
Phishing Detection

with a Machine

Learning Net
Ana Luís Carvalho Matos Bezerra
Mestrado em Estatística Computacional e Análise de Dados
Departamento de Matemática

2022

Orientador
Ricardo Cruz, Investigador, Faculdade de Engenharia

Coorientador
Joaquim Costa, Professor Auxiliar, Faculdade de Ciências

Supervisor
Ivo Pereira, Professor Assistente, E-goi

Todas as correções determinadas

pelo júri, e só essas, foram efetuadas.

O Presidente do Júri,

Porto, ______/______/_________

UNIVERSIDADE DO PORTO

MASTERS THESIS

Phishing Detection with a Machine Learning
Net

Author:

Ana BEZERRA

Supervisor:

Ricardo CRUZ

E-Goi supervisor:

Ivo PEREIRA

Co-supervisor:

Joaquim COSTA

A thesis submitted in fulfilment of the requirements

for the degree of MSc. Computational Statistics and Data Analysis

at the

Faculdade de Ciências da Universidade do Porto

Departamento de Matemática

December 23, 2022

mailto:up201308078@fc.up.pt
mailto:example@fc.up.pt
mailto:name@host.com
mailto:name@host.com

Sworn Statement

I, Ana Luı́s Carvalho Matos Bezerra, enrolled in the Master Degree in Computational

Statistics and Data Analysis at the Faculty of Sciences of the University of Porto hereby

declare, in accordance with the provisions of paragraph a) of Article 14 of the Code of

Ethical Conduct of the University of Porto, that the content of this dissertation reflects

perspectives, research work and my own interpretations at the time of its submission.

By submitting this dissertation, I also declare that it contains the results of my own

research work and contributions that have not been previously submitted to this or any

other institution.

I further declare that all references to other authors fully comply with the rules of

attribution and are referenced in the text by citation and identified in the bibliographic

references section. This dissertation does not include any content whose reproduction is

protected by copyright laws.

I am aware that the practice of plagiarism and self-plagiarism constitute a form of

academic offense.

Ana Luı́s Carvalho Matos Bezerra

September 30th, 2022

Agradecimentos

Em primeiro lugar queria agradecer à minha famı́lia, particularmente aos meus pais,

Regina e Luı́s, que sempre apoiaram as minhas decisões independentemente do quão

arriscadas são e me tentam ajudar no que for preciso. Aos meus amigos que me in-

centivaram a arriscar no que verdadeiramente quero fazer. Agradeço também ao meu

namorado, Edgar Santos, por tudo o que fez por mim durante esta fase. Obrigada por

me trazeres ”de volta à Terra” quando senti que tudo estava a correr mal, obrigada por

debateres comigo as minhas ideias quando eu precisava de as assentar e obrigada por

celebrares comigo todas as pequenas vitórias.

Aos professores doutores e orientadores Ricardo Cruz e Joaquim Costa, obrigada por

me incentivaram a realizar as minhas ideias, por me deixarem explorar e por todos os

conselhos e correções dados durante este processo. Ao Ivo, o meu orientador dentro da

empresa, que sempre ajudou no que foi necessário também com os seus conselhos e me

deu motivação para alcançar mais do que tinha em mente.

A todos do departamento de AI da E-goi quero agradecer o apoio e a colaboração du-

rante o meu projeto, todas as dicas, todas as conversas e brincadeiras que me ajudaram

a desenvolver as minhas capacidades técnicas mas acima de tudo fizeram com que este

capı́tulo tenha sido bastante especial e positivo. Um apreço especial ao Daniel que sem-

pre fez questão de me incluir em todas as atividades do departamento e me fez sentir

verdadeiramente como membro da equipa. Às ”Goi-Ninas”, Inês, Leonor e Carolina,

obrigada por toda a boa disposição e todas as conversas de motivação. Também não

posso deixar de agradecer ao Miguel Rebelo, que para além de ser um colega da equipa

onde entreguei, tenho também o prazer de chamar de amigo. Obrigada por todo o esforço

que me foi dedicado, por todo os conselhos e incentivo dado durante o projeto que foram

sem dúvida fundamentais para que este tenha corrido bem.

UNIVERSIDADE DO PORTO

Abstract

Faculdade de Ciências da Universidade do Porto

Departamento de Matemática

MSc. Computational Statistics and Data Analysis

Phishing Detection with a Machine Learning Net

by Ana BEZERRA

Phishing attacks are becoming a common practice on the web that aims to steal sensi-

tive information. E-mail phishing is one of the most common types of attacks on the web

and can have a big impact on individuals and enterprises. There is still a gap in prevention

when it comes to detecting phishing emails as new attacks are usually not detected. The

goal of this master thesis was to develop a model capable of identifying phishing emails

based on machine learning approaches. The work was performed in collaboration with

E-goi, a multichannel marketing automation company. The data consisted of emails col-

lected from the E-goi servers in the electronic mail format. The problem consisted of a

classification problem with an unbalance of classes with the minority class corresponding

to the phishing emails and having less than 1% of the total amount of emails.

The project was divided into several phases according to standard methodologies for

Machine Learning Projects. Throughout these phases, it was selected and extracted data

features based on the e-mail content and the literature regarding these types of problems.

Due to the unbalance present in the data, several sampling methods based on under-

sampling techniques were tested to see their impact on the model’s ability to detect phish-

ing emails. Additionally, different machine learning models for classification problems

were tried and their performance evaluated. The final model consisted of a neuronal net-

work being able to detect more than 80% of the phishing emails without compromising the

remaining emails sent by E-goi users.

mailto:up201308078@fc.up.pt

Keywords: phishing, cyber-security, machine learning, neural network, class imbal-

ance, anomaly detection;

UNIVERSIDADE DO PORTO

Resumo
Faculdade de Ciências da Universidade do Porto

Departamento de Matemática

Mestrado em Estatı́stica Computacional e Análise de Dados

Phishing Detection with a Machine Learning Net

por Ana BEZERRA

Ataques de ”phishing”são uma prática online comum cujo objectivo é extrair informação

sensı́vel. E-mails de ”phishing”é um do tipo de ataques mais comum e pode ter um

grande impacto tanto em indivı́duos como em empresas. Ainda existe uma lacuna ligada

à prevenção destes ataques, nomeadamente à sua detetação, sendo que novos ataques

não são geralmente detetados. O objetivo desta tese de mestrado foi desenvolver uma

modelo capaz de identificar e-mails de ”phishing”com base em métodos de aprendizagem

automática. O trabalho foi realizado em colaboração com a E-goi, uma companhia de

marketing digital multicanal. Os dados consistiram em e-mails recolhidos dos servidores

da E-goi em formato e-mail digital. O projeto consistiu em um problema de classificação

com a falta de balanço entre classes, sendo que a classe minoritária corresponde a e-mails

de ”phishing”contendo menos de 1% da quantidade total de e-mails.

O projeto foi dividido em várias fases de acordo com as metodologias usadas em pro-

blemas de aprendizagem automática. Ao longo destas fases foram selecionadas e ex-

traı́das as variáveis do problema de acordo com conteúdo dos e-mails e a litetarua cor-

respondente a este tipo de problemas. Devido à falta de balanço entre classes, diferentes

metodologias baseadas em subamostragem foram testadas e verificado o seu impacto na

capacidade do modelo de detetar e-mails de ”phishing”. Adicionalmente foram testados

diferentes métodos de aprendizagem automática para problemas de classificação e o seu

desempenho foi avaliado. O modelo final consistiu em uma rede neuronal capaz de dete-

tar mais de 80% dos e-mails de ”phishing”sem comprometer os restantes e-mails enviados

mailto:up201308078@fc.up.pt

pelos utilizadores da plataforma E-goi.

Palavras-Chaves: phishing, cibersegurança, aprendizagem automática, rede neuronal,

desequilı́brio de classes, deteção de anomalias;

Contents

Acknowledgements iii

Acknowledgements v

Abstract vii

Resumo ix

Contents xi

List of Figures xiii

List of Tables xv

Glossary xvii

1 Introduction 1
1.1 Framing and presentation of the work . 1
1.2 Contributions of the Work . 2
1.3 Organization of the project . 3

2 Background Knowledge 5
2.1 Machine Learning . 5

2.1.1 Unsupervised Learning . 6
2.1.1.1 Principal Component Analysis 6
2.1.1.2 K-means Clustering . 6
2.1.1.3 Hierarchical Clustering . 8

2.1.2 Supervised Learning . 9
2.1.2.1 Classification Problems . 9
2.1.2.2 Metrics . 10

2.1.3 Deep Learning . 12
2.1.3.1 DL model’s Architecture . 13
2.1.3.2 Optimization Algorithms . 16
2.1.3.3 DL Models . 18

2.2 Unbalanced Data Problems . 20
2.2.1 Re-sampling methods . 21

xi

xii Phishing DETECTION WITH A MACHINE LEARNING NET

2.2.1.1 Over-sampling methods . 21
2.2.1.2 Under-sampling methods . 21

2.2.2 Ensemble methods . 23
2.3 Natural Language Processing . 25

2.3.1 NLP Components . 26
2.3.2 NLU Transformers . 26

2.3.2.1 BERT Transformers . 28

3 State of the Art 29
3.1 phishing Description . 29
3.2 Types of Phishing Attacks . 31
3.3 Countermeasures . 32

3.3.1 Blacklisting . 32
3.3.2 Machine Learning for phishing detection 33

4 Methodology 35
4.1 Data Understanding . 37
4.2 Data Preparation . 42

4.2.1 Variables Preparation . 42
4.2.2 Sampling Methods . 43

4.3 Modeling . 45
4.4 Evaluation . 47

5 Results 50
5.1 Initial Analysis and Sampling Methods . 50
5.2 Models Results . 62
5.3 ANOVA Results . 66

6 Conclusions 70
6.1 Limitations and Future Work . 71

A Appendix 73

Bibliography 86

List of Figures

2.1 Example of an Hierarchical Clustering Dendrogram. 8
2.2 Confusion Matrix. 11
2.3 Example of a ROC curve (adapted from Gonçalves et al. [11]). 12
2.4 Representation of DL model versus tradition ML models Stevens et al. [12]. 13
2.5 Representation of a neural network (adapted from LeCun et al. [13]). 14
2.6 Representation of backpropagation (adapted from Cristina [14]). 15
2.7 Representation of a convolutional neural network (adapted from Bhardwaj

et al. [15]). 19
2.8 Representation of a recurrent neural network (adapted from Lipton et al.

[18]). 19
2.9 Explanatory example of RUS problem. 22
2.10 Example: The diagnostic procedure followed by a doctor when he gets a

new case. His residents offer their diagnoses, then the doctor selects the
majority answer as the final diagnosis (adapted from Kunapuli [26]). 23

2.11 Desing of sequential ensembles (adapted from Kunapuli [26]). 25
2.12 Scaled Dot-Product Attention (left). Multi-Head Attention (right) (adapted

from Vaswani et al. [32]). 27

3.1 Phishing Attacks Steps Scheme. 29

4.1 Project’s Methodology and Data flow. 36
4.2 Example of a newsletter (adapted from LookFantastic [54]). 38
4.3 E-mail’s body example. 39
4.4 Example of vector for color type variable if the e-mail contains text with

red colors and black colors. 41
4.5 Explanatory example of Cluster Under-Sampling technique. 44
4.6 K-fold Cross-Validation Methodology. 46

5.1 Hierarchical Clustering Dendrogram to text data. 51
5.2 Biplot for all variables with exception of the text array. 52
5.3 Majority Sample clusters with K=4. 54
5.4 Metric Values for chosen Models. 57
5.5 Metric Values for different phishing ratios . 59
5.6 Metric Values for different sampling methodologies. 61
5.7 Confusion Matrix for the training and testing for the NN(135,81,11,2) model. 64

A.1 Trasformer Architecture (adapted from Vaswani et al. [32]). 74
A.2 E-mail’s header example. 75
A.3 E-mail’s format example. 75

xiii

xiv Phishing DETECTION WITH A MACHINE LEARNING NET

A.4 Correlation Diagram for all variables except text array. 76
A.5 Elbow and Silhouette Graphs for data with text sorted by Hierarchical Clus-

tering. 77
A.6 Elbow and Silhouette Graphs for data with text sorted by PCA. 78
A.7 Different Sampling Methodology’s Samples Location. 79
A.8 Confusion Matrix for the training and testing for the Random Forest Model. 80
A.9 ROC curves for the training and testing for the NN(135,81,11,2) model. . . . 80
A.10 ROC curves for the training and testing for the Random Forest model. . . . 81

List of Tables

3.1 phishing features and its descriptions. 34

4.1 Phishing E-mails description and amount. 39
4.2 Extracted variables from .eml files. 40
4.3 Phishing E-mails percentages . 44
4.4 Models’ parameters to be tested. 47

5.1 Type of features present in the dataset. 51
5.2 Sets Names and methodology description. 55
5.3 Results of F1 according to different text array sizes. 63
5.4 Final Models’ results. 65
5.5 F1 average results for different phishing ratios and sampling methods. . . . 67
5.6 Results of F1 according to different text array sizes. 69

A.2 Accuracy, Precision and Recall Values for different models, phishing ratios
and sampling methods. 82

A.3 Grid search results for Random Forest. 83
A.4 Grid search results for Neuronal Network. 84
A.1 Activation functions . 85

xv

Glossary

AI Artificial Intelligence

Adam Adaptive Moment Estimation

BERT Bidirectional Encoder Representations from Transformers

CNN Convolution neural networks

CRISP-DM Cross Industry Standard Process for Data Mining

DNN Deep Neural Networks

DL Deep Learning

IP Internet Protocol

FN False Negatives

FP False Positives

ML Machine Learning

NLG Natural Language Generation

NLP Natural Language Processing

NLU Natural Language Understanding

PCA Principal Component Analysis

RNN Recurrent Neural Network

ReLU Rectified Linear Unit

RUS Random Under-Sampling

SBC Under-Sampling Based in Clustering

SGD Stochastic Gradient Descent

xvii

xviii Phishing DETECTION WITH A MACHINE LEARNING NET

SMOTE Synthetic Minority Oversampling Technique

TN True Negatives

TP True Positives

URL Uniform Resource Locator

Chapter 1

Introduction

1.1 Framing and presentation of the work

The Internet and the Web have changed humanity in many ways, some for the better and

some definitively for the worse. Its use can often lead to bad behaviors and nowadays,

with individuals being able to stay behind a computer screen and the anonymity that this

type of environment provides, online criminal offenses are increasing at an accelerating

rate. Security breaches are happening across all types of companies. Thus, in today’s

society, a good cyber-security system is paramount to all industries and not just online-

based companies. Putting facts into numbers, RiskBased SECURITY [1] has found that in

2020, just from January to September, 36 billion records with sensitive information were

released, making 2020 the “worst year on record” in manners of records releasing.

Phishing is a term used to describe a type of cyber-attack to steal sensitive information

from its victims usually via a forged e-mail, text message, websites, among others. There

are different types of phishing, some more easily targeted and recognizable to the user’s

eyes, and others more elaborated and difficult to track. In 2006, Dhamija et al. [2] found

that even those with experience in internet security can be fooled by a “good” phishing

website.

E-goi is a Portuguese company based in Matosinhos that provides a software as a

1

2 Phishing DETECTION WITH A MACHINE LEARNING NET

service (Saas) platform for multi-channel marketing, acting as E-mail Service Provider for

one of their features. This means that an individual can use the E-goi platform to send

mass e-mails to a list of contacts. Because E-goi has several package options having one

free to the public where a user can send e-mails to up to 100 persons, it also suffers from

criminal events such as phishing. In this case, the criminal uses the platform to send mass

phishing e-mails, and because these types of platforms are associated with a secure image,

the recipients oftentimes trust these e-mails and are more prone to trust in the received

content. If criminal acts happen on the platform, such as phishing e-mails, a block will

be issued and can lead to a disruption of service. Additionally, if the platform allows

criminal activities as such it can lead to a breach of trust between the company and the

customers.

1.2 Contributions of the Work

Phishing is a theme that has been increasingly researched throughout the years, as the

number of attacks keeps rising. Still, there is a necessity to understand how this type of

act happens and its characteristics of it, especially in regard to phishing e-mails. Thus this

work aims to contribute knowledge regarding mass spread phishing attacks.

In regards to Machine Learning, this project also uses state of the art techniques and

some processes that are not yet being frequently used for data processing such as sam-

pling techniques based on under-sampling.

In regards to E-goi, this project can be quite useful by reducing the time necessary to

evaluate and detect the phishing e-mails and by improving the traffic quality that goes

through the company’s servers.

1. INTRODUCTION 3

1.3 Organization of the project

This document is organized into seven chapters describing in detail all the work carried

out throughout the project as well as the reasons behind the decisions that had to be taken.

• First Chapter - Introduction: Presents the project’s context and goals as well as its

contributions.

• Second Chapter - Background Knowledge: Describes concepts regarding Machine

Learning and its processes in depth to enlighten the reader with some concepts that

will be used in the project.

• Third Chapter - State of the Art: Describes the concept of phishing and the overview

of the related works regarding this theme.

• Fourth Chapter - Problem and Data Description: Explains better the project’s ne-

cessity and the type of data that was provided for the problem.

• Fifth Chapter - Methodology: As the Chapter’s name suggests, this chapter de-

scribes the methodology carried throughout the work and the used techniques from

the beginning stages to the project’s completion.

• Sixth Chapter - Results: Display the results for all the processes and techniques

carried out in this project. It also contains the result’s interpretations and possible

explanations for some phenomena.

• Seven Chapter - Conclusions: Presents the project’s conclusions, the achieved goals,

as well as limitations and suggestions for future work.

Chapter 2

Background Knowledge

2.1 Machine Learning

Machine Learning (ML) and Artificial Intelligence (AI) are the buzzwords of the decade

playing on the front stage of most industries. Having mathematics and statistics as their

models’ foundations, applications range in a variety of industries, from economics to in-

formatics, health, retail, etc. ML models themselves can vary in complexity, from simple

ones, such as linear regression, to more complex models like Recurrent Neural Networks

(RNNs).

ML tasks can be divided into two subcategories: supervised learning, unsupervised

learning. Supervised learning tasks are the most common in Machine Learning. The

essence behind it is to create mechanisms capable of producing generalizations by looking

at examples. To achieve such, the model trains with a set of labeled samples so, afterward,

it can correctly identify new unlabeled instances. Unsupervised learning goal is to find

something useful in the data when given unlabeled data, for example, ”these samples are

e-mails, categorize them“. It can identify patterns in data, most of the time not visible to the

human eye. It is also often used as a pre-processing step before applying a supervised

learning model to achieve better data quality. [3] [4].

5

6 Phishing DETECTION WITH A MACHINE LEARNING NET

2.1.1 Unsupervised Learning

2.1.1.1 Principal Component Analysis

Many ML problems involve a great number of features making it harder for a model to

train and find a good solution. Most times, it is beneficial to implement techniques ca-

pable of reducing the data dimension while maintaining most of the information. The

most common reduction technique is Principal Component Analysis (PCA). The goal is

to reduce the data into sequences of data projections – principal components. These are

obtained by searching for orthogonal directions capable of explaining as much data vari-

ance as possible [5].

Let the data matrix X be of n×p size, where n is the number of samples and p is the

number of variables. The data matrix can be transformed by subtracting each sample with

the sample average vector. The covariance matrix, C = XTX/(n − 1), with size p×p, is

symmetric thereby the principal components can be obtained by eigen-decomposition of

it:

CV = VD, (2.1)

where V is a matrix of eigenvectors and D a diagonal matrix containing the eigen-

values λi organized in a decreasing order. The eigenvectors are the principal axes and

the principal components are obtained by multiplying the matrix X by the eigenvalues V.

These are organized in a decreasing order of variance, meaning that the first components

encompass the majority of variance [5] [6].

2.1.1.2 K-means Clustering

Cluster analysis is one of the most common unsupervised learning methodologies. The

aim is to ascertain if a given dataset is composed of distinct subgroups with different

characteristics by measuring the degree of difference between the samples assigned to

2. BACKGROUND KNOWLEDGE 7

each group. Given a certain dataset X and a certain number k of clusters, the K-means

clustering goal is to minimize the sum of distances of the points in each cluster to their

centroid. The centroid is an imaginary or real point representing the center of each cluster

[6]. K-means it is an iterative method that can be summed into five steps:

1. Initial attribution of K centroids: K random points from the dataset are chosen as

the initial centroids.

2. Calculation of Euclidean distances: For each cluster the euclidean distance be-

tween each dataset sample and the K centroids.

3. Assigment of samples: Each data sample is assigned to the cluster with the center

closest to it.

4. New K centroids: The new centroids are assigned by taking the average of the

points in each cluster. Additionally they are updated once a sample changes to

another group.

5. Repetition: Steps 2 to 4 are repeated until the centroids stop changing or the number

of iterations is reached [7].

An important step in the K-means algorithm is the assignment of the number of clus-

ters k. If there is no prior knowledge of the data, it is necessary to estimate this parameter.

The most known method is the elbow method where the sum of squared errors within the

clusters is calculated for different values of k. This value decreases with the increase of k,

the optimum number occurs when the sum of errors starts to stabilize. Another common

method is the silhouette method, where the silhouette value (see Equation 2.2) measures

how similar a point is to its own cluster, compared to other clusters. In Equation 2.2 the

argument a(i) is named average intra-cluster and represents the average distance between

each point within a cluster. The b(i) argument is called the average inter-cluster and repre-

sents the average distance between all clusters. The value of a Silhouette score can range

between [-1,1] and this score reach its maximum at the optimal k [8].

s(i) =
b(i)− a(i)

max{a(i), b(i)} (2.2)

8 Phishing DETECTION WITH A MACHINE LEARNING NET

2.1.1.3 Hierarchical Clustering

As a clustering method, the main goal of this procedure is to aggregate the given data

into clusters based on the data characteristics. This technique can be divided in two types:

Agglomerative or Divisive. The first type starts by treating every observation as an indi-

vidual cluster. Through an interactive process, these are merged based on similarity until

a single unique cluster is achieved. The second type works in a reverse manner. All the

observations start by being grouped into one cluster. Later, in each iteration, these are

separated until each cluster is composed of a single observation. The Dendrogram is a

visual aid for Hierarchical Clustering. This plot, similar to a tree-like diagram, presents

all the sequences of merges that happen during the process – see Figure 2.1 [9].

FIGURE 2.1: Example of an Hierarchical Clustering Dendrogram.

An important step in Hierarchical Clustering, regardless of the type, is calculating the

similarity between clusters. There are several algorithms that can be used to calculate

these distances.

• Single linkage: Uses the minimum of the similarity between points i and j such that

i belongs to Ci and j belongs to Cj – Equation 2.3. The main advantage is to separate

clusters with non-elliptical forms. Still, it can not separate well clusters if there is a

2. BACKGROUND KNOWLEDGE 9

lot of noise between them.

D(ci, cj) = min
i∈Ci ,j∈Cj

D(xi, xj) (2.3)

• Complete linkage: This is the opposite of the single linkage. The algorithm uses the

maximum similarity between the cluster’s points – Equation 2.4. It has the advan-

tage of separating well clusters with noise between them, tough is biased towards

spherical clusters.

D(ci, cj) = max
i∈Ci ,j∈Cj

D(xi, xj) (2.4)

• Average: Calculates the similarities between all pairs of observations and uses the

average of these similarities – Equation 2.5. Similar to complete linkage this method

is good at separating clusters even with noise. However, is also biased towards

spherical clusters.

D(ci, cj) =
1

|Ci|
1∣∣∣Cj

∣∣∣ ∑
i∈Ci

∑
j∈Cj

D(xi, xj) (2.5)

• Ward: This approach is similar to the average. Instead of using the average of simi-

larities, it calculates the sum of the square distances. Likewise, it is good at separat-

ing clusters with a lot of noise but also biased towards spherical clusters.

2.1.2 Supervised Learning

ML supervised problems are classified according to their nature into two types: regression

and classification. Regression problems, such as ordinary least squares, have as an out-

put a continuous variable. In this method, the algorithm fits a linear model to minimize

the residual sum of squares between the predicted outputs and the real values (targets).

Algorithms for regression problems include Linear Regression, Support Vector Machines,

Stochastic Gradient Descent, and K Nearest Neighbors, among others [4].

2.1.2.1 Classification Problems

Classification problems can be binary or multi-class classification. The first concerns prob-

lems where the output is a binary variable and the latter corresponds to cases having the

10 Phishing DETECTION WITH A MACHINE LEARNING NET

output as a group of classes. Common algorithms for these problems are Logistic Regres-

sion, Decision Tree, and Support Vector Machines [10].

• Logistic Regression: This algorithm predicts outcomes based on the Sigmoid func-

tion and uses maximum likelihood estimation to estimate the parameters of the

probability distribution. The output is a probability value there is later compared

with the threshold to identify a sample as 0 or 1.

• Decision Tree: Decision Trees can be used for both classification and regression

problems. This method builds tree branches in a hierarchical approach and each

node prior to the branch can be thought of as an if-else statement. The output of a

branch can be another branch or leaves at the end of the tree. The branches are con-

structed based on the most important features and the final classification happens

at the leaves of the decision tree.

• Support Vector Machines: This method is capable of performing linear or non-

linear classification, regression, and even outlier detection. This method classifies

the samples based on the position in relation to a border between the positive class

and the negative class. The border maximizes the distance between the data points

from both classes and is called a hyperplane [6].

2.1.2.2 Metrics

To access a model performance there are different types of metrics according to the algo-

rithm type. For regression algorithms, the better known is the regression coefficient score

R2. This corresponds to the proportion of variance explained by the variables thereby

representing how well the model can predict unseen variables. Some other relevant met-

rics include the Mean Absolute Error, which, as the name suggests, corresponds to the

expected value of the absolute error loss. The Mean Squared Error corresponds to the

expected value of the squared quadratic error [4].

Most metrics used for classification problems relate to the confusion matrix. A con-

fusion matrix plots the real labels from the samples against the predicted ones - see Fig-

ure 2.2. In this matrix, the diagonal corresponds to the match between the positive and

2. BACKGROUND KNOWLEDGE 11

negative values from both classes. The positive samples identified correctly are called

true positives (TP) and the negative samples identified correctly are named true nega-

tives (TN). The negative samples predicted as positive are is called false positives (FP)

and the positive samples predicted as negative are called false negatives (FN) [4].

FIGURE 2.2: Confusion Matrix.

By the confusion matrix it is possible to calculate the accuracy (Equation 2.6), precision

(Equation 2.7), recall (Equation 2.8), and F1-score (Equation 2.9) for the model:

Accuracy =
TP + TN

TP + TN + FP + FN
(2.6)

Precision =
TP

TP + FP
(2.7)

Recall =
TP

TP + FN
(2.8)

F1 − score =
2TP

TP + 1/2 × (FN + FP)
(2.9)

An important step is to evaluate the threshold values’ impact on the true positive

and false negative samples. Most times, the value is set at 0.5. Intuitively thinking, if

a threshold has a very low value most of the samples would be classified as positives,

even the negative ones. Thereby, a higher number of false positives would also be in

place. Similarly, if the threshold value is too high, it would lead to a low number of false

positives. However, the number of false negatives would increase. To access how this

ratio between the true positives and false negatives behaves for different thresholds, one

can plot a ROC curve - see Figure 2.3. In this graph, the x-axis corresponds to the False

Positive ratio and the y-axis to the True Positive ratio [11].

12 Phishing DETECTION WITH A MACHINE LEARNING NET

FIGURE 2.3: Example of a ROC curve (adapted from Gonçalves et al. [11]).

2.1.3 Deep Learning

There is a certain type of problems easily solved by humans that requires a great effort

from machines, such as problems involving image recognition - i.e. the old google veri-

fication pop-ups asking to identify traffic lights in the pictures. On the other hand, very

complex problems with an enormous amount of features can be nearly impossible for

a human to solve and quite difficult for a machine too. Usually, this type of problem re-

quires more complex models than the traditional ML algorithms can solve. Deep Learning

(DL) is a branch of Machine Learning composed of a class of algorithms capable of approx-

imating complicated non-linear processes making it possible to automate tasks that were

previously limited to humans [12].

A DL model comprises a multi-layer stack of simple modules subject to learning.

Many can compute non-linear input or output, therefore capable of understanding the

levels of abstraction present in complex data and their complex structure. These types of

models also include learning algorithms such as back-propagation, able to adjust the pa-

rameters of each layer accordingly to the representation from the previous layer. Due to

the nature of this type of algorithm DL models are capable of being fed raw data - see

Figure 2.4, instead of the traditional ML algorithms that required a feature extraction to

have a good performance [13].

2. BACKGROUND KNOWLEDGE 13

FIGURE 2.4: Representation of DL model versus tradition ML models
Stevens et al. [12].

2.1.3.1 DL model’s Architecture

The Deep Learning models are called neural networks. These structures resemble the hu-

man nervous system with input, hidden and output layers – see Figure 2.5. Deep Neural

Networks (DNN) consists of a neural network with several layers of nodes; depending on

the task they can have different architectures. In a neural network, each layer has nodes

connected to adjacent layers’ nodes. Each connection has a weight value so the inputs

are multiplied by the respective weights and summed in the node. The weight vector

is adjusted by computing a gradient vector. This calculates the amount of change to the

error value if a small increment would be added to the weights. Later, the weight vector

is adjusted in the opposite direction to the gradient vector [13].

14 Phishing DETECTION WITH A MACHINE LEARNING NET

FIGURE 2.5: Representation of a neural network (adapted from Le-
Cun et al. [13]).

As previously mentioned, in each neuron the inputs (x1, ..., xn) are multiplied by weights

(w1, ..., wn) of the connections. The output corresponds to the overall sum of weights and

inputs with an addition of a bias term (b), that can be integrated to the neuron as another

weight (w0). However, to ensure that the neural network is not restricted to learning

exclusively in a linear weight, a non-linear activation function (a(z)) must be used – see

Equation 2.10 [14] [15].

output = a(z) = a(
n

∑
i=0

xi + wi) (2.10)

The training of the neural network aims to search the set of weights to create a model

that best represents the data patterns. To do so, neural networks rely on forward propa-

gation and backpropagation. Forward propagation computes the outputs of each neuron

through Equation 2.10 in the rightward direction. The initial weights can be randomly

sourced or can be initialized by using a pre-trained model. Backpropagation serves to

correct the weights attributed to the model. For this, first, it is necessary to calculate the er-

rors from forward propagation by computing the difference between the attained results

and the target value. Then, the algorithm calculates the gradient of this error through the

2. BACKGROUND KNOWLEDGE 15

use of the chain rule and partial derivatives – see Equation 2.11 and Equation 2.12. This

process is applied repeatedly in a backward manner, from the output layer to the input

layer. Once these gradients are calculated, the weights of each module is re-iterated to a

learning rate η – see Equation 2.13 [13] [15].

FIGURE 2.6: Representation of backpropagation (adapted from
Cristina [14]).

∂error
∂w2

=
∂error

∂a2
× ∂a2

∂z2
× ∂z2

∂w2
= δ2 ×

∂z2

∂w2
(2.11)

∂error
∂w1

=
∂error

∂a2
× ∂a2

∂z2
× ∂z2

∂a1
× ∂a1

∂z1
× ∂z1

∂w1
= δ1 ×

∂z1

∂w1
(2.12)

wt+1
1 = wt

1 + (η × δ1 ×
∂z1

∂w1
) (2.13)

Several activation functions can be used in the artificial neuron. The function decides

whether the incoming signals have reached the threshold and should output signals for

the next level. In Table A.1, it is possible to see some different activation functions. Gener-

ally speaking, the most used activation function is the Rectified Linear Unit (ReLU) – see

Equation 2.14. Not only is simpler than most activation functions, but also more efficient

due to its linear and non-saturation form - for example, sigmoid and tanh both involve the

exponential operation. However, this function can only be used in the hidden layers as

its output is not in the probability space.

16 Phishing DETECTION WITH A MACHINE LEARNING NET

σ(x) =

0, x < 0

x, x ≥ 0
(2.14)

There are some issues that can arise during the backpropagation stage and this can be

due to the choice of activation functions. Vanishing gradient happens when the gradients

are too small leading to a slow learning process or even a stop of the updating process.

On the other hand, exploding gradients occur when the gradients are too large causing the

learning process to diverge. This type of issue can happen if the activation function is not

bounded or the learning rate is too big [15].

2.1.3.2 Optimization Algorithms

Optimization is a process that minimizes the errors and cost of the neural network provid-

ing the most accurate results possible. This process relies on minimizing the loss function.

A usual loss function is the cross-entropy that builds upon the entropy by calculating how

far an estimated value (pi) is from its true value (ti) according to the number of classes (n)

– see Equation 2.15. From the loss function we can derive the gradients which are used to

update the weights. The average overall losses constitute the cost [3].

LCE = −
n

∑
i=1

ti log(pi) (2.15)

Several types of optimizers can be used depending on the necessity. Gradient De-

scent is one of the most basic and calculates the direction in which the weights should

be altered. It does so by computing the first order derivative of the loss function and

using the parameter θ – see Equation 2.16. In backpropagation, the loss is transferred

through layers. The weights are modified to minimize the overall loss and depend on the

losses. In the Stochastic Gradient Descent (SGD) the model’s parameters are updated

more frequently. This leads to faster conversion and decreases the risk of the optimizer

being stuck in a local minimum. Mini-batch Gradient Descent is another variant for

which the dataset is divided into batches. The parameters are updated after every batch.

2. BACKGROUND KNOWLEDGE 17

By frequently updating the model parameters it works faster and can reduce the variance

[16].

θ = θ − η ×∇θ J(θ) (2.16)

Momentum is a method to accelerate SGD by softening oscillations and accelerating

the SGD process by adding a new parameter γ – see Equation 2.17. This term increases

for dimensions whose gradients point in the same directions and reduces updates for di-

mensions whose gradients change directions, leading to faster convergence. However,

if the momentum is too high, the algorithm may miss the local minima and continue to

rise up. To solve this issue Nesterov Accelerated Gradient was developed. The momen-

tum term is also used to modify the parameters – see Equation 2.18, therefore giving an

approximation of the next position of the parameters [16].

V(t) = γV(t − 1) + η ×∇θ J(θ)

θ = θ − V(t)
(2.17)

V(t) = γV(t − 1) + η ×∇θ J(θ − γV(t − 1))

θ = θ − V(t)
(2.18)

AdaGrad is a gradient based optimizer in which the learning rate is adjusted to the

parameters. It performs larger updates for infrequent parameters eliminating the neces-

sity to manually tune the learning rate. The sum of squares of the previous gradients is

stored in a diagonal matrix Gt up to time t – see Equation 2.19. ϵ is a smoothing term

avoiding the division by zero. The main drawback of this approach is the decrease in the

learning rate which leads to slower training. AdaDelta is an extension of AdaGrad that

tackles the decrease of the learning rate by limiting the array of accumulated past gradi-

ents instead of all previously squared gradients. In this algorithm, the sum of gradients is

defined as a moving average. Adaptive Moment Estimation (Adam), as AdaGrad, stores

the exponential decaying average of the past squares gradients (V(t)) but also keeps an

18 Phishing DETECTION WITH A MACHINE LEARNING NET

exponential decay average of the past gradients (M(t)) – see Equation 2.20. The main

advantage of Adam is its rapid speed [16].

θt+1,i = θt,i −
η√

Gt,ii + ϵ
gt,i

gt,i = ∇θ J(θt,i)

(2.19)

θt+1 = θt −
η√

V(t) + ϵ
M(t) (2.20)

2.1.3.3 DL Models

Convolution Neural Networks (CNN) are mostly used for image recognition and video

recognition tasks, as they are designed to process data in the form of multiple arrays or

grid-like topologies. This type of network has two main properties: they can connect

neurons forcing this to only take input from other neurons close to it. In that way, they

reduce the number of weights since not all neurons are connected. Additionally, this net-

work type uses parameter sharing, meaning that a limited number of weights are shared

among all neurons in a layer. This lead to a reduction of the number of weights thus

minimizing the chances of over-fitting [17].

The most important component of a CNN is the convolutional layer. It comprises a

set of filters (also called convolutional kernels) convolved with a given input to generate

an output feature map. The filter is defined by a set of weights and is applied across the

areas of the input data. The purpose is to highlight a specific feature from the image, such

as an edge or a line. The nearby neurons that participate in the input are called receptive

filed. The filter’s output is a weighted sum of its inputs and represents the activation

value of a neuron in the next layer. The neuron will be active if the feature is present at

the spatial location. Between the convolutional layers, a sub-sampling or pooling layer

is placed to reduce the size of the network and to reduce the network’s susceptibility to

shifts – see Figure 2.7. Max/mean pooling or local averaging filters are used often to

2. BACKGROUND KNOWLEDGE 19

achieve sub-sampling. In the final layers, the neurons between them are fully connected

and the classification process occurs [17] [15].

FIGURE 2.7: Representation of a convolutional neural network (adapted from
Bhardwaj et al. [15]).

Recurrent Neural Networks are networks designed for taking into account sequential

data, so any configuration/states of the network are impacted not only by the current

input but also by their recent past. The architecture is similar to a feed-forward neural

network with the addition of a looping mechanism between steps. At time t nodes with

recurrent edges receive input from the current data point xt and from the hidden node

values ht−1 in the network’s previous state – see Figure 2.8. The output at a certain time

is calculated by the values in the hidden node ht and can be influenced by the previous

inputs from the previous state xt−1. Each of the time steps in an RNN can be thought of

as a layer, during backpropagation, errors go from one time step to the previous one, so

the network is as deep as the number of time steps. The bigger the gradient, the bigger

the adjustments will be. However, if the adjustments to a layer are too small it can lead to

the vanishing gradient phenomenon and the earlier layers fail to do any learning[18] [15].

FIGURE 2.8: Representation of a recurrent neural network (adapted
from Lipton et al. [18]).

20 Phishing DETECTION WITH A MACHINE LEARNING NET

2.2 Unbalanced Data Problems

Rare events and abnormal behavior are types of occurrences difficult to detect, yet, most

of the time, their detection is crucial and requires a fast response [19]. Events such as e-

mail phishing are considered rare events due to their low amount when compared to the

amount of non-phishing e-mails. At E-goi, black-lists are used for e-mail fraud detection.

Still, some e-mails containing new IP addresses, that have not been reported yet, can

pass through the blocking system. These are scarce, especially when compared to not

fraudulent e-mails, leading to an extremely uneven dataset.

Unbalanced datasets pose a problem to ML algorithms since the algorithms behind

them are based on the assumption of an even dataset. In these situations, the most preva-

lent class is called the majority class, while the rarest class is called the minority class.

In unbalanced datasets, ML models tend to have a poor performance when detecting the

minority class and a good one for the majority class [20]. Following the example given

by Liu et al. [21], for binary classification problems, a set with 99% samples belonging to

class A and the remaining 1% belonging to class B would still have a 99% accuracy. Such

occurrence is due to the low number of B samples during the model training resulting in

a bias of the algorithm towards class A. Since class A composes 99% of the dataset the

accuracy will be extremely high. However, if the goal is to find the samples within class

B the model would have mediocre performance. In some problems, the misclassification

of the minority classes can have severe impacts. For example, in ML models to detect the

presence or absence of certain diseases a misclassification of a patient with a disease as

disease-free can lead to patient health damage [22]. In this project, the misclassification

of a phishing e-mail as a regular e-mail can lead to a security breach compromising the

company’s infrastructure and, for example, the release of private information.

Several approaches can be used to handle imbalanced problems; some can be focused

on sample modeling, such as re-sampling techniques that treat the data before the use

of an ML model. There are classification algorithms for imbalanced learning, such as

ensemble methods and algorithmic classifier modifications[19].

2. BACKGROUND KNOWLEDGE 21

2.2.1 Re-sampling methods

For re-sampling approaches, these are divided in three categories: over-sampling meth-

ods, under-sampling methods, and hybrid methods. The first consist of increasing the

weight of the minority class by creating new minority class samples, the second use a

sub-sample from the majority class by discarding intrinsic samples, and the latter is a

combination of both under-sampling and over-sampling methods [19].

2.2.1.1 Over-sampling methods

With almost 20,000 citations, the most common techniques in manners of oversampling

are duplicating the minority samples and Synthetic Minority Oversampling Technique -

SMOTE. As the name states, the first technique is quite simple and consists in creating

a copy of each sample of the minority class with some perturbation. SMOTE was first

presented by Chawla et al. [23] in 2002 and produces synthetic samples from the minority

class without changing the number of samples of the majority class. In this technique, the

data is plotted into a feature space and for each minority class sample, a synthetic example

is generated by the k nearest neighbor. Depending on the ratio between the majority class

and the minority class the number of neighbors from the k nearest neighbors changes. By

generating more synthetic samples, the dataset becomes balanced artificially. The main

drawback of over-sampling methods as such is the increase of bias for the minority class

[19].

2.2.1.2 Under-sampling methods

The simplest and most used method of under-sampling is Random under-sampling (RUS),

which involves a random selection of majority class examples. The main issue with under-

sampling techniques is the loss of information, especially with techniques such as RUS. If

the selected samples happen to be in a localized selection this will lead to a biased sample

thus having an inaccurate representation of the majority class, as shown in Figure 2.9.

22 Phishing DETECTION WITH A MACHINE LEARNING NET

FIGURE 2.9: Explanatory example of RUS problem.

To overcome the loss of information issue, many researchers proposed other types of

under-sampling techniques such as clustering techniques. Within this type of approach

several methodologies can be used to address this issue, some of them are:

• Yen and Lee [24] proposed a clustering technique denominated as SBC (under-

sampling based on clustering). The data-set is divided into K clusters and new

samples come from clusters that contain a higher ratio of samples from the major-

ity class. Their study found SBC to be more accurate and stable when compared to

other methods such as RSU.

• Rahman and Davis [22] proposed a cluster under-sampling method before a clas-

sification model to identify patients with heart disease. Their sampling technique

consisted of clustering only the samples from the majority class into K clusters. Af-

terward, K training subsets were built by combining samples from each K cluster

with the samples from the minority class and the model is trained with each set. In

the final training of the model, to build the decision support only the sub-datasets

that gave a higher accuracy are used.

• Lastly, similar to the last approach, Lin et al. [20] proposed a cluster under-sampling

method where the clustering is made only in majority class samples. However, in

2. BACKGROUND KNOWLEDGE 23

their method, the K number of clusters is equal to the number of data samples in

the minority class. In their method for each cluster, it is used the center value or

the nearest neighbor to each cluster center ensuring an equal number of samples of

each class.

2.2.2 Ensemble methods

As mentioned, when dealing with imbalanced problems one can use models designed to

deal with this type of problem. Ensemble methods’ goal is to achieve better predictions

by training several ML algorithms, communally named estimators. Individually, these

algorithms have poor performance due to the existence of a high bias or the existence of

too much variance to achieve a robust solution. However, in an ensemble design, these

poor predictions can be fused and through voting mechanisms, high performance can

be achieved [25]. This way of thinking is not far from our daily decisions processes, an

example given by Kunapuli [26] is to imagine a doctor diagnosing a complicated medical

case. A usual approach is to consult with several other doctors from different specialties

(cardiology, neurology, etc) and take into account their opinions to form the final decision

regarding the patient’s diagnosis – see Figure 2.10.

FIGURE 2.10: Example: The diagnostic procedure followed by a doctor when he gets
a new case. His residents offer their diagnoses, then the doctor selects the majority

answer as the final diagnosis (adapted from Kunapuli [26]).

24 Phishing DETECTION WITH A MACHINE LEARNING NET

Ensemble methods can be designed by having the models train in parallel or in a

sequential manner. The most widely–used ensemble classification methods with a parallel

design include bagging and random forests, and, in a sequential ensembling, boosting

(such as AdaBoost) or gradient boosting [25].

Parallel ensembles, as the name suggests, trains each estimator individually thus al-

lowing them to train in parallel. The ensemble can be homogeneous or heterogeneous.

Homogeneous designs such as bagging (also named bootstrap aggregation) and random for-

est uses the same learning algorithms. To achieve diversity, usually, the data used to train

those models is randomly sampled from the original training pool (or replicates of the

training data with or without replacement as bagging does). Additionally, random sam-

pling can be applied to features or both features and training data, random forest does the

latter. Since the data and/or features fed to each estimator are different, the outcomes

give different results. Lastly, the predictions are combined into one ensemble prediction

leading to better performances. Heterogeneous ensemble, as the name implies, uses dif-

ferent learning algorithms. Depending on how the individual base estimator predictions

are combined they can be parted into two different types. The first type assigns weights

to the predictions from each estimator, where better estimators are assigned with higher

weights. The second uses a learning algorithm where the predictions of individual base

estimators are used as mete-data and trained to make the final predictions [25][26].

Sequential ensembles, such as AdaBoost or gradient boosting, exploit the dependence

of base estimators by performing re-iterations where a estimator is trained to improve

upon the predictions of the previous one – see Figure 2.11. In AdaBoost, the data sam-

ples are trained several times by the estimators. In each successive iteration, based on

misclassified samples, the sample’s weights are modified, therefore ’fixing‘ the previous

estimator mistakes [27]. Gradient boosting randomly samples the data to get subsets for

each estimator train on a subset. The residuals from each model are also used to train the

next model. The goal is to minimize the sum of the residuals forcing the prediction close

to the actual value [25].

2. BACKGROUND KNOWLEDGE 25

FIGURE 2.11: Desing of sequential ensembles (adapted from Kunapuli [26]).

2.3 Natural Language Processing

Natural Language Processing (NLP) is a section of ML and Linguistics, having roots since

the late 1940s with Machine Translation methods implemented to translate languages

such as English and Russian. However, the term “Natural Language Processing” was

first used in 1980 after the surge of AI processes, when computational grammar theory

became highly researched [28]. Until today, NLP is a highly researched area used across

a broad set of industries and applications like Machine Translation, e-mail Spam detec-

tion, and Information Extraction. It encompasses two major areas: Natural Language

Understanding (NLU) and Natural language Generation (NLG) – see Figure 3.1. With

these, NLP seeks to convert unstructured language data into a structured data format to

understand speech and text and formulate relevant and contextual responses [29].

Natural Language Understanding is based on Linguistics, which is a science involv-

ing language’s meaning, context, and other forms. The five main pillars of NLU are

Phonology, Morphology, Syntax, Semantics, and Pragmatics. These are responsible for

understanding the systematic arrangement of sound; word formation and the meaning

behind its smallest units; the structural dependency relationships between the words;

and their possible meanings even without this being encoded into them [29][30].

Natural Language Generation produces overall text like phrases, sentences, etc. Is

the opposite of NLU and involves four tasks to be able to generate overall text: Content

26 Phishing DETECTION WITH A MACHINE LEARNING NET

selection, Textual Organization, Linguistic Resources and Realization. These are responsi-

ble for selecting the information and transforming it if necessary; organizing it according

to grammar; choosing the idioms and syntactic constructs; and deploying the output in a

text or voice format [29].

2.3.1 NLP Components

Linguistics encompasses two areas – computational linguistics and theoretical linguistics.

The first is mainly concerned with the study of natural language analysis by developing

models to handle natural language as input. The last focuses on language performance

and grammatical competence. Sentence analysis can be divided into two branches: syntax

analysis and semantic analysis [31].

• Syntax analysis: Encompasses two tasks: the first uses a process named parsing that

can determine the sentence structure by identifying not only the subject and object

of each verb but each modifying word. The second task regularizes the syntax struc-

ture by simplifying a large number of possible input sentences into a small number

of structures, i.e. “John ate cake and Mary [ate] Cookies” (adapted from Chowdhary

[31]).

• Semantic analysis: Tries to understand the sentence’s meaning by seeking the con-

ditions under which it is true. So there is a meaning assigned to the structures re-

sulting from this step. It is also the branch that presents the biggest struggles [31].

2.3.2 NLU Transformers

Several model architectures can be used for language modeling. In 2017, Vaswani et al.

[32] presented the Transformer – see Figure A.1. This is a model architecture that presents

a simple network based on attention mechanisms with an encoder and a decoder stack.

Later on, in 2018, Devlin et al. [33] presented BERT (Bidirectional Encoder Representa-

tions), a model based on the Transformer that uses only a selection of blocks of the en-

coders [34].

2. BACKGROUND KNOWLEDGE 27

In the Transformer, the encoder stack is composed of six identical layers, each with two

sub-layers. The first sub-layer is a multi-head self-attention mechanism and the second

layer is a position-wise connected feed-forward network. The decoder is similar to the

encoder, however, it has an additional sub-layer at the beginning to perform a multi-head

attention mechanism. To achieve higher efficiency, the output of every sub-layer has a

constant dimension that can be changed according to one’s goals. Attention mechanisms

are a “word-to-word” operation. An attention function goal is to find the relationship

between each word in a sentence including the word being analyzed with itself. The

base function in the Transformer is the Scaled Dot-Product Attention mechanism – see

Figure 2.12, which maps a query and a set of key-value pairs. The output is a vector with

a weighted sum of the values determined by a compatibility function of the query with the

corresponding key. In each attention sub-layer, by linearly projecting the queries and key

values, the model can run a defined number of attention mechanisms at the same time, as

shown in Figure 2.12. This set-up allows the model to jointly attend to information from

different representation sub-spaces at different positions allowing a higher efficiency and

reducing computing time [29][34].

FIGURE 2.12: Scaled Dot-Product Attention (left). Multi-Head Attention
(right) (adapted from Vaswani et al. [32]).

28 Phishing DETECTION WITH A MACHINE LEARNING NET

2.3.2.1 BERT Transformers

The BERT model is based on the original Transformer, but its architecture is simpler and

empirically more powerful. It is designed to pre-train bidirectional representations from

unlabeled text using Masked Language Models. When constructing the BERT model,

Devlin et al. [33] divided its work in two major steps: pre-training and fine-tuning.

In the first step, the model was trained on sets of data such as the BooksCorpus and En-

glish Wikipedia that contains 800 million words and 2500 million words, respectively. The

training was performed by the use of two unsupervised tasks: Masked Language Mod-

els and Next Sentence Prediction. In the first task, the bidirectional representations were

trained by masking some percentage of the input tokens at random and then predicting

those masked tokens – in Devlin et al. [33] research about 15% of the tokens were masked.

Next Sentence Prediction aims to comprehend the relationships between two sentences

that can not be accomplished with just a language model. In this task, the model was

pre-trained with different pairs of sentences. In these pre-training examples, only 50% of

the time the second sentence corresponded to the next sentence from the original text. In

the second step of the model – fine-tuning – the model was initialized with the pre-trained

parameters that were later fine-tuned by using labeled data [33].

Nowadays, BERT models are modified and updated to accomplish different tasks.

A lot of these models can be found in the Hugging Face libraries, as this platform pro-

vides open-source NLP technologies [35]. Sentence-BERT models, a modification of BERT

models using siamese and triplet networks are better at capturing sentiment informa-

tion and also have higher computational efficiency when compared to the original BERT

model [36].

Chapter 3

State of the Art

3.1 phishing Description

A phishing attack involves three steps – see Figure 3.1. The first is the victims receiving the

content, the second is the victim following the instructions in the message – for example,

opening the link to a fake website – and the last is the criminal profiting from the stolen

information [37]. Since this type of attack is usually linked to financial gain, the internet

provides an ideal scenario for the perpetrators, as there are multiple ways to hide their

true identity. It can be also led to significant monetary gain. In 2011, Kim et al. [38]

estimated that the losses of phishing attacks in the USA could go up to US$61 million.

FIGURE 3.1: Phishing Attacks Steps Scheme.

29

30 Phishing DETECTION WITH A MACHINE LEARNING NET

A successful phishing attack relies upon a key factor: the ability to convey a sense

of trust to the victim. Even before the technology revolution, con artists existed and the

greatest ones were experts at persuading people to believe in their schemes through emo-

tional manipulation and gaining the victims’ trust. Thus the understanding of human

behavior and its psychology is fundamental to be able to persuade a person through a

message [39]. According to Ferreira and Teles [40], there are persuading principles that

can be used on individuals to convince them to give out information and make them be-

lieve in a fraudulent e-mail message. Some examples are “Authority” – for example, an

e-mail perpetrating a known figure of authority such as a re-noun establishment, “Liking,

Similarity & Deception” – for example an e-mail that perpetrates a person familiar to the

victim, and ”Need and Greed” – this includes great opportunities for the victims and also

involves the component of a limit time amount suggesting a sense of urgency.

Phishing attacks are evolving and becoming more focused on their targets. Nowa-

days, instead of a mass spread attack, a phishing e-mail can be sent to a certain group

of individuals with similar characteristics, for example, individuals working at a certain

company or with similar job descriptions [38]. On top of that, the type of attackers is also

evolving, as a targeted e-mail phishing is more likely to be from a criminal organization

with business and contingency plans and not just ”your teenage hacker like in the old days”

as Sheng et al. [41] describes. Aggravating these factors, the level of knowledge does not

appear to be increasing within the newer generations. In 2019, profpoint. [42] reported

that older generations were more aware of phishing. In their study, the older group –

consisting of individuals with ages higher than 54 years old – had the best performance at

explaining what phishing was, with 74% of interviewed individuals answering correctly.

On the other hand, the group of individuals with younger ages – 18 to 21 years old –

showed a worse performance with only 47% of the individuals knowing what the con-

cept was. This can oppose quite a challenge to the dissemination of phishing attacks since

the consumption of technology and online presence is increasing especially in younger

generations [43].

3. STATE OF THE ART 31

3.2 Types of Phishing Attacks

In manners of phishing, as mentioned previously, there are different types of attacks.

Not every type uses e-mail as the main tool, for example, vishing or smishing uses voice

calls and SMS text. These types of attacks have also been increasing through the years.

Just in 2019, out of the companies that reported phishing attacks, 84% also suffered from

smishing and 83% from vishing [44]. Other types of phishing are much more complex

and harder to perceive such as pharming in which the attackers hijack the Domain Name

Server (DNS) from a certain enterprise or website so when the user types the real name

the server redirects to a malicious website with a very similar IP address [45].

Still, the most common way to do phishing is via e-mail. According to Ghazi-Tehrani

and Pontell [44], up to 96% of attacks are performed through this channel. In the be-

ginning, these were poorly made and only had a success ratio of 0.5%, however, these

days, due to the methods used to detect scams, e-mail phishing has evolved and comes in

different types [44][46]:

• Deceptive phishing: Usually done through e-mail and portrays a message from a

legitimate company asking for the user’s information. A known example is the

PayPal Scammers attacks in which the attackers asked the victims to resolve some

problems with their accounts by clicking on the e-mail’s link to the supposed PayPal

website.

• Spear-phishing: Similar to deceptive phishing but provides more personal informa-

tion such as the user’s name, their company phone number, etc. Having this type

of personal information shown rises the level of trust in the message making the

users more susceptible to follow the steps and click on the hyperlinks or open the

attachments.

• Whaling/CEO fraud: A previous analysis of the company is made to find the organi-

zation’s CEO or other individuals with top positions. These individuals are targeted

in order to collect sensitive information regarding the company’s data.

32 Phishing DETECTION WITH A MACHINE LEARNING NET

• Business E-mail Compromise: A similar technique to whaling is used, however, in-

stead of targeting the CEO, a lower-level employer is targeted and the subject of the

e-mail pretends to be the CEO to get a money transfer or sensitive data [46].

3.3 Countermeasures

To ensure that a phishing attack is not accomplished there are measures that can be ap-

plied. In this manner, in 2009, Sheng et al. [41] interview 31 experts in different fields,

from CERT (Computer Emergency Response Team) such as academic researchers, law

enforcement experts, etc. The major recommendations involved the implementation of

secure coding practice, investment in cyber-security, improving law enforcement and sub-

sequential investment in specific types of technologies to better prioritize cases. Perhaps

the most important was education of the overall public on these issues.

Most of the time the weakest link in a phishing chain is the human, even experts in

the matter are not free from falling into a phishing attack since these have been more

organized and targeted [41]. Thus, to complement human training, technical approaches

are fundamental. In this subject, different methods can be applied, some are specific to

certain types of phishing and others are more general.

3.3.1 Blacklisting

Realtime Blackhole Lists, Domain Name System Black Lists or Blacklists are lists of URLs, IP

addresses, or keywords that had been previously detected as phishing. These lists can

be made through the use of heuristics approaches or manual ones. The heuristic methods

are often performed with Machine Learning (ML) to examine the URL, HTML, and server

characteristics to classify the sites and addresses. Nonetheless, the best-known blacklists

are operated by some of the biggest software companies such as Microsoft, Google, and

PhishTank and each entry of the list is manually verified by these companies employees.

This type of approach is good to screen the spread of attacks and has a relatively low False

Positive (FP) rate, however, it fails in protecting against new attacks that use links that are

3. STATE OF THE ART 33

not disclosed on these lists. So, if the perpetrator creates a new website and IP address to

release their attack, this type of security would fail at the moment of the attack and only

be noticed afterward [37].

3.3.2 Machine Learning for phishing detection

In areas where fraud or anomaly detection have a high impact on the business, i.e. credit

card fraud, the use of Machine Learning has become paramount to deal with threats in

at real-time manner. In addition to the use of complex models, data processing is a key

factor in having faster and lighter systems thus saving costs and computational resources

[47].

Focusing solely on phishing attacks, in 2021 Ghazi-Tehrani and Pontell [44] conducted

a study to 62 individuals from three different backgrounds: information technology/se-

curity professionals, hackers and researchers. When questioned about technological so-

lutions to combat phishing 96.7% mentioned Artificial Intelligence (AI). Several studies

have been made to detect phishing e-mails and websites with an accuracy of up to 97.3%

using several types of ML methods [48]. To have a good detection system of websites

and/or emails one of the critical steps is choosing which data features are going to be fed

to the ML model. Some models utilize vision techniques, such as snapshots of the web-

site, others use features from the website, e-mail, or text. Regarding e-mail phishing a lot

of papers focus mainly on simpler e-mail characteristics without analyzing the e-mail text

itself or only accounting for words with higher frequency in the phishing e-mails – see

Table 3.1.

34 Phishing DETECTION WITH A MACHINE LEARNING NET

Feature Description

Presence of URLs and

IP-based links [49] [48]

The use of the visible URLs in the e-mail text, especially those

without the “s” in “htpps” can be possibly linked to insecure

fake websites.

Number of dots in

URL links [49][50]

Commonly, the domain name of a legitimate organization

should not have a large number of dots.

Number of URLs and

IP-based links [49][50]

Usually, phishing e-mails contain a high number of links to

fake-websites.

Length of URL links

[51]

phishing e-mails typically contain long URLs to hide the

doubtful part in the address bar.

Count of Images

[52][40]

The high number of images can be associated with phishing

e-mails as this are a way to distract the victims from the e-mail

content and its discrepancies.

Word List Features

[49][50][40]

A binary indicator of the presence of a select list of words as-

sociated with phishing.

Time stamp [47]
Certain hours and days of the week can be associated with

phishing.

TABLE 3.1: phishing features and its descriptions.

Chapter 4

Methodology

Machine Learning projects often follow a certain methodology where the project is di-

vided into several phases with specific timelines to facilitate the development of the ML

solution. One of the most common methodologies is the Cross-Industry Standard Process

for Data Mining (CRISP-DM) proposed in the 2000s by Wirth and Hipp [53]. This method-

ology has been altered over the years and adapted for different projects and companies,

therefore the number of phases may vary. From an overall point of view, there are six

phases one may consider in an ML project: Business Understanding, Data Understand-

ing, Data Preparation, Modeling, Evaluation, Deployment. Each phase has sub-tasks as-

sociated with it, moreover one may relapse to the original stages since an ML project is

fluid and the goals may change with the increase of knowledge.

A tailored version of this methodology with five phases was carried out throughout

the project – see Figure 4.1. The first two phases were the most time-consuming to ensure

data quality as it is one of the most critical aspects for a good performance in an ML

model. Again, Figure 4.1 shows the data flow across the project’s phases. As the data

pool of phishing e-mails is quite low (only 0.1% of the entire data pool) one key goal is to

create a system where the new data after being analyzed by the model is re-direct to the

pool data and possibly re-train the model to achieve higher performances.

35

36 Phishing DETECTION WITH A MACHINE LEARNING NET

FI
G

U
R

E
4.

1:
Pr

oj
ec

t’s
M

et
ho

do
lo

gy
an

d
D

at
a

flo
w

.

4. METHODOLOGY 37

4.1 Data Understanding

As mentioned in Section 1.1, E-goi is a SaaS multi-channel marketing automation plat-

form also operating as an E-mail Service Provider (ESP), meaning that a user can send

mass e-mails, namely campaigns, and newsletters, among others. These types of compa-

nies rely on their reputation and are monitored by Inbox Service Providers, who enforce

good faith practices. They are also strongly affected by criminal events such as phishing.

An attacker uses the platform to mass distribute their fraudulent e-mail since the proba-

bility of rejection is decreased. If the company allows criminal activity, a block is issued

which leads to the disruption of service. Thus it is important to ensure the user operates

in good faith. Content monitorization is not a scalable task when performed by humans,

especially for companies that work as an ESP. This type of task can be slow and tedious

and even require many working hours, being unfeasible for a scaling possibility. Further-

more, since these types of companies are strongly affected by their reputation, the threat

must be dealt with in an efficient manner. Given the complexity and variability of the

attacks the tools used to minimize and diffuse them need to be adaptable and have to be

quite precise. It is not desirable to block a user account of a real customer since this lead

to a break in the customer’s trust resulting in a bad relationship with them.

Companies such as E-goi, and E-goi itself, often use blacklists to block most of the

phishing attacks. Unfortunately, as mentioned in Section 3.3.1, this type of security tool is

not fully preventive since if the new attack uses e-mail addresses or URLs not present in

these lists, the attack goes by undetected. As explained in Section 3.1, the rate of phishing

attacks are increasing over the years, therefore a truly preventive tool is necessary as new

attacks are created every day. For this purpose, an ML-based tool can be quite useful.

The gathered data is a sample of e-mail files with extension EML, with a total of 514

027 (≈ 99.9%) .eml files that are classified as not phishing and 501 (≈ 0.1%) classified as

phishing e-mails. The type of e-mail is usually campaigns or newsletters, like the e-mails

one receives every day accumulating in the ’Promotion‘ folder – Figure 4.2. On the E-goi

platform, a customer can choose to upload its campaign files or use the base templates

available on the website.

38 Phishing DETECTION WITH A MACHINE LEARNING NET

FIGURE 4.2: Example of a newsletter (adapted from LookFantastic [54]).

An e-mail file is composed of three parts: the headers, the body, and the formats. The

e-mail headers contain information regarding the user, the date in which the e-mail was

sent, and the subject/title of the e-mail, among others. The body of the e-mail contains

the written message and the formats contain information regarding the type of font, sizes,

number of images, etc. Due to the system complexity when opening a .eml file with a

simple text editor, the text component may have some formatting errors across it. Some

of these are displayed in Figure 4.3 inside the yellow margins. Additionally, other errors

can occur, such as the absence of e-mail’s content or the absence of the e-mail address.

Lastly, a lot of users chose to send the same e-mail several times thus leading to a high

amount of duplicated emails (≈ 50.0%) that can not be used throughout the training of as

it may led to an increase in the model’s bias. Table 4.1 presents the types and amounts of

these errors.

4. METHODOLOGY 39

FIGURE 4.3: E-mail’s body example.

Description Number of E-mails % of E-mails

Absence of e-mail content 3713 0.72

Absence of e-mail address 108855 21.17

Duplicated e-mail 246 732 48.00

TABLE 4.1: Phishing E-mails description and amount.

As explained the .eml file’s structure can be divided into three different sections. Tak-

ing into account Section 3.3.2 several features were extracted with resource to Python lan-

guage – see Table 4.2. The used libraries included Numpy (version 1.22.4) and Pandas

(version 1.4.2). Some of the features such as cyclic features (hour and day of the week)

and text related variables were later processed.

40 Phishing DETECTION WITH A MACHINE LEARNING NET

Section
Variable

Name
Variable Description

Header

Hour
Numerical variable containing hour of the day at which the e-

mail was sent. Varies between 0 and 23.

Day
Numerical variable containing the day of the week. Varies be-

tween 1 and 7, 1 corresponding to Monday and 7 to Sunday.

First part

address

Numerical variable containing the size of the first part of the e-

mail address (Ex: example@gmail.com has length 7)

Last part

address

Numerical variable containing the size of the last part of the e-

mail address (Ex: example@gmail.com has length 9)

Dot

presence

Binary variable indicating the presence of more than one

dot in the second part of the e-mail address (Ex: exam-

ple@fake.website.com has value 1)

Body

Text Array containing the e-mail text content.

Body

Length
Numerical variable containing the length of the text array.

Visible

HTTPS

Binary variable indicating the presence of secure visible links in

the text.

Visible

HTTP

Binary variable indicating the presence of insecure visible links

in the text.

Emoji Binary variable indicating the presence of emojis in the text

Format

Images
Categorical variable according to number of images. Three cat-

egories.

Invisible

HTTPS

Binary variable indicating the presence of secure invisible links

in the text.

Invisible

HTTP

Binary variable indicating the presence of insecure invisible

links in the text.

Font type
Vector containing the presence of different types of fonts

throughout the text.

Font size
Vector containing the presence of different sizes of font through-

out the text.

Font color
Vector containing the presence of different colors of font

throughout the text.

TABLE 4.2: Extracted variables from .eml files.

4. METHODOLOGY 41

The aesthetic variables: ‘Font type’, ‘Font size’, and ‘Font color’ – were extracted dif-

ferently than most binary variables. Since an e-mail can have different types of fonts,

sizes or colors, these features were each kept in a vector form. These vectors had different

dimensions according to the type of variable, for example, the color type variable had a

dimension of nine corresponding to the colors of a rainbow. Figure 4.4 shows an example

of how the vectors are constructed; each position of the vector corresponds to a color and

can vary between 0 and 1 where the number “1” indicates the presence of the color and

“0” the absence of it. In this example the e-mail text had red and black, therefore the first

and seven-position have a positive value, while the remaining positions remain at zero.

FIGURE 4.4: Example of vector for color type variable if the e-mail contains text with red
colors and black colors.

For each aesthetic variable the vectors were organized in the following manner:

• Font type – [neo-grotesque, geometric, humanist, sans-serif, other, transitional]:

Since there were a lot of different font types these were grouped into six categories

corresponding to the font’s family. For example, font types such as arial and calibri

are included in the sans-serif family, while others such as verdana are considered

humanist.

• Font size – [<10px, [10,12[px, 12px, 13px,]13-20]px, >20px]: The categories were

chosen according to the sample’s distribution for the font size.

• Font color – [red, orange, yellow, green, blue, purple, black, white, grey]: The

colors were chosen according to the RGB coordinates.

42 Phishing DETECTION WITH A MACHINE LEARNING NET

4.2 Data Preparation

4.2.1 Variables Preparation

Following the methodology presented in Figure 4.1 after extracting the potential variables

for the final model is necessary to clean and format the extracted data. For this purpose

some steps were carried out:

• Continuous variables except for cyclic variables were standardized according to

Equation 4.1. This is important, especially for some simpler models such as logistic

regression to ensure that higher weight is not given to variables that have large

scales.

ẑi =
xi − x̂

s
(4.1)

• Cyclic variables such as hour are a complex case to have in a model due to their

cyclic nature. Humans understand that the ‘23h00’ is closer to ‘00h00’ than ‘02h00’,

however, if we fed the integer of the hour to a model this would assume that ‘23’ is

the farthest number apart from the ‘00’ hour. Therefore is important to encode these

cyclic variables in a manner that their nature is still carried. Due to their nature

these can be transformed through the equations that containing the cosine and sine

functions – Equation 4.2 and Equation 4.3 where hi is the original variable (ex: hour)

and maxh is the maximum value it can achieve (ex: for hour the maxh has a value of

23).

xi = sin
2 × hi

maxh
(4.2)

xi = cos
2 × hi

maxh
(4.3)

• For Categorical variables the dummies were computed. Dummies are attributes cre-

ated according to the number of classes present in the categorical variable. There-

fore, if a variable has N classes, N attributes are created where each attribute is a

binary variable indicating the presence or absence of a class.

• The Text array was processed by NLP techniques discussed in 2.3. For that purpose,

a pre-trained multilingual model from the Hugging Face library was used. For this

4. METHODOLOGY 43

project, the ‘paraphrase-multilingual-MiniLM-L12-v2’ was used that transforms the

data array into a vector with a dimension value of 384 [36]. Afterward, to decrease

the matrix dimension, an agglomerating clustering was performed via hierarchical

clustering using a bottom up approach. The new dimension size was studied con-

sidering the loss of information.

4.2.2 Sampling Methods

At the chapter’s beginning it was mentioned that only ≈ 0.1% of the data was phishing

e-mails corresponding to a total of 413 samples after the data cleansing step. Furthermore,

there were a large amount of duplicated e-mails, meaning that the same user send an e-

mail with the same content more than once. To ensure that the data bias was minimal, it

was decided to kept only one copy of the duplicated e-mails thus leading to a total amount

of 214 phishing e-mails and 214 000 “normal” e-mails. Taking into consideration those

constraints and the amount of phishing e-mails it was opted to use an under-sampling

method. Different approaches were tried, some of them based on Rahman and Davis [22]

and Lin et al. [20] works. Similar to Rahman and Davis [22] work, different sets were

created based on the different approaches to be trained by the model:

• RUS – Collect majority class samples at random.

• Cosine Similarity – Sub-sample majority class by collecting samples closest to the

minority class with resource to the cosine similarity. According to Huang et al. [55]

is one of the most popular similarity measures applied to text documents.

• Clustering technique 1 – Sub-sample majority class by collecting samples from dif-

ferent clusters. These clusters are obtained by performing the K-means clustering

technique to the majority class. The K number of clusters is attained through empir-

ical methods such as elbow method, gap-statistic method, and silhouette method [8]

[56]. Instead of collecting samples at random from each cluster, it was collected the

samples closest to the clusters’ centers and samples from each cluster closest to the

minority class – see Figure 4.5.

44 Phishing DETECTION WITH A MACHINE LEARNING NET

• Clustering technique 2 – Sub-sample majority class by collecting samples from dif-

ferent clusters with a K number of clusters equal to the number of phishing samples

[20].

FIGURE 4.5: Explanatory example of Cluster Under-Sampling tech-
nique.

In addition to the different sampling techniques, it was also created sets with different

percentages of phishing samples, presented in Table 4.3, as some of the models to be

trained are more suitable to work with unbalanced data.

Ratio: N minority class : N majority class % of phishing

1:1 50

1:2 33

1:4 20

1:19 5

1:99 1

TABLE 4.3: Phishing E-mails percentages .

4. METHODOLOGY 45

To compare the difference between the different approaches and ratios it was per-

formed a One-way ANOVA was performed for each factor. ANOVA stands for Analysis

of Variance and studies the effect of a factor with several categories (for this case sampling

methods or phishing ratio) on a dependent variable. It is based on hypothesis tests where

the null hypothesis states that the means (µ) of each category are equal – see Equation 4.4.

H0 : µ1 = µ2 = ... = µN

H1 : Not all µj are equal (j = 1:N)
(4.4)

In this study, the chosen dependent variable was the F1-score for a chosen model.

The main assumptions for this technique are sample independence, variance equality,

and normality. To ensure this conditions the used model was trained several times with

different seeds and the histogram and QQ-Plot of the new overall sample were studied

[57].

4.3 Modeling

As stated, for each sampling method and each phishing ratio a set was created to be

trained by different ML models. Taking into account previous works on this subject, sev-

eral models were chosen to determine the best results by training them using a k-fold

cross-validation technique. Cross-validation techniques are often used in Machine Learn-

ing to assess the model stability and performance and ensure that this is not overfitting

the parameters to the trained data. In k-fold cross validation the training data is split into

smaller sets called folders, for which, one of the folders is used as a validation set while

the other folders are used to train the model. This process is iterative, for each iteration

the training set is split into k folders and the chosen evaluation parameter is determined

by testing the data in the validation folder; this folder is different in every iteration – see

Figure 4.6. At the end of the loop, the final evaluation parameter score is achieved by

computing the mean of the iterations. Still, it is important to have different a testing set to

confirm the attained results by the cross-validation [58].

46 Phishing DETECTION WITH A MACHINE LEARNING NET

FIGURE 4.6: K-fold Cross-Validation Methodology.

The initial models to be trained were Logistic Regression, Support Vector Classifica-

tion (SVC), Decision Tree, Random Forest, AdaBoost Classifier, and Gradient Boosting

Classifier from the scikit-learn library. For each model, the results for accuracy, precision,

and recall were attained and compared among themselves. Out of this model, it was de-

cided to proceed with a Random Forest Classifier and a Neural Network (named in the

scikit-learn library as “MLPClassifier”). For both models, an exhaustive grid search was

computed to find the best hyperparameters. These are the model’s arguments previously

defined by the user. These are parameters such as the number of hidden layers for the

neural network. In an exhaustive grid search, several parameter values are considered

and different combinations are tried to achieve a higher value for a scoring metric; this

metric is defined by the user. In this work the researched hyper-parameters are presented

in Table 4.4. The scoring metric was the F1-score, since it depends on both the precision

and recall of the model.

4. METHODOLOGY 47

Model Parameter’s Name Parameter’s Description

Random

Forest

Criterion
Measures the quality of split for the decision trees.

Three possibilities: ”gini”, ”entropy” an”log losss”.

”min samples leaf”
Integer that represents the minimum number of

samples required to be at a leaf node.

”max features”

Number of features to consider when looking for

the best split. Possibilities: “sqrt”, “log2” or a ratio

between 0 and 1.

oob score
Whether to use out-of-bag samples to estimate the

generalization score. Set to be True or False.

Neural

Network

”hidden layer sizes”
Inner layers configuration and number of neurons

in each layer.

”activation”
Activation function for the inner layers. Four pos-

sibilities: ”identity”, ”logistic”, ”tanh”, ”relu”.

”solver”
The solver for weight optimization. Three possibil-

ities: ”lbfgs”, ”sgd”, ”adam”.

max iter

Maximum number of iterations, for stochastic

solvers this parameter determines the number of

epochs.

TABLE 4.4: Models’ parameters to be tested.

4.4 Evaluation

In manners of evaluating a model, when it comes to classification problems, there are

several metrics that can be used – explained in 2.1.2. For each final model, the values for

accuracy, precision, and recall were calculated as confidence intervals for these metrics.

The confidence intervals were attained using a bootstrap methodology based on samples

with a size of 200. These samples were attained by running the final model several times

with different seeds. Other evaluation methods include computing and plotting the con-

fusion matrix and ROC curve for both the training and testing set. Additionally, since

48 Phishing DETECTION WITH A MACHINE LEARNING NET

under-sampling methods are being used to collect training and test sets and, even though

some of the methods used are trying to include as much data variance as possible, is

plausible to assume that information is being lost. If a non-phishing e-mail is classified as

phishing it will lead to a block of the customer’s account. Thus is important to see how

many e-mails samples are being classified as phishing from the samples of the majority

class that were not selected to be part of the training or testing set. As the processing time

of the model’s prediction function increases with the number of samples, it was decided

to create an iterative process to verify the percentage of blocked accounts.

• Randomly collects 10 000 samples from the majority class that are not present in the

training or testing set.

• Predict the binary result and count the number of positives predictions (false posi-

tives), compute the percentage of it (Noo f positives
10000) and store the value;

• Repeat the process 10 times, for each time storing the percentages;

• Lastly compute the average of the percentages: % of Blocked Accounts – Equa-

tion 4.5.

%Blocked Accounts = ∑10
i=1 Percentagei

10
(4.5)

Nevertheless, these metrics are only in regard to the model’s performance. From a

research stand of view, and in some industries such as health, it can be also important to

understand how much each feature contributes to the overall prediction capability of the

model. In some models such as Logistic Regression and Decision Trees, it is possible to

estimate the coefficients associated with each variable. Nevertheless, in models such as

Neural Networks, understating the impact of each feature on the overall performance can

be quite complicated as a lot of transformations occur in the hidden layers. To access this

problem there are some methods such as Permutation Importance (PIMP), proposed by

Altmann et al. [59]. In this procedure, each feature is randomly shuffled N times, and for

each time the model score is determined, leading to a vector with N importance measures

for every feature. Afterward, the PIMP algorithm normalizes the biased measures based

on permutation tests and returns significant P-values for each feature. Another technique

to access feature importance is Local Interpretable Model-Agnostic Explanations (LIME)

proposed by Ribeiro et al. [60] in 2016. For this the algorithm explains the predictions of

4. METHODOLOGY 49

any classifier or regressor by identifying an interpretable model closest to it. So the goal

is to minimize a measure of how unfaithful an interpretable model is to the actual model.

Nonetheless, both techniques still have their disadvantages. PIMP does not perform well

for features with high correlation, while LIME can be quite sensitive to a small change in

input features. As a complement, it was decided to do a simple procedure where, similar

to permutation importance, the model was run without one of the features at the time and

the values were compared with the original ones. Once more, this type of procedure was

its own drawback as it can not access the importance of features with high correlation.

Chapter 5

Results

5.1 Initial Analysis and Sampling Methods

As shown in Table 4.2 from section 4.1, one of the features is an array containing the text

information. This is attained through the use of a transformer capable of analyzing text

information. The initial array has a dimension of 384 column-wise, thus, it was necessary

to further reduce this array by using reduction techniques such as PCA and Hierarchical

Clustering. For both techniques, the final number of dimensions was achieved empiri-

cally. For PCA it was chosen a number of components that represented at least 50% of the

total amount of variance in the text data. While in hierarchical clustering two alternatives

were considered, the first based on the data’s dendrogram – see Figure 5.1 and the latter

was attained latter by iteration in the final model.

• PCA – 20 principal components were considered, which represented about 50% of

the total variance.

• Hierarchical Clustering – In Figure 5.1 it is possible to see that the cut associated

with the largest gap “runs” to three vertical lines, therefore the first alternative con-

sidered 3 clusters, while the latter considered 100 clusters.

50

5. RESULTS 51

FIGURE 5.1: Hierarchical Clustering Dendrogram to text data.

Thus, taking into account the transformations carried on the unorganized data the

final dataset is a mix of continuous and categorical variables, the amount of each type of

feature is shown in Table 5.1.

Type of Feature Number of Features

Continuous 7 + [3 or 20 or 100]

Binary 4

Categorical (More than two categories) 24

TABLE 5.1: Type of features present in the dataset. .

To better understand how the features are related between themselves and how the

data is dispersed, correlation matrix was computed for all variables except for the text

variable. It was found that the correlation between variables is very low in most variables

thus the features appear to be independent. More information can be seen in Figure A.4.

Additionally, a PCA analysis was carried out on the same features. From the biplot repre-

sented in Figure 5.2, it is clearly visible the impact on some variables such as the presence

of certain fonts’ families and the number of images in both the first and second compo-

nent.

52 Phishing DETECTION WITH A MACHINE LEARNING NET

FI
G

U
R

E
5.

2:
Bi

pl
ot

fo
r

al
lv

ar
ia

bl
es

w
it

h
ex

ce
pt

io
n

of
th

e
te

xt
ar

ra
y.

5. RESULTS 53

As described in section 4.2, several sampling methods were conducted to create dif-

ferent training and testing sets, one of which was conducting a K-means analysis on the

majority sample and retrieving samples from each cluster. One of the main steps of the

K-means methodology is to choose the number of clusters – K. This can be previously

determined (for example choosing the number of clusters to be equal to the number of

phishing samples) or it can be achieved through empirical methods such as the elbow

method or the silhouette method. Both methods were performed on data containing the

text array sorted by the PCA technique and the hierarchical clustering technique. In both

variants for the text sorting method the number K clusters determined was 4 by both the

silhouette and elbow technique. In Figure 5.3 shows the attained clusters, with the first

cluster having 37.6% of the total amount of observations, the second cluster having 8.4%

of the total amount of observations, while the third and fourth clusters have 41.3% and

12.7% of the total amount of observations, respectively.

Additionally, following Rahman and Davis [22] approach, for each cluster two differ-

ent sets were created, one containing the samples closest to the cluster’s centroids and

the other with samples closest to the phishing samples average from each cluster. Ta-

ble 5.2 shows the different sets created. These eleven sets were combined with the dif-

ferent phishing ratios, so a total of five data-frames were created each containing eleven

columns with the sample indexes. According to the phishing ratio the length of the data-

frame changed: 428 samples for a set with 50% of phishing samples, 642 samples for a set

with 33% of phishing samples, 1070 samples for a set with 20% of phishing samples, 4280

samples for a set with 5% of phishing samples, and 21400 samples for a set with 1% of

phishing samples.

54 Phishing DETECTION WITH A MACHINE LEARNING NET

FI
G

U
R

E
5.

3:
M

aj
or

it
y

Sa
m

pl
e

cl
us

te
rs

w
it

h
K

=4
.

5. RESULTS 55

Set’s Name Description

“random” Samples retrieved in a random way.

“ind agglo”
Samples closest to the phishing trough cosine similarity

for data with text sorted by PCA.

”ind pca”
Samples closest to the phishing trough cosine similarity

for data with text sorted by Hierarchical Clustering.

”agglo centroids a”
Samples closest to the clusters’ centroids for 4 clusters

and data with text sorted by Hierarchical Clustering.

”agglo closephish a”

Samples closest to the phishing samples average for 4

clusters and data with text sorted by Hierarchical Clus-

tering.

”agglo centroids phish”

Samples closest to the clusters’ centroids for the number

of clusters equal to the number of phishing samples and

data with text sorted by Hierarchical Clustering.

”agglo closephish phish”

Samples closest to the phishing samples average for the

number of clusters equal to the number of phishing sam-

ples and data with text sorted by Hierarchical Cluster-

ing.

”pca centroids a”
Samples closest to the clusters’ centroids for 4 clusters

and data with text sorted by PCA.

”pca closephish a”
Samples closest to the phishing samples average for 4

clusters and data with text sorted by PCA.

”pca centroids phish”

Samples closest to the clusters’ centroids for the number

of clusters equal to the number of phishing samples and

data with text sorted by PCA.

“pca closephish phish”

Samples closest to the phishing samples average for the

number of clusters equal to the number of phishing sam-

ples and data with text sorted by PCA.

TABLE 5.2: Sets Names and methodology description.

56 Phishing DETECTION WITH A MACHINE LEARNING NET

It was assured that both the test and training sets contained a 5% ratio of phishing

samples. As stated in 4.3 an exhaustive grid search was performed with each one of the

chosen models. The number of folders varied between two and three according to the

training samples length, so training samples with less than 1000 samples the number of

folders was two, while for the other cases the number of folders was three. Each training

set had a size corresponding to 75% of the total amount of samples, while the testing set

had 25% of the overall samples. To access each model’s performance the accuracy, pre-

cision, and recall values were recorded and the boxplots for these metrics were plotted –

Figure 5.4. Moreover, in Table A.2 it is possible to see the average values of each metric

according to the model, phishing ratio, and sampling method.

The three ensemble models (Random Forest, AdaBoost, and Gradient Boost) had bet-

ter values for all metrics, with the Random Forest model displaying the best values when

it comes to precision with an average of about 94.25%. This is quite important as the

precision is linked to the number of false positives inversely – see Equation 2.7. Thus

higher values of precision indicate that the model has low false positives which in the

problem’s context is very important since is not desirable to block e-mails and accounts

from real customers. When it comes to recall, the three ensemble models appear to have

similar average values and distributions, while the decision tree appears to give the best

results having the highest value average of 65.29%. Still, the average values for this metric

appear to be lower than the desired values. The recall metric is linked to the number of

false negatives – see Equation 2.8. Low recall values means that the model is failing in

detecting the phishing samples. Therefore is important to have a model that can achieve

a higher recall value without compromising the precision value.

5. RESULTS 57

FI
G

U
R

E
5.

4:
M

et
ri

c
V

al
ue

s
fo

r
ch

os
en

M
od

el
s.

58 Phishing DETECTION WITH A MACHINE LEARNING NET

5. RESULTS 59

FI
G

U
R

E
5.

5:
M

et
ri

c
V

al
ue

s
fo

r
di

ff
er

en
tp

hi
sh

in
g

ra
ti

os

.

60 Phishing DETECTION WITH A MACHINE LEARNING NET

Taking the same approach for each phishing ratio the previously discussed metrics

were recorded – see Figure 5.5 and Table A.2. Looking at accuracy and recall metrics

the impact of different phishing percentages is quite visible, as more unbalanced models

have significantly higher accuracy and lower recall. The probable explanation for this

phenomenon is the increase of the model bias towards the negative labels (samples that

are not phishing) since the true positives and true negatives are present in both parcels of

the accuracy metric equation – see Equation 2.6). The higher the difference in ratio be-

tween the majority and minority class the hardest it will be to identify the minority class,

thus the lower recall values. However, since most samples will be from the majority class

the number of true negatives (samples that are not phishing evaluated as not phishing)

will be quite high thus leading to higher values of accuracy. Regarding the precision met-

ric, this suffers quite the impact when the phishing ratio decreases from 5% to 1%, with

the average value ranging from 71.1% to 54.1%.

In Figure 5.6 it is plotted the average values for the chosen metrics according to the

different sampling methods. For these approaches is visible that the sampling methods

using the K-means methodology tend to display higher values for all metrics, especially

the version that retrieves samples closest to the clusters’ centroids. Interestingly the re-

sults from the methods that encompass the cosine similarity gave the worse results. The

model appears to have difficulty in identifying the phishing samples but also is classifying

a lot of “normal” samples as phishing, as the precision values are lower than the others

with an overall average of about 51%. When comparing the results from the K-means

methodologies with the number of clusters attained in an empirical manner (K=4) and

the number of clusters equal to the number of phishing samples, the average values for

all metrics are very similar having less than 2% difference for both the precision and recall.

Nevertheless, to confirm the hypothesis suggested by the initial analysis, it was im-

portant to access the actual differences between phishing ratios and sampling methods.

Thus the final model was run fifty times with the different sets and seeds. The F1-scored

for each iteration was saved to be later analyzed in One-way ANOVA, as explained in

4.2.2. The results are detailed in 5.3.

5. RESULTS 61

FI
G

U
R

E
5.

6:
M

et
ri

c
V

al
ue

s
fo

r
di

ff
er

en
ts

am
pl

in
g

m
et

ho
do

lo
gi

es
.

62 Phishing DETECTION WITH A MACHINE LEARNING NET

5.2 Models Results

Taking into account the initial models results, the Random Forest model displayed the

best scores. However, is important to notice that this value is an average of all sets with

different phishing percentages and sampling methods. Based on the results displayed

in Figure 5.6 and Figure 5.5 it was chosen two different types of methodology and two

different phishing ratios to perform an exhaustive grid search: ”pca centroids phish” and

”pca centroids a”, 5% phishing ratio and 1% phishing ratio. Two exhaustive grid searches

were executed one in order to the F1 metric and the other in other to the recall metric.

According to the parameters list displayed in Table 4.4, for the random forest model the

following values were considered for the grid search:

• criterion: gini and entroy, default = gini;

• oob score: True and False, default = False;

• min samples leaf : 1, 8 and 10, default = 1;

• max features: ”sqrt“, ”log2“, 0.1, 0.3, 0.5 and 0.7, default = ”sqrt“ ;

The best results for recall were achieved for the ”pca centroids a” with a 5% phishing

ratio, with the criterion parameter set to gini, the oob score set to True, the min samples leaf

with value 1 and the max features set to the value 0.7 – see Table A.3. Still, this set of con-

ditions also led to the highest amount of % of Blocked Accounts with a value of 25.63 %,

which is undesirable. The values attained with the sampling method ”pca centroids phish”

for the % of Blocked Accounts were significantly lower, with the highest being close to 6%,

however, the recall values for this set only achieve 44.44%, also an undesirable value. Thus

it was decided to proceed with a neural network to try to achieve a higher recall metric

without compromising the % of Blocked Accounts. It was also computed a random forest

model with the ”pca centroids phish” set to later compare the results and differences.

For the neural network, the first several trials were made with different text array

sizes to determine the best K number for the hierarchical clustering. Additionally, the

text array was also concatenated by the PCA technique with 20 principal components. It

was considered one hidden layer and the number of neurons was attained by dividing

the size of the input layer by two – see Table 5.3. The results show that the higher the

5. RESULTS 63

size of the array, the better the results for the recall metric. As the number of clusters

decreases the information loss increase, however, a high dimension array for the text data

may overpower the other variables.

Text Array Size NN Layer Configuration F1 results

3 (38,16,2) 78.73 %

20 (55,28,2) 80.00 %

60 (95,48,2) 76.70 %

100 (135,68,2) 84.31 %

TABLE 5.3: Results of F1 according to different text array sizes.

Afterward, taking into account a text dimension array of 100 and similar to the ap-

proach used for the random forest, an exhaustive grid search was executed for the two

different sampling methods and phishing ratios – see Table A.4. Based on the attained

results, and taking into account the blocked account percentages, it was chosen to com-

pute a neural network using the dataset 5% phishing ratio plus ”pca centroids phish” for

the training and testing sets. It is also important to keep in note that the grid search was

performed with cross-validation having three folders, thus the final results are likely to

be higher since the model will have more samples to train. Even though the best results

pointed to a neural network configuration with three hidden layers, when computing the

final model the difference between three hidden layers and two hidden layers was very

low. To have a simpler and faster model it was chosen a layer configuration with two hid-

den layers – (135,81,11,2). The activation function for the hidden layers was the ”relu”,

the solver was the ”adam”, and the maximum number of iterations was set up to 500.

The training set was composed of had 3050 negative samples and 160 positive samples

(phishing observations), while the testing set had 1016 negative samples and 54 positive

samples.

Figure 5.7 displays both confusion matrix for the training (orange color) and testing

(blue color) sets. The neural network was able to correctly identify every sample in the

training pool. When an algorithm tends to achieve ”perfect” results in the training phase

64 Phishing DETECTION WITH A MACHINE LEARNING NET

it may indicate an over-fitting of the model to training observations and later fail to pre-

dict correctly in the testing set, since these are observations that the model has not seen.

The test confusion matrix shows that the model fails to predict some observations, with

6 positive samples (11.11%) being classified as negative and 3 negative samples (0.30%)

being classified as positive samples. Comparing the results with the random forest – see

Figure A.8, is possible to see that, like the neural network, the random forest correctly pre-

dicted all the samples in the training pool. However, in the testing pool it failed to predict

more than half of the positive samples (53,70%). Thus the random forest model appears to

be biased towards the negative samples since it also does not have false positives, while

the neural network appears to avoid this type of bias.

Accounting for the results from the confusion matrix, the ROC curves for the testing

set for both models act accordingly to what is expected – see Figure A.9 and Figure A.10.

Since the AUC (Area under the curve) displays the ability for the model to predict cor-

rectly the samples for both classes and the dataset is unbalanced, its normal for the curves

for both models to not be so different because the amount of negatives is very high over-

powering the bad results of the forest when predicting positive labels.

FIGURE 5.7: Confusion Matrix for the training and testing for the NN(135,81,11,2) model.

The results for both models are displayed in Table 5.4, the 95%CI were achieved with

5. RESULTS 65

a bootstrap technique explained on Section 4.4. At the end of the project, newer phishing

samples were collected from the E-goi servers, these correspond to the ”% New Right”

and is a good way to see access the bias present on the sample used to generate the train-

ing and testing set. The results for the Neural Network are much better for detecting

phishing samples. The Random Forest bias is quite visible as the value attained for the

recall metric is quite different form the result given by the new phishing samples – only

6.66% of the new samples were classified as phishing. Taking into account all the con-

straints of the problem, from the unorganized data files to the small number of phishing

observations, the neural network was able to achieve good results. Even though there is

a small discrepancy between the results for the new phishing samples and the recall met-

ric (difference of ≈ 5%), the model was able to detect more than 4/5 of the total phishing

samples without blocking a high amount of customer’s accounts.

Model Metric Score

neural Network

Accuracy [99.16 %, 99.20 %]

Precision [95.65 %, 96.25 %]

Recall [87.35 %, 87.75 %]

F1 [91.38 %, 91.71 %]

% Blocked Accounts 4.62 %

% New Right 82.67 %

Random Forest

Accuracy [97.42 %, 97.45 %]

Precision [99.07 %, 99.47 %]

Recall [49.26 %, 49.90 %]

F1 [65.78 %, 66.37 %]

% Blocked Accounts 0.35 %

% New Right 6.67 %

TABLE 5.4: Final Models’ results.

Different techniques were tried to access the impact of each feature in the model. The

results given by the permutation importance and the LIME approach suggested the text

variables had the highest impact on the model. The hour for which the e-mail was sent

and the length of the e-mail address also display a higher impact as well as the presence

66 Phishing DETECTION WITH A MACHINE LEARNING NET

of some font colors, namely black, yellow and white. Following the simpler methodology,

the model was trained 50 times with different seeds without each feature at the time and

the metric values were scored. Afterward, the results were compared with the base model

(trained with all the features) to see if there were significant differences between both

means at a significant level of 0.05. For ten features the p-value demonstrated a significant

value, meaning that the average of the trained model without that feature is statistically

different from the average of the model trained with all the features. These variables were

regarding the presence of visible URL links throughout the text, the e-mail address length,

the hour at which the e-mail was sent, the day of the week at which the e-mail was sent,

and the information present in the e-mail (text features) and the presence of the font color

green and the font size over 20 pixels.

5.3 ANOVA Results

To evaluate the difference among phihsing ratios and sampling methods, for each set, the

NN model was run fifty times and the F1-score was recorded. Afterward, a One-way

ANOVA was carried out with a significance level (α) of 0.05. The null hypothesis states

that the means of all groups are equal. The results for the p-values, averages, and standard

deviations are shown in Table 4.4). Since the p-values were significantly lower than the

significant level there is enough statistical evidence to reject the null hypothesis. Thus, for

either variation, it appears to be at least a group performing differently than the others.

5. RESULTS 67

Variable Name F1-score P-value

phishing

Ratio

50% phishing 90.90 ± 2.90 %

1.42 e−142

33% phishing 90.84 ± 2.85 %

20% phishing 86.47 ± 3.90 %

10% phishing 85.98 ± 3.36 %

5% phishing 84.93 ± 3.56 %

1% phishing 77.36 ± 10.3 %

Sampling

Methods

”random” 64.58 ± 5.60 %

0.0

”ind agglo” 55.27 ± 6.07 %

”ind pca” 54.74 ± 5.99 %

”agglo centroids a” 83.05 ± 4.21 %

”agglo closephish a” 75.62 ± 5.30 %

”agglo centroids phish” 77.45 ± 4.61 %

”agglo closephish phish” 74.30 ± 4.68 %

”pca centroids a” 84.32 ± 3.97 %

”pca closephish a” 70.00 ± 4.89 %

”pca centroids phish” 78.60 ± 4.99 %

”pca closephish phish” 69.61 ± 5.12 %

TABLE 5.5: F1 average results for different phishing ratios and sampling methods.

Taking into account the average value for the F1-score and the standard deviation pre-

sented in Table 5.5), in regards to the phishing ratio, the difference between the 50% ratio

and the 30% ratio is not significant. In addition, the values for 20%, 10%, and 5% phishing

ratios are quite similar. Only the 1% percentage displays a heavier drop in the F1-score,

also presenting a higher standard deviation. Looking at the ratios of normal to phishing

samples necessary to achieve each percentage, 20% corresponds to a ratio of 1:4; 10% to

a ratio of 1:9; 5% to a ratio of 1:19; and 1% to a ratio of 1:99. Thus the increase of sam-

ples necessary in a case with 1% phishing is significantly higher which may difficult the

model’s learning job.

68 Phishing DETECTION WITH A MACHINE LEARNING NET

When analyzing the Sampling Methods, it is observed the difference between the

sampling methods evolving clustering to the others, the first displaying higher F1-scores.

When comparing the number of clusters used for the clustering methods, the ones in

which the number was attained through an empirical analysis (k=4) registered higher val-

ues. Moreover, the samples collected near the centroids of each cluster also gave higher

results: 83.05% compared with 75.462% and 77.45% compared with 74.30% for the method

with the text array sorted by hierarchical clustering. For the method with the text array

sorted by PCA: 84.32% compared with 70.00% and 78.60% compared with 69.61%.

Looking at Table 5.6, it is possible to see a significant difference in the % of Blocked

Accounts between the clustering approaches with the different numbers of clusters (k).

The approach considering four groups of clusters displayed higher values, which is not

desirable. This may be linked to the clusters’ density. Since the approaches are selecting

either samples closest to the clusters’ centroids or closest to the phishing samples, several

observations far apart from these two points are not being considered. Thus a lack of

variance is present in training and testing sets, explaining the increase in false positives.

For the method with k clusters equal to the number of phishing samples, the K-means

algorithm forces the centroids to disperse thus increasing variance and reducing bias.

This explains why the variant with the higher amount of K clusters performs better.

5. RESULTS 69

Sampling Methods % Blocked Accounts

”random” 0.88 ± 0.11 %

”ind pca” 0.29 ± 0.10 %

”ind agglo” 0.48 ± 0.15 %

”agglo centroids a” 35.12 ± 2.42 %

”agglo closephish a” 38.47 ± 3.29 %

”agglo centroids phish” 7.08 ± 0.73 %

”agglo closephish phish” 7.57 ± 0.15 %

”pca centroids a” 29.66 ± 1.76 %

”pca closephish a” 28.00 ± 4.05 %

”pca centroids phish” 4.65 ± 0.42 %

”pca closephish phish” 5.05 ± 0.11 %

TABLE 5.6: Results of F1 according to different text array sizes.

Chapter 6

Conclusions

This project proposed as the final model a neural network with two hidden layers that

was able to achieve good results in detecting mass spread phishing e-mails (≈ 88%) with-

out blocking a high amount of customers’ accounts (less than ≈ 5%). The features’ impact

on the model was also evaluated. The main factors contributing to an e-mail prediction

as phishing are the message’s content, the length of the e-mail address, and the hour at

which the e-mail was sent. Still it is quite difficult to fully understand the true impact

of the features in a neural network. Thus, this subject has been thoroughly studied and

several methodologies are already being used to assess this issue.

A key aspect of a model with good performance is the data quality. Thus feature

processing and data mining are crucial in a ML project, especially when dealing with

unbalanced data-sets. For this thematic, ensemble models, as expected, perform much

better than single models. However, it is necessary to see the ”degree” of unbalance, as

shown in 5.3. There can be a balance between the ratio of majority class to minority

class that allows the model to exhibit a good performance and keep as much as informa-

tion possible from the majority class. In this project the 1:19 ratio (5% phishing samples)

yielded good results which were not so different from the 1:9 (10% phishing samples)

and 1:4 (20% phishing samples) ratios. It is noted, however, that a higher ratio – 1:99

(1% phishing samples) – led to a significant drop in the model’s performance. In man-

ners of under-sampling, there is a significant difference between the different techniques

70

6. CONCLUSIONS 71

with techniques based on clustering demonstrating better results. However, these types

of techniques can be prone to increase the bias present in the collected sample. This is

specially true if the samples are being collected based on the distance between each ob-

servation and cluster centroids. A possibility to reduce this bias is to use a higher number

of clusters, as demonstrated by the results attained for the techniques that used a num-

ber of clusters equal to the number of phishing samples. Another possibility could be to

collect random samples for each cluster and not base the search on proximity to certain

coordinates such as the centroids’ coordinates, something that can be explored in future

works.

6.1 Limitations and Future Work

• Feature Extraction: Extraction features from the raw EML files was one of the biggest

limitations, as shown in 4.2. Since the file content can be generated in different plat-

forms besides E-goi a lot of formatting errors can occur. The typical packages to

work with regular EML files do not work for this particular type of e-mail, hinder-

ing the process of feature extraction;

• Unbalenced Dataset: Another main limitation is the data unbalance between the

majority class (non phishing e-mails) and the minority class (phishing e-mails).

Even though different under-sampling techniques were used to minimize the loss

of information, this is a constraint to be recognized. Hence, it may be necessary to

monitor the model’s results after implementation and re-train it if necessary.

Based on the knowledge acquired throughout this work there are some future projects

that may be useful for E-goi:

• Fake user detection: Similar to the work developed in this project, a model capa-

ble of detecting fake user profiles based on their e-mail address could be helpful.

This could block accounts prior to their enrollment on the E-goi’s platform, and so

prevent the spread of phishing campaigns;

72 Phishing DETECTION WITH A MACHINE LEARNING NET

• Anti-SPAM recommendation model: One of the problems for a common user of

the E-goi platform is their campaigns and flyers being marked as SPAM or potential

phishing. Based on the knowledge acquired and some tools created throughout

this work, such as the feature extraction for the .eml files. A future project could be

the development of a model capable of analyzing potential campaigns, newsletters,

etc., giving recommendations for these not to be so easily blocked by the automatic

SPAM filters in most e-mail services.

Appendix A

Appendix

This chapter presents additional content such as schemes and tables that may be consulted

for further information.

73

74 Phishing DETECTION WITH A MACHINE LEARNING NET

FIGURE A.1: Trasformer Architecture (adapted from Vaswani et al. [32]).

A. APPENDIX 75

FIGURE A.2: E-mail’s header example.

FIGURE A.3: E-mail’s format example.

76 Phishing DETECTION WITH A MACHINE LEARNING NET

FIGURE A.4: Correlation Diagram for all variables except text array.

A. APPENDIX 77

FIGURE A.5: Elbow and Silhouette Graphs for data with text sorted by Hierarchical Clus-
tering.

78 Phishing DETECTION WITH A MACHINE LEARNING NET

FIGURE A.6: Elbow and Silhouette Graphs for data with text sorted by PCA.

A. APPENDIX 79

FI
G

U
R

E
A

.7
:D

iff
er

en
tS

am
pl

in
g

M
et

ho
do

lo
gy

’s
Sa

m
pl

es
Lo

ca
ti

on
.

80 Phishing DETECTION WITH A MACHINE LEARNING NET

FIGURE A.8: Confusion Matrix for the training and testing for the Random Forest Model.

FIGURE A.9: ROC curves for the training and testing for the NN(135,81,11,2) model.

A. APPENDIX 81

FIGURE A.10: ROC curves for the training and testing for the Random Forest model.

82 Phishing DETECTION WITH A MACHINE LEARNING NET

Name Mean Accuracy Mean Precision Mean Recall

Decision Tree 89.91% 64.20% 65.29%

Logistic Regression 92.15% 77.45% 54.96%

SVC 85.72% 52.20% 34.32%

Random Forest 94.25% 95.27% 60.34%

AdaBoost 93.04% 78.46% 63.24%

Gradient Boost 93.96% 83.10% 63.66%

50% Phishing 82.79% 81.05% 80.28%

33% Phishing 86.67% 84.20% 73.20%

20% Phishing 90.28% 82.35% 64.77%

10% Phishing 93.97% 77.82% 55.13%

5% Phishing 96.30% 71.10% 44.44%

1% Phishing 98.98% 54.12% 23.97%

””random” 90.77% 69.15% 52.88%

””ind agglo” 83.65% 50.44% 31.83%

””ind pca” 83.66% 53.42% 32.39%

””agglo centroids a” 96.47% 90.63% 75.19%

””agglo closephish a” 95.58% 85.14% 67.73%

””agglo centroids phish” 92.33% 79.54% 60.74%

””agglo closephish phish” 91.57% 75.78% 55.66%

””pca centroids a” 96.19% 90.03% 75.52%

””pca closephish a” 94.12% 81.36% 63.62%

””pca centroids phish” 91.95% 78.83% 59.40%

””pca closephish phish” 90.18% 71.87% 51.65%

TABLE A.2: Accuracy, Precision and Recall Values for different models, phishing ratios
and sampling methods.

A. APPENDIX 83

Sampling

Method

Phishing

Ratio
Best Parameters Metrics Results

%

Blocked

accounts

Grid Search in order to F1 metric

”pca

centroids a”

5%
max features = 0.3,

obb score = True

Precision = 97.50 %

Recall = 72.22 %
25.63 %

1%

criterion = gini,

max features = ”sqrt”,

obb score = True,

min samples leaf = 1

Precision = 96 %

Recall = 44.44 %
23.35 %

”pca centroids

phish”

5%
criterion = entropy,

obb score = True

Precision = 96 %

Recall = 44.44 %
5.2 %

1%

criterion = gini,

max features = ”sqrt”,

obb score = True,

min samples leaf = 1

Precision = 96 %

Recall = 44.44 %
0.32 %

Grid Search in order to recall metric

”pca

centroids a”

5%
max features = 0.7,

obb score = True

Precision = 96.00 %

Recall = 73.00 %
25.64 %

1%

criterion = gini,

max features = ”sqrt”,

obb score = True,

min samples leaf = 1

Precision = 96 %

Recall = 44.44 %
23.35 %

”pca centroids

phish”

5%

criterion = gini,

max features = ”sqrt”,

obb score = True,

min samples leaf = 1

Precision = 96 %

Recall = 44.44 %
6.67 %

1%

criterion = gini,

max features = ”sqrt”,

obb score = True,

min samples leaf = 1

Precision = 96 %

Recall = 44.44 %
0.32 %

TABLE A.3: Grid search results for Random Forest.

84 Phishing DETECTION WITH A MACHINE LEARNING NET

Sampling

Method

Phishing

Ratio
Best Parameters Metrics Results

%

Blocked

accounts

Grid Search in order to F1 metric

”pca

centroids a”

5%

hidden layers sizes =

(135,81,35,11,2)

max iter = 500

activation = ”tanh”

Precision = 92.16 %

Recall = 87.03 %
38.34 %

1%
hidden layers sizes =

(135,68,2)

Precision = 97.37 %

Recall = 68.51 %
11.065 %

”pca centroids

phish”

5%

hidden layers sizes =

(135,81,35,11,2)

max iter = 500

Precision = 91.11 %

Recall = 75.93 %
5.00 %

1%
hidden layers sizes =

(135,68,2)

Precision = 84.09 %

Recall = 68.52 %
1.43 %

Grid Search in order to recall metric

”pca

centroids a”

5%

hidden layers sizes =

(135,81,35,11,2)

max iter = 500

activation = ”tanh”

Precision = 92.16 %

Precision = 87.04 %
38.25 %

1%
hidden layers sizes =

(135,68,2)

Precision = 97.37 %

Recall = 68.52 %
11.14 %

”pca centroids

phish”

5%

hidden layers sizes =

(135,81,35,11,2)

max iter = 500

activation = ”tanh”

Precision = 0.82 %

Recall = 0.77 %
5.54 %

1%
hidden layers sizes =

(135,68,2)

Precision = 84.09 %

Recall = 68.52 %
1.45 %

TABLE A.4: Grid search results for Neuronal Network.

A. APPENDIX 85

Function Name Function Formula Function Graph

Linear (Identity) σ(x) = x

Sigmoid σ(x) = 1
1+e−x

Tanh σ(x) = ex−e−x

ex+e−x

Rectified Linear
ReLU

σ(x) = max(0, x)

Leaky ReLU σ(x) =

{
x, x ≥ 0
ax, x < 0

Softmax s(xi) =
exi

∑n
j=i exj

TABLE A.1: Activation functions

Bibliography

[1] RiskBased SECURITY, “2020 Q3 Report Data Breach QuickView,” Tech. Rep., 2020.

[Cited on page 1.]

[2] R. Dhamija, J. D. Tygar, and M. Hearst, “Why phishing works,” in Proceedings of the

SIGCHI conference on Human Factors in computing systems, 2006, pp. 581–590. [Cited

on page 1.]

[3] J. N. Tavares, “COMPUTATIONAL STATISTICS AND DATA ANALYSIS: Module 1:

Overview. dynamic programming.” Faculty of Science of University of Porto, 2021.

[Cited on pages 5 and 16.]

[4] A. Gron, Hands-On Machine Learning with Scikit-Learn and TensorFlow: Concepts, Tools,

and Techniques to Build Intelligent Systems, 1st ed. O’Reilly Media, Inc., 2017. [Cited

on pages 5, 9, 10, and 11.]

[5] C. O. S. Sorzano, J. Vargas, and A. P. Montano, “A survey of dimensionality reduction

techniques,” arXiv, 2014. [Cited on page 6.]

[6] T. Hastie, R. Tibshirani, J. H. Friedman, and J. H. Friedman, The elements of statisti-

cal learning: data mining, inference, and prediction. Springer, 2009, vol. 2. [Cited on

pages 6, 7, and 10.]

[7] A. Likas, N. Vlassis, and J. J. Verbeek, “The global k-means clustering algorithm,”

Pattern Recognition, vol. 36, no. 2, pp. 451–461, 2003. [Cited on page 7.]

[8] P. J. Rousseeuw, “Silhouettes: a graphical aid to the interpretation and validation of

cluster analysis,” Journal of Computational and Applied Mathematics, vol. 20, pp. 53–65,

1987. [Cited on pages 7 and 43.]

86

BIBLIOGRAPHY 87

[9] S. C. Johnson, “Hierarchical clustering schemes,” Psychometrika, vol. 32, no. 3, pp.

241–254, 1967. [Cited on page 8.]

[10] E. Carrizosa and D. R. Morales, “Supervised classification and mathematical opti-

mization,” Computers & Operations Research, vol. 40, no. 1, pp. 150–165, 2013. [Cited

on page 10.]

[11] L. Gonçalves, A. Subtil, M. R. Oliveira, and P. de Zea Bermudez, “ROC curve estima-

tion: An overview,” REVSTAT-Statistical journal, vol. 12, no. 1, pp. 1–20, 2014. [Cited

on pages xiii, 11, and 12.]

[12] E. Stevens, L. Antiga, and T. Viehmann, Deep Learning with PyTorch, 2020.

[Online]. Available: https://pytorch.org/assets/deep-learning/Deep-Learning-

with-PyTorch.pdf [Cited on pages xiii, 12, and 13.]

[13] Y. LeCun, Y. Bengio, and G. Hinton, “Deep Learning,” Nature, vol. 521, no. 7553, pp.

436–444, 2015. [Cited on pages xiii, 12, 13, 14, and 15.]

[14] S. Cristina. (2021) Calculus in Action: Neural Networks. [Online]. Available:

https://machinelearningmastery.com/calculus-in-action-neural-networks/ [Cited

on pages xiii, 14, and 15.]

[15] A. Bhardwaj, W. Di, and J. Wei, Deep Learning Essentials: Your hands-on guide to the

fundamentals of deep learning and neural network modeling. Packt Publishing Ltd, 2018.

[Cited on pages xiii, 14, 15, 16, and 19.]

[16] S. Ruder, “An overview of gradient descent optimization algorithms,” arXiv, 2016.

[Cited on pages 17 and 18.]

[17] A. Shrestha and A. Mahmood, “Review of deep learning algorithms and architec-

tures,” IEEE access, vol. 7, pp. 53 040–53 065, 2019. [Cited on pages 18 and 19.]

[18] Z. C. Lipton, J. Berkowitz, and C. Elkan, “A critical review of recurrent neural net-

works for sequence learning,” arXiv, 2015. [Cited on pages xiii and 19.]

[19] G. Haixiang, L. Yijing, J. Shang, G. Mingyun, H. Yuanyue, and G. Bing, “Learning

from class-imbalanced data: Review of methods and applications,” Expert systems

with applications, vol. 73, pp. 220–239, 2017. [Cited on pages 20 and 21.]

https://pytorch.org/assets/deep-learning/Deep-Learning-with-PyTorch.pdf
https://pytorch.org/assets/deep-learning/Deep-Learning-with-PyTorch.pdf
https://machinelearningmastery.com/calculus-in-action-neural-networks/

88 Phishing DETECTION WITH A MACHINE LEARNING NET

[20] W.-C. Lin, C.-F. Tsai, Y.-H. Hu, and J.-S. Jhang, “Clustering-based undersampling

in class-imbalanced data,” Information Sciences, vol. 409, pp. 17–26, 2017. [Cited on

pages 20, 22, 43, and 44.]

[21] X.-Y. Liu, J. Wu, and Z.-H. Zhou, “Exploratory undersampling for class-imbalance

learning,” IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics),

vol. 39, no. 2, pp. 539–550, 2008. [Cited on page 20.]

[22] M. M. Rahman and D. Davis, “Cluster based under-sampling for unbalanced cardio-

vascular data,” in Proceedings of the World Congress on Engineering, vol. 3, 2013, pp.

3–5. [Cited on pages 20, 22, 43, and 53.]

[23] N. V. Chawla, K. W. Bowyer, L. O. Hall, and W. P. Kegelmeyer, “SMOTE: Synthetic

Minority Over-sampling Technique,” Journal of Artificial Intelligence Research, vol. 16,

pp. 321–357, 2002. [Cited on page 21.]

[24] S.-J. Yen and Y.-S. Lee, “Cluster-based under-sampling approaches for imbalanced

data distributions,” Expert Systems with Applications, vol. 36, no. 3, pp. 5718–5727,

2009. [Cited on page 22.]

[25] X. Dong, Z. Yu, W. Cao, Y. Shi, and Q. Ma, “A survey on ensemble learning,” Frontiers

of Computer Science, vol. 14, no. 2, pp. 241–258, 2020. [Cited on pages 23 and 24.]

[26] G. Kunapuli, Ensemble Methods for Machine Learning. Manning, 2022. [Online]. Avail-

able: https://books.google.pt/books?id=wXGazgEACAAJ [Cited on pages xiii, 23,

24, and 25.]

[27] T. Hastie, S. Rosset, J. Zhu, and H. Zou, “Multi-class adaboost,” Statistics and its

Interface, vol. 2, no. 3, pp. 349–360, 2009. [Cited on page 24.]

[28] P. M. Nadkarni, L. Ohno-Machado, and W. W. Chapman, “Natural language process-

ing: an introduction,” Journal of the American Medical Informatics Association, vol. 18,

no. 5, pp. 544–551, 09 2011. [Cited on page 25.]

[29] D. Khurana, A. Koli, K. Khatter, and S. Singh, “Natural language processing: State

of the art, current trends and challenges,” Multimedia Tools and Applications, 08 2017.

[Cited on pages 25, 26, and 27.]

[30] E. D. Liddy, “Natural language processing,” 2001. [Cited on page 25.]

https://books.google.pt/books?id=wXGazgEACAAJ

BIBLIOGRAPHY 89

[31] K. Chowdhary, “Natural language processing,” Fundamentals of artificial intelligence,

pp. 603–649, 2020. [Cited on page 26.]

[32] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. Kaiser,

and I. Polosukhin, “Attention Is All You Need,” Advances in neural information

processing systems, 2017. [Online]. Available: http://arxiv.org/abs/1706.03762 [Cited

on pages xiii, 26, 27, and 74.]

[33] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “BERT: Pre-training of deep

bidirectional transformers for language understanding,” ArXiv, vol. abs/1810.04805,

2019. [Cited on pages 26 and 28.]

[34] D. Rothman, Transformers for Natural Language Processing: Build innovative deep neural

network architectures for NLP with Python, PyTorch, TensorFlow, BERT, RoBERTa, and

more. Packt Publishing, 2021. [Online]. Available: https://books.google.pt/

books?id=Cr0YEAAAQBAJ [Cited on pages 26 and 27.]

[35] “Transformers,” https://huggingface.co/docs/transformers/index, accessed: 2022-

03-08. [Cited on page 28.]

[36] N. Reimers and I. Gurevych, “Sentence-BERT: Sentence Embeddings using

Siamese BERT-Networks,” CoRR, vol. abs/1908.10084, 2019. [Online]. Available:

http://arxiv.org/abs/1908.10084 [Cited on pages 28 and 43.]

[37] J. Hong, “The state of phishing attacks,” Communications of the ACM, vol. 55, no. 1,

pp. 74–81, 2012. [Cited on pages 29 and 33.]

[38] W. Kim, O.-R. Jeong, C. Kim, and J. So, “The dark side of the internet: Attacks,

costs and responses,” Information Systems, vol. 36, no. 3, pp. 675–705, 2011. [Cited

on pages 29 and 30.]

[39] J. E. R. Greene, The 48 laws of power. Penguin Publishing Group, 2020. [Cited on

page 30.]

[40] A. Ferreira and S. Teles, “Persuasion: How phishing emails can influence users

and bypass security measures,” International Journal of Human-Computer Studies, vol.

125, pp. 19–31, 2019. [Online]. Available: https://www.sciencedirect.com/science/

article/pii/S1071581918306827 [Cited on pages 30 and 34.]

http://arxiv.org/abs/1706.03762
https://books.google.pt/books?id=Cr0YEAAAQBAJ
https://books.google.pt/books?id=Cr0YEAAAQBAJ
https://huggingface.co/docs/transformers/index
http://arxiv.org/abs/1908.10084
https://www.sciencedirect.com/science/article/pii/S1071581918306827
https://www.sciencedirect.com/science/article/pii/S1071581918306827

90 Phishing DETECTION WITH A MACHINE LEARNING NET

[41] S. Sheng, P. Kumaraguru, A. Acquisti, L. Cranor, and J. Hong, “Improving phish-

ing countermeasures: An analysis of expert interviews,” in 2009 eCrime Researchers

Summit. IEEE, 2009, pp. 1–15. [Cited on pages 30 and 32.]

[42] profpoint. (2019) 2019 state of the phish report: Attack rates

rise, account compromise soars. Accessed: 2022-02-08. [Online]. Avail-

able: https://www.proofpoint.com/us/corporate-blog/post/2019-state-phish-

report-attack-rates-rise-account-compromise-soars [Cited on page 30.]

[43] E. J. Helsper, “Gendered internet use across generations and life stages,” Communi-

cation Research, vol. 37, no. 3, pp. 352–374, 2010. [Cited on page 30.]

[44] A. K. Ghazi-Tehrani and H. N. Pontell, “Phishing evolves: Analyzing the enduring

cybercrime,” Victims & Offenders, vol. 16, no. 3, pp. 316–342, 2021. [Cited on pages 31

and 33.]

[45] SecurityScordcard. (2021) 12 types of phishing attacks and how to identify them.

Accessed: 2022-02-08. [Online]. Available: https://securityscorecard.com/blog/

types-of-phishing-attacks-and-how-to-identify-them [Cited on page 31.]

[46] R. Prasad and V. Rohokale, Phishing. Cham: Springer International Publishing,

2020, pp. 33–42. [Online]. Available: https://doi.org/10.1007/978-3-030-31703-4 3

[Cited on pages 31 and 32.]

[47] B. Branco, P. Abreu, A. S. Gomes, M. S. Almeida, J. T. Ascensão, and P. Bizarro,

“Interleaved sequence RNNs for fraud detection,” in Proceedings of the 26th ACM

SIGKDD international conference on knowledge discovery & data mining, 2020, pp. 3101–

3109. [Cited on pages 33 and 34.]

[48] V. Shahrivari, M. M. Darabi, and M. Izadi, “Phishing detection using machine learn-

ing techniques,” CoRR, 2020. [Cited on pages 33 and 34.]

[49] A. Akinyelu and A. Adewumi, “Classification of phishing email using random forest

machine learning technique,” Journal of Applied Mathematics, vol. 2014, 04 2014. [Cited

on page 34.]

[50] N. Zhang and Y. Yuan, “Phishing Detection using Neural Network,” CS229 lecture

notes, 2012. [Cited on page 34.]

https://www.proofpoint.com/us/corporate-blog/post/2019-state-phish-report-attack-rates-rise-account-compromise-soars
https://www.proofpoint.com/us/corporate-blog/post/2019-state-phish-report-attack-rates-rise-account-compromise-soars
https://securityscorecard.com/blog/types-of-phishing-attacks-and-how-to-identify-them
https://securityscorecard.com/blog/types-of-phishing-attacks-and-how-to-identify-them
https://doi.org/10.1007/978-3-030-31703-4_3

BIBLIOGRAPHY 91

[51] V. Shahrivari, M. M. Darabi, and M. Izadi, “Phishing Detection using Machine Learn-

ing Techniques,” arXiv, 2020. [Cited on page 34.]

[52] S. Afroz and R. Greenstadt, “PhishZoo: Detecting phishing websites by looking at

them,” in 2011 IEEE Fifth International Conference on Semantic Computing, 2011, pp.

368–375. [Cited on page 34.]

[53] R. Wirth and J. Hipp, “CRISP-DM: Towards a standard process model for data min-

ing,” in Proceedings of the 4th international conference on the practical applications of

knowledge discovery and data mining, vol. 1. Manchester, 2000, pp. 29–40. [Cited

on page 35.]

[54] LookFantastic. (2022) Promotion Campaign LookFantastic. Accessed: 2022-05-

19. [Online]. Available: https://www.lookfantastic.pt/myreferrals.list [Cited on

pages xiii and 38.]

[55] A. Huang et al., “Similarity measures for text document clustering,” in Proceedings

of the sixth New Zealand Computer science Research Student Conference, vol. 4, 2008, pp.

9–56. [Cited on page 43.]

[56] R. Tibshirani, G. Walther, and T. Hastie, “Estimating the number of clusters in a data

set via the GAP statistic,” Journal of the Royal Statistical Society: Series B (Statistical

Methodology), vol. 63, no. 2, pp. 411–423, 2001. [Cited on page 43.]

[57] R. M. Heiberger and E. Neuwirth, “One-Way anova,” in R through excel. Springer,

2009, pp. 165–191. [Cited on page 45.]

[58] “Cross-validation: evaluating estimator performance,” https://scikit-learn.org/

stable/modules/cross validation.html, accessed: 2022-03-30. [Cited on page 45.]

[59] A. Altmann, L. Toloşi, O. Sander, and T. Lengauer, “Permutation importance: a cor-

rected feature importance measure,” Bioinformatics, vol. 26, no. 10, pp. 1340–1347,

2010. [Cited on page 48.]

[60] M. T. Ribeiro, S. Singh, and C. Guestrin, “Why should I trust you?” explaining the

predictions of any classifier,” in Proceedings of the 22nd ACM SIGKDD international

conference on knowledge discovery and data mining, 2016, pp. 1135–1144. [Cited on

page 48.]

https://www.lookfantastic.pt/myreferrals.list
https://scikit-learn.org/stable/modules/cross_validation.html
https://scikit-learn.org/stable/modules/cross_validation.html

	Acknowledgements
	Acknowledgements
	Abstract
	Resumo
	Contents
	List of Figures
	List of Tables
	Glossary
	1 Introduction
	1.1 Framing and presentation of the work
	1.2 Contributions of the Work
	1.3 Organization of the project

	2 Background Knowledge
	2.1 Machine Learning
	2.1.1 Unsupervised Learning
	2.1.1.1 Principal Component Analysis
	2.1.1.2 K-means Clustering
	2.1.1.3 Hierarchical Clustering

	2.1.2 Supervised Learning
	2.1.2.1 Classification Problems
	2.1.2.2 Metrics

	2.1.3 Deep Learning
	2.1.3.1 DL model's Architecture
	2.1.3.2 Optimization Algorithms
	2.1.3.3 DL Models

	2.2 Unbalanced Data Problems
	2.2.1 Re-sampling methods
	2.2.1.1 Over-sampling methods
	2.2.1.2 Under-sampling methods

	2.2.2 Ensemble methods

	2.3 Natural Language Processing
	2.3.1 NLP Components
	2.3.2 NLU Transformers
	2.3.2.1 BERT Transformers

	3 State of the Art
	3.1 phishing Description
	3.2 Types of Phishing Attacks
	3.3 Countermeasures
	3.3.1 Blacklisting
	3.3.2 Machine Learning for phishing detection

	4 Methodology
	4.1 Data Understanding
	4.2 Data Preparation
	4.2.1 Variables Preparation
	4.2.2 Sampling Methods

	4.3 Modeling
	4.4 Evaluation

	5 Results
	5.1 Initial Analysis and Sampling Methods
	5.2 Models Results
	5.3 ANOVA Results

	6 Conclusions
	6.1 Limitations and Future Work

	A Appendix
	Bibliography

