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T he writing of this thesis was motivated
by our mathematical intuition in explaining the etiology of
anxiety-derived conditions.

T he authors appreciate that the reader avoid any sort of
bias while consulting this text.
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I. Abstract

This dissertation treats the analysis of a well-known model in the range
of neurosciences, the Wilson-Cowan system. In particular, an applica-
tion of this model to a neuronal triad is performed using certain com-
putational tools. A detailed description of the results and a subjective
discussion follows the presentation of the simulations.
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II. Resumo

Esta dissertação trata da análise de um modelo bem conhecido no
campo das neurociências, o sistema de Wilson-Cowan. Em particular,
uma aplicação deste modelo a um tŕıade neuronal é concebida através
de determinadas ferramentas computacionais. Uma descrição detal-
hada dos resultados e uma discussão subjetiva seguem a apresentação
das simulações.
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III. Introduction

This dissertation is an attempt to explain certain neurobiological phe-
nomena using mathematical tools, either analytical or numerical, the
latter drawing essentially on the softwares Mathematica and Matlab.

Neurobiology and psychiatry are inevitably connected with each other.
This dyadic interaction is based on certain factors that support the
brain’s development, namely the individual’s genetic load and the en-
viromental experiences. In fact, these contextual/physiological compo-
nents interact mutually to shape one’s behaviour.
Inspired by such relations, we aim to exemplify how a specific neuronal
mechanism may be a cause of a psychophysiological condition. This
could, eventually, provide clues for a successful treatment.

The above scientific areas are not isolated from other fields. The link
between Mathematics and all that biological/medical issue is subject of
the dynamical neurosciences, the study of mathematical models of con-
nections between excitable tissues. This interregional communication is
intimately related with the phenomenon of plasticity, once explained by
Hebb [22] with the statement ”When an axon of cell A is near enough
to excite a cell B and repeatedly or persistently takes part in firing it,
some growth process or metabolic change takes place in one or both
cells such that A’s efficiency, as one of the cells firing B, is increased”.
As a matter of fact, the concept of plasticity is broadly applied in the
range of neurosciences and comprehends many neuronal processes, in-
cluding synaptic strengthening and dendritic arborization. Regarding
these two examples, only the first will be extensively explored in this
text, as the second would in principle require a space-time framework.

This text is split up into two main parts. The first, comprising sec-
tions IV to VII, treats the Wilson Cowan Model [53], a system of
two ordinary differential equations (the independent variable is the
time) modelling the interaction of two interconnected excitable tissues
(groups of neurons). Each group of cells has a connection to the other
group and a feedback connection. This is a particular instance of a
pure activator-inhibitor system [38], where one group of cells has a
self-inhibitory connection and also inhibits the second group, whereas
the other group has excitatory connections to itself and to the first
group. We explore some of the rich dynamics of this model, including
the asymptotic behaviour of the system around its equilibria and the
types of bifurcation occuring under the variation of certain connection
strengths or external inputs.
Although the number of equilibria of the system is variable, our initial
study is mostly based on the presence of three equilibrium points, as



7

this scenario associates to opposite states of activity [20] (down and up
states).
In terms of bifurcations, we deduce that the perturbation of some con-
nection strengths (the number depends on the codimension of the bi-
furcation) is apt to make the system undergo certain topological tran-
sitions. These transitions include the appearance of equilibrium points
and the emergence of limit cycles, as well as of homoclinic orbits. In this
context, both analytical and numerical computations are performed,
the latter making use of bifurcation diagrams.
Most of the constructions in this first part are based in methods adopted
by the authors, so that previous literature concerning the dynamical
analysis of the Wilson-Cowan model was pratically neglected.

The growing investment in the explanation of the processes under-
pinning the brain’s ability to regulate emotions [7, 8] encouraged the
development of the second part of the dissertation, which consists in
the modelling and subsequent analysis of a neuronal triad.
In section VIII, a short description of the neurobiological/medical facts
concerning the targeted neuronal circuit precedes the rigorous exposi-
tion of the goal of the study.
That introductory concept is then used to present, in section IX, a
modification of the Wilson Cowan Model that describes the interac-
tion of three different structures in the brain, giving rise to a system of
three ordinary differential equations. We will be concerned primarily
with the dynamics of oscillatory type, when it arises via Hopf bifurca-
tion. In particular, our focus will target stable oscillations, given their
biological relevance (unstable oscillations are not fisically observable).
This is based on some innovative purposes: we regard the meaning-
ful eletrical switches in a certain neuronal area as originating from a
mechanism of depotentiation/strengthening of synapses, which in turn
occur in parallel with the generation of neural waves. Such waves are
based on periodic solutions1 which are forced via Hopf bifurcations.

Most results are numerical and are exhibited in IX.3.3., being subse-
quently described and properly discussed. This discussion regards two
aspects: the first based on how the period and amplitude of the os-
cillations vary with the selected connection strengths; the second on
the extention of the oscillatory dynamics and the levels of activity to
which the system converges as the periodic solutions cease. We then
attempt to establish a bridge between the encountered evidence and
the possible neurobiological mechanisms that may underlie it, either
originating from previous findings or our own intuition.

1Along this text, we refer to periodic solutions in the strict sense, in a way that
they are represented by curves that oscillate between distinct extrema (i.e. we
ignore the trivial periodicity of equilibrium points).
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As suggested by the title above, the neuropsychological background
of the simulations is the phenomenon of extinction of fear memories,
whose assumptions determine all the initial setting for the computa-
tional work.

We finally make a description of obsessive-compulsive disorder (OCD)
[45], as an anxiety pathology. In fact, apart from the incompleteness of
its etiology, this condition belongs to our main interests in the range of
neurosciences. In particular, we are especially attracted by the func-
tional role of the cingulate cortex [33] in the symptomatic development
of the disease, as well as in general emotional processes.
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IV. The Wilson-Cowan Model

Eccles et al. state in [11] that ”the same chemical transmitter is released
from all the synaptic terminals of a neurone”. This idea is known as
the Dale’s Principle and suggests that an individual neuron in a popu-
lation is either excitatory or inhibitory: in the first (resp. second) case,
if when the cell fires, it promotes the increase (resp. decrease) in the
voltage potential of the postsynaptic cells that it synapses onto.
This form of neuronal communication translates into a synaptic strength,
which is formally defined as the (average) probabilistic amount of cur-
rent or voltage excursion produced in the postsynaptic neuron by an
action potential originating from the presynaptic neuron [39]. At a sin-
gle synapse, this quantity, say a, results from the multiplication of two
variables: the probability (P ) of the presynaptic action potential caus-
ing the release of a neurotransmitter and the current or voltage jump
(△V ) caused postsynaptically (in absolute value), in the presence of
the neurotransmitter. Symbolically, this is written as

(1) a = P × |△V | .
In particular, a is always a non-negative quantity and a ≤ |△V |. Along
this text, we will always regard the connectivities between neurons or
populations of neurons as depending on those variables.

We hereafter consider two neuronal populations, one excitatory and
the other inhibitory2, with average firing rates Ue and Ui, respectively.
The average firing rate of a neuron is defined as the number of fires
of that neuron per unit of time. Therefore, extending this notion to a
group of neurons, Ue,i represent the level of activity of the respective
population.
We intend to study how the interaction between the opposite popu-
lations affects their activities. This can be achieved by analysing the
Firing Rate Model, introduced by Harris in [20], but originally derived
by Wilson and Cowan [53]. For this reason, the model is also known
as the Wilson-Cowan model, denomination that we use from now on.

The two-dimensional Wilson-Cowan model is here represented by the
coupled system of nonlinear differential equations

(2)

{
U ′
e = −Ue + Fe(aeeUe − aeiUi − βe) =: h1(Ue, Ui)

U ′
i = −Ui + Fi(aieUe − aiiUi − βi) =: h2(Ue, Ui)

,

where ′ = d/dt and the constants ajk ∈ R, with j, k ∈ {e, i}, refer to the
connection strengths between the neuronal populations, as depicted in
the diagram of Figure 1. The signs of the constants ajk in (2) have to
do with the fact that we deal with a pure excitatory-inhibitory system.

2The explanation above about the eletrical effect of a single neuron is here ex-
tended to a set/population of neurons.
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Figure 1. Diagram depicting the possible interactions
existing inside and between the excitatory (left) and in-
hibitory (right) neuronal populations, giving an inter-
pretation for the constants ajk of system (2). In par-
ticular, we observe that the Ue-population has a self-
excitation (aee) and excites the Ui-population (aie). The
latter, in turn, has a self-inhibition (aii) and inhibits the
Ue-population (aei). This describes a pure excitatory-
inhibitory system.

The values of Ue,i may actually be negative, meaning that the activity
of the network is inferior to that of the background (Borisyuk et al.,
[3]). We ignore this hypothesis and restrict all of our analysis to the
first quadrant of the plane UeUi.
The constants βe and βi of the model, which refer to external inputs
(those that do not result from the natural neuronal functioning), will
eventually be set to zero.
Lastly, the function Fe,i, which we refer to as the Firing Rate Function,
is defined as the logistic sigmoid3 [36]:

(3) Fe,i(x) =
1

1 + e−αe,ix+δe,i
,∀x ∈ R

where αe,i ∈ R+ and δe,i ∈ R+
0 (the former controls the value of the

maximum slope of the sigmoid, while the latter is associated with the
position of this slope, which is given by δe,i/αe,i). Graphically, this sig-
moid yields a curve that ranges increasingly from 0 to 1. As the value
of αe,i is changed, the graph of (3) displays a different steepness - see
Figure 2.
The fact that Fei is monotonically bounded between y = 0 and y = 1
gives a contextual meaning to these asymptotes: while y = 0 reflects

3Other functions, with the same features, are commonly found in the literature.
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the neuronal deactivation, with the firing rate decaying to near-zero
values (hyperpolarization), the line y = 1 corresponds to the neuronal
activation, with the firing rate converging to top levels of activity, i.e.
near-one values (depolarization) - this observation is suggested in Fig-
ure 2.

More generally, sigmoid curves are S-shaped curves whose simplicity
and specific properties justify their well-known applications in popula-
tion models, for instance, predator-prey models (see Gonzalez-Olivares
et. al. [18]).

For further purposes, we will denote by A the following matrix:

(4) A :=

(
aee −aei
aie −aii

)
,

which collects the signed connection strengths ajk in system (2).
In some situations, we will not only invoke the condition detA = 0,
but also take it as an assumption for certain analytical procedures.
Incidentally, that condition carries an interisting interpretation, being
regarded as a balancing effect inside the network. For if detA = 0,
then aeeaii = aieaei, or equivalently

(5)
aee
aie

=
aei
aii
,

as long as aie,ii ̸= 0. For example, if aee/aie > 1, then aee > aie and
aei > aii, meaning that the input of the excitatory (resp. inhibitory)
population is higher than (resp. is lower than) the respective output.
This relation translates into a balanced intercommunication between
the populations, with the inhibitory population favoring the inhibition
of the opposite cluster, when this latter benefits self-excitation, rather
than the forward-excitation (see Figure 3).

Figure 2. Representation of three sigmoids defined by
(3) and corresponding to the pairs (αe,i, δe,i) = (3, 0)
(black solid curve), (1, 0) (red solid curve) and (3, 3)
(black dashed curve). The horizontal asymptotes y = 0
and y = 1 are associated with, respectively, the deacti-
vation and activation of the neuronal populations.
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Figure 3. Balancing effect of the dyadic interaction be-
tween the neuronal populations, associated to the condi-
tion detA = 0, withA as in (4). The + and− signs, with
the same colour, yield the relative comparison between
connection strengths emerging from the same population
(the red, resp. green, colour for those connections origi-
nating from the excitatory, resp. inhibitory, population).
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V. General Analysis of the Wilson-Cowan Model:
Equilibrium Points and Respective Stability

Unless otherwise explicitly stated, in what follows we take αe,i = 1 and
δe,i = 0. System (2) is then recast into

(6)

{
U ′
e = −Ue + F (aeeUe − aeiUi − βe) = h1(Ue, Ui)

U ′
i = −Ui + F (aieUe − aiiUi − βi) = h2(Ue, Ui)

,

where F is the sigmoid (red curve in Figure 2)

(7) F (x) =
1

1 + e−x
,∀x ∈ R

and whose inverse reads

(8) F−1(x) = − log

(
1

x
− 1

)
= log

(
x

1− x

)
,∀x ∈ ]0, 1[ .

As a starting point, we are interested in finding the equilibrium points
of system (6), i.e. those points (Ue, Ui) of the phase space for which the
vector field (h1(Ue, Ui), h2(Ue, Ui)) vanishes. In our context, the equi-
librium points refer to the levels of activity of the excitatory/inhibitory
populations that will remain indefinitely in time. Their abundance in
the phase portrait depends on the constants ajk, j, k ∈ {e, i}, as we
will then explore.

Due to the range of the curve y = F (x) in (7), all the equilibrium
points lie in the square Q1 = ]0, 1[2 of the phase space (first quadrant).
More specifically, every square of the form QA = ]0, A[2, with A ≥ 1, is
positively invariant (orbits starting, for t = t0, at a certain point of QA

remain in this set for all t > t0). To see this, it suffices to notice that
both U ′

i and U
′
e are negative along the lines Ui = A and Ue = A, respec-

tively, and that both are positive on the lines of the form Ue = B ≤ 0
and Ui = B ≤ 0. As a consequence, all the orbits of system (6) are
attracted to the square Q1. In particular, this encourages us to restrict
the dynamics to the square Q1, instead of the first quadrant itself.

In order to find the equilibria of (6), we study the nullclines U ′
j = 0,

with j ∈ {e, i}, given by

(9)

Ui = φ(Ue) := − 1

aei
[F−1(Ue)− aeeUe + βe] =

=
1

aei

[
ln

(
1

Ue

− 1

)
+ aeeUe − βe

]
(Ue-nullcline),
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defined for 0 < Ue < 1, and

(10)

Ue = ψ(Ui) :=
1

aie
[F−1(Ui) + aiiUi + βi] =

=
1

aie

[
ln

(
Ui

1− Ui

)
+ aiiUi + βi

]
(Ui-nullcline),

with analogous domain, provided aei, aie ̸= 0.
The derivatives of both φ(Ue) and ψ(Ui) are, respectively,

(11) φ′(Ue) =
1

aei

(
1

Ue(Ue − 1)
+ aee

)
,

and

(12) ψ′(Ui) =
1

aie

(
1

Ui(1− Ui)
+ aii

)
.

From (9) and (11) it follows that:

(a) The Ue-nullcline has a particular asymptotic behaviour:

Ui −−−−→
Ue→0+

+∞

and

Ui −−−−→
Ue→1−

−∞;

(b) For aee < 4, φ′(Ue) is negative and the graph Ui = φ(Ue) is
strictly decreasing; if aee = 4, the nullcline remains with the
same behaviour, but with a critical point whose Ue-coordinate
is equal to 1/2; lastly, for aee > 4, that critical point separates
into two extrema, one maximum and one minimum, between
which the nullcline increases. These minimum and maximum
points have the respective Ue-coordinates

Um
e =

2

aee + k
and UM

e =
2

aee − k
,

for k =
√
aee(aee − 4), and do not necessarily lie in Q1. Outside

the interval
[
Um
e , U

M
e

]
, the curve has a monotone behaviour ac-

cording to its asymptotes.
We conclude that the constant aee determines completely the
variation of the Ue-nullcline.

In an analogous manner, we see that:

(c) The asymptotic behaviour of the Ui-nullcline is

Ue −−−−→
Ui→1−

+∞
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and

Ue −−−−→
Ui→0+

−∞;

(d) The sigmoidal shape of the Ui-nullcline is independent of the
choice of the constants aie,ii and βi, in constrast to the Ue-
nullcline that has a different behaviour in function of aee.

The deductions above make us conclude that system (6) exhibits un-
conditionally at least one equilibrium point in Q1. In particular, if the
constant aee is ≤ 4, the system (6) will exhibit exactly one equilibrium
point, being the intersection of two strictly monotone curves.
When we have the existence of more than one equilibrium point, a
special case arises, as described in [20]. In fact, a set of three equilib-
ria contains different states of activity: the down state (Ed), the saddle
state (Es) and the up state (Eu), sorted according to the respective Ue-
coordinate - see Figure 4 (left). These classifications allude to states
of more or less activity in the network (the down state encodes lower
levels of eletrical activity, while the up state encodes higher levels of
neuronal firing).
The scenario comprising three equilibria is nonetheless conditioned by
the monotocity of the Ue-nullcline. For example, a sufficient condition
for the existence of three equilibrium points is given by

(13)

{
φ(Um

e ) < 0
φ(UM

e ) > 1
or

{
Um
e > (ψ ◦ φ)(Um

e )
UM
e < (ψ ◦ φ)(UM

e )
.

This condition, when applied, works particularly well for the deduction
of the equilibria stability, as we will see further.

When βi ̸= 0, more than three equilibria can also be observed. This is
due to the horizontal displacement that is promoted on the Ui-nullcline.
An example exhibiting five equilibrium points is depicted in Figure 4
(right).
As commented by Ermentrout in [12], there will generically be an odd
number of equilibria in system (6). An even amount, say 2n, is per-
turbed to either 2n− 1 or 2n+ 1 equilibrium states. In section VI, we
will treat this transition with more detail.

Once the equilibria are properly identified, it is essential to study their
stability, that is, the behaviour of the system in a neighborhood of
those points. We first compute the Jacobian matrix of the vector field
(h1(Ue, Ui), h2(Ue, Ui)) in (6):

(14) J(Ue, Ui) =

 aeeF
′(be(Ue, Ui))− 1 −aeiF ′(be(Ue, Ui))

aieF
′(bi(Ue, Ui)) −1− aiiF

′(bi(Ue, Ui))

 ,
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Figure 4. System (6) exhibiting three equilibria (left Figure), for
βj = 0, and five equilibria (right Figure), for βj ̸= 0 (more specifically,
βi ̸= 0). Relatively to the first case, the three states of activity are
suggested (up Eu, down Ed and saddle state Es).

where bj(Ue, Ui) := ajeUe − ajiUi − βj, for j ∈ {e, i}. We observe that
J has in advance three entries with well-defined sign, while the entry
aeeF

′(be) − 1 may assume both signs; in particular, it is negative if
aee < 4.

Let (U∗
e , U

∗
i ) be an equilibrium of (6). Given the identity

F ′(x) = e−xF 2(x) = F (x)− F 2(x) ∀x ∈ R,
the matrix J(U∗

e , U
∗
i ) is recast into

(15) J(U∗
e , U

∗
i ) =

 aeep(U
∗
e )− 1 −aeip(U∗

e )

aiep(U
∗
i ) −1− aiip(U

∗
i )

 ,

provided p is the degree two polynomial p(x) := x− x2.
With this simplification, we write below the expressions for both the
determinant and trace of the linearization J(U∗

e , U
∗
i ), respectively de-

noted by tr J(U∗
e , U

∗
i ) and det J(U∗

e , U
∗
i ):

tr J(U∗
e , U

∗
i ) = −2 + aeep(U

∗
e )− aiip(U

∗
i )

and

det J(U∗
e , U

∗
i ) = −tr J(U∗

e , U
∗
i ) + detA p(U∗

e )p(U
∗
i )− 1,

where A is the matrix in (4). Specifically, supposing that detA = 0 (or,
equivalently, that aeeaii = aieaei), then the equilibrium point (U∗

e , U
∗
i )

is asymptotically stable if tr J(U∗
e , U

∗
i ) < −1.

Non-hyperbolicity of the equilibrium (U∗
e , U

∗
i ) reads

4

(16) (tr J(U∗
e , U

∗
i ) = 0 ∧ det J(U∗

e , U
∗
i ) > 0) ∨ det J(U∗

e , U
∗
i ) = 0.

4That condition is specific of a two-dimensional phase space.
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The first argument of the above disjunction regards those equilibria
(U∗

e , U
∗
i ) for which the eigenvalues of the matrix (15) lie properly in

the imaginary axis of the complex plane. These equilibria naturally
associate to a type of bifurcation, the Hopf bifurcation, as we will see.

When system (6) has a unique equilibrium point it is necessarily asymp-
totically stable provided there are no periodic orbits, by the Poincaré-
Bendixson Theorem [51]. In fact, as observed above, all the orbits
converge to the square Q1 = ]0, 1[2, a bounded set. As a special case,
for aee ≤ 4, the unique equilibrium is always asymptotically stable,
because the divergence of the vector field (h1, h2) is globally negative.
If the nullclines of (6) satisfy condition (13), then three equilibria arise
in the phase portrait. Necessarily, two of those, namely the down and
up states, lie in the descending branches of the Ue-nullcline, so that the
determinant of the linearization at such points gets positive and the
trace negative. For our purposes5, the saddle state (point Es) is the
state at which the Ue-nullcline has a greater slope than the Ui-nullcline
and simple computations show that the determinant of the lineariza-
tion is negative and hence Es is a saddle point. This approach of using
geometrical tools to deduce the equilibria stability is also used by Har-
ris in [20].
The following example enables us to be more clear about the above
assertions.

Example V.0.1. Fixing, for example, aee = 12, aei = 9, aie = 3,
aii = 1 and βj = 0, condition (13) is satisfied and thus system (6)
admits exactly three equilibrium points, as represented in the Figure
5. In particular, the equilibria Ed (down state) and Eu (up state) live
in the rectangles

Ed ∈ ]0, Um
e [×

]
φ(Um

e ), φ(UM
e )
[
, Eu ∈

]
UM
e , 1

[
×
]
φ(Um

e ), φ(UM
e )
[
,

where Um
e = 2/(12 +

√
96) and UM

e = 2/(12 −
√
96), that is, they lie

in the decreasing branches of the Ue-nullcline. This way

(17)
dφ

dUe

∣∣∣∣
Ed,Eu

=
aeeF

′(be)− 1

aeiF ′(be)

∣∣∣∣
Ed,Eu

< 0 ⇒ aeeF
′(be)− 1 < 0,

so that the first entries of the matrices J(Ed) and J(Eu), defined ac-
cording to (15), are negative.

On the other hand, when it comes to the intermediate equilibrium Es,
we need to relate the local slopes of the nullclines, which are both
strictly increasing in a neighborhood of such equilibrium. In this case,
the steepness of the Ue-nullcline at Es exceeds that of the Ui-nullcline

5In fact, the nullclines may have a tangent contact at Es.
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and hence

(18)
dφ

dUe

∣∣∣∣
Es

>
dψ−1

dUe

∣∣∣∣
Es

⇒ aeeF
′(be)− 1

aeiF ′(be)
>

aieF
′(bi)

1 + aiiF ′(bi)
.

This construction allows us to infer about the stability of our equilibria:

• Both Ed and Eu are asymptotically stable since, by condition
(17), it reads:

tr J

∣∣∣∣
Ed,Eu

< 0 and det J

∣∣∣∣
Ed,Eu

> 0.

Furthermore, one has

∆(J) := tr2 J − 4 det J

∣∣∣∣
Ed,Eu

< 0,

so that neighborhood orbits spiral towards Ed and Eu. Systems
exhibiting double states (including periodic orbits) of stability
are usually referred to as bistable [14], being frequent in neu-
ronal models. As a matter of fact, when the equilibria are stable
they will correspond to the observable states of the neuronal
populations, as opposed to transient behaviour;

• In what concerns the equilibrium Es, we easily see from impli-
cation (18) above that det J(Es) < 0. Therefore Es is a saddle
point.
More specifically, J(Es) has two real eigenvalues with opposite
signs, say λ+ and λ−. The eigenvector v− corresponding to the
negative eigenvalue λ− is given by v− = (1+p(E2

s )+λ−, 3p(E
2
s )),

where E2
s is the second coordinate of Es.

Given the different behavior of the vector field (h1, h2) on both
sides of the stable eigenspace {v−}, we can say that this sub-
space acts as a threshold for the system. More specifically, the
stable eigenspace works as a boundary for the basins of attrac-
tion of the up and down states (see Figure 6).
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Figure 5. Nullclines of (6), for aee = 12, aei = 9, aie =
3, aii = 1 and βj = 0. The red and black curves are the
graphs of Ui = φ(Ue) and Ue = ψ(Ui), respectively.

We represent below the phase portrait of system (6) for the selected
connection strengths in the Example V.0.1. We particularly care about
the representation of the orbits that converge to the down and up states,
as well as the threshold of the system, which is symbolically defined as
the stable eigenspace of the saddle point (dashed blue line).

Figure 6. Phase portrait of system (6), for aee = 12,
aei = 9, aie = 3, aii = 1 and βj = 0. The red (resp. blue)
trajectories are orbits converging to Eu (resp. Ed).
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VI. Bifurcation Analysis of the Wilson-Cowan Model

Bifurcations result from the appearance of a topologically nonequiva-
lent system under the variation of some parameters.

As observed by Borisyuk et al. [3], a variety of phase portraits and
bifurcations of system (6) result from the manipulation of properly
chosen parameters in the set {ajk, βj}.
In what follows, we deduce some of those bifurcations and their impli-
cations in the general configuration of the system.
In particular, since, as we have commented above, the system can as-
sume multiple equilibria, we naturally start with those bifurcations
that reflect the change in the number of equilibrium points.

Let µ ∈ {ajk, βj}. We say that system (6) is of µ-type (µ-system, for
short), if µ is a parameter of the system and all the remaining constants
are held fixed. If the parameter µ is fixed at some value, say µ = µ∗,
we refer to the µ-system with this substitution as the µ∗-system.

VI.1. Saddle-node bifurcation. Briefly, a saddle-node (or fold) bi-
furcation [29, 42, 51] (codimension one local bifurcation), say with pa-
rameter µ, arises when two equilibria (in the one dimensional case,
necessarily one equilibrium is stable and the other is unstable), present
for µ < µ1, collide at µ = µ1, forming a saddle-node point. This point
then disappears as we keep increasing µ. We use the scheme below to
represent this transition:

,

provided µ = µ1 is the bifurcation value.
Graphically, the saddle-node bifurcation corresponds to a tangency of
the nullclines. Reversing the orientation of the parameter µ, we find
the transition

also called a saddle-node bifurcation.

A possible way (probably the easiest) of making system (6) go through
a saddle-node bifurcation is by fixing the Ui-nullcline and promoting a
vertical displacement of the non-monotone Ue-nullcline (without chang-
ing its configuration), so that we need aee > 4. This displacement can
be achieved considering βe as a parameter.
We recall that our system has unconditionally one equilibrium point.
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In the case three equilibria are present, the fold bifurcation happens
when two equilibria come together at a saddle-node, away from the
third equilibrium that is not affected.

In what follows we look for points of saddle-node bifurcation (limit
points) of the βe-system (6).
Up to βe, limit points are tangent contacts of the nullclines, thus sat-
isfying the necessary condition

(19) φ′(Ue)ψ
′(Ui) = 1.

This equation defines a curve, on the plane UeUi, given by

Ui − U2
i =

1 + aeeUe(Ue − 1)

detAUe(Ue − 1)− aii
,

for the matrix A in (4). If detA = 0, this curve reduces to the conic

C =

{
(Ue, Ui) :

aee
kaii

(
Ue −

1

2

)2

− 1

k

(
Ui −

1

2

)2

= 1

}
,

with

k =
aee − aii − 4

4aii
.

Thus, if one sets aee > aii + 4, the conic covers all the Ui-axis and it
necessarily meets the nullcline Ue = ψ(Ui) at two points with Ue ∈
]0, 1[. Observe that the vertices of the conic are, in this case, given by(

±
√
kaii
aee

+
1

2
,
1

2

)
,

which always lie in the square Q1, under condition aee > aii + 4.
An intersection between C and Ue = ψ(Ui) will also be an equilibrium
of (6) if it additionally satisfies Ui = φ(Ue). This may be achieved by
varying βe to move vertically the Ue-nullcline. The matching βe values
are then the bifurcation values of the βe-system for a fold bifurcation.

Considering the above observations, we deduce that a sufficient condi-
tion for the βe-system (6) to undergo a saddle-node bifurcation is given
by

(20)

{
detA = 0
aee > aii + 4

.

This is nonetheless a sharp way of ensuring the bifurcation (the conic C
may intersect the Ui-nullcline, even if the second inequality above does
not hold). As in the Example below, the transition is as well observed
in cases that do not verify the second inequality.
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Under condition (20), equation (19) admits two solutions, say (U1
e , U

1
i )

and (U2
e , U

2
i ), satisfying U

1,2
e = ψ(U1,2

i ). The bifurcation values of the
βe-system, βe = β1,2

e , are then given by

β1,2
e = ln

(
1

U1,2
e

− 1

)
+ aeeU

1,2
e − aeiU

1,2
i

and we have the transitions

,

assuming that β1
e < β2

e .

Example VI.1.1. We set aee = 8, aei = 4, aie = 10, aii = 5 and
βi = 0, so that aeeaii = aieaei. In particular, we have detA = 0, but
aee < aii + 4. The resulting βe-system is given by

(21)

{
U ′
e = −Ue + F (8Ue − 4Ui − βe)

U ′
i = −Ui + F (10Ue − 5Ui)

.

The Ui-nullcline and the conic C intersect at two points, yielding the
βe bifurcation values

β1
e ≈ 0.938 and β2

e ≈ 1.177.

These bifurcation values are such that:

(1) for βe < β1
e , system (21) exhibits a unique asymptotically stable

equilibrium point;
(2) for βe = β1

e , the nullclines collide in a saddle-node point; at this
stage, system (21) admits exactly two equilibria, being one sta-
ble and the other unstable (and, in particular, non-hyperbolic);

(3) for β2
e > βe > β1

e , we have three equilibria: the down and up
states are asymptotically stable and the saddle state is a saddle
point;

(4) for βe = β2
e , the same scenario as for βe = β1

e takes place;
(5) for βe > β2

e , the phase portrait comprises again a unique stable
equilibrium.

In Figures 7-10, we represent the transition in the number of equilibria,
as the parameter βe varies.
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Figure 7. Representation of
the βe-system (21) with a
unique equilibrium point which
is asymptotically stable. This
takes place for β < β1

e , with
β1
e ≈ 0.938.

Figure 8. Tangent contact
between the nullclines (of or-
der ≥ 1) leading to the emer-
gence of a new equilibrium, for
β = β1

e bifurcation value; s.
stands for saddle-node point.

Figure 9. Three equilibrium
points, for β2

e > β > β1
e . This

is highest number of equilibria
possible for the βe-system (21).

Figure 10. Second tangent
contact between the nullclines
and two equilibria present, for
β = β2

e bifurcation value, with
β2
e ≈ 1.177.



24

VI.2. Pitchfork bifurcation. One feature that has not been men-
tioned before, albeit important for what follows, is that the Ue and
Ui-nullclines of system (6) have rotational symmetry of π radians rel-
atively to the points (1/2, φ(1/2)) and (ψ(1/2), 1/2), respectively. In-
deed, it can be easily verified that Ue 7→ φ(Ue+1/2)−φ(1/2) is an odd
function (same for Ui 7→ ψ(Ui+1/2)−ψ(1/2)). It should be remarked
that this fact does not imply that the flow of the system detains the
same feature, since the equations (6) do not display this symmetry.

A system undergoes a pitchfork bifurcation [29, 42, 51] (a codimension
two bifurcation) when three equilibria, being two stable and one un-
stable, collide, for µ = µ1 and ρ = ρ1 bifurcation values, in a unique
stable equilibrium point6 (the reversed transition is also a pitchfork bi-
furcation).
This type of bifurcation is most common in systems exhibiting some
symmetry [29] - in this case, the codimension is lowered to 1 and the
transition is represented by

For our model, we can take advantage of both the symmetry and vari-
ation of the Ue,i-nullclines in order to deduce the transition. In partic-
ular, as a starting point, we may verify the existence of a contact of
order ≥ 3 between the nullclines. This is an equilibrium, say (U∗

e , U
∗
i ),

at which both curves agree up to order 2 (i.e. the polynomial approx-
immations agree, at least, up to order 2).
Since we want to make use of the geometrical properties of the iso-
clines, it is convenient to take (U∗

e , U
∗
i ) = (1/2, 1/2). On the other

hand, according to the explanation above, the contact of order ≥ 3 at
the center of the unit square Q1 = ]0, 1[2 reads

(22)


φ(1/2) = 1/2
ψ(1/2) = 1/2
φ′(1/2) = 1/ψ′(1/2)
φ′′(1/2) = −ψ′′(1/2)/ψ′(1/2)3

(recall the functions φ and ψ defined in section V). Further derivatives
may eventually coincide for both φ and ψ at (1/2, 1/2). We remark
that the equilibrium point defined by condition (22) is not necessarily
unique, since the nullclines may have a triple intersection, with Es be-
ing the contact of order ≥ 3 (set, for example, aee = 4.8, aei = 0.2,
βe = 2.3, aie = 20, aii = 1 and βi = 9.5).

6This is the definition that applies to our model.
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Although kept for formalism, the last equation of (22) is actually re-
dundant, since the equilibrium (U∗

e , U
∗
i ) = (1/2, 1/2) is an inflection

point for the curves φ and ψ. On the other hand, given the expressions
defining both Ui = φ(Ue) and Ue = ψ(Ui), the first three conditions of
(22) are recast into

(23)

 aee − 2βe = aei
2βi + aii = aie
aeiaie = (aii + 4)(aee − 4)

.

For example, the set of constants

(24) {aee = 5, aei = 3, βe = 1, aie = 3/2, aii = βi = 1/2}
is a solution of the equations in (23). In particular, provided the con-
nection strengths are fixed according to the set (24), system (6) admits
a contact of order ≥ 3 at (1/2, 1/2) and numerical methods show that
this is the unique equilibrium point of the system. Given the symme-
try of the nullclines in a neighborhood of (1/2, 1/2), perturbing this
equilibrium with a proper parameter promotes the emergence of two
new equilibria.

It remains to identify the connection strengths that work properly as
bifurcation parameters, in order to observe a pitchfork bifurcation on
system (6).
We assert that, if the ajk and βj are set according to (24), a pertur-
bation on the constant aee = 5 creates the transition. Indeed, this
constant regulates the maximum slope of the Ue-nullcline, since

φ′(1/2) = (aee − 4)/3.

If, after the perturbation, the equilibrium (U∗
e , U

∗
i ) = (1/2, 1/2) persists

and the maximum slope of the Ue-nullcline increases, a triple intersec-
tion between the nullclines occurs. The persistence of (U∗

e , U
∗
i ) may be

achieved by translating βe = 1 as we do below.
Under this description, the perturbed system, with parameter ϵ, fol-
lows:

(25)

{
U ′
e = −Ue + F ((5 + ϵ)Ue − 3Ui − 1− ϵ/2)

U ′
i = −Ui + F (3Ue/2− Ui/2− 1/2)

.

We add−ϵ/2 to βe = 1 to keep the equilibrium at (U∗
e , U

∗
i ) = (1/2, 1/2).

In particular, this setting does not alter the value of φ′(1/2) (this num-
ber does not depend on βe).

For ϵ = 0, we have φ′(1/2) = 1/3, while ϵ > 0 sufficiently small yields
φ′(1/2) = (1 + ϵ)/3 > 1/3. Since both ψ(1/2) and ψ′(1/2) do not de-
pend on ϵ and φ′(1/2) is monotonically increasing with ϵ, the nullclines
have the behaviour of Figures 11 and 12.
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We observe that although we have fixed, in advance, the connection
strengths as in set (24) to describe the above geometrical method, an
analogous procedure would apply to another set satisfying (23).

Example VI.2.1. According to the construction above, the ϵ-system{
U ′
e = −Ue + F ((5 + ϵ)Ue − 3Ui − 1− ϵ/2)

U ′
i = −Ui + F (3Ue/2− Ui/2− 1/2)

has a pitchfork bifurcation at ϵ = 0. More specifically:

(1) for ϵ = 0, there is exactly one equilibrium which is asymptoti-
cally stable;

(2) for ϵ > 0 (sufficiently small), there are three equilibria, two
asymptotically stable and one unstable. In particular the emerg-
ing equilibria are equidistant from (1/2, 1/2), by symmetry of
the nullclines.

The transition diagram follows

Another system exhibiting a pitchfork bifurcation, at ϵ = 0 is given by

(26)

{
U ′
e = −Ue + F ((5 + ϵ)Ue − (3 + ϵ)Ui − 1)

U ′
i = −Ui + F (3Ue/2− Ui/2− 1/2)

.

In fact, it can be verified that this system reveals the same modifica-
tions as the previous one, in the sense that the equilibrium (1/2, 1/2)
is invariant under the transition from ϵ = 0 to ϵ > 0 and the maximum
slope of the curve U ′

e = 0 increases.

More generally, any system of the form{
U ′
e = −Ue + F ((5 + g(ϵ))Ue − (3 + g(ϵ))Ui − 1)

U ′
i = −Ui + F (3Ue/2− Ui/2− 1/2)

with g(ϵ) a differentiable positive function, for small ϵ > 0, satisfying
g(0) = 0 (thus g′(0) ≥ 0), has as well a pitchfork bifurcation at ϵ = 0.
In particular, system (26) corresponds to g(ϵ) = ϵ.
This generalization is pertinent because, under a small perturbation
of ϵ (in the positive direction), the (equal) deviation of the emerging
equilibria (up and down states) from the equilibrium (1/2, 1/2) is mea-
sured by g′(0). More specifically, the higher the value of g′(0), the more
impaired (resp. enhanced) are the eletrical activities in the down (resp.
up) state. The fact that the perturbation happens relatively to the aej
gives significance to the role of the excitatory inputs in the eletrical
convergence of the circuit.
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In Figures 11 and 12 we show how the pitchfork bifurcation is generated
as we vary the parameter ϵ from zero to a positive number, relatively
to system (26).

Figure 11. Configuration
of the nullclines of system
(26), for ϵ = 0 (unperturbed
system). The asymptot-
ically stable (a.s.) equi-
librium point (U∗

e , U
∗
i ) =

(1/2, 1/2) is the unique equi-
librium of the system and,
at the same time, a contact
of order ≥ 3 between the
nullclines.

Figure 12. Depiction of
the nullclines of the per-
turbed system, for ϵ = 0.5,
having a triple intersection.
The equilibrium (1/2, 1/2)
persists after the pertur-
bation and becomes unsta-
ble (u.), while the emerg-
ing equilibria (up and down
states) are asymptotically
stable (a.s.) and equidistant
to (1/2, 1/2).
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VI.3. Hopf bifurcation. The previous bifurcations concerned local
transitions involving equilibrium points. We look now for a more sofisti-
cated transition, namely one having a periodic orbit as its hallmark.
Periodic orbits, when present in biological models (see, for example,
[18]), usually carry certain interpretations. The second part of this
study will actually target that type of dynamics.

As described in [29], a Hopf bifurcation [14, 27, 29, 42] (codimension
one bifurcation) occurs when a limit cycle (i.e. a periodic orbit that
is the α or ω-limit set of points in a neighborhood) appears as a bi-
furcation parameter forces an equilibrium to change stability. In the
nonlinear context, the coordinates of this equilibrium usually vary with
the parameter as well. By the Implicit Function Theorem, it is how-
ever possible to verify that this equilibrium is locally unique for each
sufficiently close value of the parameter to the bifurcation value.

(H1) Non-hyperbolicity and transversality conditions:
Let (U∗

e (µ), U
∗
i (µ)) be the equilibrium of the µ-system (6) (in fact, the

coordinates of this equilibrium may depend on µ), for a parameter
µ ∈ {ajk, βj} to be chosen later, such that the eigenvalues λ1,2(µ) of
the linearization matrix J(U∗

e (µ), U
∗
i (µ)) read

λ1,2(µ) := α(µ)± ω(µ)i,

with

α(µ∗) = 0, ω(µ∗) > 0︸ ︷︷ ︸
Non-hyperbolicity conditions

, α′(µ∗) ̸= 0,︸ ︷︷ ︸
Transversality condition

for some µ = µ∗ bifurcation value.

(H2) Nondegeneracy condition:
The first Lyapunov coefficient [29] (which we will compute on a specific
example) is non-zero. This coefficient regards the cubic terms of the
expansion of the vector field in (6).

Under the genericity conditions (H1-2), the µ-system (6) reduces (up
to translation) to the normal form

(27)

{
x′ = ηx− y + sgn(γ)(x2 + y2)x
y′ = x+ ηy + sgn(γ)(x2 + y2)y

,

for some η ≡ η(µ) and sgn(γ) = ±1, provided γ is the first Lyapunov
coefficient. The fact that γ is non-zero (and thus sgn(γ) is well-defined)
is a consequence of the nondegeneracy condition (H2). Furthermore,
the signs of η and γ determine the stability of the limit cycle and the
direction of the bifurcation.
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To see that, we rewrite the equation (27) in polar coordinates (r, θ):{
r′ = r(η + sgn(γ)r2)
θ′ = 1

,

from which it is easy to see that the origin is always an equilibrium
point and that a limit cycle exists only when η/sgn(γ) < 0. In this

case, for each η, the radius of this limit cycle is
√

−η/sgn(γ), thus
increasing with the value of η (this constant is related with the real
and imaginary parts of the linearization eigenvalues). In the table
below, we bring together the different cases regarding the stability of
the equilibrium and the limit cycle (when it exists):

γ > 0 γ < 0

η < 0 Unstable limit cycle No limit cycle
Stable origin Stable origin

η = 0 No limit cycle No limit cycle
Unstable origin Stable origin

η > 0 No limit cycle Stable limit cycle
Unstable origin Unstable origin

Table 1. Stability of the origin and the limit cycle of
(27) under the different signs of γ ̸= 0 and η ∈ R.

The features corresponding to γ > 0 are implied in a subcritical Hopf
bifurcation in η, while those corresponding to γ < 0 are implied in a
supercritical bifurcation in η.
This classification must, in fact, encompass the parameter that is taken
into account. Recall that η = η(µ), so that if, for example, η > 0 for
µ < 0 and γ < 0, the Hopf bifurcation becomes subcritical in µ.

Recall the Jacobian matrix J(U∗
e , U

∗
i ) in (15) and the condition (16),

both in section V. An equilibrium point (U∗
e , U

∗
i ) is, in particular, such

that the matrix J(U∗
e , U

∗
i ) has a pair of pure imaginary eigenvalues if

and only if

(28)
tr J(U∗

e , U
∗
i ) = −2 + aeep(U

∗
e )− aiip(U

∗
i ) = 0

det J(U∗
e , U

∗
i ) = −tr J(U∗

e , U
∗
i ) + detAp(U∗

e )p(U
∗
i )− 1 > 0.

For simplicity, we define ]0, 1/4] ∋ p(U∗
e ) =: q∗1 and ]0, 1/4] ∋ p(U∗

i ) =:
q∗2, so that the above conditions regarding the trace and determinant
of J(U∗

e , U
∗
i ) make the point (q∗1, q

∗
2) lie in the intersection of the line C

and the half-plane S, respectively, defined by:

C : C(q1, q2) := −2 + aeeq1 − aiiq2 = 0
S : −C(q1, q2) + detAq1q2 − 1 > 0,
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with (q1, q2) ∈ ]0, 1/4]2.
Given the domain of the variables q1,2, in the intersection C ∩ S, we
must have detAq1q2 > 1, implying that detA > 16.
Thus we hereafter assume that the constants {ajk} satisfy

(H3) detA = aieaei − aeeaii > 16.

With this assumption, the matrix J(U∗
e , U

∗
i ) has a pair of imaginary

eigenvalues if and only if the point (U∗
e , U

∗
i ) is of the form

(29) (U∗
e , U

∗
i ) =

(
1±

√
1− 4q∗1
2

,
1±

√
1− 4q∗2
2

)
,

for some (q∗1, q
∗
2) ∈ C∩S. After some simple computations, one deduces

that this intersection is actually the half-line{
(q1, q2) ∈ ]0, 1/4]2 : q1 >

1

aee

(
1 +

√
aeiaie
detA

)
, q1 =

2 + aiiq2
aee

}
.

Example VI.3.1. Setting aee = 12, aei = aie = 10 and aii = 5, we
find detA = 40 > 16. The half-line C ∩ S is, in this case, given by{

(q1, q2) ∈ ]0, 1/4]2 : q1 >
1

12

(
1 +

√
10

2

)
, q1 =

2 + 5q2
12

}
,

allowing us to take for instance (q∗1, q
∗
2) = (0.25, 0.2) ∈ C∩S. According

to (29), this point in the q1q2 plane yields two admissible points (U∗
e , U

∗
i )

satisying (28):

(U∗
e , U

∗
i ) =

(
1

2
,
1−

√
1/5

2

)
and (U∗

e , U
∗
i ) =

(
1

2
,
1 +

√
1/5

2

)
,

both in ]0, 1[2. For no particular reason, we choose the first point to
apply the following procedure.

So let

(30) (U∗
e , U

∗
i ) =

(
1/2, (1−

√
1/5)/2

)
.

We consider the system

(31)

{
U ′
e = −Ue + F (12Ue − 10Ui − βe)

U ′
i = −Ui + F (10Ue − 5Ui − βi)

,

in a way that the external inputs βe,i are such that the point (U∗
e , U

∗
i )

is an equilibrium. In this case, one easily obtains

βe = 1 +
√
5, βi =

5 +
√
5

2
− F−1

(
1−

√
1/5

2

)
.
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The linearization of (31), around (U∗
e , U

∗
i ), is given by (p(x) = x− x2)

J(U∗
e , U

∗
i ) =

(
−1 + 12p(U∗

e ) −10p(U∗
e )

10p(U∗
i ) −1− 5p(U∗

i )

)
=

(
2 −5/2
2 −2

)
,

whose eigenvalues are

λ1 = i, λ2 = −i

(which are pure imaginary, as expected by construction). The con-
stants aee = 12, aei = aie = 10 and aii = 5 ensure the presence of
a Hopf equilibrium point (a point that satisfies the non-hyperbolicity
condition in (H1)) in our model, but we still need to identify those that
might work as parameters for the desired Hopf bifurcation, according
to the transversality condition in (H1) and the nondegeneracy of (H2).

Let us consider the aee-system

(32)

{
U ′
e = −Ue + F (aeeUe − 10Ui − βe) = h1(Ue, Ui; aee)

U ′
i = −Ui + F (10Ue − 5Ui − βi) = h2(Ue, Ui)

.

Again, the external inputs βe,i are chosen in a way that (U∗
e , U

∗
i ) is an

equilibrium, for aee = 12.
We hereafter denote by (U∗

e (aee), U
∗
i (aee)) the equilibrium of (32), for

each aee in a neighborhood of aee = 12. When aee = 12, we get the
point in (30) and we keep the notation (U∗

e , U
∗
i ).

The eigenvalues of the linearization of the aee-system (32) are functions
of the form λk=1,2(aee) := α(aee) + (−1)k+1ω(aee)i, provided

(33)
α(aee) =

−2 + aeep(U
∗
e (aee))− 5p(U∗

i (aee))

2

ω(aee) =

√
ρ(aee)

2

for |aee − 12| < ϵ, with ϵ > 0 such that the function

(34)
ρ(aee) := −a2eep(U∗

e (aee))
2 + 400p(U∗

e (aee))p(U
∗
i (aee))−

10aeep(U
∗
e (aee))p(U

∗
i (aee))− 25p(U∗

i (aee))
2

is non-negative (this holds by the continuity of ρ and the equality
ρ(12) = 4).

Our next step is to verify the transversality condition (H1) above for
the eigenvalues λ1,2(aee), relatively to aee = 12. The non-hyperbolicity
is, by construction, satisfied.
We define the curve

Γ :
{aee : |aee − 12| < ϵ} −→ Q1 = ]0, 1[2

aee 7−→ (U∗
e (aee), U

∗
i (aee))

,
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which represents the trace position of the equilibrium point (U∗
e , U

∗
i ),

as the parameter aee varies.

Recall the functions φ and ψ in section V, defining respectively the Ue

and Ui nullclines and which, for convenience, we rewrite here

Ui = φ(Ue; aee) =
1

aei

[
ln

(
1

Ue

− 1

)
+ aeeUe − βe

]
and

Ue = ψ(Ui) =
1

aie

[
ln

(
Ui

1− Ui

)
+ aiiUi + βi

]
.

Bearing in mind the definition of the function Γ above, we regard both
Ue and Ui as functions of aee. Differentiating implicitly, with respect
to the parameter aee, the curves Ui = φ(Ue; aee) and Ue = ψ(Ui), yields

1

aei

[(
− 1

p(Ue)
+ aee

)
U ′
e + Ue

]
= U ′

i

1

aie

(
1

p(Ui)
+ aii

)
U ′
i = U ′

e

.

Making the substitutions aee = 12, aei = aie = 10, aii = 5 and Ue = U∗
e ,

Ui = U∗
i , the last equations are recast into

1

10

(
8U ′

e +
1

2

)
= U ′

i

U ′
e = U ′

i

,

whose solution gives U ′
e = U ′

i = 1/4. In particular, the derivative of Γ
at aee = 12 is Γ′(12) = (1/4, 1/4).

Returning to the expression of the eigenvalues λk∈{1,2}(aee), we see that,
in fact, the transversality condition holds:

(35)
dα

daee

∣∣∣∣
aee=12

≈ −0.1545 < 0.

The transversality condition permits us to infer about the stability of
the equilibria (U∗

e (aee), U
∗
i (aee)) on both sides of aee = 12 (but suffi-

ciently close to this value). Indeed, given (35), one deduces:

(1) when aee > 12, we have α(aee) < 0 and thus the equilibrium
point (U∗

e (aee), U
∗
i (aee)) is asymptotically stable;

(2) if aee < 12, then α(aee) > 0, implying that the equilibrium
(U∗

e (aee), U
∗
i (aee)) is unstable.

We are now interested in checking the non-degeneracy condition (H2)
for system (32). To do this, we need to compute the parameter γ in
the reduced equation (27). We will follow the procedure described in
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[29]. After translating the equibrium (U∗
e , U

∗
i ) to the origin and making

a linear invertible change of coordinates to put the linear part in the
form of (27), the main idea consists in obtaining the Taylor expansion
of order 3 of the vector field (32) around the equilibrium.

Recall that J(U∗
e (aee), U

∗
i (aee)) denotes the Jacobian of the vector field

(h1(Ue, Ui; aee), h2(Ue, Ui)).
For each aee sufficiently close to aee = 12, let v1(aee) (respectively,
w1(aee)) denotes the eigenvector of the matrix J(U∗

e (aee), U
∗
i (aee)) (re-

spectively, J(U∗
e (aee), U

∗
i (aee))

T ) corresponding to the eigenvalue λ1(aee)

(respectively, λ2(aee)). The eigenvectors v1 := v1(12) and v1 := v1(12)
corresponding, respectively, to λ1 = i and λ2 = −i read

(36) v1 =

(
(i+ 2)/3

2/3

)
, v1 =

(
(2− i)/3

2/3

)
(overbar denotes complex conjugate). We note that v1 and v1 are
unitary vectors. We also compute the eigenvectors w1 := w1(12) and

w1 := w1(12) of the transposed matrix J(U∗
e , U

∗
i )

T . Indeed, the vectors

(37) w1 =

(
2

i− 2

)
, w1 =

(
2

−2− i

)
correspond, respectively, to the eigenvalues λ1 = i and λ2 = −i of
J(U∗

e , U
∗
i )

T .

Calculations in [29] are done with reference to a normal form in coor-
dinates (z, z), where denoting by ⟨ ·, · ⟩ the euclidean inner product, z
is a complex variable defined by

(38) z = ⟨w1(aee), (Ue, Ui)⟩.
After translating the equilibrium (U∗

e , U
∗
i ) to the origin, system (32) is

converted, in the (z, z̄) coordinated, to

(39) z′ = λ1(aee)z + g(z, z, aee),

where g = O(|z|2) is the smooth function

(40) g(z, z, aee) = ⟨w1(aee), G(zv1(aee) + zv1(aee), aee)⟩,
where G(U , aee) is a smooth vector function whose components are the
Taylor expansions in U = (Ue, ,Ui) := (Ue −U∗

e , Ui −U∗
i ), with at least

quadratic terms, of the translated vector field in (32). The utility of
the expression for g(z, z, aee) in (40) will be more clear in a further step.

At aee = 12, the translated system (32) admits the following expansion
around the origin:

(41) U ′ = J(U∗
e , U

∗
i )U +

1

2
B(U ,U) + 1

6
C(U ,U ,U) +O(||U||4)︸ ︷︷ ︸
G(U ,12)

,
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where B and C are multilinear functions on the planar vectors U =
(Ue,Ui), V = (Ve,Vi) and W = (We,Wi) defined, respectively, by

(42) B(U ,V) :=
(
k20 k02 k11
l20 l02 l11

) UeVe

UiVi

UVσei


and

(43) C(U ,V ,W) :=

(
k30 k03 k21 k12
l30 l03 l21 l12

)
UeVeWe

UiViWi

UVWσeei

UVWσeii

 .

The constants knm and lmn, with m,n ∈ {0, 1, 2, 3}, are the partial
derivatives of h1,2 at (U∗

e , U
∗
i ) equilibrium point, which takes place for

aee = 12. More specifically, these constants are defined by

knm =
∂n+mh1
∂nUe∂mUi

∣∣∣∣
(U∗

e ,U
∗
i )

and lnm =
∂n+mh2
∂nUe∂mUi

∣∣∣∣
(U∗

e ,U
∗
i )

.

On the other hand, the entries of the form UVσab
and UVWσabc

represent
the following respective expansions:

UVσab
=

∑
σ∈S2(a,b)

Uσ(a)Vσ(b)

and
UVWσabc

=
∑

σ∈S3(a,b,c)

Uσ(a)Vσ(b)Wσ(c),

where S2(a, b) (resp. S3(a, b, c)) denotes the set of permutations of or-
der 2 (resp. 3) on {a, b} (resp. {a, b, c}).

Under the definitions above, the constants knm and lnm assume the
values:

k20 = a2eeq(U
∗
e ) = 0 k02 = a2eiq(U

∗
e ) = 0

k11 = −aeeaeiq(U∗
e ) = 0 l20 = a2ieq(U

∗
i ) = 4

√
5

l02 = a2iiq(U
∗
i ) =

√
5 l11 = −aieaiiq(U∗

i ) = −2
√
5

and

k30 = a3eer(U
∗
e ) = −216 k03 = −a3eir(U∗

e ) = 125
k21 = −a2eeaeir(U∗

e ) = 180 k12 = aeea
2
eir(U

∗
e ) = −150

l30 = a3ier(U
∗
i ) = −40 l03 = −a3iir(U∗

i ) = 5
l21 = −a2ieaiir(U∗

i ) = 20 l12 = aiea
2
iir(U

∗
i ) = −10

with q and r being, respectively, the polynomials

q(x) = 2x3 − 3x2 + x and r(x) = −6x4 + 12x3 − 7x2 + x

(these expressions are obtained from writing the higher order deriva-
tives of F (x) = 1/(1 + exp(−x)) in function of F (x) itself).
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The next step is to use the Taylor expansion (41) for the direct com-
putation of the coefficient γ.
Recalling the eigenvectors of both J(U∗

e , U
∗
i ) and its transpose, ob-

tained in (36) and (37), we compute

⟨w1, v1⟩ = 4i/3.

Thus

w1 =

(
3i/2

3/4− 3i/2

)
,

is the rescaled form of w1 that leads to the normalization of ⟨w1, v1⟩.

Let

gnm =
∂n+m

∂zn∂z̄m

∣∣∣∣
z=0

,

provided aee = 12. Recovering the single equation in (39), the func-
tion g(z, z, 12) admits a Taylor expansion whose quadratic and cubic
coefficients g20, g11 and g21 are given, respectively, by the formulas:

g20 = ⟨w1, B(v1, v1)⟩, g11 = ⟨w1, B(v1, v1)⟩, g21 = ⟨w1, C(v1, v1, v1)⟩.

Computing such coefficients, one obtains

g20 = −4
√
5/3 + 2

√
5/3i, g11 = 2

√
5/3 + 4

√
5/3i,

g21 = −100/9− 20/9i.

Finally, the first Lyapunov coefficient γ reads

γ =
1

2
Re (ig20g11 + g21) ,

being equal to −20/9, thus negative.

In conclusion, there is a unique and stable limit cycle for aee < 12
(subcritical Hopf bifurcation). Furthermore:

(1) For aee < 12, the equilibrium (U∗
e (aee), U

∗
i (aee)) is unstable and

the limit cycle is stable;
(2) For aee ≥ 12, the equilibrium (U∗

e (aee), U
∗
i (aee)) is asymptoti-

cally stable.

In Figure 13, we represent the numerical iteration (using the soft-
ware Mathematica) of an orbit starting close to the equilibrium point
(U∗

e (11.8), U
∗
i (11.8)), but converging to a limit cycle. Thus, it is sug-

gested that the orbit is repelled from the point (U∗
e (11.8), U

∗
i (11.8)),

while being attracted by a periodic orbit. In particular, we observe
that this happens for aee < 12, as analytically deduced above.
On the other hand, Figure 14 represents the asymptotic convergence of
the system to the equilibrium (U∗

e (12.2), U
∗
i (12.2)), scenario that takes

place for aee > 12, as expected.
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Figure 13. Stable limit cycle of system (32), for aee =
11.8, as the ω-limit set of a point (the blue one) in a
small neighborhood of (U∗

e (11.8), U
∗
i (11.8)) (red point).

This limit cycle arises via subcritical Hopf bifurcation.

Figure 14. Asymptotically stable equilibrium point
(stable focus, red point) of system (32), for aee = 12.2, as
the ω-limit set of the point (Ue, Ui) = (0.49, 0.27) (blue
point).

Apart from checking the existence of oscillations, it is also important
to deduce some of its properties, for example, the amplitude and os-
cillatory frequency. In general, if α(µ) ± iω(µ) are the eigenvalues of
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the linearization near the bifurcation point, the amplitude is approxi-
mately

√
α(µ)/ω(µ) and the frequency is close to ω(µ)/2π.

In case of system (32), in a small left-neighborhood of aee < 12, the
amplitude of the periodic solutions, say Amp(aee), depends on aee and
using the expression of the real and imaginary parts of the eigenvalues
in (33), we find the formula

Amp(aee) ≈
√

−2 + aeep(U
∗
e (aee))− 5p(U∗

i (aee))√
ρ(aee)

.

On the other hand, the frequency of the oscillations, Freq(aee), is given
approximately by

Freq(aee) ≈
1

4π

√
ρ(aee),

in the same range of aee. Since ρ(aee) cannot be computed analytically,
we use the linear approximmation of Freq(aee), around aee = 12, given
by

(44) Freq(aee)
×103(Hz) ≈ 1

2π
+
ρ′(12)

16π
(aee − 12)

where ρ′(12) can be computed directly using differentiation, in order
of aee, of the function in (34); in this case, one obtains ρ′(12) ≈ 4.71.
Using that expansion, we record some values of the frequency of the
oscillations, for aee sufficiently close to aee = 12:

aee Freq(aee)
11.99 158 Hz
11.95 154 Hz
11.91 151 Hz

Table 2. Collection of the oscillatory frequency, for
some values of aee < 12, using the approximation in (44).

Numerically (using the Matcont package from Matlab), we show in Fig-
ure 15 how the period of the oscillatory dynamics of system (32) varies
with each value of aee ∈ ]11.73, 12[ (values for which the oscillations
are sustained). We observe that, as aee decreases, the period of the
generated oscillations increase asymptotically (that is, the angular ve-
locity of the system declines). In particular, this monotonic behaviour
is, for example, one of the interisting findings of Wilson et al. in [53],
when analysing the oscillatory dynamics of the model in function of a
stimulus intensity. Furthermore, the asymptotic behavior of the curve
may associate to the approach of the limit cycle to a saddle point, then
giving rise to a homoclinic orbit (see Figure 16).
We recall that a homoclinic orbit is an orbit whose ω and α-limit sets
are both equal to an equilibrium point, the point that connects the
orbit to itself. Symbolically, for every point p in the homoclinic orbit,
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Figure 15. Curve giving the period of the oscillations,
for each value of aee ∈ ]11.73, 12[. The letter H indicates
the Hopf bifurcation point. The period of the oscillations
tends to infinity near aee = 11.73.

we have α(p) = ω(p) = q, where q is an equilibrium of the system.
Homoclinic orbits are structurally unstable [29].

In fact, as depicted in Figure 16, as aee decreases from the bifurcation
value aee = 12, the periodic orbit approaches a saddle-point, predicting
a future homoclinic connection.

Figure 16. Approximation of the limit cycle to a saddle
point (blue point) - the angular velocity of the system
tends to slow during this dynamics. When the limit cycle
meets the saddle point, we find a homoclinic orbit [13,
29].



39

VI.4. Bogdanov-Takens bifurcation. For a Bogdanov-Takens bifur-
cation [29, 42] (codimension two bifurcation) to occur, apart from a
double-zero eigenvalue in the linearization, some nondegeneracy condi-
tions must be verified, as what happened for the Hopf bifurcation. We
will not pursue this goal here, however, we note that this bifurcation
occurs generically in two-parameter families of vector fields. Further
evidence is that the bifurcation point occurs where a line of saddle-
node bifurcations is met, in a two-parameter space, by a line of Hopf
bifurcations. The periodic solution created at the Hopf bifurcation is
destroyed at a homoclinic connection.

In [29], Kuznetsov provides a Theorem (Theorem 8.4) that gives suffi-
cient conditions for the existence of a smooth invertible change of coor-
dinates under which a two-parameter system of differential equations
is reduced to a normal form exhibiting that bifurcation. In particular,
a two-parameter bifurcation diagram is represented, showing the many
dynamics occuring as the parameters change.
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VII. Bifurcation diagrams

In what follows, we complement the results obtained above (specially in
subsection VI.3) with a numerical approach using bifurcation diagrams.
The software Matcont on MATLAB will support all the analysis.

To illustrate the method, we give special attention to the aee-system
(32). The first diagram below (Figure 17) gives a general overview
of how bifurcation points (namely Hopf points and limit points) arise
from the variation of the parameter aee. Some relevant observations
result from the direct visualization of that diagram:

• The Hopf point H1 lies close to the limit point LP2. This sug-
gests that a small perturbation on the remaining constants of
(32) may promote the coalescence of those points, then (pos-
sibly) giving rise to a Bogdanov-Takens bifurcation (BT). As
enlightened in subsection VI.4, among other genericity condi-
tions, a double-zero eigenvalue at the linearized vector field is
necessary for the generation of that bifurcation. In particular,
equilibrium-cycle collision, via homoclinic bifurcation [29, 42],
would be a consequence.

• The Hopf points H1 and H2 correspond, respectively, to super-
critical and subcritical Hopf bifurcations. The software yields
the first Lyapunov coefficients for these bifurcations, being ap-
proximately equal to γ = −17.23 and γ = −2.22, respectively.
The collision of a subcritical Hopf point with a supercritical one
corresponds to a new bifurcation termed Generalized Hopf bi-
furcation [29]: it is characterized by a vanishing first Lyapunov
exponent and includes, among other dynamics, the connection
between two distinct branches of periodic orbits.

To be more specific about the dynamics predicted in the above topics,
we must extend the diagram of Figure 17 in a way that a new bifur-
cation parameter is introduced. In particular, we set βi as the new
parameter.
Fixing different values for βi, we see that both the position and shape of
the resulting branches change (see Figure 18). Indeed, higher values of
βi shrink the interval of aee on which three equilibria take place. On the
other hand, when βi varies from 4.58 to 4.2, the first Hopf bifurcation
point H disappears, probably through the coalescence of H1 and LP2
in Figure 17. The scheme of Figure 18 also exhibits a sequence of neu-
tral saddle equilibrium points (denoted NS) and the linearization of the
system, when evaluated at those points, admits symmetric eigenvalues
on the real axis. Such equilibria likely emerge from a Bogdanov-Takens
(BT) bifurcation, at a point of double-zero eigenvalue (the eigenvalues
move symmetrically from the imaginary to the real axis). Moreover,
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the Hopf points H1,...,5 in Figure 18 are such that the first Lyapunov
coefficient γ increases (from negative values) as βi admits lower values.
We then predict the existence of a value for βi for which γ vanishes.
Lastly, the diagram of Figure 19 completes/confirms our expectations
by showing, on the aeeβi-plane, the codimension-two bifurcations along
the equilibrium trace position. This curve contains two Bogdanov-
Takens points (BT1 and BT2) and one Generalized Hopf bifurcation
point (GH1). The coordinates of these last points are also identified.

Figure 17. Bifurcation on the parameter aee of system
(32). Hopf bifurcation points are indicated by H1 and
H2 (H2 is that studied in Example VI.3.1); saddle-node
points as LP1 and LP2 (limit points). The constant γ
refers to the first Lyapunov coefficient of the resulting
Hopf bifurcation and sup. and sub. are shorts for super-
critical and subcritical, respectively.

VII.1. Hysteresis. From a theoretical point of view, the presence of
multiple equilibria represents the possibility of certain levels of neu-
ron’s activity to be shifted under a sufficient perturbation.
A direct observation of diagram 17 reveals some jumps of the equilibria
between branches of the bifurcation curve, as the parameter aee moves
forward or backwards. In Figure 20, this effect is suggested by the
green (aee moves backwards) and orange arrows (aee moves forward).
Such phenomenon is known as the hysteresis [29, 53] and whose pres-
ence is typical in a cusp bifurcation [29].
In our example, a unique loop is represented. However, depending
on the number of equilibria, more than one loop can be obtained in
our model (possibly using other parameters), as properly suggested by
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Figure 18. Bifurcation curves on the parameter aee for
several values of βi: from left to right, βi takes the val-
ues of the set {4.58, 4.2, 4, 3.6, 3.4}, in the descending di-
rection. The points labelled NS refer to neutral saddle
equilibria, that is, equilibrium points whose eigenvalues
are real and symmetric. These points follow the collision
of H1 and LP2 from Figure 17, via Bogdanov-Takens bi-
furcation.

Figure 19. Trace position of the equilibrium (U∗
e , U

∗
i ),

in function of the parameters aee and βi in system (32):
BT1 and BT2 correspond to Bogdanov-Takens points
and GH1 to a Generalized Hopf bifurcation point.

Wilson et al. in [53]. The same authors also give physiological inter-
pretation for these loops.
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We present below a brief description of what really happens as the
parameter aee changes in each direction during the hysteresis phenom-
enon:

• As aee increases from lower values, solutions are attracted to the
down-state equilibrium, along a branch of the bifurcation curve;
once a point of saddle-node bifurcation is met on the curve, the
system switches its asymptotic behaviour to the up-state (this
is represented by the orange arrows in Figure 20);

• As aee decreases from higher values, solutions are attracted to
the up-state until it initiates an oscillatory dynamics at a Hopf
point, where the up-state changes stability; once the oscillations
cease, the solutions are attracted to the unique stable equilib-
rium point in the phase portrait, the down-state, around which
it will remain for further lower values of aee (this is represented
by the green arrows in Figure 20).

Thus, Hopf points are only encountered when the bifurcation parame-
ter aee decreases.
In Figure 20, the amplitude of the oscillatory dynamics emerging from
the Hopf points H1 and H2 is suggested (vertical blue segments). In
particular, we observe that, as aee decreases from aee = 12, the ampli-
tude of the successive limit cycles increase until a homoclinic connection
is met, at aee ≈ 11.73, as predicted in the subsection VI.3.

Figure 20. Hysteresis phenomenon occuring in system
(32), along the curve of Figure 17. The amplitude of the
oscillatory dynamics emerging from the Hopf points (in
function of aee) is also suggested (vertical blue segments).
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VIII. Emotional Regulation in the context of Psychiatry

In the main context of this work, we do not aim to give a detailed de-
scription of how emotion regulation and related mechanisms are pro-
cessed in the brain. In what follows, we provide a brief explanation
of the most important topics regarding the subject, all of them based
in previous evidence. In particular, we neglect the experimental envi-
ronment of this evidence (for example we do not distinguish between
animal and human studies).

• According to the American Psychiatric Association (DSM-5)
[1], a mental disorder must include a deficit in one of the fol-
lowing domains: cognition, self-regulation and behavior;

• Self-regulation (or emotional regulation) comprises the individ-
ual’s ability to select certain emotions, process that is also de-
fined by the temporal context and the way the emotions are
experienced [19]. In particular, this description suggests that
the ability is highly dependent on the environmental experi-
ences and the genetic load, both interacting mutually to shape
the way we engage with the exterior;

• Top-down control from cortical regions over subcortical ones has
been implicated in the etiology of emotional regulation failure
[8, 21];

• As observed by Cisler et al. in [7], emotion regulation and fear
are interrelated in the sense that the former can augment or
diminish the latter, in dependence of the employed strategy;

• Fear conditioning is a phenomenon of fear acquisition which
consists in the association of a neutral stimulus (the to-be condi-
tioned stimulus, CS) with an aversive one (unconditioned stim-
ulus, US), in a way that a conditioned fear response (CR) is
created relatively to the former (i.e. the CS alone generates an
aversive response). The repeated presentation of the CS, ab-
sent of the US, ultimately contributes to the extinction of the
fear response, phenomenon termed fear extinction. This extinc-
tion phenomenon usually occurs under well-defined conditions.
In fact, extinction memories are context-dependent, meaning
that their expression is more effective in the extinction envi-
ronmental conditions. Once the conditioned stimulus (CS) is
encountered outside the extinction context, the fear response is
likely to return, phenomenon known as fear renewal [26]. There
is an amount of evidence that supports the idea that the con-
nections from the hippocampus to both the medial prefrontal
cortex (mPFC for short) and the basolateral amygdala (BLA
for short) mediate such phenomenon of fear renewal [40, 41].
Reciprocally, the robust synaptic transmission from the amyg-
dala to the hippocampus has been proposed to be involved in



45

encoding of both positive and negative emotional arousal [15],
then leading to the consolidation of long-term memories;

• Apart from the renewal mechanism, the triad cortex-amygdala-
hippocampus (see Figure 21 for anatomical details) and respec-
tive mutual connections have as well a specific role in both the
consolidation and extinction of fear memories [16, 41, 44]. In
this latter phenomenon, the strengthening and depotentiation
of synapses have been reported [41]. Furthermore, as observed
by Jin et al. in [26] the fear extinction memory does not erase
the conditioning memory; instead, a new extinction memory,
apt to compete with the fear memory, is created in order to
control behavioral reactions [4]. In the long term, the recall
of the fear extinction memory has been attributed to the ac-
tivation of the mPFC and hippocampus in concert [37]. As a
matter of fact, the study of the interaction between the pre-
frontal cortex and the hippocampus is of scientific interest (see,
for example, [17]). Additionally, extinction of fear memories
requires plasticity inside the mPFC [35];

• Inside the mPFC, two main subregions lie in the origin of the
cortical outputs to the amygdala: the prelimbic (PL) and in-
fralimbic (IL) portions [9, 16, 34]. While the first promotes the
excitation of the amygdala, during fear expression, the second
is involved in mechanisms of fear extinction, in which the exci-
tation of intercalated cells inhibits the amygdala’s output [34].
These pathways are depicted in the scheme of Figure 22. A no-
table result from Corcoran et al. in [9] states that the prelimbic
region mediates the expression of fear, but not the formation of
aversive memories.
Conversely, subcortical signals to both the PL and IL originate,
among other regions, from the amygdala. In particular, the
basolateral amygdala (BLA) is the subarea that mostly inner-
vates the mPFC [24], via glutamatergic afferents, and promotes
a cortical response that affects the outcome of fear and extinc-
tion learning [5, 49].

VIII.1. Rhythmic activity of fear mechanisms. The synchroniza-
tion of the eletrical activity in the brain leads to the creation of prop-
agated voltage oscillations, which are known as brain waves [6]. Such
periodic dynamics fall within specific frequency bands - see Table 3 -
and are directed to certain physiological functions.
For example, in Figure 15 of a previous section, we observe that the
rythmic motion lies in > 30 Hz band for most of the aee < 12 values,
which would correspond to the γ range of frequency. More generally,
the regulation of γ-oscillations in the Wilson-Cowan model is a recent



46

Figure 21. Anatomical location of the amygdala, the
hippocampus and the subdivisions of the prefrontal cor-
tex (PFC), including the ventromedial PFC, the dorso-
medial PFC and the orbitofrontal cortex. The layout of
this Figure is based on Figure 3 of [8] (with permission).

object of study. For example, Li et al. study in [30] how the self-
connections of the model (which, in our case, would correspond to the
constants aee,ii) cooperate to promote the emergence of γ-oscillations
and how the oscillatory frequency is regulated.

Wave type Range of frequency
Delta (δ) 1-4 Hz
Theta (θ) 4-10 Hz
Alpha (α) 8-12 Hz
Beta (β) 12-30 Hz

Gamma (γ) >30 Hz

Table 3. Ranges of frequency of the miscellaneous
brain waves.

When compared with higher bands of frequency, slower waves enable
the communication between distant areas of the brain.
Previous studies showed that synchronized activity at θ frequency be-
tween the amygdala and hippocampus has been implied in the ex-
pression of fear conditioning [48]. On other hand, Watanabe et al.
demonstrated in [52] that, during the extinction of fear memories, γ-
oscillations are not only generated inside mPFC (or more specifically,
between the IL and PL) but is also enhanced in the course of the ex-
tinction. The correlation of these waves with cognitive functions is well
known [32].
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Figure 22. Outputs of the infralimbic and prelimbic
cortical areas to the amygdala. As suggested, the prelim-
bic region sends excitatory signals directly to the baso-
lateral amygdala (BLA), which, in turn, excites the cen-
tral nucleus (CeA) in order to produce a fear response in
the phenomenon of fear conditioning. This fear response
relies on the intervention, among other regions, of the
periaqueductal gray area (PAG). On the other hand, the
infralimbic area sends excitatory signals to the interca-
lated cells of the amygdala (ITC) - anatomically posi-
tioned between the BLA and CeA - which, by inhibiting
the output from the central nucleus, prevents the expres-
sion of fear.



48

IX. Modelling the mPFC-amygdala-hippocampus triad

Nonlinear modelling of neuronal activity, when combined with bifur-
cation theory, describes the dynamics of a neural aggregate in func-
tion of some pre-defined parameters (connection strengths, for exam-
ple). The research in this field has taken important steps. For ex-
ample, Rădulescu et al. [46] perform a numerical bifurcation analy-
sis on a complex circuit involving several areas of human’s brain, the
cortico-striatal-thalamo-cortical pathway [43]. Incidentally, this cir-
cuit is highly implied in the etiology of obsessive-compulsive disorder
(OCD) [47], psychopathology that we take care in a further topic, given
its particular traits in what concerns failure of emotional regulation.

In what follows, we apply the Wilson-Cowan approach to a circuit
between the medial prefrontal cortex (mPFC), the amygdala and the
hippocampus, in an attempt to describe how local changes in the con-
nections between these units are apt to propel the dynamics into dis-
tinct configurations. In particular, we will be mainly concerned with
the oscillatory dynamics of the resulting modified system, under cer-
tain conditions, emulating the ideas of the subsection VIII.1.
Since each connection strength must be identified with some proper
role regarding emotional regulation and related mechanisms (including
fear conditioning and extinction), the effects of our simulations may
serve either as a confirmation or a contrast for the results reported in
the literature.

IX.1. The model. Consider the triad below (the arrows represent ar-
bitrary connections), formed by the three targeted areas in our study:
the mPFC (medial prefrontal cortex), the amygdala and the hippocam-
pus.

Attributing one variable to each node of this triad, we propose the
following modified Wilson-Cowan system:

(45)

 C ′ = −C + F (eccC + ecaA+ echH − βc)
A′ = −A+ F (µ1C + µ2H − βa)
H ′ = −H + F (ehcC + ehaA− βh)

,

where the variables C,A and H denote, respectively, the (average) ac-
tivities of the mPFC, the amygdala and the hippocampus, and F is the
function in (7). The constants ejk and ijk are, respectively, the excita-
tory and the inhibitory connections, while βj are external inputs (for
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our study, these inputs will only serve to set the proper environment
for the simulations).
For convenience, both µ1,2 are defined to be µ1 := eac − iac and µ2 :=
eah − iah. In Figure 23, we represent the neuronal circuit that is in
conformity with the proposed system (45).

In fact, reciprocal connections between any pair of the triad mPFC-
amygdala-hippocampus are considered, as it was suggested in the de-
scription of the section VIII. In particular, the constants eac and iac
refer, respectively, to the pre and infralimbic cortical innervations to
the amygdala, so that we identify them with the abbreviations PL and
IL, as observed in Figure 23.
Furthermore, the constant ecc is the only self-connection in the circuit
and the inhibitory pathway iah, being based on the main result of [31],
is aimed to make the circuit less excitable.

As it can be easily noticed, some implicit steps regarding fear condition-
ing and extinction mechanisms are not taken into account in this frame-
work: for example, instead of integrating the role of the intercalated
cells in the inhibition of the amygdala’s output, a unique inhibitory
connection originating from the mPFC is considered (the infralimbic
connection iac).
We also note that, unlike our initial model, in which we considered
two different neuronal populations with opposite effects (either excita-
tory or inhibitory), in this case, the same population (relative to the
same brain region) may have simultaneously both effects relatively to
another population. It is the case of the mPFC relatively to the amyg-
dala.

Although, in the analysis that follows, we will mostly be concerned with
the oscillatory dynamics of system (45), we note that it may admit a
number of equilibria which is significantly variable. In fact, this number
can go from a unique equilibrium point to a set of nine equilibria, each
of which being such that the first two coordinates, say (C∗, A∗), satisfy{

F (eccC
∗ + ecaA

∗ + echF (ehcC
∗ + ehaA

∗ − βh)− βc) = C∗

F (µ1C
∗ + µ2F (ehcC

∗ + ehaA
∗ − βh)− βa) = A∗ ,

then uniquely determining the last coordinate H∗, given by

H∗ = F (ehcC
∗ + ehaA

∗ − βh).

For our study, it will however be convenient to restrict the number
of equilibria, reflecting a simpler asymptotic behavior from the whole
system.

IX.2. Periodic solutions. In what follows, we look for the conditions
concerning the connections ejk and ijk under which system (45) verifies
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Figure 23. Representation of the triad mPFC-
amygdala-hippocampus and respective connections, ac-
cording to the configuration of the system (45). In par-
ticular, we refer to the connections eac and iac as the pre
(PL) and infralimbic connection (IL), respectively.

the assumptions of the Hopf bifurcation, in the three-dimensional case
[29].

Let (C∗, A∗, H∗) be an arbitrary equilibrium point of system (45).
System (45) admits the following linearization matrix J around the
equilibrium (C∗, A∗, H∗):

(46) J(C∗, A∗, H∗) =

 eccp(C
∗)− 1 ecap(C

∗) echp(C
∗)

µ1p(A
∗) −1 µ2p(A

∗)
ehcp(H

∗) ehap(H
∗) −1

 .

We set

qJ(λ) = a0 + a1λ+ a2λ
2 − λ3

as the characteristic polynomial of the above matrix J(C∗, A∗, H∗),
provided a0 = det J(C∗, A∗, H∗), a2 = tr J(C∗, A∗, H∗) and

a1 = ecaµ1p(C
∗)p(A∗) + 2eccp(C

∗) + echehcp(C
∗)p(H∗)+

µ2ehap(A
∗)p(H∗)− 3.

We first obtain conditions for the constants ejk and ijk under which
λ = α + ωi is a root of qJ(λ), with α ∈ R and ω ̸= 0. Taking real and
imaginary parts of qJ(α + ωi), one finds

(47)

{
a0 + a1α + a2α

2 + (3α− a2)ω
2 − α3 = 0

(a1 + 2a2α− 3α2)ω + ω3 = 0
.

The solution ω ̸= 0 of the second equation in (47) is

ω2 = −(a1 + 2a2α− 3α2).
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At an arbitrary Hopf point, we have α = 0 and (47) becomes{
a0 − a2ω

2 = 0
ω2 = −a1

,

so the non-hyperbolicity condition for a Hopf bifurcation at (C∗, A∗, H∗)
is simply

a0 = −a1a2 ∧ a1 < 0.

Let µ ∈ {ecc, eca, ech, µ1, µ2, ehc, eha} be a bifurcation parameter of
system (45) and λ = α(µ) + ω(µ)i an eigenvalue of the Jacobian
J(C∗(µ), A∗(µ), H∗(µ)). In particular, if µ = µ∗ is a Hopf bifurca-
tion value, we have α(µ∗) = 0 and ω(µ∗) ̸= 0, with the equilibrium
(C∗(µ∗), A∗(µ∗), H∗(µ∗)) being simply the previously considered point
(C∗, A∗, H∗).
We consider the following hypothesis:

(H1) Non-hyperbolicity condition:
The condition α(µ∗) = 0 and ω(µ∗) ̸= 0 corresponds to{

a1(µ
∗) < 0

a0(µ
∗) = −a2(µ∗)a1(µ

∗)
.

(H2) Transversality condition:

Writing a′j :=
daj
dµ

∣∣∣∣
µ=µ∗

(in fact, aj can be regarded as functions of µ,

with the definitions above applied to (C∗(µ), A∗(µ), H∗(µ)) equilibrium

point) and ω′ :=
dω

dµ

∣∣∣∣
µ=µ∗

, it follows from (47) that{
2ωω′ = −a′1 − 2a2α

′

a′0 + a1α
′ + (3α′ − a′2)ω

2 − 2a2ωω
′ = 0

,

at µ = µ∗, and hence the condition
dα

dµ

∣∣∣∣
µ=µ∗

̸= 0 corresponds to

dα

dµ

∣∣∣∣
µ=µ∗

=
a′0 + a1a

′
2 + a′1a2

2(a1 − a22)

∣∣∣∣
µ=µ∗

̸= 0,

provided a1(µ
∗) ̸= a22(µ

∗).

(H3) Nondegeneracy condition:
The first Lyapunov coefficient of the restricted equation to the center
manifold of the µ∗-system (45) is nonzero (see [29] for more details).
The existence of this manifold is ensured by the non-hyperbolicity con-
dition above.
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We additionally assume that

(H4) Existence of a stable manifold:
At µ = µ∗, a stable manifold exists if the third eigenvalue of the matrix
J(C∗, A∗, H∗) is negative. In particular, this last condition takes place
if

tr J(C∗, A∗, H∗) = a2(µ
∗) < 0.

Under (H1-4), the µ-system (45) is locally topologically equivalent to
the normal form

(48)

{
z′ = (η + i)z ± z |z|2
v′ = −v ,

with η ≡ η(µ). We observe that, in this last system, the variables z
and v are uncoupled, with z giving the dynamics on the parameter-
dependent center manifold, for small |µ− µ∗|, and v giving the direc-
tion of the stable manifold.

IX.3. Simulation. In the further numerical simulation, different con-
nection strengths will be set for the parameter µ. Once µ is chosen,
the remaining constants on system (45) will be set according to the
following assumptions:
(A1) All the connection strengths {ejk, ijk} lie in the interval [0, 10]
(this way, we impose a limitation of these constants);
(A2) µ2 > 0 and the interconnections between the amygdala and the
hippocampus are stronger than those between the hippocampus and
the cortex: eah, eha > ehc, ech;
(A3) The connection strength eah (resp. ech) is lower than eha (resp.
ehc);
(A4) |µ1| = eca.

In fact, (A1-4) are assumptions about the dendritic density inside the
mPFC-amygdala-hippocampus triad and the significance of intersect-
ing roles of certain connection strenghts, in a way that the unperturbed
framework will be more compatible with the phenomenon of fear ex-
tinction (for example, we assume that the connection eah - resp. ech -
has a more relevant role in the formation/recovery of fear memories,
when compared with the pathway eha - resp. ehc -, so that it is accepted
that eah < eha - resp. ech < ehc); on the other hand, it is assumed that
the strength of the connection eca determines the magnitude of the sum
of the pre and infralimbic outputs, so that |µ1| = eca.

Example IX.3.1. Consider the set of connection strengths

(49) E := {ech = 3, eah = 6, iah = 2, ehc = 5, eha = 7} ,
whose values clearly satisfy (A1-4).
For now, the constants ecc and µ1 = eac−iac < 0 are left as parameters.
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In particular, for our purposes, we set eac = 0, so that µ1 = −iac. Two
reasons stand for the choice of those parameters:

(1) Our study will be based fundamentally on the effects of the
infralimbic output iac on the dynamics of the whole triad;

(2) The self-connection ecc, being functionally separated from the
miscellaneous connections, is adequate for the pairing with iac,
as a bifurcation parameter.

Substituting the above fixed connection strengths in system (45) and
bearing in mind the assumption (A4) above, we obtain the following
equations

(50)

 C ′ = −C + F (eccC + iacA+ 3H − βc)
A′ = −A+ F (−iacC + 4H − βa)
H ′ = −H + F (5C + 7A− βh)

.

The constants βc,a,h are chosen so that

(C∗, A∗, H∗) = (0.8, 0.2, 0.5)

is an equilibrium of (50) at ecc = e∗cc and iac = i∗ac, values for which the
matrix J(0.8, 0.2, 0.5) has a pair of imaginary eigenvalues.
We observe above that C∗ > A∗, i.e. we are assuming that the cortical
activity exceeds the amygdalar activity, as expected in a phenomenon
of fear extinction (recall the stipulated hypothesis that the unperturbed
framework agrees with the conditions of the fear extinction phenome-
non).

According to our previous construction, the Hopf bifurcation curve at
(C∗, A∗, H∗) = (0.8, 0.2, 0.5) is defined by the condition

(51)

{
C : a0 + a1a2 = det J(0.8, 0.2, 0.5) + a1tr J(0.8, 0.2, 0.5) = 0
S : a1 < 0

,

with

a1 = −1.28 + 0.32ecc − 0.0256i2ac

and

(52) J(0.8, 0.2, 0.5) =

 0.16ecc − 1 0.16iac 0.48
−0.16iac −1 0.64
1.25 1.75 −1

 ,

both depending on the pre-defined parameters iac and ecc.
Only one of the branches of the curve C in (51) intersects the half-
plane S. In particular, that branch can be expressed explicitely as
ecc = ζ(iac) (i.e. as a function of the parameter iac). The intersection
C ∩ S is represented in Figure 24. This intersection is such that the
parameter ecc ranges, approximately, between 5.81 and 12.5, while iac
lies above 4.752. The set S ∩C then represents the possible bifurcation
values for a Hopf bifurcation to occur in the (ecc, iac)-system (50); the
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star notation for those points is used from now on.

For each i∗ac > 4.752, the Jacobian matrix in (52) has eigenvalues

(53)
λ1,2 = ±

√
1.28− 0.32ζ(i∗ac) + 0.0256(i∗ac)

2 i,
λ3 = −3 + 0.16ζ(i∗ac)

.

In particular, λ3 ∈ R is always negative for any i∗ac > 4.752.
We observe that the assumptions (H1) and (H4) in subsection IX.2
are indeed verified, in this specific case (the first by construction and
the second by condition (53)). The transversality condition (H2), as
well as the non-degeneracy condition (H3), although more complex to
deduce analytically (we could use the Implicit Function Theorem for
the effect), hold in our simulations.

In Figure 24, we also represent the set of bifurcation values (e∗cc, i
∗
ac) ∈

C∩S, say T , that will serve our further simulations. This set is defined
by

(54) T := {(e∗cc, i∗ac) ∈ C ∩ S : i∗ac = 5.5 + h/2, h ∈ {0, 1, ..., 9}} .

Thus, the set T comprises some Hopf bifurcation values of the (ecc, iac)-
system (50) separated, in the iac-direction, by a step of size 1/2. More-
over, T is well-defined, since each component of a pair (e∗cc, i

∗
ac) ∈ T is

in conformity with the proposed assumption (A1) above (which can be
easily verified deducing the expression for the function ζ).
Let T 1 and T 2 be, respectively, the set of first and second components
of the elements of T .

Figure 24. Hopf bifurcation curve at (C∗, A∗, H∗) =
(0.8, 0.2, 0.5), being the intersection of the curve C with
the half-plane S. The blue points are the simulation
points in the set T ⊆ C ∩ S.
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For every admissible pair (e∗cc, i
∗
ac) ∈ T , the point (C∗, A∗, H∗) =

(0.8, 0.2, 0.5) is the unique equilibrium of the (e∗cc, i
∗
ac)-system (50) and

it is asymptotically stable.

IX.3.1. Bifurcation of periodic solutions. In order to infer about the
impact of perturbing certain connection strengths on the oscillatory
activity, we consider the following system, for some pair (e∗cc, i

∗
ac) =

(ζ(i∗ac), i
∗
ac) ∈ T ,

(55)

 C ′ = −C + F ((e∗cc + ϵ1)C + i∗acA+ (3 + ϵ2)H − β∗
c )

A′ = −A+ F (−i∗acC + (4 + ϵ3)H − β∗
a)

H ′ = −H + F ((5 + ϵ4)C + (7 + ϵ5)A− β∗
h)

,

provided

(56)
β∗
c = 0.8e∗cc + 0.2i∗ac + 1.5− F−1(0.8),
β∗
a = −0.8i∗ac + 2− F−1(0.2),
β∗
h = 5.4− F−1(0.5).

We observe that (C∗, A∗, H∗) = (0.8, 0.2, 0.5) is an equilibrium when
all the ϵj vanish.

When displaced from zero, each ϵj is designed to perturb the corre-
sponding connection strength of the (e∗cc, i

∗
ac)-system (50) (ϵ1 perturbs

ecc = e∗cc, ϵ2 perturbs ech = 3, and so forth). This perturbation will be
performed individually, in the sense that if we take ϵj to be a bifurca-
tion parameter of system (55), for some j, then all the remaining ϵk,
with k ̸= j, are set to be zero.
More specifically, we want that perturbation to be such that an os-
cillatory dynamics in the (e∗cc, i

∗
ac)-system (50), which arise via Hopf

bifurcation, exists. As a consequence of this, the ϵj do not necessarily
have all a common sign. In fact, depending on whether the Hopf bi-
furcation is supercritical or subcritical on each connection strength of
(50), we may either take ϵj > 0 or ϵj < 0, respectively. For example,
fixing some (e∗cc, i

∗
ac) ∈ T , the ech-system C ′ = −C + F (e∗ccC + i∗acA+ echH − β∗

c )
A′ = −A+ F (−i∗acC + 4H − β∗

a)
H ′ = −H + F (5C + 7A− β∗

h)

admits a supercritical Hopf bifurcation at ech = 3, so that ϵ2 in system
(55) must be positive in order to guarantee the existence of periodic
solutions in a neighborhood of ech = 3.

The analysis that will follow is based on two main goals:

(1) For each (e∗cc, i
∗
ac) ∈ T , we investigate the impact of perturb-

ing (in the direction that promotes the desired dynamics) each
connection strength of

{ecc = e∗cc, ech = 3, µ2 = 4, ehc = 5, eha = 7}
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on the period/amplitude of the oscillations (goal 1);
(2) In our simulations, the oscillations disappear with the progres-

sive reduction of the amplitude and the asymptotic behaviour
of the system switches to the convergence to some equilibrium
point. For further discussion, we will be interested in both the
extension of this oscillatory motion and the coordinates of the
post-oscillatory equilibrium (goal 2). We use the star notation
for those values of ϵi until which the oscillations are sustained.

Once the results of these goals are achieved, they will lack a suitable
contextualization in the light of the main subject of this text, which
is the communication between neuronal areas. The following topic
suggests how we may regard the results in order to create the proper
environment for discussion.

IX.3.2. How the oscillatory dynamics and surrounding behaviours will
be interpreted in this context? Miscellaneous mechanisms can under-
lie the generation of brain waves. As noted by Buskila et al. in [6],
changes in neuronal excitability is one of those mechanisms, specially
when they result from alterations in the extracellular concentrations of
ions. By neuronal excitability it is meant the neuron’s susceptibility to
generate action potentials, preferentially in response to a small stimu-
lus.
As the connectivity between two neuronal populations is enhanced, the
response of the targeted cluster to the eletrical stimulus coming from
other population is improved as well. In this sense, it is reasonable to
assume here that perturbations on the functional connection strength
between two neural populations is conducive to the generation of a
rhythmic eletrical activity. Conversely, neural oscillations facilitate
synaptic plasticity and interregional communication, as observed by
Totty et al. in [50]. Thus, while a (small) perturbation on a connec-
tion strength triggers an oscillatory activity, this dynamics extends the
level of connectivity, in a way that a stronger/weaker connection is ob-
tained (see the scheme of Figure 25). In particular, the activity of the
connected clusters may suffer variations after this process.

In order to integrate the above ideas in our modified model, we consider
the scheme of Figure 26 which mainly depicts the enhancement (the
weakening would be totally analogous) of a given connection strength
(denoted by a) and the dynamics that are observed during the progress.
Three steps of this evolution are considered:

(1) In step A, two brain regions (brain region I, BR1, and brain re-
gion II, BR2) interact with a certain level of connectivity (this
connection corresponds to a parameter of the model), in a way
that the neuronal model is locally convergent to a resting state
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Figure 25. Scheme proposing a mechanism of interre-
gional strenghtening: a small perturbation promotes a
low-grade enhancement of the connectivity between neu-
rons; this effect, in turn, facilitates the generation of
rhythmic activities, which lead to a optimal strength-
ening of that connectivity (also reflecting changes in
the neuronal firing, represented by yellow arrows whose
thickness alludes to the rate of spiking). It should be
noted that the scheme does not exhibit other mecha-
nisms of neuronal strengthening, apart from the increase
of neurotransmitters in the synapse. Another example
concerns the quantity of membrane receptors (see [28]).

of activity (corresponding to an asymptotically stable equilib-
rium point). In particular, at this resting state, the activity of
the brain region I is denoted VA(BR1), while the activity of the
brain region II is denoted VA(BR2). Furhermore, in our model,
the strength of the connection corresponds, at this stage, to a
Hopf bifurcation value;

(2) In step B, after a perturbation on a connection strength be-
tween those regions is performed (we can suppose that it is
enhanced), the brain region II becomes more suscetible to the
stimuli from region I (and vice-versa) and an oscillatory dy-
namics is initiated: the eletrical activities of the brain regions
I and II oscillate under well-defined amplitude and oscillatory
frequency (i.e., the amplitude/frequency do not vary in long-
term for each value of the perturbed connection). In the phase
portrait of the neuronal model, this scenario corresponds to
the emergence of a stable limit cycle (only stable closed orbits
are physically observable). During this oscillatory stage, the
branch of the equilibrium point is unstable, i.e. the system lo-
cally favors the convergence to rhythmic activities, rather than
a resting state. Only this way may we give meaning to the
presence of oscillations;
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(3) The periodic solutions are sustained until the connection achieves
its optimal strengthening/weakening, point from which the orig-
inal asymptotic behaviour of step A is recovered. Since the
past oscillatory dynamics altered the interregional communica-
tion, it is expected that the new resting state encodes differ-
ent levels of neural activity, when in comparison with that of
step A (in our diagram, the activity of the brain region I in-
creased, while the activity of the brain region II decreased, i.e.
VC(BR1) > VA(BR1) and VC(BR2) < VA(BR2)). This last
situation is depicted in the step C.

Recalling the construction from subsection IX.2 and the setups in Ex-
ample IX.3.1, the steps A, B and C are quali/quantitatively read as
follows:

(1) The equilibrium point of step A is the point (C∗, A∗, H∗) =
(0.8, 0.2, 0.5) and the connection strength a between the neu-
ronal regions, being unperturbed, satisfies ϵi = 0 in system (55);

(2) The oscillatory dynamics of step B emerges via Hopf bifurca-
tion, as some ϵi is displaced from zero - for further discussion,
we will be concerned with the main features of those periodic
solutions (amplitude, frequency, etc.);

(3) The oscillations are sustained until ϵi = ϵ∗i and the levels of
activity encoded by the resting state in the step C are, at this
point, unknown but to be identified in the presence of the sim-
ulation diagrams. It will turn out that this resting state is
actually a new Hopf point of the equilibrium branch.

In our simulations, the assumptions regarding the equilibrium/limit
cycle stability (as in Figure 26) apply.

In conclusion, the above approach explains some mechanisms of neu-
ronal plasticity in function of the encountered dynamics in the circuit.
In practice, only the inverse relation is performed, that is, one perturbs
a connection strength in order to observe the dynamical impact. We
enunciate below some additional conditions and ideas to follow while
establishing the bridge between the modified model and the environ-
mental contextualization, at the same time, describing some weake-
nesses of our framework:

• The frequency of the oscillations, as a function of the admissi-
ble values (those that sustain the rhythmic effect) of a certain
connection strength must be a well-behaved function (in this
case, a funtion which does not vary between distant ranges of
frequency). In our simulations, this property is observed. Fur-
thermore, for interpretative effects, it is not viable to implicate
a numerical oscillatory frequency, for some level of connectivity,
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in a mechanism that takes place in vivo (this is due to the equal
time scales attributed to the variables). Instead, we may refer
to transitions between ranges of frequency;

Figure 26. Enhancement of the connectivity between two brain re-
gions, the brain region I (BR1) and the brain region II (BR2). This
process is split into three main stages, numerated A, B and C. Each
stage represents a specific dynamics in the phase portrait of the modi-
fied model. Furthermore, we use the abbreviations V for the activities
of the brain regions in each stage.

• In order to integrate the dependence of the interregional strength-
ening/weakening relatively to the passage of time (as a conse-
quence of the oscillatory activity), we assume that each con-
nection strength is, in fact, a function of time, but occuring
in a time scale that is much smaller than that inherent to the
neuronal communication. Since, in the course of fear condition-
ing/extinction, we mostly care about long-term strengthening,
the above assumption yields a suitable approximation to the
desired perspective. Formally this translates into adopting the
system (which is an extension of (55))
C ′ = −C + F ((e∗cc + ϵ1)C + i∗acA+ (ech + ϵ2)H − β∗

c )
A′ = −A+ F (−i∗acC + (µ2 + ϵ3)H − β∗

a)
H ′ = −H + F ((ehc + ϵ4)C + (eha + ϵ5)A− β∗

h)
τiϵ

′
i = g(ϵi, C, A,H)

,

for sufficiently high τi (the constants β
∗
c,a,h were defined in (56))

and some continuous function g.
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As in previous sections, the diagrams supporting the simulations were
obtained using the software Matcont on MATLAB. Some of the ob-
tained curves may contain irrelevant information in our biological con-
text (for example, some connection strengths may change sign during
the bifurcation analysis). We will mantain this information for a math-
ematical description.
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IX.3.3. Simulation diagrams.

⋆ Constant ecc = e∗cc
We first investigate what happens as we perturb ecc = e∗cc = ζ(i∗ac) in
system (50), for each i∗ac ∈ T 2. Recall that ϵ1 is defined to be magni-
tude of the pertubation on e∗cc (the remaining ϵj, with j ̸= 1, are set
to be zero), as suggested in system (55). In this case, ϵ1 = 0 is a Hopf
bifurcation value and stable oscillations exist for ϵ1 > 0, the bifurcation
being then supercritical.

In the simulations of Figure 28, i∗ac takes the values in the set

T ∗
2 := {5.5, 6.5, 7.5, 8.5, 9.5} ⊆ T2

and each row of diagrams corresponds to one of these values, in the
same ascending order (i.e. the first row corresponds to i∗ac = 5.5, the
second to i∗ac = 6.5 and so forth).
Each diagram represents the equilibrium trace position, relatively to
the variable C (left diagram) or the variable A (right diagram), in
a neighborhood of ϵ1 = 0, with ϵ1 the bifurcation parameter of the
system (55): this dependence is written (C∗(ϵ1), A

∗(ϵ1), H
∗(ϵ1)). In

particular, ϵ1 = 0 is (by our previous construction) a Hopf bifurca-
tion value of that system - it corresponds to the Hopf point H1(ϵ1 =
0, C = 0.8, A = 0.2, H = 0.5) in the diagrams - and a stable oscilla-
tory dynamics (s.l.c. in the diagrams) emerges from the equilibrium
(C∗, A∗, H∗) = (0.8, 0.2, 0.5) via Hopf bifurcation for ϵ1 > 0. The am-
plitude and extension of the oscillations are as well identified in the
diagrams.

For each i∗ac ∈ T ∗
2 and as ϵ1 increases from zero, the produced oscilla-

tions (originally emerging from the Hopf point H1) cease in a new Hopf
point7, in a way that the equilibrium (C∗(ϵ1), A

∗(ϵ1), H
∗(ϵ1)) switches

stability, becoming asymptotically stable (a.s. in the diagrams). We
record in Table 4 the coordinates of the new Hopf points (Hi∈{2,...,11})

8,
as follows:

Hi,i+1(ϵ1 = ϵ∗1, C = C∗(ϵ∗1), A = A∗(ϵ∗1), H = H∗(ϵ∗1)), i ≥ 2

(the branch of limit cycles is defined in the interval ϵ1 ∈ ]0, ϵ∗1[).
In conclusion:

• For ϵ1 ≤ 0, but sufficiently close to zero, the equilibrium point
(C∗(ϵ1), A

∗(ϵ1), H
∗(ϵ1)) is asymptotically stable (a.s.);

7This point is associated to a subcritical Hopf bifurcation.
8For each i ≥ 2, the Hopf points Hi and Hi+1 only differ on the dependent

variable of the respective diagram. Since in Table 4 we collect the coordinates,
relative to all variables, of each Hi, we do not make distinction between Hopf
points of the form Hi and Hi+1, i ≥ 2.
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• For ϵ1 > 0 between the two Hopf points H1 and Hi>1, the
equilibrium (C∗(ϵ1), A

∗(ϵ1), H
∗(ϵ1)) is unstable (u.), while the

limit cycle is stable (s.l.c.);
• For further values of ϵ1 > 0 (outside the gap between H1 and
Hi>1), the equilibrium point (C∗(ϵ1), A

∗(ϵ1), H
∗(ϵ1)) recovers its

asymptotic stability.

i∗ac Hi,i+1 ϵ∗1 C∗(ϵ∗1) A∗(ϵ∗1) H∗(ϵ∗1)
5.5 H2,3 0.654 0.803 0.150 0.417
6.5 H4,5 0.809 0.807 0.142 0.408
7.5 H6,7 1.032 0.813 0.129 0.394
8.5 H8,9 1.293 0.819 0.116 0.379
9.5 H10,11 1.570 0.825 0.103 0.365

Table 4. Coordinates (relative to all variables) of the
second Hopf points in Figure 28, for each i∗ac ∈ T ∗

2 .

In Figure 27, each blue curve associates to a specific i∗ac ∈ T2 and dis-
plays the variation of the period of the oscillations as ϵ1 > 0 increases,
while suggesting how extent the oscillatory dynamics is. In particular,
the descending sequence of curves is obtained as the infralimbic path-
way i∗ac goes increasingly from 5.5 to 10, with a step size equal to 1/2.

Figure 27. Period of the oscillations of system (55) in
function of ϵ1 > 0. Each blue curve represents a specific
value of i∗ac ∈ T2, according to the indicated direction.
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(28a) (28b)

(28c) (28d)

(28e) (28f)

(28g) (28h)

(28i) (28j)

Figure 28. Asymptotic behavior of the ϵ1-system (55), for each
i∗ac ∈ T ∗

2 , relatively to the variables C and A. The coordinates (with
respect to all variables) of Hi, are identified in Table 4. The blue curves
are functions of ϵ1, describing the variation of the first two coordinates
of the equilibrium point (C∗(ϵ1), A

∗(ϵ1), H
∗(ϵ1)). This equilibrium is

unstable (u.) between H1 and Hi and asymptotically stable (a.s.) out-
side that gap. Vertical segments are the diameters of the successive
stable limit cycles (s.l.c.).
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⋆ Constant ech = 3

Perturbing ech = 3 in system (50) is, in this case, equivalent to taking
ϵ2 as a parameter in system (55) (while ϵj = 0, for j ̸= 2). The results
are very similar to those for ecc = e∗cc. For example, ϵ2 = 0 is a Hopf
bifurcation value, a stable limit cycle arises for ϵ2 > 0 and we have a
supercritical Hopf bifurcation.

The diagrams of Figure 30 have the same background as those in the
previous analysis for ecc = e∗cc, also showing similar results, so that an
analogous description applies.
In particular, the coordinates (ϵ∗2, C

∗(ϵ∗2), A
∗(ϵ∗2), H

∗(ϵ∗2)) of the Hopf
points Hi>1 are identified in the Table 5.

i∗ac Hi,i+1 ϵ∗2 C∗(ϵ∗2) A∗(ϵ∗2) H∗(ϵ∗2)
5.5 H2,3 1.285 0.807 0.148 0.418
6.5 H4,5 1.766 0.815 0.134 0.404
7.5 H6,7 2.447 0.825 0.117 0.388
8.5 H8,9 3.237 0.834 0.100 0.372
9.5 H10,11 4.078 0.844 0.086 0.359

Table 5. Coordinates of the second Hopf points in
Figure 30, for each i∗ac ∈ T ∗

2 .

In Figure 29, we represent, for each i∗ac ∈ T2, the extension of the oscil-
latory motion and the variation in their frequency as ϵ2 > 0 increases.
The descending order of the blue curves coincides with the ascending
value of h = 0, ..., 9 in i∗ac = 5.5 + h/2 (analogously to Figure 27).

Figure 29. Period of the oscillations of system (55) in
function of ϵ2 > 0. Each blue curve represents a specific
value of i∗ac ∈ T2.
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(30a) (30b)

(30c) (30d)

(30e) (30f)

(30g) (30h)

(30i) (30j)

Figure 30. Asymptotic behavior of the ϵ2-system (55),
for each i∗ac ∈ T ∗

2 , relatively to the variables C and A.
The coordinates of the Hopf points Hi,i+1, with i ≥ 2,
are identified in Table 5.
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⋆ Constant µ2 = 4

System (55) undergoes a Hopf bifurcation at ϵ3 = 0, with a stable limit
cycle emerging for ϵ3 < 0 and thus we are in the presence of a subcrit-
ical Hopf bifurcation.

In the following, we skip a detailed description of Figures 31 and 32
below, as they follow the same pattern from the previous simulations.

i∗ac Hi,i+1 ϵ∗3 C∗(ϵ∗3) A∗(ϵ∗3) H∗(ϵ∗3)
5.5 H2,3 -2.794 0.286 0.454 0.312
6.5 H4,5 -4.006 0.318 0.437 0.320
7.5 H6,7 -5.309 0.329 0.430 0.323
8.5 H8,9 -6.856 0.326 0.432 0.321
9.5 H10,11 -8.708 0.314 0.437 0.316

Table 6. Coordinates of the second Hopf points in
Figure 32, for each i∗ac ∈ T ∗

2 .

Figure 31. Period of the oscillations of system (55) in
function of ϵ3 < 0. Each blue curve represents a specific
value of i∗ac ∈ T2.
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(32a) (32b)

(32c) (32d)

(32e) (32f)

(32g) (32h)

(32i) (32j)

Figure 32. Asymptotic behavior of the ϵ3-system (55),
for each i∗ac ∈ T ∗

2 , relatively to the variables C and A.
The coordinates of the Hopf points Hi,i+1, with i ≥ 2,
are identified in Table 6.
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⋆ Constant ehc = 5

When ϵ4 is taken as a parameter in system (55), a Hopf bifurcation
occurs at ϵ4 = 0 and a stable limit cycle emerges in a neighborhood
ϵ4 < 0, implying that the bifurcation is subcritical.

i∗ac Hi,i+1 ϵ∗4 C∗(ϵ∗4) A∗(ϵ∗4) H∗(ϵ∗4)
5.5 H2,3 -5.542 0.261 0.546 0.152
6.5 H4,5 -6.940 0.314 0.541 0.098
7.5 H6,7 -7.852 0.367 0.523 0.058
8.5 H8,9 -9.033 0.414 0.502 0.028
9.5 H10,11 -12.917 0.453 0.482 0.004

Table 7. Coordinates of the second Hopf points in
Figure 34, for each i∗ac ∈ T ∗

2 .

Figure 33. Period of the oscillations of system (55) in
function of ϵ4 < 0 (ϵj = 0, for j ̸= 4). Each blue curve
represents a specific value of i∗ac ∈ T2.
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(34a) (34b)

(34c) (34d)

(34e) (34f)

(34g) (34h)

(34i) (34j)

Figure 34. Asymptotic behavior of the ϵ4-system (55),
for each i∗ac ∈ T ∗

2 , relatively to the variables C and A.
The coordinates of the Hopf points Hi,i+1, with i ≥ 2,
are identified in Table 7.
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⋆ Constant eha = 7

System (55) admits a Hopf bifurcation at ϵ5 = 0, with a stable limit
cycle arising in a neighborhood ϵ5 < 0. The Hopf bifurcation is then
subcritical.

i∗ac Hi,i+1 ϵ∗5 C∗(ϵ∗5) A∗(ϵ∗5) H∗(ϵ∗5)
5.5 H2,3 -2.121 0.358 0.483 0.223
6.5 H4,5 -2.665 0.462 0.429 0.227
7.5 H6,7 -2.872 0.549 0.376 0.249
8.5 H8,9 -2.829 0.617 0.331 0.282
9.5 H10,11 -2.601 0.670 0.294 0.320

Table 8. Coordinates of the second Hopf points in
Figure 36, for each i∗ac ∈ T ∗

2 .

Figure 35. Period of the oscillations of system (55) in
function of ϵ5 < 0 (ϵj = 0, for j ̸= 5). Each blue curve
represents a specific value of i∗ac ∈ T2.
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(36a) (36b)

(36c) (36d)

(36e) (36f)

(36g) (36h)

(36i) (36j)

Figure 36. Asymptotic behavior of the ϵ5-system (55),
for each i∗ac ∈ T ∗

2 , relatively to the variables C and A.
The coordinates of the Hopf points Hi,i+1, with i ≥ 2,
are identified in Table 8.
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X. Results

Recall system (55), which perturbs each of the connection strengths
in system (50). In particular, provided ϵj = 0 in (55), the point
(C∗, A∗, H∗) = (0.8, 0.2, 0.5) is an equilibrium and the Jacobian ma-
trix has a pair of pure imaginary eigenvalues, when evaluated at that
equilibrium.
In our simulations, every perturbation was performed and considered
individually and the privileged direction of perturbation was that pro-
moting an oscillatory dynamics. Considering one and only one ϵi as a
parameter of system (55), with the remaining set to zero, the under-
lying Hopf bifurcation occurs at ϵi = 0 and is either supercritical or
subcritical on that parameter, as summarized in the table below.

Parameter Type of Hopf bifurcation
ϵ1, ϵ2 Supercritical
ϵ3, ϵ4, ϵ5 Subcritical

Table 9. Classification of the Hopf bifurcation for each
perturbed connection strength.

We now analyse, in detail, the observed results of the simulations, for
each perturbed connection strength. As previously indicated, these
results will fundamentally be based on the following aspects:

(1) The interval ]0, ϵ∗i [ (or ]ϵ∗i , 0[) that represent the extension of
the oscillatory dynamics. According to the topic IX.3.2, that
information transmits, on one hand, the sensibility of the sys-
tem to the generation of oscillations and, on the other, the level
of interregional strength that resulted from the oscillations;

(2) The period and the amplitude of the oscillations, which give
insight about the sensibility of the system to the variation of
certain connection strengths, as well as the transitions between
ranges of frequency;

(3) The coordinates of the second Hopf pointsHi, with i ≥ 2, which
tells how much the post-oscillatory eletrical activities varied
relatively to the pre-oscillatory ones.

We note that, while the extension and frequency variation of the oscil-
latory dynamics were tested for i∗ac ∈ T2, for convenience, the amplitude
of the rhythmic effect and coordinates of the second Hopf points were
deduced for more restricted values of i∗ac, namely i∗ac ∈ T ∗

2 . Once one
of these features is invoked, it is implicit the values of i∗ac that are
considered.
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⋆ Constant ecc = e∗cc
Let i∗ac ∈ T2. By Table 9, periodic solutions arise for ϵ1 > 0, when per-
turbing the constant ecc = e∗cc = ζ(i∗ac) in system (50). This oscillatory
dynamics is such that:

(1) Interval ]0, ϵ∗1[: the value of ϵ∗1 increases with i∗ac ∈ T2. At the
second Hopf bifurcation, the equilibrium satisfies

C∗(ϵ∗1) > C∗ = 0.8, A∗(ϵ∗1) < A∗ = 0.2

and
C∗(ϵ∗1)− C∗ < A∗ − A∗(ϵ∗1),

for each i∗ac ∈ T ∗
2 . Hence there is an increased cortical activity

and a decreased amygdalar firing, effect that is more marked
in the latter case and is reinforced with the augmentation of
i∗ac ∈ T ∗

2 ;

(2) Period and amplitude of the oscillations: for each i∗ac ∈
T2, the period of the oscillations are increasing functions of
ϵ1 ∈ ]0, ϵ∗1[. In particular, this variation is more profound for
lower values of i∗ac ∈ T2 (extending to i∗ac = 4.9, the period of
the oscillations range approximately from 46 to 75, these values
corresponding to different bands of frequency, according to Ta-
ble 3 in subsection VIII.1). On the other hand, the amplitude
of the rhythmic activity is well regulated, in the sense that the
periodic solutions do not jump between opposite states of ac-
tivity, namely up and down states. In particular, this effect is
enhanced as i∗ac ∈ T ∗

2 increases.

⋆ Constant ech = 3

The effects of perturbing ech = 3 in system (50), achieved by taking
positive values of ϵ2 in (55), are very similar to those previously ob-
served for ecc = e∗cc, so that we skip a detailed description. The only
major difference to be underlined is the fact that

ϵ∗1(i
∗
ac) < ϵ∗2(i

∗
ac), ∀i∗ac ∈ T2

(ϵ∗i (i
∗
ac) means ϵ∗i in function of i∗ac), the oscillatory dynamics ceasing

with the convergence to a resting state which is even more displaced, in
the same direction, from the initial levels of activity (in particular, the
amygdalar activity is more inhibited and the cortical activity is more
enhanced, when in comparison with the perturbation of ecc = e∗cc).
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⋆ Constant µ2 = 4

Let i∗ac ∈ T2. Periodic solutions arise for ϵ3 < 0, when perturbing the
constant µ2 = 4 in system (50). This oscillatory dynamics is such that:

(1) Interval ]ϵ∗3, 0[: the value of ϵ∗3 decreases, in the negative side,
with i∗ac ∈ T2; there is also a great sensibility to these oscilla-
tions, in the sense that large perturbations of µ2 = 4 are able
to sustain the rhythmic effect. Once terminated, the stable
oscillations give place to a stable equilibrium satisfying

0.8 = C∗ > C∗(ϵ∗3) < A∗(ϵ∗3) > A∗ = 0.2

and
C∗ − C∗(ϵ∗3) > A∗(ϵ∗3)− A∗,

meaning that the cortical activity decreases and the amygdalar
firing increases, the first variation being more prominent. Those
conditions do not show any change with the augmentation of
i∗ac ∈ T ∗

2 ;

(2) Period and amplitude of the oscillations: perturbing µ2 =
4 to lower values results in a quick convergence to ultrafast os-
cillations9 [25], especially when µ2 changes sign, i.e. when the
connection strength becomes inhibitory (loosing its meaning in
the main neuronal circuit). The high amplitude of the peri-
odic solutions is also evident for all values of i∗ac ∈ T ∗

2 , with the
rhythmic activity jumping between up and down states. These
features bring a sense of uncontrollability to the oscillatory dy-
namics: a little perturbation on µ2 = 4 makes the system escape
from a sufficiently small neighborhood of the equilibrium point
(C∗ = 0.8, A∗ = 0.2, H∗ = 0.5).

⋆ Constant ehc = 5

Fixing i∗ac ∈ T2, we found that an oscillatory dynamics emerges for
ehc < 5 and satisfies ϵ∗3(i

∗
ac) < ϵ∗4(i

∗
ac), meaning that the oscillations are

more sustained when perturbing ech = 5 than when perturbing µ2 = 4.
In contrast, both the period and amplitude show a similar behaviour
to that of perturbing µ2 = 4. Additionally, the post-oscillatory conver-
gence of the system also favors the amygdalar activity in detriment of
the cortical firing rate. However, unlike the case of µ2, this last effect
is slightly attenuated as i∗ac ∈ T ∗

2 increases.

9We consider as ultrafast those oscillations exceeding 200 Hz of frequency.
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⋆ Constant eha = 7

In comparison with the miscellaneous connection strengths, the per-
turbation of eha = 7 shows the most distinct effects in what concerns
the features of the generated oscillations, which take place for eha < 7.
In fact, for 8 ≥ i∗ac ∈ T2, we have that ϵ∗5 is an increasing function of
i∗ac, while for 8 ≤ i∗ac ∈ T2, that function is decreasing. This dichotomy
was not observed in the remaining connections.
On the other hand, for all values of i∗ac ∈ T2, the period of the rhyth-
mic activity converges to fast oscillations. Finally, the amplitude of the
oscillatory dynamics decreases with i∗ac ∈ T ∗

2 and the post-oscillatory
convergence of the system approaches gradually to the initial levels of
activity, with

C∗(ϵ∗5) ≈ C∗ = 0.8, A∗(ϵ∗5) ≈ A∗ = 0.2,

for the highest values of iac ∈ T ∗
2 .

For convenience, we exhibit below some suggestive diagrams showing
how much the post-oscillatory equilibrium (C∗(ϵ∗i ), A

∗(ϵ∗i ), H
∗(ϵ∗i )) is

displaced, in the vertical direction, from the initial levels of activity
(ILA for short, numerically given by (C∗ = 0.8, A∗ = 0.2, H∗ = 0.5)),
for each i∗ac ∈ T ∗

2 . In particular, we assume that there is an affine con-
tinuity (continuity by poligonal segments) between consecutive values
of i∗ac, so that straight segments are used between the numerical points
(this assumption will be broadly considered in the discussion of the
results).
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(37a) Constant ecc = e∗cc (37b) Constant ech = 3

(37c) Constant µ2 = 4 (37d) Constant ehc = 5

(37e) Constant eha = 7

Figure 37. Overview of the displacement, in the ver-
tical direction, of the post-oscillatory neuronal activities
(numerically given by (C∗(ϵ∗i ), A

∗(ϵ∗i ), H
∗(ϵ∗i ))) from the

initial levels of activity (ILA, given by (C∗, A∗, H∗) =
(0.8, 0.2, 0.5)), for the different values of i∗ac ∈ T ∗

2 (the
diagrams are not drawn on the same scale).
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XI. Discussion

Setting some connection strength of interest as a parameter for the
modified Wilson-Cowan model, we performed a perturbation apt to
generate an oscillatory dynamics. The direction of this perturbation
was that promoting a meaningful environment for interregional trans-
formations, according to the assumptions of the topic IX.3.2. This
transformations will further be classified as positive, negative or neu-
tral, under our subjective reading of the results described previously.
As suggested by the diagrams of Figure 37, a suitable discussion of the
results requires some assumptions about the continuity between the
simulation points. In particular, we can assume that there is an affine
continuity between those points.

The above results are conclusive in the following main aspect: apply-
ing small perturbations on each targeted connection strength (in the
proper direction), the oscillatory dynamics created in a late phase of
fear extinction (i.e. when the infralimbic cortical pathway is stregth-
ened) consist of faster periodic solutions. Given the correlation between
fast oscillations (especially in the γ-band) and cognitive performance
[32], that observation possibly sheds light on the relevance of the cog-
nitive abilities and the (long-term) inhibition of fear expression.
In parallel, a weaker infralimbic pathway (present in an early phase of
fear extinction) is conducive to the generation of oscillations of lower
frequency.

We observe that both the cortical self-connection and the hippocampal
output to the cortex are exponentially strengthened as the oscillations
get faster along the ascending phases of fear extinction (see Figure 38),
effect that is more prominent in the latter connection. Since this pro-
cess is accompanied by an enhancement of the top-down control (i.e.
the amygdala is gradually inhibited by the mPFC10), we propose that
the early stage of extinction is mediated by the subcortical operation
in a slower rhythm (during the consolidation of memories, for exam-
ple), promoting the strengthening of the H → C innervation, while in
the late stage the cortical activity prevails in a faster rhythm (during
mechanisms that encourage an adaptive behaviour, for example), pro-
moting a dendritic strengthening in the cortex. The transition between
the ascending phases of extinction are then accompained by the reg-
ulation of the oscillatory frequency, with the oscillations moving from
the β to the γ band.
Given that, the impact of perturbing the hippocampus→cortex and
the cortical self-connection is suggestively classified as positive, in the

10The drop of the amygdalar activity is actually more significant than the en-
hancement of the cortical activity.
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sense that it functionally enhances the top-down control inherent to the
extinction of fear memories. The prominence of one connection rela-
tively to the other may predict a more relevant role in this phenomenon.

In contrast, our simulations suggest that ultrafast waves impair the
top-down control, via weakening of the pathways cortex→hippocampus
and hippocampus→amygdala. This fact, together with the promoted
high amplitudes between extremal activities, makes us assert that those
connections, when perturbed (to lower strengths), are conducive to a
negative impact on the whole triad. In particular, we direct this ob-
servation to the significance of maintaining the C → H and H → A
innervations with sufficient strengths in order to keep an healthy top-
down control, during any stage of extinction. This requirement could
have a role on the formation of extinction memories, for example.

Figure 38. Exponential strengthening of the cortical
connectivity along the fear extinction phenomenon, with
each blue curve being the inverse of the respective from
Figure 27. More specifically, as one travels through the
ascending phases of extinction, the oscillatory dynam-
ics gets gradually faster and promotes a rapid growth of
the cortical connectivity (the connectivity is recovered
from each step of extinction); a continuity (by straight
lines) between the endpoints of the curves is considered.
This continuity approach is supposed to be interpreted
together with that of Figure 37.

Lastly, the amygdala→hippocampus innervation reveals distinct results
from those commented above. In fact, while in an early phase of extinc-
tion, the same argument used for C → H and H → A applies, when
moving to a late phase, perturbing the connection A → H does not
show significant impacts on the initial amygdalar and cortical activi-
ties, suggesting that the triad becomes less sensible to the perturbation.
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This fact is reinforced by the smaller amplitudes and the subtle weak-
ening of the pathway in a late stage of extinction, when in comparison
with the early one. Since the A→ H innervation is involved in encod-
ing of positive/negative emotions, we propose that, in a late phase of
extinction, the triad gets less vulnerable to the negative stimuli urged
by the fear memory. Suggestively, the impact is here classified as being
neutral.
We summarize in the table below the classified effects of perturbing
the many connection strengths:

Connection strength Effect
ecc = e∗cc Positive
ech = 3 Positive
µ2 = 4 Negative
ehc = 5 Negative
eha = 7 Neutral

Table 10. (Subjective) effects of perturbing the differ-
ent connection strengths on the initial conditions of the
fear extinction phenomenon (conditions that are charac-
terized by the unperturbed framework set in Example
IX.3.1). The perturbations of the connections ecc = e∗cc
and ech = 3 (resp. µ2 = 4 and ehc = 5) are classified as
producing positive (resp. negative) effects. In contrast,
perturbing eha = 7 does not show significant impacts.

In Figure 39, we make an attempt to describe possible mechanisms
that, according to our simulations, are apt to optimize the conditions
of fear extinction. They are:

• Both the cortical connectivity and the hippocampus→cortex
are strengthened during the different stages of extinction; we
suggest that the early phase of extinction, which is mediated
by slower waves, is involved in the cognitive inhibition [10] and
memory formation, both demanded during emotional training;
in turn, the late phase of extinction, being mediated by faster
waves, comands long-term adaptive behaviours linked to emo-
tion regulation, telling the individual how to react under the
negative stimuli from fear (executive function). We note that
both the cognitive inhibition and adaptative behaviour are usu-
ally implicated in extra cortical areas beyond the mPFC, such
as the dorsolateral prefrontal cortex (see [10]);

• For a successful extinction of fear memories, several connec-
tions are required to achieve sufficient levels of strength, namely
the interconnections betwen the amygdala and the hippocam-
pus, as well as the cortical projetion to the hippocampus; the
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significance of this condition is higher in the early stages of
extinction, during, for example, the synaptic remodelling re-
sponsible for the installation of new memories; we also propose
that the recall of these memories [37], in a late stage of extin-
tion, primarily results from the hippocampus→amygdala and
cortex→hippocampus routes, the latter correlated with the ac-
tivation of both the hippocampus and mPFC.

Figure 39. Mechanisms of extinction optimization: the
letters γ and β allude for the type of oscillations related
with the labelled pathway, in a certain phase of extinc-
tion; the signs + and ++ represent the strengthening of
the corresponding pathways, with the double sign giving
a relative significance of one route relative to other; the
signs 0 and 00 determine the constancy requirement for
the corresponding connection strength, with the double
sign having the same reading as for +; the dashed arrow
points to a less significance of the pathway (neutral ef-
fect) on the conditions of fear extinction.
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XII. Future Directions

In this section, we describe some directions for future work.

• Geometric Singular Perturbation
Natural phenomena evolve on several time scales. In our con-
text, synaptic transmission between different brain regions is
included in such phenomena. Using equations in different time
scales to model the interaction between neurons can predict the
role of one type neuron in the whole complex.
Letting τ1,2 > 0, we put{

τ1U
′
e = −Ue + F (aeeUe − aeiUi − βe)

τ2U
′
i = −Ui + F (aieUe − aiiUi − βi)

.

The constants τ1,2 are usually interpreted as the average synap-
tic times for the corresponding populations [30].
For example, when periodic solutions are present, one may at-
tempt to ascertain how the oscillatory frequency and amplitude
are modulated in function of those constants and ultimately if
the oscillations are sustained under the perturbation of such
constants.

On the other hand, considering one of those time scales suf-
ficiently small and using methods from Singular Perturbation
Theory [23], a good approach consists of approximating the flow
of the above system, namely in a neighborhood of the so-called
slow manifold, defined by the Ue-nullcline.
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XIII. Appendix

XIII.1. A special case: Obsessive-compulsive disorder. Among
all the anxiety conditions, obsessive-compulsive disorder (OCD) [1, 45]
must be one of those whose symptoms are more prominent when it
comes to emotional imparment. In fact, this anxiety disorder involves
the presence of obsessions and/or compulsions11. While the former lie
in the pure emotional dysfunctionality of the condition, the latter is a
behavioral response to this state.
Obsessions consists of thoughts, mental images and doubts that are in-
trusive, causing a sense of impending danger and subsequent disconfort
(egodystonic symptom). Here, intrusive means the individual’s inabil-
ity to supress the thoughts, as if the brain was constantly projecting
them in the mind. This attribute might, in part, be responsible for the
resultant anxious state. A sequence of rituals then follows towards a
relief of the induced fear state. Such rituals are known as the compul-
sions, and their execution is kept by reinforcement.
The line that separates these two facets of OCD is not always clear,
since the compulsions may comprise mental executions as well. It
is then important, namely in a therapeutical context, to establish a
proper distinction between a pure obsessional version of the disease
and the eventual tenuous separation of obsessions from compulsions.

The content of the obsessions varies from individual to individual. They
usually involve situations that the person does not desire and whose
possible negative consequences are overestimated, resulting in an anx-
ious feeling.
Despite of the heterogeneity of the contexts that may trigger the intru-
sive thoughts, there are some patterns of obsessions that characterize
most versions of OCD. Indeed, ruminations about contamination and
doubts leading to checking behabiour (known as pathological doubts)
are very common.
In particular, these stereotypes show the limitating effect of OCD
symptoms, not only for the time spent on the execution of the com-
pulsions, but also for the restricted mental availability caused by ob-
sessions.

Unlike many other mental disorders, most suffering from OCD reveal
some level of insight, meaning that they recognize the irrationality of
both the obsessions and compulsions, while not having control on them.

In what concerns the epidemiology, OCD covers around 2 to 3% of the
population and has usually an early onset, especially in young males.

11The dichotomy and/or, there emphasized, has to with the fact that some ver-
sions of OCD may primarily be formed by obsessions or compulsions.
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The negative impact on the individual’s psychosocial development is
then inevitable, increasing the likelihood of developing comorbidities.
For this reason, the early start of OCD is usually attributed to a bad
prognosis.
Yet, one shall not take that early start very seriously, as young children
may exhibit some traces of perfectionism or symmetry (for example,
while playing), behaviour that usually makes part of the normal devel-
opment.

The specific neurobiological causes of OCD, in turn, are still unknown.
The most consensual studies point towards dysfunctionalities involving
both prefrontal and subcortical areas, namely the orbitofrontal cortex,
the anterior cingulate cortex and the striatum [33]. Incidentally, these
areas strongly mediate the CTCS circuit [43], fact that leads to the
association between the disorder and the circuit.
In particular, genetic variation leading to dysfunctional glutamate trans-
mission in the CTCS has been implied in the etiology of OCD [47].

While the favorable insight should be a reason for a good prognosis,
treatment for OCD is usually challenging in the context of psychiatry
and psychotherapy. In fact, the standard treatment for the condition
targets two main methods: cognitive-behavioral therapy and pharma-
cology. The former concerns a cognitive reformulation whose goal is
to replace the dysfunctional beliefs that support obsessions by more
adaptative perspectives. This way, the individual should be able to
tune out irrelevant stimuli.
Additionally, in the cases where compulsions prevail, a specific method
of exposing the individual to the obsessions and preventing the exe-
cution of the rituals (known as exposure and response prevention) is
customary.
The integration of tools aimed to improve the regulation of emotions
and the psychoeducation of those surrounding the individual are also
crucial.

In what concerns the pharmacological intervention, first line treatment
usually draws on antidepressants (SSRI’s) that aim to augment the
serotonergic transmission in the brain, specifically in those areas that
might be more affected in the disease. The expected result comprises
both the decrease in the anxiety levels and the antiobsessional state
(meaning that the obsessions become less intrusive), effects that have
been attributed to the downregulation of 5-HT1A autoreceptors and
5-HT2 postsynaptic receptors, as observed by Andrade et al. in [2].
Interestingly, this class of antidepressants have also been reported to
increase the neuroplasticity [2] in the brain, thus making the psycother-
apeutical approach more effective.
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