, and in particular its diet, is a challenge, but a necessary one to 

provide valuable insights into this species’ ecology.  

 

1.2 Dietary studies 

Dietary studies can not only unravel species’ ecology, by profiling the diversity and 

composition of diets (Mata et al., 2019), but can also assess temporal changes in 

ecosystems (Boström et al., 2012; Cristiano et al., 2018), establish management 

strategies for conservation purposes (Agosta, 2002; Meena et al., 2011), and inform 

about provided ecosystem services (Chan et al., 2021; Cristiano et al., 2018; Kamenova 

et al., 2018), thus offering valuable insights into the structure and function of entire 

ecosystems (Estes et al., 2011). Among the wide range of ecosystem services provided 

by birds (Whelan et al., 2015; Whelan et al., 2008), regulation services are those that 

stand out (Michel et al., 2020), with insectivorous birds feeding on different types of 

arthropod pests, disease vectors and invasive species, hence functioning as biological 
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control agents. Birds, by feeding on seed predators, sap feeders, and leaf herbivores 

reduce herbivory, thus increasing plant growth rates and enhancing crop yields (García 

et al., 2021; Marquis & Whelan, 1994; Sanz, 2001). Sarwar (2015) pointed out birds and 

other natural enemies of dengue vector mosquitoes as a potential solution to decrease 

the transmission of this disease, by replacing the traditional use of insecticides, which 

are harmful to human health and the ecosystem, with biological control methods. 

Insectivorous birds, namely swifts, can also feed on invasive species, as Cristiano et al. 

(2018) found, and thus help to restore the ecosystem's balance. The detailed and 

continuous study of insectivorous birds' diets can be a powerful tool in ecosystem 

monitoring, including early detection; and birds such as swifts can be used as airborne 

invertebrate bio-surveyors in disrupted ecosystems (Cristiano et al., 2018; Orłowski & 

Karg, 2013).  

 

1.2.1 Swifts’ diet 

Generally, swifts feed mainly on airborne insects and aerial plankton (Lack & Owen, 

1955; Liechti et al., 2013), i.e., ensembles of small organisms that are passively 

dispersed by air currents (Cotoras & Zumbado, 2020). Their diets have been studied 

using conventional analyses based on the visual examination of ingested prey, by 

identifying under a dissecting microscope the prey items present in faeces (Cucco et al., 

1993; Gory, 2008; Waugh, 1978); stomach contents (Beebe, 1949; Brito et al., 2015; 

Kopij, 2000; Marín & Stiles, 1993; Rose, 1997); or in food pellets delivered to nestlings 

(Bigot et al., 1984; Cristiano et al., 2018; Cucco et al., 1993; Garcia-del-Rey et al., 2010; 

Gory, 2008; Malacarne & Cucco, 1992). These analyses have many limitations: either 

they are very invasive methods, such as the analysis of stomach contents that requires 

swifts’ euthanasia; or depend on samples that are already very digested, making visual 

identification of the prey quite difficult and sometimes even impossible (Chung et al., 

2021), particularly for soft bodied prey (Nielsen et al., 2018). 

 

1.2.1.1 Pallid Swift’s diet 

Some previous studies have analysed the diet of the Pallid Swift through the visual 

inspection of faeces and food boluses delivered to nestlings (Bigot et al., 1984; Cristiano 

et al., 2018; Cucco et al., 1993; Finlayson, 1979; Malacarne & Cucco, 1992; Pulcher, 

1985). Malacarne and Cucco (1992) conducted a study on Pallid Swift’s diet in Northwest 

Italy by analysing 36 food pellets delivered to nestlings. The authors found that food 
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boluses were predominantly composed of arthropods belonging to the orders Hemiptera, 

Hymenoptera and Diptera, with Coleoptera also being commonly recorded. In addition 

to describing the diet composition, they also studied its temporal variation, of which the 

highest frequency of Hymenoptera in June and Hemiptera in August and September 

stood out. Cristiano et al. (2018) also conducted a study on the Pallid Swift’s diet in a 

colony in Northwest Italy, examining the birds' diet during the 2012 and 2013 breeding 

seasons. During the fieldwork, 26 food boluses were obtained, resulting in 5980 prey 

items. From the prey items, 37 families or superfamilies were identified, belonging to the 

Araneae, Coleoptera, Diptera, Hymenoptera, Lepidoptera, Mallophaga, Odonata, and 

Hemiptera orders. The Hemiptera and Coleoptera were the most consumed orders, 

representing more than 70% of these Pallid Swifts’ diet.  

 

1.2.2 DNA metabarcoding 

The traditional approaches for dietary studies mentioned above (visual inspection of 

faecal, stomach contents and food pellets), have recently been replaced by more avant-

garde procedures, such as high-throughput sequencing (Chan et al., 2019) and DNA 

(deoxyribonucleic acid) metabarcoding (Chan et al., 2020; Chung et al., 2021). The use 

of DNA metabarcoding techniques to study diets relies on the presence of DNA of 

taxonomically unknown prey in the faeces. A small and standard region of this DNA, i.e., 

DNA barcode, is then mass-amplified and species’ identification is obtained through 

comparison against a library of known and taxonomically identified DNA barcodes 

(Hebert et al., 2003). This technique uses high‐throughput sequencing methods to 

simultaneously sequence PCR (Polymerase Chain Reaction) amplified DNA of all 

samples in a single mixture, allowing a multi-species identification approach. Although 

this technique presents some limitations, such as errors during amplification; difficulty in 

obtaining suitable barcodes for certain taxonomic groups; need to analyse different 

taxonomic groups separately (especially problematic for generalist species) and 

requiring a good taxonomic reference database (Taberlet et al., 2012), the potential 

power for high-throughput species identification makes this technique a good tool for diet 

assessment. The major benefits of this method is the ability to provide high taxonomic 

resolution of the consumed species (Gibson et al., 2015; Jackson et al., 2014) and to 

enable more reliable discrimination of closely related taxa, reducing the bias that 

morphological identifications generate and avoiding the requirement for prior knowledge 

of the identified prey (de Sousa et al., 2019).  
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This technique has already been used over the last decade to assess a wide range of 

feeding regimes, namely carnivorous (de Jesus, 2021; Hacker et al., 2021; Nota et al., 

2019; Shi et al., 2021), molluscivorous (Fraser, 2020; Huang et al., 2021), insectivorous 

(Aizpurua et al., 2018; Esnaola et al., 2018; McClenaghan et al., 2019; Rytkönen et al., 

2019), frugivorous (Volpe et al., 2022), nectarivorous (Moran et al., 2019; Spence et al., 

2022) and omnivorous species (Anderson et al., 2018; da Silva et al., 2019; Stenhouse 

et al., 2021; Tercel et al., 2022). The high applicability of this technique, which allows the 

study of such a wide range of diets, enables the study of the feeding ecology of virtually 

any species. To date and concerning the class Aves, DNA metabarcoding has been used 

to study the diet of species belonging to a wide variety of bird orders, such as Galliformes 

(Fujii et al., 2022; Sullins et al., 2018), Caprimulgiformes (Mitchell et al., 2022), 

Apodiformes (Chan et al., 2019; Chung et al., 2021), Otidiformes (Cabodevilla et al., 

2021; Liu et al., 2018), Pterocliformes (Cabodevilla et al., 2021), Gruiformes (Kataoka et 

al., 2022), Charadriiformes (Fraser, 2020; Gerik, 2018), Gaviiformes (Kleinschmidt et al., 

2019), Sphenisciformes (Tabassum et al., 2022; Young et al., 2020), Procellariiformes 

(Carreiro et al., 2020; Fayet et al., 2021; Komura et al., 2018; McInnes et al., 2017; Nimz 

et al., 2022; Querejeta et al., 2022), Accipitriformes (Hacker et al., 2021; Nota et al., 

2019), Piciformes (Stillman et al., 2022), Falconiformes (Bourbour et al., 2021), and 

Passeriformes (da Silva et al., 2020; McClenaghan et al., 2019; Stenhouse et al., 2021; 

Trevelline et al., 2018). Besides allowing the study and characterisation of the feeding 

ecology of a diverse range of organisms, DNA metabarcoding can also be a useful tool 

in the biosurveillance of invasive species (Brown et al., 2016; Montauban et al., 2021; 

Tercel et al., 2022). This technique enables an early and quick invasive species’ 

detection, which allow the prompt implementation of controlling or eradication 

programmes, thus mitigating some of the devastating effects that these species cause 

in the ecosystems where they were introduced (Borrell et al., 2017; Westfall et al., 2020).  

Despite its broad application and its potential to unravel swifts’ ecology, only in 2019 this 

technique was first used to analyse the diet of an Apodidae species (Chan et al., 2019), 

and to date has not been applied to assess the diet of any of the Palearctic region’s swift 

species, whose populations have been the subject of other biological and ecological 

studies (Cibois et al., 2022; Finlayson et al., 2021; Hedenström et al., 2019; Kearsley et 

al., 2022). 
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1.3 Sexual dietary differentiation 

Although the diet of some swift species is already known, through the elementary 

methods or the most modern ones described above, dietary differences between males 

and females have never been considered. Sexual dietary segregation has been 

described in several animal groups (Borrell et al., 2011; Mata et al., 2016; Mramba et al., 

2017), namely in birds (Catry et al., 2016; da Silva et al., 2020; Lewis et al., 2005; 

Mariano-Jelicich et al., 2007; Massaro et al., 2020; Wearmouth & Sims, 2008). These 

differences are usually the result of either marked morphological differences between 

males and females, with smaller and more agile individuals feeding on smaller prey and 

larger prey being exploited by larger individuals; or differences in parental care during 

the breeding season, males and females may have different energy requirements as a 

result of different roles in incubating eggs or caring for offspring (Catry et al., 2016; Lewis 

et al., 2005). Overall Pallid Swifts’ parental care is shared by females and males, as 

found by Finlayson (1979) and confirmed later by Malacarne et al. (1992). Carmagnola 

colony’s males and females shared incubation duties and feeding roles almost equally, 

and although Malacarne et al. (1992) noted that in 36% of pairs one partner had 

incubated more than the other, this was observed for both females and males. This 

biparental care combined with the fact that Pallid Swifts do not have sexual dimorphism 

suggest no significant differences between the diets of males and females. But as 

already mentioned, sexual dietary segregation has never been studied for swifts, and 

there are other birds without morphological sexual dimorphism with differences in their 

diet composition (da Silva et al., 2020). 

Although these dietary differences can be assessed through a wide range of methods, 

e.g., direct observation, morphological identification of ingested food items, fatty acids 

and alcohols analysis, or stable isotope analysis (Hoenig et al., 2021; Nielsen et al., 

2018), DNA metabarcoding can be a more powerful and informative tool, as it can detect 

subtle differences that would not be detected by the poor taxonomic resolution of the 

more conventional methods (Mata et al., 2016). 

 

1.3.1 Bird sex identification 

In sexually dimorphic birds, such as the Eurasian Bullfinch (Pyrrhula pyrrhula), Pin-tailed 

Sandgrouse (Pterocles alchata), and Common Rock Thrush (Monticola saxatilis), it is 

very easy to distinguish between males and females. However, in birds without 
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morphological sexual dimorphism, such as Pallid Swifts, it is very difficult to accurately 

separate the sexes by visual examination of the individuals. In these non-sexual 

dimorphic species, individuals are often sexed by videotape inspections noting which of 

the parents laid the eggs. This method implies marking the individuals, installing cameras 

in nests and examining several hours of recordings (Boano et al., 2015; Malacarne et 

al., 1994). Therefore, more practical and reliable techniques, such as DNA-based sexing, 

have been adopted.  

In DNA-based sexing in birds, the chromodomain helicase DNA-binding (CHD) gene, 

highly conserved in most avian species, is amplified using specific primers pairs. One 

gene is located on the Z chromosome (CHD-Z), whereas its homolog is on the W 

chromosome (CHD-W) (Cerit & Avanus, 2007). Since in birds, unlike in humans, males 

are the homogametic sex (ZZ), while females are the heterogametic sex (ZW) (Irwin, 

2018), males exhibit two identical sized copies (both from CHD-Z gene fragment) on the 

agarose gel, while females generally display two different sized bands (one from CHD-Z 

and one from the CHD-W gene fragment) (Çakmak et al., 2017). However, depending 

on the primers used and the target species, the banding patterns obtained on the 

agarose gel may vary and in some species the analysis should focus on the size of the 

bands rather than the number of bands (Dubiec & Zagalska-Neubauer, 2006).  

 

1.4 Objectives 

The main purpose of this thesis was to evaluate the diet composition of the Pallid Swift 

during its breeding season in the North of Portugal using DNA metabarcoding on their 

faecal samples. A technique that, as previously mentioned, allows to accurately assess 

the diet composition in a non-invasive manner. 

By using this method, I aimed to assess and characterize the temporal variations in the 

diet during the breeding season and evaluate whether differences exist between sexes, 

regarding (1) diet composition; (2) prey richness; (3) niche width; (4) niche overlap; and 

(5) prey size. 

Finally, I aimed to compare the results with those obtained by other studies that have 

also studied the diet of swifts (Chung et al., 2021; Collins & Hespenheide, 2016; 

Hespenheide, 1975; Quang et al., 2006), namely Pallid Swifts (Cristiano et al., 2018; 

Finlayson, 1979; Malacarne & Cucco, 1992).  
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2. Methods 

 

2.1 Study area 

The studied Pallid Swift colony is installed in the arcades of the Vila Nova de Famalicão 

City Hall (41.4100º, -8.5203º), Braga, Portugal. The building designed by the architect 

Januário Godinho was inaugurated in 1961 and replaced the previous building destroyed 

by a fire nine years earlier. Januário Godinho's modern lines brought an opportunity for 

a close and unexpected coexistence between Pallid Swifts and Famalicão citizens.  

The birds use the main arcade with openings to the east and west as a nesting place, 

building their nests in a small recess that follows the entire interior of the arcades right 

next to the ceiling (Figure 3). 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

Figure 3 – East open of Vila Nova de Famalicão City Hall’s arcades, where Pallid Swifts build their nests in the small recess 

next to the ceiling. 
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It is unknown for how long the swifts have been breeding there. The first reference to the 

existence of this colony dates back to 1997, when the Mayor Agostinho Fernandes, 

requested the Vento Norte Association and the Quercus Braga Regional Nucleus to 

improve the colony conditions, which resulted in the placement of artificial nests that are 

still in place today. This action, although incompatible with the birds' breeding 

requirements, since the artificial nests placed are not suitable for swifts, allowed 

researchers to know that Pallid Swifts have been using this colony for at least 25 years. 

 

2.2 Field sampling 

The field sampling was conducted in the above-described colony during the 2021 

breeding season, from June to October. Pallid Swifts’ fledglings were taken from the 

nests while flying individuals were captured with vertical mist nets, i.e., a finely woven 

mesh (16mm x 16mm) net erected to entangle and capture birds in flight, placed at the 

entrance of the colony before bird activity. Birds were removed from the nets immediately 

after being captured and placed in a clean cotton bag for 15 to 30 minutes while waiting 

to be processed. Captured individuals were ringed with official metal rings provided by 

the national ringing center (CEMPA - Centro de Estudos de Migrações e Proteção de 

Aves), following European Union for Bird Ringing (EURING) guidelines. Wing length, the 

distance from the distal portion of the carpus to the tip of the longest primary feather, 

was measured with a stopped wing ruler (blocked off at the 0 mm mark and with an 

accuracy of 0.5 mm) with the wing chord flattened and straightened, following the classic 

maximum chord method described by Svensson (1992). The weight was measured with 

a 0.1g precision on a digital mini scale. Birds’ age was assigned based on the EURING 

codes (Du Feu et al., 2020). Regarding age, birds were assessed as adults (second year 

or older birds) or pulli (fledglings taken from the nests). The body condition of the birds 

(muscle and fat mass) was assigned according to Bairlein (1995) and Kaiser (1993), 

respectively. Cotton bags, from which the droppings were collected, were sterilized with 

10% bleach for 1 hour and washed after every use to minimize contamination. Droppings 

were passed directly from the bags to 2 ml tubes with 98% ethanol without direct contact, 

and stored at 4°C until laboratory processing (da Silva et al., 2019).  

 

2.3 Laboratory procedures  

DNA was extracted from bird droppings using the Norgen Stool DNA Isolation Kit, 

following the manufacturer's protocol. DNA extraction was carried out in batches of 23 
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samples plus one negative control in which no faecal sample was added. The extracted 

DNA and the negative controls were distributed in 96-well plates where the last well was 

left empty for PCR negative control.  

 

2.3.1 Prey identification  

Invertebrate prey items were amplified using the COI primers fwhF2 (5'-

GGDACWGGWTGAACWGTWTAYCCHCC-3') and fwhR2n (5’-

GTRATWGCHCCDGCTARWACWGG-3’) (Vamos et al., 2017), modified to contain 

Illumina adaptors. This primer set was originally designed to amplify the DNA of 

freshwater invertebrates (Vamos et al., 2017), but also performs well in the amplification 

of terrestrial arthropods’ DNA and the amplification of degraded DNA samples, such as 

faecal droppings (Elbrecht et al., 2019; Mata et al., 2021). The PCR was carried out in 

volumes of 10 μl, comprised of 5 μl of Multiplex PCR Master Mix (Qiagen), 0.3 μl of each 

10 pM primer, 2.4 μl of H2O, and 2 μl of DNA extract. Cycling conditions consisted of a 

15 min period at 95ºC, 45 cycles of 30 sec denaturation at 95ºC, 30 sec annealing at 

50ºC, and 30 sec extension at 72ºC, and a final extension period of 10 min at 60ºC. 

Amplification success was checked by visually inspecting 2 μl of each PCR product on 

a 2% agarose gel stained with GelRed. The resulting extracted DNA was cleaned using 

a 1:0.8 ratio of AMPure XP beads (Beckman Coulter, High Wycombe, UK) according to 

the manufacturer’s instructions with the exception that 80% ethanol was used instead of 

70%, and eluted in 25 μl of 10 mM Tris, pH 8.5. Clean PCR products went through a 

second PCR reaction to incorporate 7bp long indexes and P5+P7 Illumina adaptors. This 

second PCR was carried out in a total volume of 14 μl, comprising 7 μl of KAPA HiFi 

HotStart ReadyMix, 2.8 μl of cleaned PCR, 2.8 μl of H2O, and 0.7 μl of each adaptor. 

Cycling conditions were 3 min period at 95ºC, 10 cycles of 30 sec denaturation at 95ºC, 

30 sec annealing at 55ºC, and 30 sec extension at 72ºC, and a final extension period of 

5 min at 72ºC. Indexed samples were again cleaned and then pooled at equimolar 

concentrations and sequenced in a MiSeq run (500 cycles) together with samples from 

other projects.  
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2.3.2 Sex identification 

The Pallid Swifts’ sex identification was performed by amplifying a small amplicon of the 

Z and W chromosomes using P2 (5'-TCTGCATCGCTAAATCCTTT-3') and P8 (5'-

CTCCCAAGGATGAGRAAYTG-3') primers (Griffiths et al., 1998). This primer set was 

designed to amplify fragments of the (CHD) gene, providing distinct banding patterns on 

an agarose gel as a result of intronic regions within this gene (Çakmak et al., 2017; 

Griffiths et al., 1998; Quinn et al., 1990). The PCR was carried out in volumes of 11 μl, 

comprised of 5 μl of Multiplex PCR Master Mix (Qiagen), 0.4 μl of each primer, 2.2 μl of 

H2O, and 3 μl of DNA extract. P2 primers were labelled with the fluorescent dye FAM. 

Cycling conditions consisted of a 15 min period at 95ºC, 20 cycles of 35 sec denaturation 

at 95ºC, 45 sec annealing at 45ºC, and 45 sec extension at 72ºC, followed by more 25 

cycles of 35 sec denaturation at 95ºC, 45 sec annealing at 47ºC, and 45 sec extension 

at 72ºC and a final extension period of 10 min at 60ºC. PCR products were checked on 

an agarose gel, and, although amplification was successful, it was not possible to visually 

separate the different amplicons. Therefore, PCR products were separated by capillary 

electrophoresis using the automatic sequencer ABI 3130xl Genetic Analyzer. Fragments 

were scored against Genescan-500LIZ size Standard, using GeneMapper version 4.1 

(Applied Biosystems). Male individuals showed a single fragment with about 370bp of 

length, while females showed an extra fragment of about 380bp (Figure 4). Each sample 

was sequenced three times, and sex was only assigned to samples that provided 

congruent results for at least two sequencing results. This should avoid false 

assignments resulting from allelic drop-out of the CHD-W, which makes females 

indistinguishable from males (van der Velde et al., 2017), and that can be particularly 

common in degraded DNA samples like bird droppings (Mitchell et al., 2012). 

Figure 4 – Example amplicon length profile of a male and female Pallid Swift. 
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2.4 Bioinformatic analysis 

Bioinformatic processing of generated Illumina reads was done using the R package 

Metabarcoding Joining Obitools & Linkage Networks In R (MJOLNIR: 

https://github.com/uit-metabarcoding/MJOLNIR), a tool designed to analyse and 

organise raw metabarcoding data into taxonomically assigned operational taxonomic 

units (OTUs). The two paired-end Illumina reads’ alignment was done using 

´illuminapairedend´ from OBITools (Boyer et al., 2016). After paired-end sequences were 

merged, each sequence was assigned to the corresponding sample. This demultiplexing 

step was carried using ‘ngsfilter’, which was also used for primer-removal. In addition, 

the data was filtered to select fragments of 190-220 bp by applying the command 

‘obigrep’. All these steps were carried out simultaneously using the ‘mjolnir2_FREYJA()’ 

function. Chimeric sequences from the individual sample files provided by FREYJA were 

removed using the ‘mjolnir2_HELA()’ function. This function uses the uchime_denovo 

algorithm implemented in VSEARCH (Rognes et al., 2016) and after chimera removal 

joins all the samples. After this merge, reads were clustered using the ‘mjolnir4_ODIN()’ 

function, which uses SWARM (Mahé et al., 2015) to delimit OTUs, based on linkage-

networks created by step-by-step aggregation. This algorithm, which is not based on a 

constant, arbitrary and absolute identity threshold, can have different effective values for 

within-OTU identity threshold, depending on the complexity of the natural variability of 

the sequences present in the sample. Finally, to reduce the number of erroneous OTUs 

(e.g., retained PCR artefacts, sequencing errors, pseudogenes, etc.) and thus achieve 

more realistic biodiversity metrics, the ‘mjolnir2_LOKI()’ function was used. This function 

uses the LULU (Frøslev et al., 2017) algorithm, which merges similar and highly 

occurring OTUs (identity higher than 84% and co-occurrence levels higher than 95%). 

The taxonomic assignment of the haplotypes was reached using BOLDigger v1.2.5 

(Buchner & Leese, 2020). This Python package compares the OTUs to the Barcode of 

Life Data Systems (BOLD) Identification System database, a library of known and 

taxonomically identified DNA barcodes, and assigns a match. The retrieved taxonomic 

assignment matches were then manually curated. When different OTUs matched a 

single taxon, these were condensed into a single taxonomic unit. In case an OTU 

matched different species, genera, or families at a similar identity level, this was assigned 

to the most inclusive taxonomic rank. OTUs assigned to higher taxonomic levels than 

species and with more than 98% of similarity, were clustered with a neighbour-joining 

tree (Mata et al., 2018) into distinct OTUs (e.g., Nabidae 1, Nabidae 2, etc). OTUs 

assigned to items that are not part of the insectivorous diet of swifts (e.g., fungi, protists, 

platyhelminths, birds, mammals, etc.) were categorized as "Not diet" and discarded from 
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the analysis. The number of reads per OTU in the extraction and PCR blanks was 

subtracted to the samples associated to each extraction batch and PCR plate, to rule out 

possible sources of laboratory contaminations. Finally, only samples with more than 100 

reads of dietary items were considered and OTUs comprising less than 1% of the total 

dietary reads per sample were discarded.  

 

2.5 Data analysis 

All statistical analyses were performed on R v4.1.1 (R Core Team, 2020). Statistical 

significance was considered at α = 0.05. Dietary analysis was based on the presence or 

absence of taxa per sample, considering two different taxonomic levels: family and OTU 

(identified to the most resolved taxonomic level possible).  

The effect of sex, month, and their interaction on the number of prey taxa detected in 

each dropping was tested using a generalized linear model (GLM) with a Poisson error 

distribution, applying the function ‘glm’. The significance of explanatory variables was 

tested using the ‘Anova’ function from package car (Fox & Weisberg, 2019). Pairwise 

comparisons were then used to identify in which pairs the observed differences occurred, 

using the function ‘emmeans’ of the emmeans package (Lenth, 2022). 

The overall prey richness consumed by both sexes, i.e., niche width, during the five 

months was estimated using rarefaction curves based on Hill numbers with the function 

‘iNEXT’ of the iNEXT package (Hsieh et al., 2016), with the triple of the lower reference 

sample size to avoid extrapolation bias (Chao et al., 2014). Significant differences were 

considered if the 95% confidence intervals between groups did not overlap. 

To compare the prey composition among samples of different sexes and months, a 

pairwise distance matrix using the Jaccard dissimilarity indices was calculated using 

‘vegdist’ available in the package vegan (Oksanen et al., 2020). This matrix, which 

quantifies the differences between samples based on prey occurrence, was then tested 

using a Permutational Multivariate Analysis of Variance (PERMANOVA) with the 

Binomial method and 99999 permutations using ‘adonis’ function from the same R 

package. To verify which pair of months differ from each other, a pairwise PERMANOVA 

was performed. Similarity percentages were also calculated to determine the contribution 

of different prey groups to the observed differences in variables, using the ‘simper’ 

function of the package vegan.  

To test for differences in prey size consumption between sexes and months, a literature 

search was conducted to characterize the size of each prey item detected. Only prey 
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items identified to genus, species complex and species were considered, as it is not 

feasible to correctly assign a size to an arthropod family or order. Prey items used in this 

analysis included 85% of the OTUs and 85% of the predation events, thus covering the 

majority of the diet. The prey sizes obtained can be found in Annex I - Supplementary 

material (Table S1). The average prey size of each sample was further calculated and 

used as a response variable in a GLM with a Gamma error distribution to test the effect 

of bird’s sex, month of capture, and their interaction, applying the function ‘glm’. The 

significance of explanatory variables was tested using the ‘Anova’ function from the 

package car (Fox & Weisberg, 2019). To identify in which pair of months the observed 

differences occurred, pairwise comparisons were done applying the function ‘emmeans’ 

of the emmeans package (Lenth, 2022). Finally, to look for a correlation between the 

ingested diversity and the prey size, a generalized linear mixed model (GLMM) was 

conducted, applying the function ‘glmer’ of the lme4 package (Bates et al., 2014). In this 

analysis, month was used as a random variable, since the diversity consumed 

throughout the breeding season is expected to be affected by the prey’s availability 

across the different months.   
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3. Results 

3.1 Sample collection and sequencing 

During the Pallid Swift monitoring a total of 226 capture events were recorded, 

corresponding to a total of 103 individuals. The capture of these 103 individuals resulted 

in the collection of 82 faecal samples. After sequencing and bioinformatic processing, 

only 65 samples successfully produced dietary data (Table 1). Of these 65 faecal 

samples, 29 were identified as belonging to female birds, 33 to male, and in 3 samples 

it was not possible to accurately determine the sex of the bird. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  Success Fail Total 
June 19 3 22 

Female 11 0 11 
Male 8 3 11 

Unknown 0 0 0 
July 13 4 17 

Female 6 2 8 
Male 7 2 9 

Unknown 0 0 0 
August 20 3 23 

Female 4 0 4 
Male 13 2 15 

Unknown 3 1 4 
September 6 5 11 

Female 3 4 7 
Male 3 0 3 

Unknown 0 1 1 
October 7 2 9 

Female 5 1 6 
Male 2 0 2 

Unknown 0 1 1 
Total 65 17 82 

Table 1 – Number of successful and failed samples for diet analysis per sex and month of capture. 
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3.2 Diet composition 

A total of 139 OTUs were identified in the diet of the Pallid Swift, belonging to 74 different 

families and 16 orders. The most commonly observed OTU was Tetramorium forte (32% 

of the samples), followed by Lasius 1 (25%), Elateridae 1 (17%), Tetramorium 

caespitum/impurum (17%), Nabis 1 (15%) and Nezara viridula (15%; Figure 5A). 

Regarding families, Formicidae was the most common (62%), followed by Pentatomidae 

(20%), Elateridae (17%), Nabidae (17%) and Caeciliusidae (14%; Figure 5B). Finally, 

the most common orders were Hymenoptera (66%), Hemiptera (58%), Coleoptera 

(57%), Diptera (33%) and Psocodea (17%; Figure 5C).  

 

 

 

The five most common orders were present throughout all the months, except for the 

order Psocodea which was not found in the samples collected in October. The order 

composition of the Pallid Swifts’ diet over the breeding period seemed to undergo some 

variation, with some months presenting a greater diversity of prey and with some orders 

playing a more important role in the diet of these swifts in particular months (Figure 6).  

In June, a substantial part of the prey (46%) belonged to the order Hymenoptera, with 

almost all of these OTUs (96%) belonging to the family Formicidae. In July, the five most 

common orders were almost equitably represented in the samples collected, unlike in 

the other months, each representing on average about 18% of the predation events. The 

remaining 10% was comprised of the other five orders that occurred in the swifts' diet in 

July (Lepidoptera, Araneae, Orthoptera, Odonata and Thysanoptera). In August, 

although birds consumed the highest number of orders (n = 11), 65% of the arthropods 

Figure 5 – Frequency of prey occurrence of mostly consumed OTUs (A), families (B), and orders (C) by Pallid Swifts 

throughout the breeding season. 
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consumed belonged to the orders Hymenoptera and Hemiptera. Finally, the faeces 

collected in September and October, despite having the least number of prey orders (6 

and 5 orders detected, respectively), presented a very distinct composition. Whereas in 

September the orders Coleoptera and Hemiptera comprised more than 70% of the diet 

frequency; in October these orders only represented 18%, with the vast majority of the 

diet (>70%) being composed of insects belonging to the order Diptera. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A total of 11 pest species were detected, belonging to 9 families of 4 different orders. Of 

these arthropods, ten were agricultural pests (Bradysia trivittata, Chaetocnema 

hortensis, Drosophila suzukii, Geomyza tripunctata, Lacanobia oleracea, Psylliodes 

chrysocephalus, Sipha maydis, Sitotroga cerealella, Tetraneura nigriabdominalis and 

Tipula oleracea) and one was a forest pest (Ctenarytaina spatulata). The most common 

pest was G. tripunctata, which was found in 6% of the samples; D. suzukii, T. oleracea 

and C. spatulata were detected in two samples and each of the remaining arthropods 

was only found in one sample each. Of the 17 pest predation events, more than half 

were with Diptera pests. 

 

 

 

Figure 6 – Frequency of predation events of mostly consumed orders by Pallid Swifts in each sampled month. "Other orders" 

represents unfrequently consumed prey orders: Lepidoptera, Araneae, Orthoptera, Neuroptera, Trichoptera, 

Entomobryomorpha, Isopoda, Julida, Odonata, Symphypleona and Thysanoptera. 
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3.3 Prey richness 

There were no differences between sexes in the number of prey items detected per 

sample (Figure 7), regardless of the taxonomic level considered: OTU (LR Chisq = 0.199, 

df = 1, p-value = 0.656) and family (LR Chisq = 0.036, df = 1, p-value = 0.850). With 

regard to temporal variation, differences were found in the average number of prey items 

detected per sample (Figure 7), both for OTU (LR Chisq = 14.634, df = 4, p-value = 

0.006) and family levels (LR Chisq = 18.767, df = 4, p-value = 0.001). The significant 

differences were observed between June and July (OTU: z.ratio = -3.295, p-value = 

0.008; family: z.ratio = -3.920, p-value = 0.001), the months with the lowest and highest 

average number of prey items per sample, respectively. 

 

 

 

 

 

 

 

 

 

Figure 7 – Estimated prey richness of OTUs and families per sample for different sex and month classes. Whiskers represent 

95% confidence intervals based on 1,000 bootstraps. 
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3.4 Niche width 

Overall diet richness was significantly different between months, but not between sexes 

(Figure 8). Regarding the temporal variation, for OTUs, September was the month with 

the lowest diversity values, followed by June, while October and August showed 

moderate niche width values. July was by far the month with the widest niche breadth, 

exhibiting more than double the average diversity values estimated for the remaining 

breeding season. Regarding the number of prey families consumed, July was also the 

month with the highest taxa richness values, standing out among the studied months, 

and also showing almost two times the diversity observed in the other months. The 

remaining four months showed similar diversity values, with October, August and 

September showing slightly higher values than June, which contrary to the values 

Figure 8 – Estimated niche width of OTUs and families for different sexes and months classes. Niche width of different sexes 

and months was estimated with 87 and 18 sampling units, respectively. Whiskers represent 95% confidence intervals based 

on 1,000 bootstraps. 
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obtained by the OTU analysis, was the month with the lowest prey richness values. For 

sexes, although the differences between the niche width of males and females was not 

significant, males tended to ingest a higher number of prey taxa. These differences were 

more pronounced when diets were analysed at the OTU level, than at the family level. 

 

3.5 Niche overlap  

The PERMANOVA revealed no differences in niche overlap between sexes both for OTU 

(df = 1, pseudo-F= 1.215, R2 = 0.018, p-value = 0.151) and family level analysis (df = 1, 

pseudo-F = 1.195, R2 = 0.017, p-value = 0.216). Regarding the sampling month, 

significant differences were found in niche overlap over the months, both for OTU (df = 

4, pseudo-F = 2.952, R2 = 0.171, p-value < 0.001) and family level analysis (df = 4, 

pseudo-F = 3.593, R2 = 0.200, p-value < 0.001). Differences were found between all 

pairs of months except September and October, for both OTU and family analysis (Table 

2). 

Table 2 – Pairwise PERMANOVA testing for the effects of sampling month on niche overlap for OTU and family level 

analysis. Significant values are at bold. 

    OTU   Family 

Month 
Comparison 

  Pseudo-F R2 P value   Pseudo-F R2 P value 

Jun vs Jul  4.178 0.122    <0.001  6.081 0.169     <0.001 

Jun vs Aug  5.535 0.140    <0.001  4.424 0.115 0.005 

Jun vs Sep  5.467 0.192 0.001  7.369 0.243 0.001 

Jun vs Oct  4.870 0.169    <0.001  6.206 0.205 0.001 

Jul vs Aug  3.732 0.118    <0.001  4.807 0.147     <0.001 

Jul vs Sep  3.042 0.152      0.003  3.978 0.190 0.003 

Jul vs Oct  2.855 0.137 0.003  3.045 0.145 0.004 

Aug vs Sep  3.123 0.129 0.004  4.160 0.165 0.012 

Aug vs Oct  3.732 0.145    <0.001  4.837 0.180 0.001 

Sep vs Oct   2.871 0.207 0.070   2.921 0.210 0.076 

 

 

The compositional differences at OTU level found among the diets collected over the 

different five months were explained by the temporal variation of the most frequently 

consumed OTUs (present in more than 10% of samples; Figure 9). The presence of 

Tretamorium forte and Lasius 1 in 68% and 58% of the samples collected in June, 

respectively, and the negligible presence or even absence of these OTUs in the other 

months, explained the significant differences between the diet composition of June and 

the rest of the breeding season. The differences between the composition of the diet 

consumed in July and in the other months were due to Valenzuela flavidus, since it was 
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present in 54% of the samples collected in July, and barely present or absent in the 

remaining months. The compositional differences found between August and the other 

four months resulted from the presence of Elateridae 1 in 50% of the samples collected 

in this month and the absence of this OTU in the other sampled months, with the 

exception of September, in which its presence was residual. In addition, Tretamorium 

caespitum/impurum, Nabis 1 and Macroscytus brunneus also contributed to the 

differences found between August and June. Finally, the marginal presence of Nezara 

viridula in June and August and the total absence in the July and October samples, but 

a dominant presence in September samples (present in 67% of the faecal samples 

analysed), made this OTU the main responsible for the differences detected between 

the diets collected in September and the other months. Regarding October, the 

differences in diet composition between this month and the others was explained by 

Lonchoptera lutea and Scaptomyza pallida, both present in 57% of the samples of this 

month. 

Concerning the temporal variation at family level analysis (Figure 9), the Formicidae 

family was responsible for the significant differences found between diets collected in 

June and those collected in the last two months of sampling, since Formicidae was in 

89% of the samples collected in June and only appeared to a minor extent in September 

and October. Nabidae and Carabidae families also explained the compositional 

differences between the prey captured in June and the ones captured in August. The 

differences found between diets collected in July and in the other months were due to 

the Caeciliusidae family, since it was in 54% of the samples taken in June and was barely 

present or even absent in the remaining months. Additionally, Chironomidae also 

explained the differences observed between July and the months of June, August and 

October. In turn, Elateridae explained the differences between diets sampled in August 

and those sampled in other months, whereas Cydnidae also contributed to the 

compositional differences between diets collected in August and those collected in the 

first two sampled months. Pentatonidae and Cicadellidae were the families responsible 

for the significant differences between September and the other four months. The 

differences in diet composition between October and the others were explained by 

Lonchopteridae and Drosophilidae, both present in 57% of the samples of this month’s 

diet. 
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3.6 Prey size 

Arthropods between 2-4 mm in size were the prey on which Pallid Swifts fed the most, 

with size classes 4-6 and 6-8 mm being the second and third most preyed classes, 

respectively (Figure 10). Only a minor part of Pallid Swifts’ diet consisted of prey smaller 

than 2 mm and larger than 16 mm. 

Figure 9 – Bigraph displaying the OTUs and families ingested by Pallid Swifts per sampling month. Green links indicate OTUs 

and families consumed in significantly different proportions over the five months, obtained from the SIMPER analysis. The 

width of links is proportional to their frequency of occurrence within months. Month and prey boxes are proportional to the sum 

of the frequency of occurrence of all interactions in that month and across months, respectively. Only the most frequent OTUs 

and families (more than 10% of the average monthly frequency of occurrence) have their name displayed. 
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There were significant differences in the average size of prey consumed per sample, 

between sexes (LR Chisq = 4.871, df = 1, p-value = 0.027) and months (LR Chisq = 

10.856, df = 4, p-value = 0.028; Figure 11). Overall, males fed on larger prey, while 

females tended to prey on smaller arthropods. Regarding the temporal variation in prey 

size, Pallid Swifts in July preyed on smaller sized arthropods when compared to the 

remaining breeding season. In turn, September was the month in which larger prey were 

consumed, with significant differences only detected between these two months (t.ratio 

= 2.882, p-value = 0.044). An overall significant inverse relationship between the 

ingested diversity and the prey size was also found (Chisq = 4.7, df = 1, p-value = 0.030), 

with prey diversity increasing as preys becomes smaller. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 11 – Estimated average prey size (mm) of OTUs for different sex and month classes. Whiskers represent 95% 

confidence intervals. 

Figure 10 – Frequency of interaction (%) with each prey size class in Pallid Swifts’ diet. 
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4. Discussion 

In this study, the feeding ecology of Pallid Swift was analysed using DNA metabarcoding 

to identify prey items in faecal samples. Through this technique, which allows high 

taxonomic resolution identification of prey items, the temporal variation in Pallid Swifts’ 

feeding ecology and the diet of males and females during the breeding season was 

characterized. 

The results suggested a marked temporal variation in prey richness, niche width, niche 

overlap, and prey size throughout the breeding season, likely as a consequence of the 

seasonality of aerial arthropods, since aerial foragers rely on spatiotemporally 

unpredictable accumulations of aerial prey (Arbeiter et al., 2016). As swifts display an 

opportunistic feeding behaviour, massive arthropod assemblages lead to high 

intraspecific variability in these birds’ diets throughout time, as evidenced by Cucco et 

al. (1993). Although no significant differences in diet richness and composition were 

noted between males and females, there were differences between the size of 

arthropods preyed by the different sexes. 

The diet was composed by 74 families, belonging to 16 orders. Of these orders, 

Hymenoptera, Hemiptera, Coleoptera, Diptera and Pscocodea were the most 

consumed, with particular emphasis on the first three. These results are congruent with 

those found in other studies of Pallid Swifts. The study by Cristiano et al. (2018) 

concluded that Hemiptera and Coleoptera were the most consumed orders by Pallid 

Swifts; and Malacarne and Cucco (1992) identified the orders Hemiptera, Hymenoptera 

and Diptera as the most important prey for Pallid Swifts’ diet in Piemont, northwest (NW) 

Italy. Regarding Hymenoptera, although Cristiano et al. (2018) did not find a large 

predominance of this order, the study conducted by Malacarne and Cucco (1992) and 

the one conducted by Chung et al. (2021), on the diet of House Swifts (Apus nipalensis), 

found the same pattern, with a predominance of hymenopterans consumed during the 

breeding season, being Formicidae the most prevalent family ingested. The temporal 

variation of these orders was also in line to that found in these previous works. Malacarne 

and Cucco (1992) found that the vast majority of the predated arthropods in June 

belonged to the order Hymenoptera, while August and September were dominated by 

Hemiptera. The majority of Diptera was recorded in October and this marked presence 

of dipterans at the end of the breeding season is in line with the results found by Chung 

et al. (2021). Unlike the other orders, Coleoptera did not show a clear temporal variation 

and this pattern was also noted in the results obtained by Malacarne and Cucco (1992). 
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Most of these previous studies relied on traditional methods to study the diet of Pallid 

Swifts, however, the study conducted by Chung et al. (2021), was a pioneer in using 

DNA metabarcoding, to study the diet of Apodidae species. This modern technique offers 

a much higher taxonomic resolution, allowing a much more detailed study of the diet of 

these species, as evidenced by this study’s results and the results found by Chung et al. 

(2021). Overall, this study found Pallid Swifts feeding on 139 prey items, while Chung et 

al. (2021) found 80 prey items, belonging to 44 families of 10 orders. The diversity 

consumed by the Apus nipalensis was much lower than that seen in Pallid Swifts’ diet, 

even though the sample size of the study conducted in Hong Kong was considerably 

higher, more than the double that used in this study. Overall, for the same number of 

samples, the species richness, and the family richness, of Pallid Swifts’ diet was about 

twice that observed in House Swifts, with order richness also being considerably higher 

in the Apus pallidus’ diet. The differences in diet richness between these two Apus 

species must be interpreted carefully, since they are likely highly influenced by the use 

of different primer sets, which may amplify different taxa and have different taxonomic 

power. 

Along with the composition of the diet, prey richness and niche width also underwent a 

sharp temporal variation. In June, both prey richness and niche width showed the lowest 

values, with a large portion of the prey belonging to the Formicidae family. Ants are 

relatively weak fliers and can be found in dense aggregations during nuptial flights 

(Hespenheide, 1975; Levin et al., 2008), which reduces the required capture effort and 

energy expenditure for their predation. Thus, swifts seem to choose to prey on these 

arthropods rather than on others also present in the air column (Chung et al., 2021), 

since according to optimal foraging theory, natural selection promotes the most energy-

efficient foraging pattern in order to maximise energy intake and increase fitness (Pyke, 

1984). For swifts, who have such an energy-demanding aerial lifestyle, which have even 

led them to develop morphological, behavioural and physiological adaptations to save 

the much-needed energy, this energy-efficient foraging is even more critical. In addition 

to the prey's ease of capture and its local density, the prey's selection also depends on 

its size (Hespenheide, 1975). Thus, larger, and therefore more energetically nutritious 

prey, should be preferred in order to maximise the energetic intake. The consumption of 

the largest prey was recorded in June and September, and, therefore, these were likely 

the months when optimal prey items were more abundant, and, as a result, swifts 

appeared to concentrate on them, reducing prey richness and niche width. On the other 

hand, when ideal prey diminishes and environmental restrictions constrain consumers to 

lower quality diets, predators need to obtain sufficient nourishment, thus increasing 
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consumption rates (Simpson & Simpson, 1990). This compensatory feeding leads to 

more varied diets under suboptimal conditions. As July presented the highest values of 

prey richness and niche width over the breeding season, and, at the same time the lowest 

values of prey size, it is plausible that Pallid Swifts were under unfavourable 

environmental conditions and the low abundance of their optimal food compelled them 

to explore a broader food niche. 

In this thesis, not only it was found the same temporal variation pattern as in Malacarne 

and Cucco (1992) with respect to prey order composition, the same prey size preference 

was also observed, even though the overall pattern differed slightly. As in Malacarne and 

Cucco (1992), Pallid Swifts in this study fed mainly on prey with 2-4 mm, however in this 

study the second most consumed class was 4-6 mm while in their study was the 1-2 mm 

one. Nevertheless, the results from this study seem to fall between those obtained by 

Malacarne and Cucco (1992) in Piemont and those obtained by Finlayson (1979) in 

Gibraltar, with the latter pointing arthropods between 4-6 mm in size as the most 

consumed by Pallid Swifts. 

Regarding diet composition of males and females, sexual dietary segregation has been 

described in several animal groups (Borrell et al., 2011; Mata et al., 2016; Mramba et al., 

2017), and particularly in birds (Catry et al., 2016; da Silva et al., 2020; Massaro et al., 

2020). Marked morphological differences between sexes or differences in parental care 

during the breeding season are generally the drivers of this segregation (Catry et al., 

2016; Lewis et al., 2005). Although dietary differences between sexes have never been 

studied in Apodidae species, the Pallid Swifts’ biparental care combined with the fact 

that these birds do not have sexual dimorphism led to hypothesise that no significant 

differences would be found between the diet of males and females. The results partly 

confirmed my initial hypothesis, since nor differences in diet richness, niche width, nor 

prey composition between males and females were found. However, there were 

significant differences in the size of consumed prey, with males preying on larger 

arthropods. The results obtained by compositional and prey size analysis were not 

congruent, since although no differences were observed in diet composition between 

sexes, there were differences in the size of the arthropods consumed. This non-

compliance is likely related to differences in statistical power of both analyses, with 

PERMANOVA likely requiring a higher number of samples to detect a significant effect. 

In addition to characterising Pallid Swift's diet, providing better insights into the ecology 

of this species, and finding evidence suggesting that these birds can turn to suboptimal 

prey under suboptimal conditions, this thesis also uncovered the presence of some 
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arthropod pests in the diet of these swifts. Among the agricultural pest species observed 

were Bradysia trivittata, a greenhouse production systems’ pest that feeds on 

horticultural crops (Cloyd, 2015); Chaetocnema hortensis, a flea beetle that damages 

barley, flax and wheat (Coral Şahin et al., 2018); Drosophila suzukii, a fly that causes 

and spreads sour rot (Rombaut et al., 2017); Geomyza tripunctata, a fly pest of mayze 

crops (Thibord, 2017); Lacanobia oleracea, a moth that attacks tomato, apple and many 

other agricultural species (Fitches et al., 2004); Psylliodes chrysocephalus, a beetle pest 

of most brassica seed crops (Winfield, 1992); Sipha maydis, a grass and cereal feeding 

aphid (Aripov, 2003); Sitotroga cerealella, a moth that feeds in storage grains and seeds 

(Bushra & Aslam, 2014); Tetraneura nigriabdominalis, an important aphid pest of rice 

and maize (Walczak et al., 2017); and Tipula oleracea, a pest of agricultural grasslands 

(Benefer et al., 2017). In addition to agricultural pests, I also found an invasive forest 

pest, Ctenarytaina spatulata, a psyllid responsible for economic damage to commercially 

grown Eucalyptus spp. (Hodkinson, 2007; Zina et al., 2015), and that can have a medium 

economic impact in E. globulus plantations in Portugal (Valente, 2017). The ability of 

swifts, and other aerial feeders, to provide an important regulatory service by preying on 

invasive and pest arthropods has already been reported in previous research (Cristiano 

et al., 2018; Orłowski & Karg, 2013). These studies point to aerial feeders as potential 

agents in biological pest management strategies, a sustainable alternative to the use of 

traditional pesticides, which directly and indirectly affect the populations of swifts and 

other aerial foragers, either by food poisoning or by food availability reduction. In addition 

to performing an important ecosystem service, swifts can also act as bioindicators. This 

biosurveillance has been enhanced by the application of DNA metabarcoding, which 

allows an early and quick detection (Montauban et al., 2021; Westfall et al., 2020), 

thereby mitigating the damaging effects that these species have on ecosystems. Thus, 

monitoring swifts’ diet can be a useful tool in ecosystem monitoring (Cristiano et al., 

2018). 
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5. Final Remarks 

Overall, this thesis’ results suggest a sharp temporal variation in Pallid Swifts’ diet during 

the breeding season, with almost the whole diet being comprised of arthropods belonging 

to the orders Hymenoptera, Hemiptera, Coleoptera, Diptera and Psocodea. The 

temporal variation found in richness, niche width, composition and size of the Pallid 

Swifts’ prey consumption likely resulted from the spatiotemporally unpredictable 

accumulations of aerial arthropods. Although no significant differences were found in diet 

richness, niche width and overlap between males and females, the finding that male 

birds feed on larger prey items than females, raises the question of whether birds such 

as swifts, with no sexual dimorphism and with shared parental caretaking, may exhibit 

sexual dietary segregation. This study also suggests that swifts may play an important 

role in pest predation. Finally, this thesis suggest how species may modify their food 

niche in response to changing environmental conditions and its influence on prey 

availability. When environmental conditions were likely good and potentially optimal prey 

were available, the Pallid Swifts focused on this prey, and, as a consequence, the 

diversity of their diet reduced. But as potential optimal prey became less available, Pallid 

Swifts became more opportunistic and began to incorporate sub-optimal prey items into 

their diet, thus broadening their food niche, which resulted in a more diverse diet. 

To strengthen these results and disentangle the possible differences between the diets 

of males and females, future studies should extend the sampling period, to assess 

whether the same pattern is observed overtime; integrate more bird colonies, to avoid 

possible local and regional effects; and sample prey availability to study in detail prey 

selection in this species.  
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Annex I – Supplementary material 

 

Table S1 – Size (mm) and frequency of occurrence (%FOO) of all genera, species complexes and species used in the 

prey size analysis. 

Order Family OTU Size (mm) %FOO 

Araneae Cheiracanthiidae Cheiracanthium elegans 7.5 1.5 

Araneae Linyphiidae Agyneta rurestris 2.3 3.1 

Araneae Linyphiidae Bathyphantes gracilis 2 1.5 

Coleoptera Anthicidae Notoxus 1 4.6 1.5 

Coleoptera Anthicidae Omonadus floralis 3.1 1.5 

Coleoptera Carabidae Acupalpus brunnipes 3.25 1.5 

Coleoptera Carabidae Clivina collaris 5 1.5 

Coleoptera Carabidae Ophonus 1 11.25 4.6 

Coleoptera Cerambycidae Arhopalus 1 17.5 4.6 

Coleoptera Cerambycidae Arhopalus ferus 18 6.2 

Coleoptera Chrysomelidae Chaetocnema hortensis 1.9 1.5 

Coleoptera Chrysomelidae Psylliodes chrysocephalus 3.8 1.5 

Coleoptera Curculionidae Charagmus griseus 7.75 1.5 

Coleoptera Curculionidae Hylurgus ligniperda 7.5 4.6 

Coleoptera Curculionidae Sitona 1 4.3 1.5 

Coleoptera Curculionidae Sitona obsoletus 5 1.5 

Coleoptera Dermestidae Attagenus unicolor 3.9 1.5 

Coleoptera Dermestidae Dermestes mustelinus 7 3.1 

Coleoptera Nitidulidae Pria dulcamarae 1.75 1.5 

Coleoptera Phalacridae Olibrus affinis 2.1 1.5 

Coleoptera Scarabaeidae Calamosternus granarius 4.5 3.1 

Coleoptera Staphylinidae Anotylus nitidulus 2.45 6.2 

Coleoptera Staphylinidae Carpelimus bilineatus 2.15 1.5 

Coleoptera Staphylinidae Nehemitropia lividipennis 3.15 1.5 

Coleoptera Staphylinidae Stenus ossium 4 1.5 

Diptera Anthomyiidae Adia cinerella 4.5 1.5 

Diptera Anthomyiidae Delia 1 3.8 1.5 

Diptera Asteiidae Asteia amoena 2.75 1.5 

Diptera Chironomidae Chironomus luridus 6.1 1.5 

Diptera Chironomidae Macropelopia adaucta 4 1.5 

Diptera Chironomidae Micropsectra atrofasciata 3 1.5 

Diptera Chironomidae Paracricotopus 1 1.75 1.5 

Diptera Chironomidae Tanytarsus volgensis 2.8 1.5 

Diptera Chironomidae Virgatanytarsus triangularis 3.05 3.1 

Diptera Chloropidae Thaumatomyia 1 3.05 4.6 

Diptera Dolichopodidae Dolichopus griseipennis 5.38 3.1 

Diptera Dolichopodidae Medetera saxatilis 2.63 1.5 

Diptera Drosophilidae Drosophila suzukii 3 3.1 
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Order Family OTU Size (mm) %FOO 

Diptera Drosophilidae Scaptomyza pallida 2.38 7.7 

Diptera Ephydridae Psilopa polita 1.08 1.5 

Diptera Lauxaniidae Calliopum aeneum 4 1.5 

Diptera Lauxaniidae Minettia lupulina/fasciata 3.25 4.6 

Diptera Limoniidae Dicranomyia modesta 8.8 1.5 

Diptera Lonchopteridae Lonchoptera lutea 2.5 9.2 

Diptera Mycetophilidae Exechia seriata 4.5 1.5 

Diptera Mycetophilidae Tarnania dziedzickii 7.75 1.5 

Diptera Opomyzidae Geomyza tripunctata 3.13 6.2 

Diptera Phoridae Megaselia scutellaris/tenebricola 2.15 1.5 

Diptera Psychodidae Psychoda 1 3.5 1.5 

Diptera Sciaridae Bradysia trivittata 2.65 1.5 

Diptera Simuliidae Simulium rubzovianum 2.38 1.5 

Diptera Sphaeroceridae Coproica hirticula 1.7 1.5 

Diptera Syrphidae Eupeodes bucculatus/corollae/luniger 9 1.5 

Diptera Tachinidae Trichopoda pennipes 9 1.5 

Diptera Tephritidae Tephritis formosa 5 1.5 

Diptera Tipulidae Tipula oleracea 20.5 3.1 

Hemiptera Aphalaridae Ctenarytaina spatulata 2 3.1 

Hemiptera Aphididae Anoecia 1 2.45 1.5 

Hemiptera Aphididae Sipha maydis 1.95 1.5 

Hemiptera Aphididae Tetraneura nigriabdominalis 2 1.5 

Hemiptera Aphididae Tuberculatus remaudierei 1.9 1.5 

Hemiptera Cicadellidae Agallia consobrina 3.75 1.5 

Hemiptera Cicadellidae Aphrodes aestuarinus 6.5 3.1 

Hemiptera Cicadellidae Empoasca decipiens/pteridis/vitis 3.5 3.1 

Hemiptera Cicadellidae Psammotettix 1 4.05 3.1 

Hemiptera Cydnidae Macroscytus brunneus 7.5 10.8 

Hemiptera Cydnidae Sehirus morio 10 1.5 

Hemiptera Delphacidae Muellerianella extrusa 2.5 1.5 

Hemiptera Lygaeidae Kleidocerys ericae 4.25 1.5 

Hemiptera Lygaeidae Nysius ericae 4 1.5 

Hemiptera Miridae Macrolophus costalis 3.5 1.5 

Hemiptera Miridae Orthotylus adenocarpi 4.1 1.5 

Hemiptera Miridae Pinalitus cervinus 4.1 3.1 

Hemiptera Miridae Trigonotylus 1 5.5 3.1 

Hemiptera Nabidae Nabis 1 6 15.4 

Hemiptera Nabidae Nabis ferus 8 3.1 

Hemiptera Nabidae Nabis punctatus 7.55 9.2 

Hemiptera Pentatomidae Nezara viridula 12.5 15.4 

Hemiptera Pentatomidae Piezodorus lituratus 11.5 6.2 

Hemiptera Psyllidae Acizzia uncatoides 2.05 1.5 

Hemiptera Rhopalidae Liorhyssus hyalinus 7 1.5 

Hemiptera Rhyparochromidae Tropistethus holosericus 2.65 1.5 

Hymenoptera Andrenidae Panurgus 1 9.5 1.5 
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Order Family OTU Size (mm) %FOO 

Hymenoptera Apidae Apis mellifera 12.5 1.5 

Hymenoptera Braconidae Chorebus leptogaster 2.55 1.5 

Hymenoptera Braconidae Meteorus rubens 3.5 1.5 

Hymenoptera Formicidae Aphaenogaster gibbosa 6.5 3.1 

Hymenoptera Formicidae Camponotus cruentatus 10 1.5 

Hymenoptera Formicidae Camponotus truncatus 7 7.7 

Hymenoptera Formicidae Crematogaster scutellaris 4.25 4.6 

Hymenoptera Formicidae Lasius 1 3.85 24.6 

Hymenoptera Formicidae Linepithema humile 2.4 4.6 

Hymenoptera Formicidae Myrmica rubra 4.5 6.2 

Hymenoptera Formicidae Myrmica ruginodis 5 1.5 

Hymenoptera Formicidae Tetramorium caespitum/impurum 2.98 16.9 

Hymenoptera Formicidae Tetramorium forte 4.2 32.3 

Hymenoptera Ichneumonidae Aclastus solutus 3.15 1.5 

Hymenoptera Ichneumonidae Dicaelotus resplendeus 3.1 1.5 

Hymenoptera Ichneumonidae Dichrogaster 1 6 1.5 

Hymenoptera Megastigmidae Megastigmus amicorum 3.1 1.5 

Hymenoptera Proctotrupidae Exallonyx longicornis 4 1.5 

Isopoda Armadillidiidae Armadillidium vulgare 13.25 1.5 

Lepidoptera Gelechiidae Megacraspedus quadristictus 3 1.5 

Lepidoptera Gelechiidae Sitotroga cerealella 6 1.5 

Lepidoptera Gelechiidae Sophronia semicostella 18 1.5 

Lepidoptera Noctuidae Lacanobia oleracea 16.5 1.5 

Lepidoptera Pyralidae Pempelia palumbella 26 1.5 

Lepidoptera Zygaenidae Zygaena fausta 24.5 1.5 

Neuroptera Chrysopidae Chrysoperla lucasina 2.8 1.5 

Neuroptera Hemerobiidae Micromus angulatus 10 1.5 

Odonata Coenagrionidae Erythromma lindenii 33 1.5 

Psocodea Caeciliusidae Valenzuela flavidus 2.45 13.8 

Psocodea Ectopsocidae Ectopsocus briggsi 2.5 6.2 

Psocodea Peripsocidae Peripsocus phaeopterus 2.15 1.5 

Thysanoptera Aeolothripidae Aeolothrips 1 1.25 1.5 

Trichoptera Hydropsychidae Hydropsyche bulbifera 8.5 1.5 

Trichoptera Hydropsychidae Hydropsyche lobata 8.5 1.5 
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Abstract 

Pallid Swifts, as other swifts, are birds extremely adapted to an aerial lifestyle, showing 

unique adaptations that allow them to fly almost continuously. The diet of these non-stop 

high-altitude aerial birds has been mostly studied through techniques that fail to produce 

high taxonomic resolution identifications, and for that have been replaced by avant-garde 

molecular techniques, as DNA metabarcoding. Faecal samples were monthly collected 

during the breeding season, from a Pallid Swift colony in the north of Portugal. DNA from 

the faecal samples was used to sex the birds and to identify the arthropods present in 

the faecal samples through metabarcoding. From the prey items detected, 74 families 

were identified belonging to 16 orders, with Hymenoptera and Hemiptera being the most 

consumed prey orders. There were seasonal variations in diet richness, composition and 

prey size. Regarding the diet of males and females, although no differences were found 

https://doi.org/10.1016/j.avrs.2022.100073
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between the diet of males and females in composition and richness, there were 

differences in the size of arthropods preyed by the different sexes, with males feeding 

on larger arthropods. The large seasonal variation in Pallid Swifts’ diet during the 

breeding season is likely a result from spatiotemporally variation of aerial prey, which 

must have been opportunistically predated by swifts. Although no significant differences 

were detected in diet richness and composition between sexes, the fact that males 

consume larger prey may suggest the existence of sexual dietary segregation in this 

group of birds. Our results show how species appear to shape their feeding composition, 

likely in response to changes in the environment and the food availability, according to 

optimal feeding theory. At last, several pest species were found in these swifts’ diet, 

which, if studied through metabarcoding, can be used to monitor small arthropods, 

including airborne pests. 

Keywords: Aerial foraging, Apus pallidus, Dietary seasonal variation, Feeding ecology, 

Metabarcoding, Optimal foraging theory. 

 

1. Introduction 

Swifts (Apodiformes: Apodidae) are insectivorous birds extremely well-adapted to an 

aerial lifestyle, displaying unique morphological, behavioral, and physiological 

adaptations to this distinct way of living (Henningsson & Hedenström, 2011; Neumann & 

Neumann, 2016; Sachs, 2017). These traits allow these highly mobile and fast birds to 

fly continuously during the nonbreeding period (Hedenström et al., 2019; Hedenström et 

al., 2016; Liechti et al., 2013). During the breeding period, collection of material to build 

nests, sleeping, mating, drinking and invertebrates’ foraging occurs during flight 

(Hedenström et al., 2016; Henningsson et al., 2009; Orłowski & Karg, 2013; Rattenborg, 

2006). The Pallid Swift (Apus pallidus) is one of the most abundant breeding species of 

swifts throught its breeding range, restricted to the Mediterranean region, Asia Minor, 

and adjoining areas (Chantler & Driessens, 2000; Keller et al., 2020), with some resident 

populations in Niger, Chad, and Egypt (BirdLife International, 2022). Usually, this species 

nests in either natural landscapes, using caves and cliffs, or in urban areas, using 

preferentially cavities under the eaves or ceilings of tall buildings (Antonov & Atanasova, 

2002; Cucco & Malacarne, 1987; Thibault et al., 1987).The Pallid Swift often lays a 

second clutch in summer, leading to a long reproductive period that extends into autumn 

(Antonov & Atanasova, 2001; Boano & Cucco, 1989; Cramp, 1985). 

Some previous studies have analysed the diet of the Pallid Swift through the visual 

inspection of faeces and food boluses delivered to nestlings (Cristiano et al., 2018; 
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Cucco et al., 1993; Finlayson, 1979; Malacarne & Cucco, 1992) and concluded that the 

diet of this species was mainly composed of arthropods belonging to the orders 

Coleoptera, Diptera, Hemiptera and Hymenoptera. Nonetheless, there is a particularly 

notorious lack of knowledge of this species’ diet in its expanding Northern distribution 

range, namely through the Iberian Peninsula, where it is very abundant (Keller et al., 

2020). Although the diet of some swift species has already been studied, dietary 

differences between sexes have never been considered. Sexual dietary segregation has 

been described in several animal groups (Borrell et al., 2011; Mata et al., 2016; Mramba 

et al., 2017), namely in birds (Catry et al., 2016; da Silva et al., 2020; Massaro et al., 

2020). These differences are usually the result of either sexually marked morphological 

traits, or differences in parental care (Catry et al., 2016; Lewis et al., 2005). Since Pallid 

Swift’s parental care is shared by females and males (Finlayson, 1979; Malacarne et al., 

1992) and this species has no sexual dimorphism, no significant differences between the 

diets of males and females should be expected. However, there are records of birds 

without major morphological sexual dimorphism, but with differences in their diet 

composition (da Silva et al., 2020). Moreover, the morphological dietary analyses 

performed have many limitations: either they are very invasive methods, or depend on 

samples that are already very digested, making visual identification of the prey quite 

difficult and sometimes even impossible (Chung et al., 2021). Therefore, these traditional 

approaches have been recently replaced by more avant-garde procedures, such as DNA 

metabarcoding (Chan et al., 2020; Chung et al., 2021). Although presenting some 

limitations (Taberlet et al., 2012), the ability to provide high taxonomic resolution of the 

consumed species (Gibson et al., 2015; Jackson et al., 2014) and avoid the requirement 

for prior knowledge of the identified prey (de Sousa et al., 2019) makes this technique a 

good tool for diet assessment. Despite its broad application and its potential to unravel 

swifts’ ecology, to date has not been applied to assess the diet of any of the Palearctic 

region’s swift species, whose populations, however, have been the subject of other 

biological and ecological studies (Cibois et al., 2022; Hedenström et al., 2019; Kearsley 

et al., 2022). 

In this study the feeding ecology of Pallid Swift was analysed during its breeding season 

in the North of Portugal using DNA metabarcoding on faecal samples. We aimed to 

assess and characterize the temporal variations in the diet during the breeding season 

and evaluate whether differences exist between sexes, also molecularly determined, 

regarding prey richness, niche width, prey size, and diet composition. Finally, we 

compared our results with those obtained by other swift dietary studies (Chung et al., 
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2021; Hespenheide, 1975), namely Pallid Swifts (Cristiano et al., 2018; Finlayson, 1979; 

Malacarne & Cucco, 1992). 

 

 

2. Materials and Methods 

2.1 Study area and Field Sampling 

The studied Pallid Swift colony is located in the arcades of the Vila Nova de Famalicão 

City Hall (41.4100º, -8.5203º), Braga, Portugal. The field sampling was conducted during 

the 2021 breeding season, from June to October. Birds were monthly captured with mist 

nests or by hand. Cotton bags, from which the droppings were collected, were sterilized 

with 10% bleach for 1 hour and washed after every use to minimize contamination. 

Droppings were transferred directly from the bags to 2 ml tubes with 98% ethanol, and 

stored at 4°C until laboratory processing (da Silva et al., 2019).  

2.2 Laboratory procedures  

DNA was extracted from bird droppings using the Norgen Stool DNA Isolation Kit, 

following the manufacturer's protocol. DNA extraction was carried out in batches of 23 

samples plus one negative control in which no faecal sample was added. The extracted 

DNA and the negative controls were distributed in 96-well plates where the last well was 

left empty for PCR negative control.  

Invertebrate prey items were amplified using the COI primers fwhF2 (5'-

GGDACWGGWTGAACWGTWTAYCCHCC-3') and fwhR2n (5’-

GTRATWGCHCCDGCTARWACWGG-3’) (Vamos et al., 2017), modified to contain 

Illumina adaptors. This primer set was originally designed to amplify the DNA of 

freshwater invertebrates (Vamos et al., 2017), but also performs well in the amplification 

of terrestrial arthropods’ DNA and the amplification of degraded DNA samples, such as 

faecal droppings (Elbrecht et al., 2019; Mata et al., 2021). The PCR was carried out in 

volumes of 10 μl, comprised of 5 μl of Multiplex PCR Master Mix (Qiagen), 0.3 μl of each 

10 pM primer, 2.4 μl of H2O, and 2 μl of DNA extract. Cycling conditions consisted of a 

15 min period at 95ºC, 45 cycles of 30 sec denaturation at 95ºC, 30 sec annealing at 

50ºC, and 30 sec extension at 72ºC, and a final extension period of 10 min at 60ºC. 

Amplification success was checked by visually inspecting 2 μl of each PCR product on 

a 2% agarose gel stained with GelRed. The resulting extracted DNA was cleaned using 

a 1:0.8 ratio of AMPure XP beads (Beckman Coulter, High Wycombe, UK) according to 

the manufacturer’s instructions with the exception that 80% ethanol was used instead of 
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70%, and eluted in 25 μl of 10 mM Tris, pH 8.5. Clean PCR products went through a 

second PCR reaction to incorporate 7bp long indexes and P5+P7 Illumina adaptors. This 

second PCR was carried out in a total volume of 14 μl, comprising 7 μl of KAPA HiFi 

HotStart ReadyMix, 2.8 μl of cleaned PCR, 2.8 μl of H2O, and 0.7 μl of each adaptor. 

Cycling conditions were 3 min period at 95ºC, 10 cycles of 30 sec denaturation at 95ºC, 

30 sec annealing at 55ºC, and 30 sec extension at 72ºC, and a final extension period of 

5 min at 72ºC. Indexed samples were again cleaned and then pooled at equimolar 

concentrations and sequenced in a MiSeq run (500 cycles) together with samples from 

other projects.  

The Pallid Swifts’ sex identification was performed by amplifying a small amplicon of the 

Z and W chromosomes using P2 (5'-TCTGCATCGCTAAATCCTTT-3') and P8 (5'-

CTCCCAAGGATGAGRAAYTG-3') primers (Griffiths et al., 1998). This primer set was 

designed to amplify fragments of the (CHD) gene, providing distinct banding patterns on 

an agarose gel as a result of intronic regions within this gene (Çakmak et al., 2017; 

Griffiths et al., 1998; Quinn et al., 1990). The PCR was carried out in volumes of 11 μl, 

comprised of 5 μl of Multiplex PCR Master Mix (Qiagen), 0.4 μl of each primer, 2.2 μl of 

H2O, and 3 μl of DNA extract. P2 primers were labelled with the fluorescent dye FAM. 

Cycling conditions consisted of a 15 min period at 95ºC, 20 cycles of 35 sec denaturation 

at 95ºC, 45 sec annealing at 45ºC, and 45 sec extension at 72ºC, followed by more 25 

cycles of 35 sec denaturation at 95ºC, 45 sec annealing at 47ºC, and 45 sec extension 

at 72ºC and a final extension period of 10 min at 60ºC. PCR products were checked on 

an agarose gel, and, although amplification was successful, it was not possible to visually 

separate the different amplicons. Therefore, PCR products were separated by capillary 

electrophoresis using the automatic sequencer ABI 3130xl Genetic Analyzer. Fragments 

were scored against Genescan-500LIZ size Standard, using GeneMapper version 4.1 

(Applied Biosystems). Male individuals showed a single fragment with about 370bp of 

length, while females showed an extra fragment of about 380bp. Each sample was 

sequenced three times, and sex was only assigned to samples that provided congruent 

results for at least two sequencing results. This should avoid false assignments resulting 

from allelic drop-out of the CHD-W (van der Velde et al., 2017), that can be particularly 

common in degraded DNA samples like bird droppings (Mitchell et al., 2012). 

2.3 Bioinformatic analysis 

Bioinformatic processing of generated Illumina reads was done using the R package 

Metabarcoding Joining Obitools & Linkage Networks In R (MJOLNIR: 

https://github.com/uit-metabarcoding/MJOLNIR). The two paired-end Illumina reads’ 
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alignment was done using ´illuminapairedend´ from OBITools (Boyer et al., 2016). After 

paired-end sequences were merged, each sequence was annotated with its 

corresponding sample. This step was carried using ‘ngsfilter’, which was also used for 

primer-removal. In addition, the data was filtered to select fragments of 190-220 bp by 

applying the command ‘obigrep’. All these steps were carried out simultaneously using 

the ‘mjolnir2_FREYJA()’ function. Chimeric sequences from the individual sample files 

provided by FREYJA were removed using the ‘mjolnir2_HELA()’ function. This function 

uses the uchime_denovo algorithm implemented in VSEARCH (Rognes et al., 2016) and 

after chimera removal joins all the samples. After this merge, reads were clustered using 

the ‘mjolnir4_ODIN()’ function, which uses SWARM (Mahé et al., 2015) to delimit OTUs, 

based on linkage-networks created by step-by-step aggregation. Finally, to reduce the 

number of erroneous OTUs (e.g., retained PCR artifacts, sequencing errors, 

pseudogenes, etc.) and thus achieve more realistic biodiversity metrics, the 

‘mjolnir2_LOKI()’ function was used. This function uses the LULU (Frøslev et al., 2017) 

algorithm, which merges similar and highly occurring OTUs (identity higher than 84% 

and co-occurrence levels higher than 95%).  

The taxonomic assignment of the haplotypes was reached using BOLDigger v1.2.5 

(Buchner & Leese, 2020). This compares the OTUs to the BOLD Identification System 

database. The retrieved taxonomic assignment matches were then manually curated. 

When different OTUs matched a single taxon, these were condensed into a single 

taxonomic unit. In case an OTU matched different species, genera, or families at a similar 

identity level, this was assigned to the most inclusive taxonomic rank. OTUs assigned to 

higher taxonomic levels than species and with more than 98% of similarity, were 

clustered with a neighbour-joining tree (Mata et al., 2018) into distinct OTUs (e.g., 

Nabidae 1, Nabidae 2, etc). OTUs assigned to items that are not part of the insectivorous 

diet of swifts (e.g., fungi, protists, platyhelminths, birds, mammals, etc.) were categorized 

as "Not diet" and discarded from the analysis. The number of reads per OTU in the 

extraction and PCR blanks was subtracted to the associated samples to rule out possible 

sources of laboratory contaminations. Only samples with more than 100 reads of dietary 

items were considered and OTUs comprising less than 1% of the total dietary reads per 

sample were discarded.  

2.4 Data analysis 

All statistical analyses were performed on R v4.1.1 (R Core Team, 2020). Statistical 

significance was considered at α = 0.05. Dietary analysis was based on the OTU 

presence or absence per sample.  
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The effect of sex, month, and their interaction on the number of prey taxa detected in 

each dropping was tested using a generalized linear model (GLM) with a Poisson 

distribution and a log link-function, with the base function ‘glm’. To test for differences in 

prey size consumption between sexes and months, we conducted a literature search to 

characterize the size of each prey item detected. Only prey items identified to genus, 

species complex and species were considered, as it is not feasible to correctly assign a 

size to an arthropod family or order. Prey items used in this analysis included 85% of the 

OTUs and 85% of the predation events, thus covering the majority of the diet. The prey 

sizes obtained can be found in Appendix Table S1. The average prey size of each 

sample was further calculated and used as a response variable in a GLM with a Gamma 

distribution and an inverse link-function to test the effect of bird’s sex, month of capture, 

and their interaction, applying the base function ‘glm‘. Explanatory variables significance 

was tested in these models using the ‘Anova’ function from package car (Fox & 

Weisberg, 2019). Pairwise comparisons were performed to identify in which pairs the 

observed differences occurred, using the function ‘emmeans’ of the emmeans package 

(Lenth, 2022). To evaluate the effect of the ingested diversity on the size of the ingested 

prey, a generalized linear mixed model (GLMM) with a Poisson distribution and a log 

link-function was done with the function ‘glmer’ of the lme4 package (Bates et al., 2014), 

using month as random variable. This was done since the average prey richness is 

expected to vary across months. 

The overall prey richness consumed i.e., niche width, was estimated by sexes, and 

month using rarefaction curves based on Hill numbers with the function ‘iNEXT’ of the 

iNEXT package (Hsieh et al., 2016), with the triple of the lower reference sample size to 

minimize extrapolation bias (Chao et al., 2014). Significant differences were considered 

if the 95% confidence intervals between groups did not overlap. 

The package vegan (Oksanen et al., 2020) was used to evaluate differences in prey 

composition among sexes and months. First, a pairwise distance matrix using the 

Jaccard dissimilarity index was calculated with the function ‘vegdist’. This matrix was 

then tested using a Permutational Multivariate Analysis of Variance (PERMANOVA) with 

the Binomial method and 99999 permutations using the ‘adonis’ function. To identify the 

months that differed from each other, a pairwise PERMANOVA was performed. Similarity 

percentages were also calculated to determine the contribution of different prey groups 

to the observed differences in variables, using the ‘simper’ function. 

 

3. Results 
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3.1 Diet description 

During the Pallid Swift monitoring a total of 226 bird captures occurred, and 82 faecal 

samples were collected. After sequencing and bioinformatic processing, only 65 samples 

successfully produced dietary data. Of these 65 faecal samples, 29 were identified as 

females, 33 as males, and in 3 samples it was not possibly to reliably assign the sex of 

the bird. 

We identified 139 OTUs in the diet of the Pallid Swift, belonging to 74 different families 

and 16 orders. The most commonly observed OTU was Tetramorium forte (32% of the 

samples), followed by Lasius 1 (25%). Formicidae and Pentatomidae were the most 

frequent families, 62% and 20% respectively, and also represented the most detected 

orders Hymenoptera (66%) and Hemiptera (58%) (Appendix Table S1). The five most 

common orders were present throughout all the months, except for the order Psocodea 

which was not found in the samples collected in October (Fig. 1). In June, a substantial 

part of the prey interactions (46%) belonged to the order Hymenoptera, with almost all 

of these (96%) belonging to the family Formicidae. In July, the five most common orders 

were almost equitably represented in the samples collected, unlike in the other months. 

In August, 65% of the arthropods consumed belonged to the orders Hymenoptera and 

Hemiptera. Finally, the faeces collected in September and October, presented a very 

distinct composition. Whereas in September the orders Coleoptera and Hemiptera 

comprised more than 70% of the diet; in October these orders only represented 18%, 

with the vast majority of the diet (>70%) being composed by Diptera. 

Additionally, 17 predation events (5.7% of the total) of 11 pest species were detected, 

mostly agricultural pests (Appendix Table S1). The most common pest was Geomyza 

tripunctata, which was found in 6% of the samples. 

3.2 Prey richness and niche width 

We found no differences between sexes in the number of prey items detected per sample 

(LR Chisq = 0.199, df = 1, p-value = 0.656). With regard to temporal variation, differences 

were found in the average number of prey items detected per sample (LR Chisq = 

14.634, df = 4, p-value = 0.006; Fig. 2a). The significant differences were observed 

between June and July (z-ratio = -3.295, p-value = 0.008), the months with the lowest 

and highest average number of prey items per sample, respectively. 

Overall diet richness, i.e., the niche width, was significantly different between months, 

but not between sexes (Fig. 2b). Regarding the temporal variation, there were no 

differences between months except for July that was the month with the widest niche 
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breadth, exhibiting more than double the average diversity values observed for the 

remaining breeding season. For sexes, although the differences between the niche width 

of males and females was not significant, males tended to ingest a higher number of 

prey taxa. 

3.3 Prey size 

Arthropods between 2-4 mm in size were the prey on which Pallid Swifts fed the most, 

with size classes 4-6 and 6-8 mm being the second and third most preyed classes, 

respectively. We found significant differences in the average size of prey consumed per 

sample, between sexes (LR Chisq = 4.871, df = 1, p = 0.027) and months (LR Chisq = 

10.856, df = 4, p = 0.028; Fig. 3). Overall, males fed on larger prey than females. 

Regarding the temporal variation in prey size, Pallid Swifts in July preyed on smaller 

sized arthropods when compared to the remaining breeding season. In turn, September 

was the month in which larger prey were consumed, with significant differences only 

detected between these two months (t-ratio = 2.882, p-value = 0.044). A significant 

inverse relationship between the ingested diversity and the prey size was also found 

(Chisq = 4.7, df = 1, p-value = 0.030), with prey diversity increasing as preys becomes 

smaller. 

3.4 Diet composition 

The PERMANOVA revealed no differences in niche overlap between sexes (df = 1, 

pseudo-F= 1.215, R2 = 0.018, p-value = 0.151), however, with respect to sampling 

month, significant differences were found in niche overlap (df = 4, pseudo-F = 2.952, R2 

= 0.171, p-value < 0.001). These significant differences were observed between all pairs 

of months except September and October (Appendix Table S2). 

The compositional differences at OTU level found among the diets collected over the 

different five months were explained by the seasonal variation of the most frequently 

consumed OTUs (present in more than 10% of samples; Fig. 4; Appendix Table S3). 

The presence of Tretamorium forte and Lasius 1 in 68% and 58% of the samples 

collected in June, respectively, and the negligible presence or even absence of these 

OTUs in the other months, explained the significant differences between the diet 

composition of June and the rest of the breeding season. The differences between the 

composition of the diet consumed in July and in the other months were due to Valenzuela 

flavidus, since it was present in 54% of the samples collected in July, and barely present 

or absent in the remaining months. The compositional differences found between August 

and the other four months resulted from the presence of Elateridae 1 in 50% of the 

samples collected in this month and the absence of this OTU in the other sampled 
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months, with the exception of September, in which its presence was residual. In addition, 

Tretamorium caespitum/impurum, Nabis 1 and Macroscytus brunneus also contributed 

to the differences found between August and June. Finally, the marginal presence of 

Nezara viridula in June and August and the total absence in the July and October 

samples, but a dominant presence in the September samples (present in 67% of the 

faecal samples analysed), made this OTU the main responsible for the differences 

detected between the diets collected in September and the other months. Regarding 

October, the differences in diet composition between this month and the others but was 

explained by Lonchoptera lutea and Scaptomyza pallida, both present in 57% of the 

samples of this month (Appendix Table S3). 

 

4. Discussion 

Our results showed a marked seasonal variation in prey richness, size and composition 

throughout the breeding season, likely as a consequence of the seasonality of available 

arthropods, since aerial foragers rely on spatiotemporally unpredictable accumulations 

of aerial prey (Arbeiter et al., 2016). As swifts display an opportunistic feeding behaviour, 

massive arthropod assemblages lead to high intraspecific variability in these birds’ diets 

throughout time (Cucco et al., 1993). Although no significant differences in diet richness 

and composition were noted between males and females, there were differences 

between the size of arthropods preyed by the different sexes. 

Our results are similar with those found in other studies of Pallid Swifts. The study by 

Cristiano et al. (2018) concluded that Hemiptera and Coleoptera were the most 

consumed orders, while Malacarne and Cucco (1992) identified the orders Hemiptera, 

Hymenoptera and Diptera as the most important prey. Regarding Hymenoptera, the 

study conducted by Malacarne and Cucco (1992) and the one conducted by Chung et 

al. (2021), on the diet of House Swifts (Apus nipalensis), found the same pattern as we, 

with a predominance of hymenopterans consumed during the breeding season, being 

Formicidae (ants) the most prevalent family ingested. The seasonal variation was also 

in line to that found by Malacarne and Cucco (1992) where the vast majority of the 

predated arthropods in June belonged to the order Hymenoptera, while August and 

September were dominated by Hemiptera. The majority of Diptera was recorded in 

October and this marked presence of dipterans at the end of the breeding season as 

found by Chung et al. (2021). Unlike the other orders, Coleoptera did not show a clear 

seasonal variation and this pattern was also noted by Malacarne and Cucco (1992). The 

prey diversity detected cannot be compared with studies using visual identification due 
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to the much higher taxonomic resolution of metabarcoding (da Silva et al., 2019). Until 

now only Chung et al. (2021) used DNA metabarcoding to study the diet of Apodidae 

species, and for a similar sample size, the OTU and family richness of Pallid Swifts’ diet 

was about twice that observed in House Swifts (Chung et al., 2021). Nonetheless, the 

differences in the richness between these two species must be looked carefully, because 

they are likely highly influenced by the use of different primer sets, which may amplify 

different taxa and have different arthropod identification resolution (da Silva et al., 2019). 

The optimal foraging theory suggests that the natural selection promotes the most 

energy-efficient foraging pattern to maximise energy intake and increase fitness (Pyke, 

1984). Ants are relatively weak fliers and can be found in dense aggregations during 

nuptial flights (Hespenheide, 1975; Levin et al., 2008), which reduces the required 

capture effort and energy expenditure for their predation justifying why swifts seem to 

choose ants to others arthropods present in the air column (Chung et al., 2021). In 

addition to the prey's ease of capture and its local density, the prey's selection also 

depends on its size (Hespenheide, 1975). Thus, larger, and therefore more energetically 

nutritious prey, should be preferred in order to maximise the energetic intake. The 

consumption of the largest prey was recorded in June and September, and, therefore, 

these were likely the months when optimal size prey items were more abundant, and, as 

a result, swifts appeared to concentrate on them, reducing prey richness and niche width. 

On the other hand, when ideal prey diminishes and environmental restrictions constrain 

consumers to suboptimal diets, predators often need to increase consumption rates, 

leading to more diversified diets (Simpson & Simpson, 1990). As in Malacarne and 

Cucco (1992), Pallid Swifts in this study fed mainly on prey with 2-4 mm, however in our 

study the second most consumed class was 4-6 mm while in their study was the 1-2 mm 

one. Nevertheless, the results from this study seem to fall between those obtained by 

Malacarne and Cucco (1992) in Piemont and those obtained by Finlayson (1979) in 

Gibraltar, with the latter pointing arthropods between 4-6 mm in size as the most 

consumed by Pallid Swifts. 

Sexual dietary segregation has been described in several animal groups (Borrell et al., 

2011; Mata et al., 2016; Mramba et al., 2017), and particularly in birds (Catry et al., 2016; 

da Silva et al., 2020; Massaro et al., 2020). Marked morphological differences between 

sexes or differences in parental care during the breeding season are generally the drivers 

of this segregation. Although, to the best of our knowledge, dietary differences between 

sexes have never been studied in Apodidae species, the Pallid Swifts’ biparental and the 

lack of sexual dimorphism led us to hypothesise that no relevant differences would be 

found between sexes. The results partly confirmed our initial hypothesis, since no 
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differences in diet richness or prey composition were found. However, there were 

significant differences in the size of consumed prey, with males preying on larger 

arthropods. The results obtained by compositional and prey size analysis were not 

congruent, since although no differences were observed in diet composition between 

sexes, there were differences in the size of the arthropods consumed. This non-

compliance is likely related to differences in statistical power of both analyses, but a 

higher sample size would be desired to disentangle this incongruence. For a better 

understanding of swifts’ diet, future studies should try to extend the sampling period 

across several years, assessing if the same pattern is observed overtime and integrate 

more bird colonies, to avoid possible local and regional effects. Ideally it would be also 

accessed swifts foraging areas and evaluate prey availability in these areas, to study in 

detail prey selection by these birds. 

Our work also uncovered the presence of some arthropod pests in the diet of these 

swifts. In addition to agricultural pests, mostly responsible for crop damage, we also 

found an invasive forest pest, Ctenarytaina spatulata, a psyllid responsible for economic 

damage to Eucalyptus spp. plantations (da Silva et al., 2022). The ability of swifts, and 

other aerial feeders, to provide an important regulatory service by preying on invasive 

and pest arthropods has already been reported in previous research (Cristiano et al., 

2018; Orłowski & Karg, 2013). Besides performing an important ecosystem service, 

swifts can also act as bioindicators. Biosurveillance has been enhanced by the 

application of DNA metabarcoding, which allows an early and quick detection 

(Montauban et al., 2021; Westfall et al., 2020), thereby enabling the mitigation of the 

damaging effects that invasive and pest species may have on ecosystems. Thus, 

monitoring swifts’ diet can be a useful tool in ecosystem monitoring (Cristiano et al., 

2018). 

 

5. Conclusion 

Overall, our results suggest a sharp seasonal variation in Pallid Swifts’ diet during the 

breeding season, with almost the whole diet being comprised of arthropods belonging to 

the orders Hymenoptera, Hemiptera, Coleoptera, Diptera and Psocodea. The seasonal 

variation found in richness, niche width, size and composition of the Pallid Swifts’ prey 

consumption likely resulted from the spatiotemporally changes of arthropods in the air 

currents. Although no significant differences were found in diet richness and composition 

between males and females, the finding that male birds feed on larger prey items than 

females, raises the question of whether birds such as swifts, with no sexual dimorphism 
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and with shared parental caretaking, may exhibit sexual dietary segregation. Our study 

also suggests that swifts may have a role in pest predation. Finally, this work highlights 

how species modify their food niche in response to changing environmental conditions. 

When environmental conditions were optimal and ideal prey were available, the Pallid 

Swifts focused on this prey, and, as a consequence, the diversity of their diet reduced. 

But as environmental conditions deteriorated and optimal prey were no longer available, 

they became more opportunistic and began to incorporate sub-optimal prey items into 

their diet, thus broadening their food niche, which resulted in a more diverse diet. 
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Appendix A. Supplementary data 

This is an excel document that was sent together with the manuscript when it is submitted 

to the Avian Research Journal. 

Table S1. Size (mm) and frequency of occurrence (%FOO) of all genera, species 

complexes and species used in the prey size analysis. OTUs marked with ¤ consist in 

agricultural pests, while OTUs marked with ꝉ are considered forest pests 

Table S2. Pairwise PERMANOVA testing for the effects of sampling month on niche 

overlap. Significant values are at bold. 

Table S3. Similarity percentage analysis of OTUs between pairs of months. Significant 

values are at bold.
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Figure captions 

Fig. 1 – Frequency of predation events of mostly consumed orders by Pallid Swifts in 

each sampled month. "Other orders" represents unfrequently consumed prey orders: 

Lepidoptera, Araneae, Orthoptera, Neuroptera, Trichoptera, Entomobryomorpha, 

Isopoda, Julida, Odonata, Symphypleona and Thysanoptera. 

Fig. 2 – Estimated prey richness (A) and niche width (B) of OTUs per sample for different 

sex and month classes. Niche width of different sexes and months was estimated with 

87 and 18 sampling units, respectively. Whiskers represent 95% confidence intervals 

based on 1,000 bootstraps. 

Fig. 3 – Estimated average prey size (mm) of OTUs for different sex and month classes. 

Whiskers represent 95% confidence intervals. 

Fig. 4 – Bigraph displaying the OTUs ingested by Pallid Swifts per sampling month. 

Green links indicate OTUs consumed in significantly different proportions over the five 

months, obtained from the SIMPER analysis. The width of links is proportional to their 

frequency of occurrence within months. Month and prey boxes are proportional to the 

sum of the frequency of occurrence of all interactions in that month and across months, 

respectively. Only the most frequent OTUs (more than 10% of the average monthly 

frequency of occurrence) have their name displayed. 
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