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High-order finite-volume schemes based on polynomial least-squares methods are an 
active research topic for the discretization of hyperbolic equations as they allow to obtain 
high-order spatial discretization schemes in arbitrary meshes. However, few studies have 
analyzed their performance in good-quality/near-to-uniform meshes, which are commonly 
used as a meshing strategy in zones where turbulent effects are important. In this 
paper, the theoretical numerical properties of commonly used least-squares (LSQ) k-exact 
high-order finite volume schemes are studied in one-dimensional and in several two-
dimensional meshes (with some remarks regarding their properties in three-dimensional 
meshes). These results are compared to those obtained using fully-constrained polynomial 
reconstructions only compatible with structured meshes. The numerical properties of the 
schemes are investigated through the von Neumann analysis methodology applied to 
the one-dimensional and two-dimensional finite volume formulation, including temporal 
discretization errors. This analysis is also extended to non-uniform and unstructured two-
dimensional meshes. At last, the schemes are tested with several numerical experiments 
using the linear advection, the Euler equations and the Navier-Stokes equations. The 
analysis of both studies yields similar conclusions regarding the numerical errors and 
stability of the different studied schemes showing that the high-order least-squares finite 
volume schemes yield stable and robust results across different uniform and non-uniform 
unstructured meshes. However, their performance is heavily degraded in simulations with 
low mesh resolution compared to schemes specially catered to structured meshes. On 
the other hand, the latter schemes lack stability and robustness in general structured 
meshes and its formulation cannot be straightforwardly extended to unstructured meshes. 
Moreover, this work shows that the use of weighted-LSQ can drastically improve the results 
of LSQ schemes in under-resolved simulations.

1. Introduction

Finite volume (FV) is a well-established numerical technique for the reconstruction of solutions of hyperbolic partial 
differential equations (PDEs), e.g. Euler’s and Maxwell’s equations. Its success relies on two key properties: these schemes 
fulfill the discrete global conservation property and L∞–stable schemes are relatively easy to design, e.g. non-oscillatory 
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methods (ENO [1], WENO [2,3], MOOD [4]). Finite volume is a particular case of a Bubnov-Galerkin method, i.e. test and 
solution functions do not belong to the same functional space, where test functions are constant along each element and 
solution functions are polynomial in each element. Therefore, higher-order reconstructions are possible if one considers 
polynomial reconstructions of higher degree. In particular, the quality of a finite volume reconstruction depends on two 
operations: variable reconstruction from neighboring element-averaged and face average normal flux reconstruction. The 
former is usually realized by interpolation and it can lead to the well-known k-exact schemes [2,5–7], whereas the latter 
is commonly evaluated in high-order formulations via quadrature integration [8–11]. There exist other face average normal 
flux reconstruction methods based on successive error corrections via Taylor expansion series. Interested reader is referred 
to the studies of [12–14] for more information on these methods.

Connectivity characteristics of the discretization of the physical domain play an important role in the numerical proper-
ties of finite volume schemes. Structured numerical grids possess a constant number of face and vertex neighbors to each 
element and there exists a labeling function relating N-tuples of indexes to element centroids, e.g. in two dimensional 
domains, there is a labeling (i, j) ∈ Z2 for each element centroid. Under certain conditions, these properties allow to de-
termine coefficients of the reconstruction scheme by solving a non-singular linear system of equations [15,16]. Nonetheless, 
unstructured grids do not have, in general, a constant number of neighbors for each element and the labeling of each ele-
ment centroid cannot be decomposed onto a Cartesian product of N-sets of indexes for N-dimensional domains. For such 
reason, the stencils employed for the reconstruction of the solution are not unique and its selection is crucial in the numer-
ical properties of the scheme [6,17,18]. The determination of the variable reconstruction at the faces may be determined by 
an iterative procedure of successive Green–Gauss [12,14] approximations or by the selection of a stencil and then solving a 
L2-minimization problem using a least-squares procedure [6,9,2].

The present study aims to analyze numerical properties, e.g. order of accuracy, stability, dispersion and diffusion errors, 
of finite volume schemes on structured and unstructured grids with a quadrilateral discretization applied to hyperbolic 
problems with smooth solutions. In particular the emphasis is on properties of least-squares schemes with respect to their 
structured counter-part. Firstly, the general framework of finite volume method is synthesized in Section 2. Then in Sec-
tion 3 the attention is paid on a non-compact reconstruction method on unstructured grids by a least-squares procedure 
with a given stencil based on the superposition of topological layers of neighbors. Such a methodology is particularized in 
Section 3.2 for structured grids. An analytical study of the truncation error, i.e. order of accuracy, is carried out in Section 4.1
for one and two-dimensional structured grids. Additionally, a numerical test based on the k-polynomial reconstruction prop-
erty is employed to determine the order of accuracy of least-squares schemes on unstructured grids. Spectral properties of 
schemes such as – L2-stability, dispersive and diffusion errors – are studied in Section 5. Finally, a set of numerical examples 
is reported in Section 6 to validate the analytical findings.

2. Finite volume applied to conservation laws

Finite volume methods naturally apply to conservation laws expressed in divergence form:

∂u(x, t)

∂t
+ ∇ ·F (u,∇u) = 0 ∀ x in � ⊂ RNd , Nd = 1,2,3 (1)

where u(x, t) is a conserved scalar or vector quantity, x is the position vector, F is the flux operator and Nd is the number 
of spatial dimensions of the problem. The flux operator is usually decomposed in two components: the convective flux 
F c(u) which depends only on the conserved variable and not its gradient, and the viscous flux F v(u, ∇u) which depends 
both on the conserved variable and its gradient. The numerical resolution of Eq. (1) is carried out via the finite volume 
method.

2.1. Partitioning of the physical domain

Several types of unstructured meshes are common in finite volume methods. Most polygonal meshes are composed 
of Nd-simplexes (triangles or tetrahedrons) and tensor-product elements (quadrilaterals or hexahedrons). In this work the 
meshes will be decomposed in NV linear tensor-product elements or cells. As it is common in the literature, independently 
of the shape of the chosen polygon covering the physical domain �, the partitioning of the numerical domain �h produces 
the partition V h , which possesses the usual required properties for finite element method, see [19]. Cells Vi ∈ V h are closed 
convex volume elements, satisfying the following conformal property:

if Vi,V j ∈ V h, then eitherVi ∩V j =∅,

orVi ∩V j is a common

⎧⎨⎩vertex,
edge

or face
ofVi andV j,

orVi =V j.

(2)

In addition, let us consider the characteristic length hi of each volume element, which proves to be useful in the analysis 
of numerical properties of the space discretization. This parameter is defined [20] as
2
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hi = |Li |∑
�∈Li

|S�| |Vi| , (3)

where Li is the set of indices of the faces S� of element Vi , with respective cardinality |Li| and measures |S�| and |Vi |. 
The global edge size h is defined as the minimum edge size

h = min
i

hi . (4)

Finally, the centroid xi of each element is defined as

xi = 1

|Vi|
∫
Vi

x dV . (5)

2.2. Finite volume semi-discretization

The finite volume formulation of Eq. (1) describes the evolution of the cell average ui of the conserved quantity on cell 
Vi defined as

ui = 1

|Vi|
∫
Vi

u dVi , (6)

and is obtained by integration of Eq. (1) on volume element Vi , assuming a static mesh with no deformation or movement 
of volume elements, which yields

dui

dt
+ 1

|Vi|
∑
�∈Li

∫
S�

F (u) · ni,� dS= 0 (7)

where ni,� is the unitary outward-facing face normal of face S� with respect to cell Vi computed as in [21]. In this work, 
only planar faces are considered, which implies that face normals are constant on each face.

Let us define the face average operator �̃� on a given face S� as

�̃� = 1

|S�|
∫
S�

�(x)dS . (8)

Face average normal fluxes of Eq. (7) are also computed as

F̃i,� = 1

|S�|
∫
S�

F (u) · ni,� dS . (9)

For the sake of brevity, face average normal fluxes will also be referred as face average fluxes in this work. Eq. (7) is 
then transformed into the following discrete system by spatial discretization of the fluxes into the semi-discrete system

duδ
i

dt
= − 1

|Vi|
∑
�∈Li

F̃ δ
i,�|S�| , (10)

where the super-index δ symbolizes a numerical approximation. It can then be clearly observed that the numerical errors 
in the FV formulation are introduced through the discretization of the face average fluxes and the time integrator.

A review of the most common approaches for the reconstruction of high-order face average fluxes (higher than second 
order) is carried out in Section 2.3. In this study, the time scheme used for time integration of Eq. (10) is a third order 
Runge-Kutta (RK) propagator method (RK33) [22].

2.3. Finite volume face average flux reconstruction methods

In this work, high-order discretization of the face average fluxes (higher than second order) will be used to discretize 
the FV equations. In high-order FV methods, the most common techniques for the numerical computation of the flux face 
integrals in Eq. (9) consist of quadrature methods using local values of the conserved variable at the given quadrature points 
(see [2,11,23,3,8,4,9])

F̃i,� ≈ F̃ δ
i,� =

∑
w gF

(
u
(
xg
)
,∇u

(
xg
)) · ni,g , (11)
g∈G�

3
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Fig. 1. Sketch of a two-dimensional mesh with quadrilateral partitioning and the different sets used to identify faces of a given cell and quadrature points 
of a given face.

where G� is the set of indices of the weights w g associated with the quadrature points xg of face S� (see Fig. 1). In 
these methods, a polynomial representation of the conserved variables in each cell is mandatory to obtain a high-order 
approximation of the values of the conserved variables at quadrature points of each cell. To abbreviate the formulation, the 
values of the conserved variables and their gradients at a given quadrature point with index g are referred to ug and ∇ug

respectively. Eq. (11) can be rewritten in terms of the numerical values of the conserved variables at the quadrature points 
as

F̃ δ
i,� =

∑
g∈G�

w gF δ
(
uδ,−

g ,∇uδ,−
g , uδ,+

g ,∇uδ,+
g ,ng

)=
∑
g∈G�

w g

(
F δ

c,i,g +F δ
v,i,g

)
, (12)

where the numerical convective and viscous flux operators F δ
c,i,g and F δ

v,i,g have been introduced. The symbols ± represent 
the two possible numerical reconstructions (commonly referred to as left and right states) of the conserved variables at a 
given quadrature point of a non-boundary face. The left and right reconstructions, uδ,−

g and uδ,+
g , are respectively computed 

using the stencils of the owner cell of the face V�,o and V�,n of face S� . Meanwhile, the right reconstruction uδ,+
g is 

computed using the stencil of the neighbor cell of the face V�,n. The face normal at each quadrature point ng of face S�

with respect to their owner and neighbor cells is defined such that ng · (xn − xo) ≥ 0. The reader may refer to Section 3 for 
a detailed explanation of the reconstruction of the conserved variables at the quadrature points.

Remark 1. We are aware that there exist other high-order finite-volume flux reconstruction methods for structured and 
unstructured meshes which were initially introduced for structured grids by [12]. These methods rely on the computation 
of the Taylor expansion of the numerical face average flux. A 6th-order FV WENO formulation was recently proposed in [13]. 
An extension of the method for unstructured grids was developed in [14].

Processing of face average convective fluxes
To compute the numerical convective flux at each internal quadrature point F δ

c,i,g , the following weighted expression is 
used

F δ
c,i,g = [

f gFc,upwind
(
uδ,−

g , uδ,+
g ,ng

)+ (1 − f g)Fc,central
(
uδ,−

g , uδ,+
g ,ng

)]
sgn(ni,g · ng)) , (13)

where f g ∈ [0, 1] is a weighting factor, Fc,upwind is an upwind flux whose formulation is usually especially tailored for a 
given non-linear problem using Riemann solvers. For the Euler equations (Section 2.5.2) one can find Riemann solvers such 
as Roe [24], HLL or HLLC [25]. Fc,central is a central flux which is computed in this work as

Fc,central
(
uδ,−

g , uδ,+
g ,ng

)= 1

2

(
F c

(
uδ,−

g

)+F c
(
uδ,+

g

)) · ng . (14)

For f = f g = 1 upwind flux reconstruction schemes are obtained while the case f = f g = 0 is representative of central 
schemes. In this work, both upwind and central schemes will be studied and they will be denoted with the initial letter U 
or C respectively.

The order of accuracy of these face average flux reconstruction methods is determined by two parameters: the order 
of accuracy of the interpolation method of the conserved variable at the quadrature points (analyzed in our studies in 
Section 4.2) and that of quadrature method used to evaluate the face average flux (discussed in Section 3.3).

Processing of face average viscous fluxes
In contrast with the convective terms, the numerical viscous fluxes involve reconstruction of gradients at the quadrature 

points on each side of the face. In this work, the numerical viscous flux Fv,i,g at each quadrature point is directly computed 
as
4
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F δ
v,i,g =F v

(
uδ

g,∇uδ
g

) · ni,g , (15)

where uδ
g and ∇uδ

g are computed with a central scheme as

uδ
g = 1

2

(
uδ,−

g + uδ,+
g

)
and ∇uδ

g = 1

2

(∇uδ,−
g + ∇uδ,+

g

)
. (16)

One could also consider other types of numerical viscous fluxes such as the Interior-Penalty (IP) method or the Rebay-
Bassi (RB) approach. The interested reader is referred to [26,27] for more information on numerical viscous fluxes formula-
tions. At last, Section 3.4 discusses the computation of the gradient of the conserved variables at quadrature points, using 
the numerical schemes of choice of this work.

2.4. Finite volume variables reconstruction methods

This section is devoted to the description of the state of the art of the FV numerical schemes which provide high-order 
reconstructions of the conserved variables at the face quadrature points.

k-exact schemes for structured meshes
k-exact methods for structured meshes have been developed in [8,9]. They allow to compute high-order face average flux 

reconstructions using Eq. (12). They are based on the use of tensor-product of one-dimensional polynomials to represent a 
modal basis of the solution. The extension of this method for non-uniform structured grids was proposed in [15] and will 
be analyzed in this work in Section 3.2.

k-exact schemes for arbitrary meshes
There exists a variety of k-exact methods which are applicable to any kind of mesh and mesh elements. These methods 

are based on the computation of a p-degree polynomial to approximate the conserved variables in each cell. The polynomial 
approximation enables a high-order interpolation of the conserved variable at quadrature points. These interpolations are 
used to compute numerical fluxes using quadrature integrals Eq. (12). Several types of k-exact reconstruction methods can 
be listed:

1. The compact methods of [28,10] in which coefficients of the polynomial are computed iteratively using data from the 
closest neighbors via successive least-squares problems.

2. The non-compact method of [14], where the coefficients of a polynomial approximation of the conserved variables are 
approximated through several LSQ problems on each layer of neighbors.

3. The non-conservative moving least-squares (MLS) method proposed by [29] which can also be used in mesh-free for-
mulations.

4. The non-compact least-squares (LSQ) method proposed by [6,2,11,3] which is one pf the main topic of research of this 
work. In these methods the conserved variables are spatially estimated by a polynomial of a given degree whose coeffi-
cients are obtained from neighbor cells through the solution of a single least-squares problem in a non-compact manner. 
These methods are commonly utilized in conjunction with ENO or WENO [4] methods by reconstructing a plethora of 
polynomial approximations of the conserved variables at each cell using different stencil topologies. These polynomials 
can then be combined by measuring their smoothness ensuring the correct treatment of solution discontinuities.

2.5. Choice of conservative equations

Three systems of conservation laws are considered in this study: the linear advection equation, the Euler equations and 
the Navier-Stokes equations.

2.5.1. Linear advection equation
The linear advection equation is a single equation conservation law in which the flux operator F of the conservation 

law is linear F = cu, where c is the linear advection velocity and it is supposed to be constant in this work. In this case, 
Eq. (1) simplifies to

∂u

∂t
+ c · ∇u = 0 . (17)

Supposing planar faces, the finite volume formulation of Eq. (17) can be written as

dui

dt
+ 1

|Vi|
∑
�∈Li

ũ�c · ñi,l|S�| = 0 . (18)

In future references to the linear advection equation in two-dimensional context, the linear advection velocity will be 
expressed as
5
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c = c(cos ζ, sin ζ ) (19)

where ζ is the advection velocity angle.

2.5.2. Euler equations
The Euler equations are written in conservative form as

∂U

∂t
+ ∇ ·F (U ) = 0 , (20)

where U is the vector of conservative variables given by

U =
⎛⎝ ρ

ρu
ρE

⎞⎠ , (21)

ρ is the fluid density, ρu the momentum, u the velocity and ρE is the total energy. The flux operator of the Euler equations 
can be written as

F (U ) =
⎛⎝ ρu

ρu ⊗ u + P INd

(ρE + P )u

⎞⎠ , (22)

where the symbol ⊗ represents the dyadic operator, P is the pressure and INd ∈ RNd×Nd is the identity matrix. The non-
linear system is closed with the equation of state

ρE = P

γ − 1
+ 1

2
ρu · u , (23)

where γ is the ratio of specific heats. The primitive variables of the Euler equations ρ , u, P and the temperature 	 can be 
computed from the conservative variables using the equation of state Eq. (23) and the following additional expressions:

u = ρu

ρ
, P = (γ − 1)

(
ρE − 1

2
ρu · u

)
, 	 = P

ρr
, cp = γ r

(γ − 1)
, (24)

where r is the gas constant and cp is the heat capacity at constant pressure. The flux operator of the Euler equations is 
non-linear and therefore the only possibility of obtaining a formally high-order finite volume numerical solution is by using 
the high-order face average flux reconstructions such as Eq. (12).

2.5.3. Compressible Navier-Stokes equations
The compressible Navier-Stokes equations are a system of non-linear equations similar to the Euler equations. Both 

sets of equations share the same conserved (Eq. (21)) and primitive variables (Eq. (24)) and have similar flux operators. 
However, the Navier-Stokes equations present additional viscous terms which depend on the values and the gradients of 
the conserved and/or the primitive variables. These viscous terms are denoted as Fv(U , ∇U ). The flux operator of the 
Navier-Stokes equations can be written as

F (U ) =
⎛⎝ ρu

ρu ⊗ u + P INd

(ρE + P )u

⎞⎠+
⎛⎝ 0

−σ
−μcp

Pr ∇	 − σ · u

⎞⎠ , (25)

where μ is the kinematic viscosity, Pr is the Prandtl number and σ is the viscous stress tensor defined as

σ = μ
(
∇u + (∇u

)T − 2

3
∇ · u INd

)
. (26)

The velocity and temperature gradients can be computed from the gradients of the conservative variables through the chain 
rule and the relationship between the conservative and primitive variables expressed in Eq. (24).

3. k-exact finite volume schemes

This section addresses the different non-compact k-exact schemes discussed in this work. Section 3.1 discusses least-
squares k-exact schemes compatible with both structured and unstructured meshes. Section 3.2 discusses fully constrained 
k-exact schemes only compatible with structured meshes. The formulations are written supposing two-dimensional prob-
lems. The extension to one-dimensional and three-dimensional problems is trivial. However, remarks regarding the extension 
to different number of dimensions will be added when needed.
6
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3.1. k-exact least-squares schemes

The present section addresses the least-squares k-exact reconstruction approach in unstructured meshes used in this 
work. The methodology has been developed by [2] and [5] whose work is a continuation of [6] and [7]. Firstly, let us 
consider a reference coordinate space for each cell Vi denoted as ξ = (ξ, η) related to the global coordinates x = (x, y) via 
a linear mapping:(

x
y

)
=
(

x0
y0

)
+J ·

(
ξ

η

)
, (27)

where (x0, y0) are the coordinates of an arbitrary reference node of the cell and J is the Jacobian matrix computed as

J =
(

x1 − x0 x2 − x0
y1 − y0 y2 − y0

)
. (28)

In the latter expression, sub-indices 1 and 2 refer to two nodes of cell i which are connected to the chosen reference 
node. The choice of reference node is arbitrary and therefore, the properties of these schemes are dependent on the vertex-
cell connectivity of the mesh. It is important to note that any integral evaluation in the global coordinate space can be 
transformed into the reference space as

1

|Vi|
∫
Vi

T (x)dV= 1

|Vi|
∫
Vi

T (x)dx dy = 1

|V′
i|
∫
V′

i

T (ξ)dξ dη , (29)

where |V′
i | = |Vi ||J−1| is the volume measure of cell i in the reference space and |J−1| is the determinant of the inverse 

Jacobian matrix. In these methods a polynomial Pi(ξ) is built for each cell i of the domain as

Pi(ξ) =
K∑

γ =1

aγ φγ (ξ) = uδ
i (ξ) , (30)

where the superscript δ denotes a numerical approximation of a given function over a cell and the functions {φγ } are a 
family of polynomial functions of the form

∀γ ∈ [1, K ] φγ (ξ) = γ (ξ) − Cγ , (31)

such that

{γ (ξ), γ ∈ [1, K ]} = {(ξ − ξi)
q(η − ηi)

r,q ≥ 0, r ≥ 0,q + r ≤ p} . (32)

In Eqs. (31) and (32), (ξi, ηi) is the centroid of cell i in the reference space, p is the degree of the polynomial, K is the 
cardinality of the bases {φγ (ξ)} and {γ (ξ)} and depends on the spatial dimension Nd as

K =
(

p + Nd

p

)
, (33)

and {Cγ } is a family of constants whose values will be determined further into this section.
In general, the coefficients aγ of Eq. (30) are determined by setting integral equations for the root cell i and a number 

of its closest neighbors, which together with the root cell form the stencil named Ci with cardinality M = |Ci |. A discussion 
on the definition of the stencil for these LSQ methods is developed in Section 3.1.4. In the least-squares schemes studied in 
this section the number of neighbors is chosen such that M > K . The setting M = K is specific to a small family of k-exact 
schemes for structured meshes as discussed in Section 3.2.

3.1.1. Definition of the LSQ problem
The LSQ problem is generated by equating the average of the reconstructed polynomial Pi on each cell V′

j of the stencil 
Ci with the cell average u j of the solution as in

∀ j ∈ Ci \ {i} 1

|V′
j|
∫
V′

j

Pi(ξ)dξ dη = u j , (34)

which can be rearranged as

∀ j ∈ Ci \ {i}
K∑

γ =1

aγ

(
1

|V′
j|
∫
V

φγ (ξ)dξ dη

)
= u j . (35)
j

7
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The least-squares problem is constrained on cell i by the equation

1

|V′
i|
∫
V′

i

Pi(ξ)dξ dη = ui , (36)

ensuring that the cell average is exactly reconstructed by the polynomial Pi .
Let us impose that the constant polynomial obtained for q = r = 0 in Eq. (32) be assigned to index γ = 1 with a null 

constant Cγ =1 = 0 and that the integral of φγ on cell i be zero for every other γ :

∀γ > 1
1

|V′
i|
∫
V′

i

φγ (ξ)dξ dη = 0 . (37)

By inserting the previous assumptions in Eq. (36), the following values for the constants Cγ are obtained (as in the studies 
of [7,2]):

∀γ > 1 Cγ = 1

|V′
i|
∫
V′

i

γ (ξ)dξ dη , (38)

from which ensues the values of a1, as described in [2,11]:

a1 = a1φ1 = a11 = ui . (39)

We stress out that this choice is arbitrary and will indeed modify the numerical properties and stability of the schemes, 
although the analysis of this topic will not be addressed in this work.

From the above expressions and the constraint imposed in Eq. (36), the over-constrained problem may be recast in 
matrix form as

AX= b , (40)

where A is a matrix in R(M−1)×(K−1) with elements

A jγ = 1

|V′
j|
∫
V′

j

φγ +1(ξ)dξ dη = 1

|V′
j|
∫
V′

j

γ +1(ξ)dξ dη− Cγ +1 . (41)

Vectors X and b belong to RK−1 and RM−1 respectively and are set as

∀γ ∈ [1, K − 1] Xγ = aγ +1 , (42)

and

∀ j ∈ Ci \ {i} b j = u j − ui . (43)

Remark 2. In this work, all terms in matrix A are computed using an exact numerical integration quadrature of the poly-
nomial basis up to machine precision. In one-dimensional meshes, this is performed using Gauss-Legendre quadratures of 
appropriate order. In two-dimensional and three-dimensional meshes, the volume integrals are evaluated by decomposing 
the tensor-product elements (quadrilaterals or hexahedrons) in Nd-simplex elements (triangles or tetrahedrons) and eval-
uating the volume integrals on those elements. To do so, this work relies on the quadratures schemes described in [30]
for triangles (2-simplexes) and the quadratures scheme of [31] for tetrahedrons (3-simplexes). The quadrature points posi-
tions and weights of these schemes were obtained using the QUADPY software [32]. The decomposition of tensor-product 
elements in simplex cells does not incur geometric discretization errors if one only considers tensor-product elements 
with planar faces. Therefore, the volume integrals are evaluated by subdividing the cells into a set of Nd-simplexes and 
applying quadrature rules on those subelements. As the determinant of the Jacobian of the isoparametric transform of sim-
plex elements is constant, the integrals can be exactly evaluated up to machine round-off precision with an appropriate 
quadrature. It is important to note that the exact evaluation of volume integrals in arbitrary tensor-product elements with 
Gauss-Legendre quadratures is also possible but one needs to take into account that the determinant of the isoparamet-
ric Jacobian transformation (needed to evaluate Gauss-Legendre quadratures) is a 3rd degree polynomial [33] in the worst 
case scenario (hexahedron cells). Therefore, the Gauss-Legendre quadrature should be capable of exactly integrating a p + 3
degree polynomial.
8
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3.1.2. Resolution of the least-squares problem
The over-constrained problem described in Eq. (40) is solved with the least-squares L2-minimization approach, which 

implies the computation of the pseudoinverse A+ of the matrix A. In this work, the pseudoinverse is obtained using the 
SVD (Singular Value Decomposition) method [34,5], implemented in the EIGEN library [35]. This process is only performed 
during the simulation’s initialization process, because A+ uniquely depends on the geometrical properties of the mesh. The 
solution vector can be then obtained as

X=A+b . (44)

The choice of stencil and the polynomial order will determine the properties of the least-squares spatial interpolation 
schemes. This issue will be discussed in Section 3.1.4.

3.1.3. Distance weighting in the LSQ problem
Several studies [6,36,17] have pointed out the influence of the addition of distance weighting methods to the least-

squares problem on the numerical properties of the k-exact schemes. The distance-weighted least-squares problem is 
obtained by rewriting the previous least-squares problem as

AwX= bw , (45)

with

Aw
jγ = 1

||x j − xi||αA jγ , (46)

and

bw
j = 1

||x j − xi||α b j , (47)

where, α is the weighting exponent, and xi and x j are the vector coordinates of the centers of cells Vi and V j . The solution 
vector can then be computed as

X=Aw,+bw , (48)

where Aw,+ is the pseudoinverse matrix of Aw . Schemes obtained with distance weighting least-squares method will be 
designated as LSQpW. In this work the weighting exponent is fixed as α = 5

2 , chosen as a compromise between the scheme 
accuracy and the conditioning of matrix A. Constraint equation (36) and constants Cγ from Eq. (38) remain unchanged 
with respect to the non-weighted least-squares problem.

3.1.4. Definition of the k-exact LSQ schemes
The accuracy of polynomial Pi used for the reconstruction of the conservative variable greatly depends on the choice of 

stencil C in general. The choice of stencil was proven crucial for the accuracy of k-exact schemes in unstructured meshes 
[3]. Nonetheless, few studies have analyzed the effects of the stencil shape and topology on the accuracy of these schemes 
for smooth meshes using quadrilateral or hexahedral elements. Most studies use stencils by gathering a given number of 
topological neighbors with connected faces or vertices with each other. The number of neighbor elements in the stencil is 
commonly computed as a function of the polynomial cardinal functions using the β coefficient as

β = M − 1

K − 1
. (49)

Please note that M −1 is the number of neighbors of a given root cell used to reconstruct a least-squares polynomial and 
K − 1 is the size of the polynomial basis for the least-squares procedure given that the constant polynomial was specifically 
constrained as stated in Eq. (39).

In practice, the value β = 2 is usually adopted. However, this condition generates ill-formed stencils in smooth meshes 
with quadrilateral and hexahedral meshes, because it is not possible to ensure topologically symmetric stencils for every 
cell if the value of β is fixed to a value which is not representative of the number of topological neighbors of a given cell. 
If the connectivity of the stencil of neighboring cells is dissimilar, the truncation error will not behave regularly, therefore 
some error canceling properties of the truncation error will be lost even in smoothly varying grids.

In this study, it has been decided to associate a number of neighbors M and a parameter β to a given topological 
shape of the neighbor cells of the root cell which share a given face with it (face neighbor cells) similarly to the methods 
described in [6,17,18]. This ensures geometric symmetry of the stencils in structured meshes and a smooth variation of the 
truncation error, provided that the mesh is also locally smooth. The choice to generate the reconstruction stencil using cell 
face neighbors is motivated by the will to ensure an almost constant value of β .

Geometric symmetry of the stencil is ensured by associating a number of neighbors equal to the actual number of 
neighbors of a face. Such a property provides a smooth variation of the truncation error. Therefore, it is possible to generate 
9
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Fig. 2. Two-dimensional face neighbors stencils of the LSQ1-2-3 schemes.

Table 1
Number of neighbors M of the different LSQ schemes 
in uniform and structured meshes as a function of 
the number of dimensions of the problem.

LSQ1 LSQ2 LSQ3 LSQ4

1D 3 5 7 9
2D 5 13 25 41
3D 7 25 63 129

Table 2
β parameter of the different LSQ schemes in uniform 
and structured meshes as a function of the number 
dimensions of the problem.

LSQ1 LSQ2 LSQ3 LSQ4

1D 2 2 2 2
2D 2 12/5 8/3 20/7
3D 2 8/3 62/19 128/34

what we call face neighbor layers with the following algorithm. First, for each root cell control volume Vi , all face neighbors 
are added to the stencil Ci generating the first face neighbor layer. If further neighbor layers are needed, the previous 
process is repeated for each cell added in the previous iteration (ensuring unique indices in Ci ) until the stencil contains a 
number of face neighbor layers equal to the polynomial order p of the scheme.

Regarding the LSQ schemes that will be analyzed in this work, we will restrict the study to those with polynomial degree 
such that p = 1, 2, 3 and 4. The resulting schemes are denoted as LSQp, with p = 1, 2, 3 and 4. Moreover, the effect of the 
weighting method in the least-squares problem resolution will be studied for p = 3. The subsequent weighted scheme will 
be referred as LSQ3W.

Least-squares stencils and face neighbor layers for schemes LSQp with p = 1, 2 and 3 are represented for two-
dimensional problems in Fig. 2. These figures allow to identify the stencil’s geometry of some of these schemes in two-
dimensional meshes.

To better understand the value of the parameter β with the different combinations of polynomial order p and number 
of dimensions Nd , Table 1 shows the number of neighbors of a given stencil for the different LSQ schemes and Table 2
represents the value of the β parameter as a function of the dimensions of the problem and the different LSQ schemes. In 
these tables, it is possible to observe that the parameter β increases with the number of dimensions of the problem for a 
given polynomial order. It can even reach values higher than β > 3 in some three-dimensional cases. With such high values 
of β , it could be interesting to reduce by one the neighbor layer index used to build the k-exact scheme. However, to remain 
consistent for all spatial dimensions, we decided not to change the index of the neighbor layer used to build the schemes, 
independently of the number of dimensions. It is also worth noting that reducing by one the index of the neighbor layer 
yields always β < 2 in the cases presented in Table 2.

3.2. k-exact schemes for structured meshes of tensor-product elements

Recent developments made by [15] allow to obtain multidimensional k-exact schemes using a fully constrained problem 
for structured non-uniform meshes made up of tensor elements (quadrilaterals and hexahedrons). To develop these methods, 
10
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a structured mesh with principal directions x − y will be supposed. The extension to one and three-dimensional problems 
is straightforward. These schemes use the following linear mapping(

x
y

)
=
(

xi
yi

)
+J ·

(
ξ

η

)
, (50)

where (xi, yi) are the coordinates of the root cell centroid and

J =
(

hi 0
0 hi

)
. (51)

The polynomial basis used by the schemes belongs to the polynomial basis of tensor product one dimensional polyno-
mials of degree p

{�(ξ)} =
⎧⎨⎩

Nd⊗
i=1

(1, ξ1
i , . . . , ξ

p
i )

⎫⎬⎭ . (52)

Please note that the 0th degree of freedom is included polynomial basis, opposed to the choice made in k-exact least-
squares schemes where this polynomial basis is supposed equal to the cell average (see Section 3.1). Moreover, the maximum 
monomial degree is Nd p. The cardinal of the polynomial basis is redefined for tensor product polynomials as

K = (p + 1)Nd . (53)

Regarding the neighbors used to obtain the polynomial coefficients, as the 0th degree polynomial basis is unknown, the 
root cell i will also be added to the central stencil Ci . These k-exact schemes build their stencils using cell vertex neighbors 
instead of cell face neighbors. For the sake of brevity, the discussion of the generation of the vertex neighbors based 
stencils is avoided as it can be straightforwardly understood from the generation face neighbors based stencils discussed in 
Section 3.1.4. The number of neighbors M = |Ci | for a given cell vertex neighbor layer index Nv in structured meshes is

M = (2Nv + 1)Nd . (54)

In the latter expression it is possible to observe that the condition K = M (which is needed to ensure a fully-constraint 
problem) imposes the following condition for even values of p

Nv = p

2
. (55)

Therefore, a given tensor product polynomial of even degree p can be computed without using least-squares methods in 
a structured mesh by using the correct number of vertex neighbor layers. Odd degree polynomials can also be considered, 
although one needs to consider a different family of polynomials and face-based stencils as explained in [15]. Therefore, we 
particularize our study for even degree polynomials. In these cases, the least-squares problem defined in Section 3.1 can be 
rewritten as a linear system as M = K . For each neighbor cell in the Ci the following constraint equation is used to build 
the matrix A ∈RK×K as

∀ j ∈ Ci

K∑
γ =1

aγ

|V′
j|
∫
V j

φγ (ξ)dξ dη = u j . (56)

The expression of the terms of matrix A is

Anm = 1

|V′
n|
∫
Vn

φm(ξ)dξ dη . (57)

Remark 3. In this work, all the terms from matrix A are computed using a numerical integration quadrature which in-
tegrates exactly all the polynomial basis up to machine precision. Compared to the LSQ schemes, these methods require 
higher order numerical quadrature if one wants to integrate exactly all the polynomial basis. For example, the maximum 
polynomial degree is pNd , which has a value of 12 for a 4th degree polynomial.

Meanwhile, the right-hand-side vector b ∈RM is equal to the cell averages of all the cells present in Ci . The polynomial 
coefficients X ∈ RK can then be obtained by building the inverse matrix A−1 and using the previous definition of the 
right-hand-side vector:

X=A−1b . (58)
11
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Fig. 3. Two-dimensional vertex neighbors stencils of the S2 and S4 schemes.

Table 3
Number of neighbors M of the different 
Q schemes in uniform and structured 
meshes as a function of the number of 
dimensions of the problem.

S2 S4

1D 3 5
2D 9 27
3D 25 125

In uniform structured meshes these schemes are equivalent to the finite-volume k-exact schemes for uniform structured 
meshes studied in [8]. When used in the discretization of linear equations, the schemes presented in this section are 
equivalent to those described in [37].

It is important to note that these schemes have only been developed for uniform and non-uniform structured meshes 
and therefore, they will only be used for comparison purposes in those cases.

Remark 4. The extension of the S schemes to quadrilateral or hexahedral arbitrarily-oriented structured meshes or unstruc-
tured grids is not straightforward due to the difficulty of choosing a suited reference frame to compute the polynomial. In 
our studies, we have observed that the numerical properties such as dissipation, dispersion and stability of the S schemes 
are heavily dependent on the reference frame chosen to generate the transformation to the reference space. Moreover, 
quadrilateral or hexahedral unstructured grids might have different numbers of vertex neighbors for a given layer index 
than structured meshes. This implies that one needs to reformulate the polynomial coefficients computation problem in 
these cases. Several choices can be made to deal with those issues such as recasting the fully constrained problem into a 
least-squares problem by modifying the polynomial basis, adding more cell face/vertex neighbors, etc. These choices will be 
analyzed in future studies.

3.2.1. Definition of the S schemes
In this study, the k-exact interpolation schemes described in Section 3.2 will be denoted with the S symbol. We particu-

larize our study for S schemes with tensor-product polynomial degrees p = 2 and 4. The resulting schemes are denoted as 
S2 and S4 respectively.

Fig. 3 represents the stencil and neighbor cells used to build the interpolation operators of schemes S2 and S4.
Table 3 shows the number of neighbors M used by S2 and S4 as a function of the number of spatial dimensions of the 

problem. This table can be compared with the number of neighbors of LSQ schemes showed in Table 1, to assess the equiv-
alence in terms of number of neighbors (which are directly related to the computational cost) between LSQ and S schemes. 
The S2 scheme uses same number of neighbors than the LSQ1 scheme in one-dimensional problems, although for two-
dimensional and three dimensional problems its number of neighbors is much closer to that of the LSQ2 scheme. Regarding 
the S4 scheme, it presents the same number of neighbors than the LSQ2 scheme in one dimensional problems. Meanwhile, 
in two-dimensional and three three-dimensional problems, the S4 scheme uses a very similar number of neighbors than 
the LSQ3 and LSQ4 schemes respectively.

3.3. Quadrature points and conserved variables face averages

This section is devoted to the analysis of the number of quadrature points needed to compute the face average fluxes in 
the FV formulation using tensor-product elements.

Gauss-Legendre quadratures [38,39] allow the integration in a given face with index � of a tensor-product element of a 
tensor-product polynomial of degree p by using a quadrature such that
12
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Table 4
Number of quadrature points used with LSQ 
schemes as a function of the dimensions of the 
problem Nd and the polynomial order p.

p = 1 p = 2 p = 3 p = 4

1D 1 1 1 1
2D 1 2 2 3
3D 1 4 4 9

|G�| = ceil

(
p + 1

2

)Nd−1

(59)

where |G�| is the number of quadrature points of face �. The use of Gauss-Legendre quadratures allows to numerically 
compute the polynomial basis integrals along the faces as

1

|S′
�|
∫
S′

�

φγ (ξ) dξ dη =
∑
g∈G�

w gφγ

(
ξ g

)
(60)

where ξ g denotes the coordinates of quadrature points in the reference space and w g are the Gauss-Legendre quadrature 
weights which also include the isoparametric Jacobian transform determinant of the given face. It is important to note the 
polynomial basis group of LSQ schemes is contained in the tensor-product polynomial basis of S schemes. Eq. (60) holds 
true provided that the determinant of the isoparametric transformation of the given tensor-product element face is constant 
in all of its points. If this property is not fulfilled (which might be the case in hexahedral elements), numerical errors will 
be introduced in the evaluation of Eq. (60) through Gauss-Legendre quadratures. In these cases, Eq. (60) has to be rewritten 
as an approximation when evaluated in an arbitrary face of a hexahedron. These numerical errors could be reduced by 
increasing the number of quadrature points, knowing that, in the worst case scenario, the metric terms of an arbitrary face 
are a 2nd degree polynomial [21] for hexahedrons.

When dealing with non-linear fluxes, the number of quadrature points is usually obtained from Eq. (59) (see [23]) and 
it is shown in Table 4. It is important to note that, with non-linear fluxes, this choice of quadrature points will produce 
under-integration as in non-linear cases the flux polynomial representation is a product of the conserved variables. This can 
cause additional numerical errors and/or aliasing effects as described in [40].

3.4. Gradient computation

In order to compute the high-order viscous face average fluxes as described in Section 2.3 and Eq. (15), one needs to 
compute the gradients of the polynomial representative of the conserved variables at each quadrature point. To do so, the 
gradients of the polynomial Pi of each conserved variables at each cell i are computed in the reference space (ξ, η) yielding 
∇δ,±

ξ u. The polynomial gradient in the reference space is then extrapolated to the quadrature points of each face of the cell 
by transforming the quadrature points coordinates into the reference space using the Jacobian matrix Ji associated to each 
cell. Next, this gradient in the reference space is transformed to the physical reference frame following the expression from 
[2]

∇δ,±ug = (
J−1)T ∇δ,±

ξ ug . (61)

At last, the gradient at each quadrature point is used to build the face average viscous flux term using Eq. (15) and Eq. (16).

4. Order of accuracy

This section is devoted to the analysis of the order of accuracy of LSQ and S schemes via the analysis of the truncation 
error and the k-exact properties of the reconstruction polynomials.

4.1. Linear advection spatial truncation error analysis in uniform meshes

The spatial truncation error is defined as the difference between the discretized and analytical equation. Truncation 
error is computed in the linear advection equation (18) neglecting time integration errors and supposing planar faces with 
constant metrics as

Ei = 1

|Vi|
∑
�∈Li

(̃
u� − ũδ

�

)
c · ñi,�|S�| , (62)

where the numerical face average ̃uδ is computed as
�
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Table 5
Leading truncation error term and order of accuracy of the different 
one-dimensional least-squares schemes.

E Order of accuracy

ULSQ1 −0.083ch2 ∂3u
∂x3

∣∣∣
i
+O (h3

)
2nd

CLSQ1 −0.083ch2 ∂3u
∂x3

∣∣∣
i
+O (h4

)
2nd

ULSQ2 0.283ch3 ∂4u
∂x4

∣∣∣
i
+O (h4

)
3rd

CLSQ2 −0.114ch4 ∂5u
∂x5

∣∣∣
i
+O (h6

)
4th

ULSQ3 0.058ch4 ∂5u
∂x5

∣∣∣
i
+O (h5

)
4th

CLSQ3 0.058ch4 ∂5u
∂x5

∣∣∣
i
+O (h6

)
4th

ULSQ3W 0.017ch4 ∂5u
∂x5

∣∣∣
i
+O (h5

)
4th

CLSQ3W 0.017ch4 ∂5u
∂x5

∣∣∣
i
+O (h6

)
4th

ULSQ4 0.331ch5 ∂6u
∂x6

∣∣∣
i
+O (h6

)
5th

CLSQ4 0.139ch6 ∂7u
∂x7

∣∣∣
i
+O (h8

)
6th

ũδ
� = f

(
1 + sign(c · ñi,�)

2
ũδ,−

� + 1 − sign(c · ñi,�)

2
ũδ,+

�

)
+ (1 − f )

1

2

(̃
uδ,−

� + ũδ,+
�

)
. (63)

The first term of the expression is representative of an upwind numerical flux while the second term is representative of 
a central numerical flux. We recall that upwind schemes (denoted with a starting U symbol) and central schemes (denoted 
with a starting C symbol) use f = 1 and f = 0 respectively in all quadrature points. Eq. (62) can be further simplified in 
uniform meshes in which the characteristic edge size hi is constant hi = h as

Ei = 1

h

∑
�∈Li

(̃
u� − ũδ

�

)
c · ñi,� . (64)

The latter expression allows to obtain the order of accuracy and the leading term of the truncation error in uniform meshes 
by using face and cell average Taylor expansion series of the conserved variable u. In addition, numerical values ũδ

� can be 
computed by integrating analytically the polynomials resulting from the LSQ reconstruction.

Table 5 shows the leading truncation error term and order of accuracy of different k-exact least-squares schemes in the 
one-dimensional linear advection problem using uniform structured meshes. In these results it is possible to observe that 
all ULSQp schemes show at least p + 1 order of accuracy, meaning that they respect the k-exact reconstruction condition. 
Moreover, the CLSQp schemes also show at least p + 1 order of accuracy. However, it is important to note that the central 
variants of the LSQ schemes yield p + 2 order of accuracy if p is even. Furthermore, central schemes always present trun-
cation error terms which have even exponents with h. These assessments are commonly observed in the finite-difference 
and finite-volume literature. At last, compared to the default LSQ3 scheme the weighting distance LSQ3W scheme allows to 
reduce the amplitude of the leading truncation error term by a factor close to three.

Regarding the comparison of one-dimensional S and LSQ schemes, the S2 scheme has the same stencil size as the LSQ1 
scheme while the S4 scheme has the same stencil size as the LSQ2 scheme. Table 6 shows the leading truncation error 
terms and order of accuracy of these two schemes. In these results it is possible to observe that the order of accuracy of the 
S2 scheme variants is similar to that of the LSQ2 scheme variants. Nonetheless, the latter has a bigger stencil and its leading 
truncation error term is bigger. Moreover, the S4 scheme has the same order of accuracy than the LSQ4 schemes although 
the LSQ4 scheme has a larger stencil and the leading truncation error term is bigger. At last, the central variants of these 
schemes have similar properties to the LSQ schemes built with even polynomial order, meaning that their truncation error 
only shows terms with even exponent with h and that the central variants order of accuracy is one order higher accurate 
than their upwind counterparts.

The truncation error analysis of the two-dimensional linear advection equation yields similar results as the ones shown in 
Table 5 and Table 6 regarding the order of accuracy of the LSQ and S schemes. Nonetheless, LSQ schemes present additional 
cross-derivatives x − y terms present in its expression of the truncation error. To give an example of this issue the truncation 
error of the LSQ2 scheme in the two-dimensional linear advection equation is

EULSQ2 (h) = cxh3

(
19

84

∂4u

∂x4

∣∣∣∣
i, j

+ 1

14

∂4u

∂x2∂ y2

∣∣∣∣
i, j

)
+ c yh3

(
19

84

∂4u

∂ y4

∣∣∣∣
i, j

+ 1

14

∂4u

∂x2∂ y2

∣∣∣∣
i, j

)
+O

(
h4
)

, (65)

where the presence of cross-derivative x − y terms can be clearly observed. This fact is exacerbated as the order of accu-
racy of the LSQ scheme increases. This allows to conclude that the LSQ schemes in two-dimensional uniform meshes can 
14
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Table 6
Leading truncation error term and order of accuracy of 
different schemes described in Section 3.2.

E Order of accuracy

US2 − ch3

12
∂4u
∂x4

∣∣∣
i
+O (h4

)
3rd

CS2 − ch4

30
∂5u
∂x5

∣∣∣
i
+O (h6

)
4th

US4 − ch5

60
∂6u
∂x6

∣∣∣
i
+O (h6

)
5th

CS4 − ch6

140
∂7u
∂x7

∣∣∣
i
+O (h8

)
6th

present increased numerical errors compared to the one-dimensional LSQ schemes counterparts in the two-dimensional 
linear advection equation.

It is important to note that the S schemes do not present this cross-derivative terms in the expression of their truncation 
error. For example, the truncation error of the two-dimensional S2 scheme reads

EUS2 (h) = − cxh3

12

∂4u

∂x4

∣∣∣∣
i, j

− c yh3

12

∂4u

∂ y4

∣∣∣∣
i, j

+O
(

h4
)

. (66)

It can be observed in the previous expression that S schemes recover the one-dimensional truncation error expression if 
the solution is uniform along a given principal direction of the structured mesh.

For the sake of brevity, we have decided to not include the leading truncation error terms of the rest of the two-
dimensional LSQ schemes, although their order of accuracy is the same as that of their one-dimensional counterparts.

4.2. Two dimensional order of accuracy in non-uniform and unstructured meshes

The order of accuracy of least-squares schemes in unstructured meshes is assessed numerically. The p-th order recon-
struction of a given scheme is evaluated by the definition of the order of accuracy or k-exact property. Such an approach is 
inspired on the work of [36,3]. Previous works studied the k-exact property of the least-squares polynomial and polynomial 
gradient reconstruction particularized at the cell centers. Nonetheless, the p-th order reconstruction property is extended to 
analyze the polynomial reconstruction property at quadrature points and face averages reconstructions. A test-polynomial 
T is defined as

T (x) = (ax + by)p , (67)

where a, b ∈R and p is the polynomial order of the test error function. In particular, the use of different coefficients a and 
b is justified to avoid the possible mesh principal direction x = y. The order of accuracy of a polynomial k-exact scheme 
can be computed from the greatest value of p which ensures that the reconstructed polynomial (built from T ) at each cell 
i follows

Pi (ξ) = T (x (ξ)) . (68)

A k-exact scheme which uses a polynomial of degree p should be capable of reconstructing this test error function with 
the same or less order p ≤ p at each point of the cell. In this case the scheme is said to be p +1 order accurate. As explained 
beforehand, the focus is on the k-exact properties of schemes with regards to the interpolation to the quadrature points and 
the face average reconstructions. To study these properties, two different relative errors will be defined. The first is defined 
at each face l of the domain and it is computed as

Ẽl,u = max

(∥∥P̃−
� − T̃�

∥∥∥∥T̃�

∥∥ ,

∥∥P̃+
� − T̃�

∥∥∥∥T̃�

∥∥
)

, (69)

if the studied scheme is upwind and

Ẽl,c =
∥∥ 1

2

(
P̃−

� + P̃+
�

)− T̃�

∥∥∥∥T̃�

∥∥ , (70)

for central schemes. In the latter expressions, P̃−
� and P̃+

� refer to the face average of the polynomial build using the central 
stencil of the face owner and face neighbor cells respectively. These error estimators are related to the numerical error of 
the computation of the face average conserved variables.

The second relative error used to assess the k-exact properties of the spatial schemes is defined at each quadrature point 
for upwind schemes as
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Fig. 4. Grids used to test the k-exact properties of the LSQ schemes.

Eg,u = max

(∥∥P−
�

(
ξ g

)−T (
x
(
ξ g

))∥∥∥∥T (
x
(
ξ g

))∥∥ ,

∥∥P+
�

(
ξ g

)−T (
x
(
ξ g

))∥∥∥∥T (
x
(
ξ g

))∥∥
)

, (71)

and for central schemes as

Eg,c =
∥∥ 1

2

(
P−

�

(
ξ g

)+P+
�

(
ξ g

))−T (
x
(
ξ g

))∥∥∥∥T (
x
(
ξ g

))∥∥ . (72)

This second error estimator is related to the error in the computation of the fluxes at the quadrature points.

Remark 5. It is worth noting that special care should be taken when defining the polynomial test error function to ensure 
that the minimum absolute value of the polynomial in the mesh is bigger than the machine rounding-off errors by an 
important margin to avoid divisions by zero in the computation of the numerical error. This is done by displacing the x − y
reference frame of the test error function.

Remark 6. Although the test error function is not periodic in the meshes that will be used in this study, the error estimators 
computation can still be performed with meshes that present periodic boundary faces by ensuring that the periodic ghost 
cells are initialized with the cell average value of the test error function computed with the geometry of each periodic ghost 
cell, avoiding the face and quadrature points data exchange due to the mesh periodicity condition. The only drawback of 
this approach is that the polynomial of the neighbor cells of the faces located in the periodic boundaries cannot be used 
to compute error estimators. This is due to the fact that the assessment of this polynomial requires periodic data exchange, 
and as the test error function is not periodic the polynomial reconstruction shows wrong values.

Remark 7. The previous two-dimensional test can be easily expanded to three dimensional analysis by adding the depen-
dence on the z coordinate to the error function. Moreover, it can also be used in one-dimensional cases removing the 
dependence on the y coordinate.

Three two-dimensional meshes (depicted in Fig. 4) defined in the domain x ∈ [0, L]2 with periodic boundary condition 
on all boundaries, are used to compute the previously described error estimators.

1. A uniform structured mesh of edge size h
2. A uniform structured mesh of initial edge size h with a random mesh-nodes perturbation following the expression:

x′ = x + hK rand(−1,1) ∀ x ∈ (0, L)2 , (73)

where K = 0.25 is a constant and the rand function is a random floating point number generator in the domain 
[−1, 1] ∈R. Note that the points which lay on the boundaries of the domain are not modified to respect the periodicity 
conditions.

3. A fully quad-unstructured mesh with a characteristic edge size of h.

Table 7 reports error estimators in the uniform mesh configuration (Mesh 1) for all the schemes studied in this work 
and as a function of the test error function order p. The results show that, as presented in Section 4.1, all schemes are 
k-exact regarding the interpolation to the quadrature points and the face average reconstruction as they are capable of 
approximating a test error function with p = p up to machine precision rounding-off errors. Moreover, some central scheme 
variants are k+1-exact in the sense of the face average reconstruction. This property is characteristic of schemes with 
even polynomial degree p and was also observed in the truncation error analysis (Section 4.1). It is important to note 
16



G. Saez-Mischlich, J. Sierra-Ausin, G. Grondin et al.
Table 7
Maximum face average and quadrature points error in the uniform mesh case (Mesh 1) 
with h = L/20. Symbol — denotes errors considered as machine round-off errors (< 10−14).

Maximum Face Average Error Maximum Quadrature Points Error

p = p p = p + 1 p = p + 2 p = p p= p + 1 p= p + 2

ULSQ1 — 5.572E–5 1.717E–4 — 5.205E–5 1.607E–4
CLSQ1 — 5.373E–5 1.612E–4 — 5.373E–5 1.655E–4

ULSQ2 — 8.640E–6 3.480E–5 — 9.164E–6 3.696E–5
CLSQ2 — — 2.276E–7 — 8.183E–6 3.296E–5

ULSQ3 — 1.379E–7 7.198E–7 — 2.017E–7 1.046E–6
CLSQ3 — 1.282E–7 6.411E–7 — 1.282E–7 6.690E–7

ULSQ3W — 5.042E–8 2.613E–7 — 9.158E–8 4.697E–7
CLSQ3W — 4.689E–8 2.345E–7 — 4.689E–8 2.429E–7

ULSQ4 — 7.070E–8 4.274E–7 — 8.034E–8 4.866E–7
CLSQ4 — — 2.884E–9 — 6.458E–8 3.904E–7

US2 — 1.968E–7 7.894E–7 — 2.036E–7 8.166E–7
CS2 — — 2.241E–9 — 1.925E–7 7.722E–7

US4 — 4.227E–11 2.544E–10 — 4.272E–11 2.571E–10
CS4 — — 7.606E–13 — 4.075E–11 2.453E–10

Table 8
Maximum face average and quadrature points error in the Mesh 2 configuration with 
h ∼ L/20. Symbol — denotes errors considered as machine round-off errors (< 10−14).

Maximum Face Average Error Maximum Quadrature Points Error

p = p p = p + 1 p = p p = p + 1

ULSQ1 — 1.502E–4 — 1.461E–4
CLSQ1 — 8.090E–5 — 1.273E–4

ULSQ2 — 9.648E–6 — 1.019E–5
CLSQ2 — 2.381E–6 — 1.004E–5

ULSQ3 — 3.772E–7 — 4.517E–7
CLSQ3 — 2.051E–7 — 4.047E–7

ULSQ3W — 1.116E–7 — 1.615E–7
CLSQ3W — 8.781E–8 — 1.026E–7

ULSQ4 — 8.643E–8 — 9.424E–8
CLSQ4 — 1.650E–8 — 6.978E–8

US2 — 6.574E–8 — 6.653E–8
CS2 — 1.510E–8 — 6.183E–8

US4 — 5.151E–12 — 5.251E–12
CS4 — 1.127E–12 — 5.151E–12

that the previous k+1-exactness is not observed when analyzing the error estimator at the quadrature points. Moreover, 
every central scheme shows lower error values at the quadrature points than their upwind counterpart. As it will be shown 
afterwards, this k+1-exactness of some central schemes is lost in non-uniform and unstructured meshes due to the loss of 
truncation error canceling.

Table 8 presents the values of the different error estimators in Mesh 2 configuration for every scheme studied in this 
work and as a function of the test error function order p. As for uniform structured meshes, all upwind LSQ schemes 
are k-exact schemes regarding the interpolation to the quadrature points and the face average reconstruction, as they are 
capable to approximate a test error function with p = p up to machine precision rounding-off errors in this non-uniform 
mesh configuration. Moreover, it is possible to observe that the k+1-exactness property of certain central schemes regarding 
the face average reconstruction is lost in this non-uniform mesh configuration. Nonetheless, it must be noted that the face 
average error estimator for test error functions such that p = p + 1 is much lower for the central schemes with even 
polynomial order p with respect to their upwind counterpart. This difference is less pronounced for least-squares schemes 
built with odd degree polynomials.

Table 9 shows the different error estimators in the Mesh 3 configuration. The results are very similar compared to those 
showed in the previous analysis of Table 8 therefore, for the sake of brevity, we avoid its discussion.
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Table 9
Maximum face average and quadrature points error in the Mesh 3 configuration with 
h ∼ L/20. Symbol — denotes errors considered as machine round-off errors (< 10−14).

Maximum Face Average Error Maximum Quadrature Points Error

p = p p = p + 1 p = p p = p + 1

ULSQ1 — 1.584E–4 — 1.471E–4
CLSQ1 — 7.982E–5 — 1.584E–4

ULSQ2 — 1.139E–5 — 1.180E–5
CLSQ2 — 1.684E–6 — 9.351E–6

ULSQ3 — 4.684E–7 — 6.311E–7
CLSQ3 — 1.936E–7 — 4.684E–7

ULSQ3W — 9.529E–8 — 1.536E–7
CLSQ3W — 7.387E–8 — 7.984E–8

ULSQ4 — 6.802E–8 — 8.250E–8
CLSQ4 — 1.662E–8 — 6.450E–8

5. Spectral properties of finite volume schemes

In the following, spectral properties of the numerical reconstruction of the conservation equation (10) will be addressed. 
Let us assume a linear flux operator F (u) = cu, where c is the convective speed. In particular, Eq. (10) discretized in a mesh 
of NV cells, may be recast to a dynamical system [10] of

duδ
−
dt

= J uδ
− , (74)

where J ∈ RNV×NV is a matrix which depends on the upwinding parameter f of each numerical scheme and it is 
constructed using the interpolation polynomials. Therefore, it uniquely depends on geometric properties of the mesh dis-

cretization. In addition, uδ
− ∈ CNV =

[
uδ

1, u
δ
2, . . . , u

δ
i , . . . uδ

NV

]
is a vector containing cell average values of the solution at 

each cell. Von Neumann analysis takes advantage of the particular structural properties of the matrix J , i.e. circulant, or-
thogonal, etc. For instance in the Toeplitz case, its symbol provides access to the spectrum and the pseudo-spectrum (see 
[41]). Nonetheless, the general case is slightly more complex. Toeplitz property is lost whenever the underlying numerical 
triangulation is not uniform, in such a case entries of the matrix J cease to be in a particular ordering.

Integration of the dynamical system Eq. (74) can be analytically performed with a semi-group propagator, i.e. the expo-
nential matrix, so one ends up with a discrete map as follows

uδ
− (tn+1) = R(τ , J ) uδ

− (tn) , (75)

where R(τ , J ) = Rδ = eτ J is the exponential of the matrix J , tn is the solution at a given discrete time and tn+1 − tn is the 
time step τ . Similarly, one could choose an approximation of the actual semi-group, i.e. a Runge-Kutta multistage integrator 
Rδ with a given number of stages and order. Numerical examples are carried out with a RK33 temporal discretization 
method. This method allows to compute Rδ as

Rδ = I + τ J + τ 2

2
J 2 + τ 3

6
J 3 . (76)

Furthermore, let us remind that the semi-group of the linear advection equation with periodic boundary conditions and 
initial condition:

u(x, t = 0) = û eIκ
(
x cos θ+y sin θ

)
, (77)

where κ is the spatial wavenumber, is analytical with the following expression: R = e−Iωτ I , such that ω = κ
(
cx cos θ +

c y sin θ
)

is the analytical temporal wavenumber. In this work we will only consider advection velocity vectors such that 
ζ = π/4.

Remark 8. If the exponential operator is used to build the matrix operator R , the results will only take into account spatial 
discretizations defects. On the contrary, the consideration of Runge-Kutta multistage integrators to build Rδ imply that the 
numerical solution will include both spatial and temporal defects.
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5.1. Von Neumann analysis in structured uniform meshes

Von Neumann analysis on structured uniform computational domains with periodic boundary conditions takes advantage 
of the circulant property of the linear operator J , i.e. the action matrix-vector product is equivalent to the convolution of 
two vectors, thus the Fourier transform is a pointwise multiplication. These properties can only be obtained if the mesh is 
uniform, the stencils of each cell have the same topological shape and the boundary conditions are periodic. In addition, 
it is possible to show the equivalency between an analysis of Eq. (75) in the finite-volume formulation and in the finite-
difference sense. Thus, Eq. (75) can be recast into:

u−(tn+1) = Rδ u−(tn) , (78)

where u− ∈ CNV represents the point-value solution at the cell centroids. As matrix J is circulant, so is Rδ . Von Neumann 
analysis aims to determine the deviation of the numerical solution to Eq. (78) and the solution to the advection equation. 
Let us consider the solution to the advection equation

u(x, t) = û eIκ(x cos θ+y sin θ)−Iωt , (79)

which is injected to Eq. (78), to obtain the value of the numerical temporal wavenumber of each cell

ωδ
i = ωδ = I

τ
ln

⎛⎝∑
j

Rδ
i, je

Iκ
(
(x j−xi) cos θ+(y j−yi) sin θ

)⎞⎠= I
ln Q

τ
, (80)

where ωδ is the numerical temporal wavenumber and Q is an amplification factor. It is emphasized that this numerical 
temporal wavenumber has the same value for each cell due to the properties of the Rδ matrix. This uniqueness will be lost 
in unstructured or non-uniform meshes as it will be shown afterwards.

To assess the dissipation and dispersion errors, a non-dimensional temporal wavenumber error function is defined as

D(κh,CFL, θ) = 1

ω

(|Re
(
ωδ − ω

)| + I|Im (
ωδ − ω

)|) , (81)

where CFL = cτ
h . The comparison of the numerical temporal wavenumber and its analytical value is commonly used to 

assess the dissipation (Im(D)) and dispersion (Re(D)) errors of the numerical schemes [42–46]. The one-dimensional case 
can be particularized by imposing θ = ζ = 0 and by using a one-dimensional mesh.

If temporal discretization errors are neglected (by assuming exponential temporal integration), it is possible to obtain an 
analytical expression of the non-dimensional error function. For example for the one-dimensional ULSQ1 scheme this error 
function can be written as

D(κh) = − (κh)2

12
+ I

(κh)3

8
+O (κh)4 . (82)

In the latter formula, it is possible to differentiate the dissipation (imaginary part) and dispersion errors (real part) of the 
given spatial discretization scheme. Moreover, the leading error term has an exponent which is of the same order of the 
truncation error term in Table 5. Therefore, the truncation error terms with odd exponent produce dissipation and the ones 
with even exponent produce dispersion. It is also important to note that central schemes do not present dissipation errors 
when using analytical integration methods due to the fact that their matrix J is anti-symmetric. This implies that the 
eigenvalues of their matrix J are purely imaginary. Hence, dissipation of central schemes can uniquely appear due to the 
temporal numerical integration method. This can also be observed by analyzing the truncation errors of central schemes 
showed in Table 5.

5.1.1. One-dimensional von Neumann analysis
The one-dimensional von Neumann analysis can be performed by supposing a plane wave and a uniform periodic mesh 

along the x direction with constant cell size h. This analysis will be performed using the cells per wavelength parameter 
λ/h = 2π

κ (similar to the points per wavelength parameter used in [47]) instead of the more broadly used non-dimensional 
spatial wavenumber parameter κh.

Dissipation & dispersion
Dissipation and dispersion of finite volume schemes are analyzed by considering the real and imaginary parts of D. The 

study will be performed with three different CFL values. The lowest CFL = 0.1 is chosen to ensure that the spatial dis-
cretization errors are dominant; the highest CFL = 1.0 is chosen to evaluate the numerical errors of simulations dominated 
by temporal discretization errors. At last, the case with CFL = 0.5 will also be presented to assess the interactions between 
the spatial and temporal discretization errors.

Fig. 5 and Fig. 6 display the dispersion error of the upwind and central schemes respectively. The figures show that for 
all CFL values the upwind and central scheme variants present a similar trend. Let us start by considering dispersive errors 
19



G. Saez-Mischlich, J. Sierra-Ausin, G. Grondin et al.
Fig. 5. Dispersion errors of 1D upwind schemes as a function of λ/h and for CFL ∈ [0.1, 0.5, 1.0]. Dashed lines are related to the function Im(D) ∼ (λ/h)n

where n is an exponent ranging from 2 to 6 and are used to assess the leading term order of the dispersion errors.

Fig. 6. Dispersion errors of 1D central schemes as a function of λ/h and for CFL ∈ [0.1, 0.5, 1.0]. Dashed lines are related to the function �(D) ∼ (λ/h)n

where n is an exponent ranging from 2 to 6 and are used to assess the leading term order of the dispersion errors.

at CFL = 0.1. The dispersion error evolves as a power law with the number of cells per wavelength which is representative 
of even exponents of the truncation error terms analyzed in Section 5.1. Nonetheless, it is worth noting that such a trend 
appears at values of λ/h > 10, whereas at lower values most least-squares schemes do not exhibit this behavior. Let us stress 
out that even if the dispersion errors follow the correctly predicted trend for high values of λ/h, error values of most LSQ 
schemes are higher than those of the corresponding structured (S) schemes. An exception to this behavior is observed when 
analyzing the LSQ3W scheme which shows lower dispersion errors than the S2 scheme with the same order of accuracy.

For high CFL values most upwind and central schemes show similar dispersion errors and a 4th order trend with h. This 
can be explained due to the temporal discretization errors, which in our case, due to constant CFL condition, behave as
O 
(
τ 3
)∼O 

(
h3
)
. As dispersion errors are caused by terms with even exponent truncation errors with h, the dispersion error 

will behave as the 4th order truncation error of the temporal discretization method O 
(
τ 4
)∼O 

(
h4
)
.

It is also interesting to comment the special behavior of the LSQ1 and S2 schemes as the CFL increases. Scheme LSQ1, 
does not display a 4th order trend with h because this scheme has a 2nd order in space which is lower than the order in 
time, therefore its dispersive errors are not influenced by temporal discretization. On the other hand, the S2 scheme shows a 
decrease of its dispersion errors as the CFL increases. This fact is exacerbated in its central variant scheme CS2, in which we 
observe a very high-order trend of the dispersion errors with the cell size parameter. The reason for such superconvergence 
behavior for CFL = 1 was not identified. This superconvergence has not been observed when combining the S2 scheme with 
other RK time integrators at CFL = 1. Therefore, further studies are needed to better understand this observation.

Fig. 7 displays the evolution of the dissipation error with respect to λ/h for the upwind schemes. Dissipation error of 
each upwind scheme shows a similar trend to dispersion error. For low CFL values, dissipation is dominated by spatial 
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Fig. 7. Dissipation errors of 1D upwind schemes as a function of λ/h and for CFL ∈ [0.1, 0.5, 1.0]. Dashed lines are related to the function Im(D) ∼ (λ/h)n

where n is an exponent ranging from 2 to 6 and are used to assess the leading term order of the dissipation errors.

discretization errors, whereas at large CFL the opposite holds. At low CFL, a power-law trend of the dissipation error is 
observed for high values of the number of cells per wavelength. The exponent of the power law corresponds to the odd 
exponent of the truncation error of each scheme. For low values of λ/h the least-squares schemes underperform compared 
to the US2 and US4 schemes. In particular, we remark that the ULSQ3W over-performs every other least-squares scheme 
and the S2 scheme for each λ/h, which shows that the addition of distance weighting to the least-squares schemes may 
improve the dissipation properties of these schemes. As the CFL number increases temporal discretization errors dominate 
for high resolved waves. Under those circumstances, every scheme displays a O 

(
h3
)

error trend, similar to what it has been 
observed with the dissipation of central schemes.

The dissipation errors of central schemes are not shown due to the fact they are just given by the 3rd numerical error 
of the RK33 time integrator, due to the choice of constant CFL. Such behavior is equally observed for high values of the 
CFL number and high values of the cells per wavelength for upwind schemes, i.e. in these cases the temporal discretization 
error dominates.

Temporal stability
This section is devoted to the study of the L2-stability of the linear advection equation, thus maximum CFL values will 

be reported for every spatial numerical scheme presented in this study. Maximum CFL is assessed from Eq. (80), by taking 
into account an amplification factor lower than one

‖Q ‖ ≤ 1 , (83)

which is equivalent to stating that the absolute part of every eigenvalue of operator Rδ is lower than one.
The eigenvalues of Rδ vary with the CFL and λ/h. Therefore, for each value of κh there is a given CFL which ensures 

linear stability. The lowest value of these CFL conditions, denoted as CFLMAX and is the maximum CFL value and ensuring 
linear stability for a given scheme.

Table 10b reports the maximum CFL number ensuring linear stability for the S2 and S4 schemes in a uniform mesh 
using the RK33 time integration method. Let us remark the validity of the approach which has been validated via a cross-
comparison of the maximum CFL of US4 scheme, previously reported by [1]. It can be observed that S2 schemes present 
higher CFLMAX than S4 schemes. Additionally, structured central schemes display a lower CFLMAX than their upwind coun-
terparts. Such a behavior is expected as the central schemes have much lower dissipation values than the upwind schemes 
and therefore, the linear stability can only be ensured for lower values of the CFL number.

Table 10a reports the maximum CFL number ensuring linear stability for the different one dimensional least-squares 
schemes in a uniform mesh using the RK33 time integration method. The linear stability CFL criterion of these schemes 
behaves differently to that of the S2 and S4 schemes and does not follow a coherent trend with respect to their order of 
accuracy and stencil size. Moreover, one may also observe that for most LSQ schemes, the central variant displays a higher 
value of the CFLMAX than the upwind variant.

5.1.2. Two-dimensional analysis
The two-dimensional von Neumann analysis is carried out with the same tools developed for the one-dimensional case. 

However, the dissipation and dispersion maps depend on the wave angle θ and the advection velocity vector. For these 
studies, the convection velocity angle ζ is set as ζ = 45◦ . This convection velocity angle ensures that the dissipation and 
dispersion spectrums are computed in the preferential direction of propagation for quadrilateral structured uniform meshes 
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Table 10
Maximum CFL value to ensure temporal stability in the one-dimensional linear-
advection as a function of the different schemes studied in this work. Results 
obtained with the RK33 time integration scheme.

Scheme CFLMAX

ULSQ1 1.176
CLSQ1 1.101

ULSQ2 1.353
CLSQ2 1.666

ULSQ3 1.312
CLSQ3 1.342

ULSQ3W 1.434
CLSQ3W 1.111

ULSQ4 1.292
CLSQ4 1.718

(a) One-dimensional LSQ schemes

Scheme CFLMAX

US2 1.626
CS2 1.262

US4 1.435
CS4 1.092

(b) One-dimensional S schemes

Fig. 8. Diffusion (a) and Dispersion (b) errors of the two-dimensional US2, US4, ULSQ2 and ULSQ4 schemes at ζ = 45◦ . The radial coordinate of the figures 
represents the cells per wavelength λ/h parameter, while the azimuthal coordinate is the wave angle. Results are obtained for CFL = 0.05. (For interpretation 
of the colors in the figure(s), the reader is referred to the web version of this article.)

(see [48,49]). Moreover, as dissipation and dispersion depend on the wave angle θ , these parameters need to be analyzed 
for each wave angle. The temporal discretization time step is fixed such that cτ/h = 0.05, as we have observed that the 
influence of the temporal discretization methods in the von Neumann analysis is similar to the one-dimensional analysis. 
We will consider that the computation of the CFLMAX condition of the schemes in two-dimensional problems is beyond the 
scope of this work, although the methods developed in the previous sections are still valid to compute CFLMAX. The inter-
ested reader is referred to [46] for further comments regarding the extension of the CFLMAX condition to two-dimensional 
problems.

Fig. 8a show the contours of the dissipation for the upwind US2, US4, ULSQ2 and ULSQ4 schemes as a function of the 
number of cells per wavelength and the wave angle. These contours show clearly that dissipation is always minimum at 
θ = 45◦ = ζ for all schemes. This behavior was also described in [42]. Moreover, the dissipation values show similar trends 
as in the one-dimensional studies. The ULSQ2 is more dissipative than the US2 scheme, although they have the same order 
of accuracy. The previous statement can also be applied when comparing the ULSQ4 and US4 schemes. At last, we observe 
that the ULSQ4 scheme shows very high values of the dissipation error compared to the other schemes for under-resolved 
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Fig. 9. Dissipation and dispersion errors of 2D upwind schemes of waves with θ = 45◦ as a function of λ/h and for cτ/h = 0.05. Dashed lines are related 
to the function Im(D) ∼ (λ/h)n where n is an exponent ranging from 2 to 6 and are used to assess the leading term order of the dissipation errors.

waves in this two-dimensional analysis. This behavior was also noted in the one-dimensional dissipation analysis. Similar 
conclusions can be obtained regarding the dispersion errors as shown in Fig. 8b.

For comparison purposes, Fig. 9 shows the dissipation and dispersion errors of all two-dimensional upwind schemes at 
θ = 45◦ . The results obtained are very close to those obtained in the one-dimensional study at low CFL number (Fig. 7
and Fig. 5), therefore we avoid its discussion. It is also observed that the two-dimensional central schemes behave similarly 
to their one-dimensional counterparts. This implies that the dissipation of these schemes is dominated by the temporal 
discretization errors and that their dispersion is equivalent to the dispersion of the upwind schemes for low CFL numbers.

We avoid adding more two-dimensional comparisons for the sake of brevity. This is justified due to the fact that the 
one-dimensional conclusions regarding the numerical dissipation and dispersion can also be applied to the two-dimensional 
analysis for all the schemes.

5.2. Diffusion & dispersion errors in two-dimensional unstructured grids

The von Neumann analysis of Section 5.1 can be further expanded to study dissipation and dispersion errors in unstruc-
tured meshes. It is important to note that in non-uniform meshes, the J matrix is not Toeplitz nor circulant, therefore the 
properties that allowed to simplify the numerical error analysis in the von Neumann method cannot be used. This is due 
to the fact that circulant matrices’ eigenvectors are Fourier modes and therefore, the dissipation and dispersion properties 
of a wave described by a Fourier mode are just given by a single eigenvalue of J . To extend the von Neumann analysis for 
unstructured meshes, we first define the cell average of a given two-dimensional wave function

ui(t) = Ei ûi(t) , (84)

where ûi(t = 0) = cte and E ∈CNV×NV is a diagonal matrix whose entries Ei are defined as

Ei = 1

|Vi|
∫
Vi

eIκ(x cos θ+y sin θ) dV . (85)

The linear system in Eq. (75) is then expressed as

û−(tn+1) = E−1 Rδ E û−(tn) , (86)

where û− ∈CNV×NV is a vector containing the values of ûi at each cell. If the initial vector û−(tn) is an eigenvector of E−1 Rδ E , 
then the solution of the previous equation is given by û−(tn+1) = � û−(tn), where � is an eigenvalue. This is typically the case 
for the von Neumann analysis in uniform meshes. However, in non-uniform meshes the previous statements do not hold 
true and therefore, the vector û−(tn+1) will not only depend on a single eigenvalue, but on a combination of them. This also 
implies that û−(tn+1) won’t be uniform even if the initial û−(tn) is uniform. Therefore discrete system response described in 
Eq. (86) will present a transient regime. As a result, the dissipation and dispersion analysis in non-uniform meshes has to be 
performed using global estimators under asymptotic behavior assumptions. To do so, one can build a numerical estimator 
of the imaginary (dissipation) and real (dispersion) parts of the temporal wavenumber as
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Fig. 10. Dissipation and dispersion errors of 2D upwind schemes of waves with θ = 45◦ in Mesh 2 configuration as a function of λ/h and for cτ/h = 0.05. 
Dashed lines are related to the function Im(D) ∼ (λ/h)n where n is an exponent ranging from 2 to 6 and are used to assess the leading term order of the 
dissipation and dispersion errors.

Im(ωδ
n) ≈ 1

τ
ln

‖û−(tn+1)‖
‖û−(tn)‖ , (87)

and

Re(ωδ
n) ≈ − 1

τ
arg 〈û−(tn+1), û−(tn)〉 . (88)

A posteriori analyses of the dissipation and dispersion estimators have confirmed that the values of the dissipation 
and dispersion estimators at n = 0 yield accurate predictions of the numerical errors observed in the simulation of the 
linear advection in two-dimensional non-uniform and/or unstructured meshes (see Section 6.3). This fact was also recently 
discussed in [50], where it was stated that the short-term numerical errors of Spectral Element Methods could be predicted 
by analyzing the dissipation estimator (Eq. (87)) at n = 0. However, it is worth noting that the dissipation and dispersion 
properties of badly-resolved wavelengths when increasing the iteration number n. This issue appears due to the initial 
high dissipation values of under-resolved waves and machine rounding-off errors. The previous observations give enough 
evidence that the analysis of the global estimator of the numerical temporal wave number can be made for the first iteration 
n = 0 at least for numerical schemes and meshes studied in this work. As explained earlier, these meshes present close-to-
uniform cell sizes with moderate cell aspect ratio changes. It has been observed, a posteriori, that meshes with substantial 
cell aspect ratio variation exhibit a considerably different eigenvalue spectrum from that obtained with the meshes used in 
this work. Such eigenvalues distribution has an important impact the linear dissipation and dispersion transient behavior, 
possibly invalidating the conclusions of this work.

At last, we stress out that these observations only apply to the mesh of this study. The conclusions obtained from this 
section, may not be the extrapolated to meshes with abruptly varying aspect ratios or bigger skewness factor or with 
non-linear spatial discretization schemes.

Under the previous assumptions, equations (87) and (88) (particularized for n = 0) can be introduced in the tempo-
ral wavenumber error function D (Eq. (81)) to compute the dissipation and dispersion errors of the global estimator of 
numerical temporal wavenumber.

It should be noted that the previous method is analogous to the von Neumann analysis in uniform meshes, as in those 
meshes there are no transient effects due to the properties of circulant matrices.

The previously discussed method can be applied to study dissipation and dispersion properties of unstructured meshes. 
It is important to note that this method cannot be applied to study arbitrary waves, as the waves need to respect the 
following periodicity constraints of the domain

κ cos θ = 2πnx

L
and κ sin θ = 2πny

L
, (89)

where nx and ny are positive integer numbers. In uniform meshes, this particularization was not needed as one can assume 
that the meshes have arbitrary domain and cell sizes which respect the periodicity condition.

Fig. 10 and Fig. 11 show the dissipation and dispersion errors of the upwind least-squares schemes for the Mesh 2 and 
Mesh 3 configurations at n = 0 and cτ/h = 0.05. Both figures show similar results. The dissipation and dispersion properties 
of the least-squares schemes in the non-uniform meshes of this study are very similar to those found in uniform meshes. 
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Fig. 11. Dissipation and dispersion errors of 2D upwind schemes of waves with θ = 45◦ in Mesh 3 configuration as a function of λ/h and for cτ/h = 0.05. 
Dashed lines are related to the function Im(D) ∼ (λ/h)n where n is an exponent ranging from 2 to 6 and are used to assess the leading term order of the 
dissipation and dispersion errors.

This leads to the conclusion that high-order least-squares schemes are robust regarding their accuracy and numerical prop-
erties when meshes lose their global uniformity. This is not generally the case for other linear reconstruction schemes, 
which might lose accuracy and spectral properties with mesh deformation or perturbation. Moreover, this reveals that most 
conclusions obtained in the one-dimensional analysis remain valid. This allows to conclude that the one-dimensional anal-
ysis of least-squares schemes is representative of their behavior in the non-uniform two-dimensional meshes described in 
this work. Such meshes present a certain degree of cell size uniformity which, as described previously, does not substantially 
modify the eigenvalues spectrum with respect to that of uniform meshes. We omit central schemes from the comparison 
due to the fact that their J operator has eigenvalues with positive real part in the aforementioned configurations and 
therefore those schemes are inherently unstable.

6. Numerical experiments

In this section, numerical simulations will be performed to validate the previous analytical analysis in linear and non-
linear cases.

6.1. Error computation

To assess the numerical errors of the simulations the L∞ norm based on the cell averages of the numerical will be used. 
In our study, this norm is defined as

L∞(u, t) = NV
max
i=1

(
|uδ

i (t) − ui(t)|
)

. (90)

The computation of this error norm with different number of cells in the domain will allow to perform an a posteriori 
error norm convergence order study. The order of the error norm convergence should be consistent with the order of the 
truncation errors studied in Section 4.1.

6.2. Linear advection in one-dimensional mesh

In this section, the one-dimensional linear advection equation (Section 2.5.1) is solved using the LSQ and S based finite-
volume schemes described in Section 3.1 and Section 3.2. In this analysis, the initial condition is defined by a smooth sine 
wave [45]:

u(x, t = 0) = sin
(

2π
x

λ

)
, x ∈ [0, L] . (91)

In the previous initial condition, we fix L
λ

= 4, L = 1 and c = 1. Moreover, we define the non-dimensional parameter cT
L = 1

where T is the wave temporal period in the domain. The domain is uniformly discretized with cell size h and periodic 
boundary conditions at x = 0 and x = L are applied. To assess the numerical properties of each numerical scheme, we run 
25



G. Saez-Mischlich, J. Sierra-Ausin, G. Grondin et al.
Fig. 12. L∞ error norm of the solution in the 1D test case at t = T using upwind schemes for three different values of the CFL and as a function of λ/h.

simulations at fixed CFL = cτ/h = 0.1, 0.5 and 1.0 while decreasing the cell size h (which implies implicitly a reduction of 
the time step τ ). The numerical errors will be analyzed at t = T using the L∞ norm (Eq. (90)).

Fig. 12 shows the temporal evolution of the L∞ norm of the upwind schemes as a function of the non-dimensional time 
t/T , different values of λ/h and the three CFL values mentioned. These results are representative of the combination of the 
dissipation and dispersion of the spatial and temporal discretization schemes. In this figure, it is possible to observe that 
error norm of all the spatial discretization schemes shows their predicted theoretical order of accuracy trend (as discussed 
in Table 5 and Table 6 for CFL = 0.1). However, as the CFL value increases, the higher order schemes show much higher 
errors due to the temporal discretization schemes, degrading their order of accuracy to a maximum of three as predicted in 
Section 5.1. To assess the difference spatial discretization schemes, we focus on the results with the lower CFL value. Among 
LSQ schemes, the ULSQ3W scheme outperforms all others in the studied range of λ/h, although the ULSQ4 (which has a 
bigger stencil) should yield better results than the ULSQ3W for λ/h > 80 due to its order of accuracy which is one order 
higher. The error values of the ULSQ3W are three times lower than that of its counterpart ULSQ3 schemes for well-resolved 
waves. This is consistent with the reduction of the magnitude of the truncation error shown in Table 5. It is worth noting 
that the ULSQ4 scheme behavior with badly resolved waves is closer to that of the lower order ULSQ1 and ULSQ2 schemes. 
This might indicate that ULSQ schemes with large stencils might need additional treatment (such as the addition of distance 
weighting methods described in Section 3.1.3) to better handle low resolution waves.

Regarding the S schemes, they present much lower error norm values than LSQ schemes with the same stencil or with 
the same order of accuracy. In particular, the US2 scheme, which is comparable to the ULSQ1 and ULSQ2 schemes in terms 
of stencil size and order of accuracy respectively, shows one more order of accuracy and five times less error than the ULSQ1 
and ULSQ2 schemes respectively. Moreover, the US4 scheme, which can be compared to the ULSQ2 and ULSQ4 schemes in 
terms or order of accuracy, clearly outperforms both by large orders of magnitude. It is also worth noting that the S schemes 
outmatch the LSQ schemes in the prediction of the propagation of low resolution waves.

Similar conclusions can also be made regarding the errors obtained when using central schemes as shown on Fig. 13. 
However, due to the truncation error cancellation properties of the central schemes built with even polynomial order, it is 
possible to note that the CLSQ2, CLSQ4, CS2 and CS4 schemes clearly outperform their upwind variants. Nonetheless, the 
CLSQ1, CLSQ3 and CLSQ3W show similar results to their upwind variants.

6.3. Linear advection in two-dimensional mesh

To test the numerical properties of the finite volume schemes in 2D linear cases the two-dimensional linear advection 
equation is solved with the following initial wave condition used in [51]

u(x, y, t = 0) = sin
(

2π
x

λ

)
cos

(
2π

y

λ

)
, x ∈ [0, L]2 , (92)

where λ = L/4 is a given characteristic wavelength, L = 1 and cx = c y = 1. We define the non-dimensional parameter 
cx T

L = 1 where T is the wave temporal period. To study this case, the three difference meshes discussed in Section 4.2 with 
characteristic cell size h will be used. Periodic boundary conditions are applied at each edge of the domain. To assess the 
numerical properties of each numerical scheme we run simulations at fixed cxτ/h = 0.05 while decreasing the cell size 
parameter h, so as to ensure that spatial discretization errors are dominant with respect to temporal discretization errors.

Fig. 15a and Fig. 14b show the error norm for Mesh 1 configuration (uniform mesh) and the upwind and central schemes 
respectively. The results are very close to those shown in the one-dimensional analysis of Section 6.2, as was also predicted 
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Fig. 13. L∞ error norm of the solution in test case at t = T using central schemes for three different values of the CFL and as a function of λ/h.

Fig. 14. L∞ error norm of the solution in the two-dimensional linear advection test case with uniform meshes at t = T using upwind (a) and central (b) 
schemes with cτ/h = 0.05 and as a function of λ/h.

with the von Neumann analysis described in Section 5.1.2. Hence, the analysis of the aforementioned results is not included 
for the sake of brevity.

All the previous conclusions can also be applied to the error norms obtained using Mesh 2 and Mesh 3 configurations 
with the upwind schemes shown in Fig. 15a and Fig. 15b respectively. The results of central schemes are not presented as 
they are unstable in these mesh configurations. In these figures, it is possible to observe that LSQ schemes show similar 
error trends in non-uniform and unstructured meshes, maintaining the same order of accuracy as in structured meshes. 
This was also predicted in Section 5.2. S schemes results for Mesh 3 configuration are not presented due to the fact that 
they are only compatible with structured meshes.

To assess the behavior of the S schemes with meshes whose cell stencils principal directions present certain rotation 
with respect to those of the mesh, a new mesh configuration called Mesh 4 will be studied. This mesh is produced with 
the following transformation

x′ =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
x +Kθ L

(
0

sin
(
4π x

L

))+Kh rand(−1,1) x ∈ (0, L)2

x +Kθ L

(
0

sin
(
4π x

L

)) x /∈ (0, L)2

, (93)

where K =Kθ = 1 for this mesh configuration. Fig. 16a shows this mesh configuration for h = L/20.
10
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Fig. 15. L∞ error norm of the solution in the two-dimensional linear advection test case with Mesh 2 (a) and 3 (b) configurations at t = T using upwind 
schemes, cτ/h = 0.05 and as a function of λ/h.

Fig. 16. L∞ error norm of the solution in the two-dimensional linear advection test case with Mesh 4 configuration (a) at t = T using upwind schemes, 
cτ/h = 0.05 and as a function of λ/h.

Fig. 16b shows the error norm for the Mesh 4 configuration and the upwind central schemes respectively. It can be 
observed that the US2 scheme errors do not present a smooth behavior as the mesh is refined. In our observations, the 
increase of the error values is related to mesh regions with maximum curvature. This implies that the S schemes stability 
is sensitive to mesh curvature. Our own studies have shown that the A matrix of the S2 scheme becomes singular in mesh 
regions with a relative orientation to the x − y principal axis close to 45◦ . Moreover, in this mesh configuration, the US4 
schemes (results not shown in the figure) are only stable for the coarsest mesh, showing that the sensitivity of S schemes to 
mesh curvature increases with the polynomial degree of these schemes. At last, in this mesh configuration, the LSQ schemes 
present similar behavior to that reported in the previous analysis of Mesh 1, Mesh 2 and Mesh 3 configurations.

The performance of the S schemes could be improved in the Mesh 4 configuration by using a local reference frame 
for each stencil. However, due to the random perturbation added to each node of the mesh, the computation of a local 
reference frame is not straightforward. In our studies, we have tried several different reference frames described in [16]
and the linear mapping proposed in Eq. (28). These coordinate transformations tended to increase numerical dissipation 
and dispersion and could not always yield stable solutions in the proposed structured meshes. Moreover, several non-linear 
mappings were also tested. With these transformations the schemes presented better stability properties although their 
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Fig. 17. L∞ error norm of the density in the Euler Vortex test case with uniform meshes (Mesh 1) at T = tc for upwind (a) and central (b) schemes and as 
a function of R/h.

accuracy was degraded due to undetermined reasons. Further studies are required to generate local reference frames for S 
schemes to ensure accuracy and stability in arbitrary structured meshes.

6.4. Isentropic Euler-vortex in two-dimensional mesh

The two-dimensional static isentropic Euler vortex problem is commonly used to test the order of accuracy of numerical
methods for conservation laws with non-linear fluxes [52], in particular for the Euler equations. The analytical solution of 
this problem in primitive variables is defined as follows:

ρ(x, y, t) =
(

1 − γ − 1

2γ
�2

) 1
γ −1

, (94)

u(x, y, t) = �

R

(−y
x

)
, (95)

P (x, y, t) =
(

1 − γ − 1

2γ
�2

) γ
γ −1

, (96)

where R is the radius of the vortex, and � is defined as

� = �0e
− 1

2σ2

[
x2+y2

R2

]
. (97)

In the previous expression �0 and σ are constants which are set to 1. We define the characteristic time as tc = R2

�0
. The 

initial conditions of the conservative variables of the Euler equations are computed from the previously described primitive 
variables.

The computational domain is set to x ∈ [−L, L]2. Periodic boundary conditions are applied at each edge of the domain. It 
is worth noting that the choice of periodic boundary conditions can have an important influence on the order of accuracy 
analysis due to the non-periodic nature of the analytical and initial solutions. To avoid spurious numerical errors due to 
periodic boundary conditions, [52] stated that the length of the domain must be extended enough to ensure that the 
amplitude of the analytical solution at the edges of the domain is below or close to machine precision which is reached 
with L/R = 10 for double precision operations.

To reduce temporal discretization errors, the time step of the simulations is chosen as

τ

tc
= 1

25

h

R
. (98)

To analyze the accuracy of the different schemes, the L∞ error norm of the density as a function of the number of cells per 
radius of the vortex R/h is considered at physical time T = tc for the different schemes and Mesh 1, 2 and 3 configurations.

Fig. 17a, 18a shows the results of the upwind schemes in Mesh 1 and Mesh 2 configuration respectively. These results 
are similar to those obtained in the one and two-dimensional linear advection analysis. The ULSQ3W outperforms all LSQ 
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Fig. 18. L∞ error norm of the density in the Euler Vortex test case with Mesh 2 (a) and Mesh 3 (b) configuration at T = tc for different upwind schemes 
and as a function of R/h. Note that the S schemes are missing as they are not compatible with unstructured meshes.

schemes for the studied range of R/h and the S schemes show lower errors than those of their LSQ counterparts. All 
schemes show the predicted order of accuracy. Similar conclusions can be obtained in Mesh 3 configuration as shown in 
Fig. 18b, although in this mesh configuration the S schemes cannot be used due to the unstructured properties of the mesh.

Fig. 17b shows the error values of the central schemes in the static Euler Vortex test case. As for upwind schemes, there 
results are similar to those showed in the one and two-dimensional linear advection analysis. CLSQ3W scheme shows less 
error for under-resolved simulations while CLSQ4 presents the lowest error values of LSQ schemes for well-resolved meshes. 
S schemes outperform all their LSQ counterparts. All central schemes built with an even degree polynomial show k+1-
exactness. An important conclusion that can be obtained from these results is the fact that the analytical findings regarding 
the order of accuracy of finite-volume schemes in the linear-advection equation for uniform meshes can also be applied for 
this non-linear problem when using the analyzed schemes (in particular the high-order face average fluxes reconstruction). 
For even degree polynomial reconstruction, this conclusion cannot be straightforwardly drawn from our analytical findings, 
as for non-linear problems it is not generally possible to obtain an analytical expression of the truncation error.

6.5. Navier-Stokes decaying compressible Homogeneous Isotropic Turbulence (HIT)

To assess the performance of the studied numerical schemes in non-linear problems in which there exists an interac-
tion between different wavenumbers or Fourier modes, the analysis of a test case of decaying Compressible Homogeneous 
Turbulence in the Navier-Stokes equations is proposed [53–57].

The simulation is performed in a three-dimensional box such that x ∈ [0, 2π ]3 with periodic boundary conditions on all 
the boundaries of the domain containing 643 cells. The mesh used to discretize the domain is structured and uniform. The 
density and pressure fields are initialized with constant values ρ0 and P0 while the initial velocity field, denoted as u0, 
corresponds to a random solenoidal vector field whose energy spectrum is given by

E(κ) = 16u2
RMS,0

√
2

π

κ4

κ5
0

e
−2 κ2

κ2
0 , (99)

where κ0 = 4 and uRMS,0 is the root mean squared value of the initial velocity field. The value of the latter variable is 
related to the initial energy spectrum as

3

2
u2

RMS,0 = 〈u0 · u0〉
2

=
∞∫

κ=0

E(κ)dκ , (100)

where 〈�〉 symbolizes an ensemble average over all the domain

〈�〉 = 1

|�|
∫
�

�d� . (101)

The root mean squared value of the initial velocity field can be computed from the following simulation parameters from 
[54] and [56]
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Fig. 19. Non-dimensional enstrophy temporal evolution in the decaying compressible HIT test case with Mt,0 = 0.6 for upwind (a) and central (b) schemes. 
DNS data digitized from [56].

Reλ0 = ρ0uRMS,0λ0

μ
= 100 , Mt,0 =

√〈u0 · u0〉√
γ P0

ρ0

= 0.6 , (102)

and λ0 refers to the initial length of the Taylor’s scales in this simulation. Parameters Reλ0 and Mt,0 are the initial Reynolds 
number based on the Taylor scales and the initial turbulent Mach number respectively. The viscosity μ is considered as a 
constant following [56]. Please note that the choice of energy spectrum implies λ0 = 2

κ0
.

The initial velocity field is generated following the procedure described in [54] using a tool provided by the suite PeleC 
[56]. As the analysis of this section is not focused on the asymptotic behavior of the numerical error, no distinction between 
cell averages and point values will be made in the initialization process.

The temporal evolution of the initial prescribed velocity spectrum generates an energy cascade which produces energy 
exchanges between larger and the small dissipative structures. This implies that the numerical discetization errors of under-
resolved waves have an impact on the global numerical errors of the simulations. This test case differs drastically from 
the non-linear isentropic Euler Vortex as in the latter there exists an analytical solution which shows that there is no 
interaction between different wavenumbers of the Fourier modes of the solution. Nonetheless, there is no guarantee that 
the numerical solution of the Euler Vortex doesn’t present interaction between different wavenumbers, although the error 
analysis performed shows that this interaction doesn’t have an important influence in the solution as the mesh resolution 
increases, at least for the configuration tested in this work. Therefore, this study should allow to determine the influence of 
the numerical errors due to under-resolved waves in the prediction of turbulence flows.

At last, as a result of the chosen turbulent Mach number, the simulations performed using central schemes tend to be 
unstable due to the appearance of eddy shocklets [54,57]. Therefore, to stabilize the simulations using central schemes, the 
shock sensor described [58] is used to modify the value of f g at each quadrature point g such that

f g =
⎧⎨⎩1 if −∇·ug

∇·ug+∥∥∇×ug
∥∥ ≥ 0.65

0 if −∇·ug

∇·ug+∥∥∇×ug
∥∥ < 0.65

⎫⎬⎭ . (103)

It is worth mentioning, that central schemes could be stabilized using other limiters, shock sensors, schemes, etc. Interested 
reader is referred to the works of [54,57] for more information on this topic.

Fig. 19a shows the temporal evolution of the enstrophy ensemble average with upwind schemes computed as

ϒ = 〈‖∇ × u‖2〉 . (104)

We note that the post-processing of the results of each scheme is performed using the velocity gradient of the studied 
scheme. Due to the different precisions of schemes regarding the computation of this gradient, the initial values of variables 
which depend on the velocity gradient (such as the enstrophy) differ between schemes. The non-dimensionalization factor 
could be taken as the initial numerical value of the variable considered. However, this option was not chosen in this 
work because it would mask the disparity in accuracy of the gradient reconstruction between the different schemes. For 
comparison purposes, reference DNS data from [56] obtained with very-high-order finite-different method code SMC [59]
and 5123 points is added to the comparison. The characteristic time tc = λ0 is used to normalize the temporal evolution.
uRMS,0
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The results show that all schemes under-predict the production of enstrophy by a large margin in the studied mesh. If 
the schemes are sorted according to their error with respect to the reference DNS data, it is possible to observe that their 
ordering closely resembles the one obtained from the errors shown in figure Fig. 17a for under-resolved simulations. It can 
be observed that the results from ULSQ4 are far less accurate than those of the US4 scheme although both have the same 
order of accuracy and similar stencil sizes. These conclusions are also obtained when comparing ULSQ2 and USLQ3 with US2 
schemes. Moreover, the use of least-squares weighting in the ULSQ3W scheme significantly improves the accuracy compared 
to its counterpart ULSQ3 scheme, yielding the closest results to the US4 scheme while using a substantially smaller stencil. 
These results seem to indicate that this simulation is drastically under-resolved although it is representative of real ILES 
turbulent flow test cases in which the resolution of all scales is not computationally possible. One conclusion to be obtained 
from these results is that the asymptotic behavior of the studied schemes cannot be directly correlated with the expected 
accuracy of the schemes in under-resolved turbulent flow cases.

Fig. 19b shows the temporal evolution of the enstrophy ensemble average with central schemes using the shock sensor 
described in Eq. (103). All central LSQ schemes except the CLSQ3W scheme showed unstable results, either by divergence 
of the simulation or by over-predicting the total kinetic energy of the flow (this variable is not shown in this section for the 
sake of brevity). To ensure that these unstable results are not related to the use of a shock sensor, the same simulations were 
performed without shock sensor and using a lower Mach number M = 0.2 and the unstable CLSQ schemes (this results from 
these simulations are not shown for the sake of brevity). In the latter simulations there was no divergence of the solution, 
although all the LSQ schemes showed an important over-prediction of the temporal evolution of the total kinetic energy. 
This implies that the behavior of the default CLSQ schemes tends to be unstable in non-linear under-resolved turbulent 
flow cases. The addition of LSQ weighting distance methods as in the CLSQ3W scheme drastically improves the numerical 
stability compared to the default CLSQ3 scheme. At last, it is important to note the improvement in the prediction of the 
enstrophy when using central schemes compared to the results of upwind schemes. Nonetheless, these improvements are 
partially limited due to the use of shock sensors. One should expect even more differences between central and upwind 
schemes for lower Mach number cases.

7. Conclusions

The numerical properties of the finite volume least-squares spatial discretization schemes have been studied and com-
pared to finite-volume schemes especially catered for structured meshes. The k-exactness properties of all schemes in 
uniform meshes have been investigated through one-dimensional and two-dimensional analysis of the truncation error. A 
novel method has been developed to assess the k-exact properties of the schemes in all kind of meshes when dealing with 
the discretization of conservative laws through the finite volume method. This method shows that the order of accuracy 
of some of these schemes can be improved by using central reconstructions, although the use of central schemes in non-
uniform meshes yields unstable simulations. Moreover, an extensive analysis of their dissipation and dispersion properties 
in uniform and unstructured meshes has been performed, extending the von Neumann’s formulation to certain non-uniform 
and unstructured meshes. This analysis showed that, in uniform one-dimensional and two-dimensional meshes, the least-
squares schemes have worse dissipation and dispersion properties than other spatial discretization schemes developed for 
structured uniform meshes, specially in the under-resolved part of the spectrum. Moreover, the dissipation and dispersion 
study in two-dimensional non-uniform meshes proved that the dissipation and dispersion properties of the least-squares 
schemes are not heavily influenced by the non-uniformity of the studied meshes of this work. Furthermore, we have the-
oretically and numerically demonstrated that the addition of weighting distance to the least-squares schemes can improve 
the dissipation and dispersion properties of these schemes. To validate the analytical findings, several one-dimensional and 
two-dimensional simulations have been performed with linear and non-linear equations and with uniform and non-uniform 
meshes proving that the analytical findings can also be observed in the simulations. Special emphasis is placed on the be-
havior of these LSQ schemes in under-resolved simulations of turbulent flows. In these cases, it has been observed that 
the default LSQ schemes drastically under-perform compared to schemes for structured meshes, although the addition of 
weighting distance methods to the LSQ formulation notably improves the results. Moreover, the analysis showed that the 
numerical performance of the schemes follows closely that obtained in less complex non-linear simulations. This demon-
strates that the asymptotic analysis of the numerical schemes is not always representative of the behavior of the numerical 
schemes in coarse turbulent test cases. To conclude, it has been shown that least-squares finite volume schemes allow to 
easily obtain finite volume k-exact schemes for arbitrary quadrangular meshes in linear and non-linear cases. However, this 
comes at a cost, the dissipation and dispersion properties of these schemes are not optimized for good-quality meshes 
and/or under-resolved simulations, which is critical for ILES simulations in which the important flow regions are usually 
discretized using near-to-uniform meshes and in which not all scales can be correctly captured due to the prohibitively as-
sociated computational cost. The addition of weighting distance methods to the LSQ formulation has been shown to greatly 
improve the numerical performance of the LSQ schemes. Further studies are been carried out to improve the numerical 
properties of least-squares schemes in near-to uniform meshes.
32



G. Saez-Mischlich, J. Sierra-Ausin, G. Grondin et al.
Fig. A.20. Non-dimensional enstrophy temporal evolution in the decaying compressible HIT test case with Mt,0 = 0.6 using S central schemes together with 
the shock sensor described in Eq. (103). Results obtained with 2563 cells. DNS data digitized from [56]. WENO5 (5th order) data was obtained using 2563

and it was digitized from [56].
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Appendix A. HIT initial condition validation

To ensure that the initial condition to simulate the HIT test case yields results which can be compared with DNS refer-
ence data of [56], Fig. A.20 shows the ensemble enstrophy as a function of the time for the central S schemes in a 2563

mesh. The results are compared with DNS and FV-WENO5 (5th order scheme) data that obtained from [56]. FV-WENO5 was 
obtained using the same mesh discretization (2563 cells). This FV-WENO5 scheme is a finite-volume scheme which uses the 
S4 scheme formulation described in this work (Section 3.2) in combination with a WENO method to better treat solution 
discontinuities. The results show almost good agreement with DNS data and that the CS4 scheme with the Ducros shock 
sensor yields more accurate results than those of the FV-WENO5 scheme. This figure also serves as a validation for both 
the initial condition of the HIT test case and the implementation of the high-order viscous fluxes discretization described in 
Section 3.4 and Section 2.3.
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