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a b s t r a c t   

Predictive maintenance techniques attempt to trigger a maintenance intervention at the right moment by esti-
mating the life expectation. Predictive maintenance is increasingly implemented by automated approaches able to 
perform diagnostics and prognostics. The main part of recent research in these approaches is focused in machine 
learning structures whose reasoning is implicit and cannot be easily explained. This poses a problem for their 
implementation in highly constrained area such as aeronautics. To overcome this constraint, explicit reasoning 
approaches such as the Similarity-Based Model (SBM) can be implemented. The SBM has been widely used for 
fault diagnostics and the remaining useful life (RUL) estimation, but the development of SBM includes tasks that 
often rely on high skilled experts. For instance, data reduction techniques required for SBM are often performed by 
experts judgment whose outcomes are not always consistent. The produced features from these techniques are 
used to build the Health Index that can be used to create the degradation trends that serve as a reference for the 
SBM. To overcome these difficulties, an automatic and unsupervised approach based on the Kernel Principal 
Component Analysis is proposed to enhance the Health Index creation. It preserves as much of the sensor in-
formation as possible improving the similarity-based RUL estimation. Additionally, when estimating the RUL of a 
system, the most similar degradation trends stored in the SBM library are used to compute individual RULs, the 
final RUL is obtained by a fusion rule technique that combines all these individual RULs into a consolidated value. 
For the fusion rule techniques, a self-adaptive method that does not rely on human expertize is proposed. This 
fusion rule can benefit of the accumulated knowledge over the SBM operation. This unsupervised approach to 
develop a SBM is validated with promising results against an equivalent and supervised algorithm that came out 
best in the 2008 prognostic health management challenge. 

1. Introduction 

Predictive maintenance refers to a specific maintenance strategy, 
aiming at identifying incipient faults, forecasting future failures and 
at triggering the maintenance actions accurately when needed 
(Montero Jimenez et al., 2020). Maintenance strategies are often 
classified into three categories: (1) corrective maintenance where 
actions are performed to restore a system after a breakdown or a 
deteriorated functional behavior, (2) preventive maintenance where 
maintenance actions are performed at a fixed operational interval, 
and (3) predictive maintenance where specific maintenance actions 
are based on measurements on the concerned system. Remaining 
Useful Life (RUL) estimation plays an important role in predictive 

maintenance; it provides insight on the system deterioration due to 
faults appearance or wear, and tries to show when the system would 
no longer perform its intended function. As such, accurate RUL es-
timation improves safety, reliability and availability of the system. It 
attempts to avoid sudden breakdowns minimizing unnecessary 
maintenance time / cost (Gu and Chen, 2016). Therefore, it is im-
portant to focus on techniques that can improve RUL predictions, 
especially on high-risk engineering systems (Li et al., 2018; Yu et al., 
2019; Zhao et al., 2017). 

According to Ramasso and Saxena (2014), prognostics for main-
tenance can be divided into three broad categories as: functional 
mappings between set of inputs and RUL, such as Li et al. (2019), 
Jiang et al. (2019), functional mapping between Health Index (HI) 
and RUL, such as Hassani et al. (2019), Climente-Alarcon et al. (2017), 
and similarity-based matching, such as Bleakie and Djurdjanovic 
(2013), Liang et al. (2019), Zhang et al. (2019). The main focus of this 
work is on the use in aeronautics, where it is important that the 
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approaches can be perfectly understood and explained fully. The last 
category, similarity-based matching, is therefore interesting as it 
contains approaches that are more explainable than machine 
learning approaches. The current study focuses on similarity 
matching for RUL computation. A Similarity-Based Model (SBM) uses 
operational records to represent historic degradation trends for a 
given system (e.g. an aircraft, a vehicle, etc.), that are later used to 
assess the degradation of systems of the same type (Wang et al., 
2008). These degradation trends are built upon a representative set 
of run-to-failure system instances (e.g. engines, bearings, battery 
cells, etc.). A physical degradation trend should be generated for 
each system instance. The RUL for these degradation trends is 
known and they are stored in a library. Prognostic assessments are 
performed by comparing the degradation evolution of a system 
against those stored in the SBM library. The degradation trends can 
be represented by direct measures such as sensor records, or indirect 
measures such as health indexes computed from sensor records. The 
use of HI is often privileged over raw sensor data as it can con-
solidate several data sources in a single value that facilitates the 
understanding and visualization of a system degradation. Another 
important aspect in the SBM for RUL estimation is the uncertainty 
management in the prognostics. A SBM can retrieve multiple re-
ference degradation trends from its library that are similar to the 
current degradation of a system under test, but with different RUL 
estimations. A fusion rule is often used to obtain a consolidated 
value of RUL, considering the contribution of the different reference 
degradation trends that have been retrieved by the SBM. 

The HI development and the selection of suitable reference de-
gradation trends to estimate a RUL are complex tasks that rely on 
experts’ knowledge and judgment. This study attempts to simplify 
these processes by the implementation of data engineering techni-
ques such as the Kernel Principal Component Analysis (KPCA) for the 
HI development and a self-adaptative fusion rule for RUL estimation. 
The KPCA can help to automate and simplify the feature extraction 
and data processing tasks that are exclusively performed by experts. 
Performing manual data reduction requires human knowledge and 
expertize in order to produce a proper feature subset. Manual tuning 
on feature techniques is done if the case study needs it. Automatic 
approaches, that are not specific to a specific case study, are pro-
mising, as they make the approach more consistent, as opposed to 
humans that may or may not always perform work in the same way. 
In addition, automatic approaches allow to estimate the loss of the 
data and try to come up with something as close as possible to 
reality. The proposed fusion rule also attempts to automate the se-
lection of the reference degradation trends retrieved by the SBM to 
compute the final RUL of a system unit under test. RUL can be pre-
sented as a discrete value or as an interval. Both options are studied 
in the proposed SBM. The goal is to facilitate the implementation of 
SBM for RUL computation even for those professionals who are not 
specialists in HI development, health/degradation modeling, and 
fusion rules for RUL estimation using SBM. 

The paper is organized as follows: Section 2 presents the state of 
the art in SBM for RUL computation and justifies the current work 
objectives. Section 3 presents the methodology leading to the RUL 
estimation using the KPCA technique and a SBM. Section 4 presents 
the case study selected to assess the proposed approach, the 2008 
Prognostic Health Management (PHM08) challenge Wang et al. 
(2008). Section 5 presents the results and discussion of the proposed 
approach implementation on the case study. Section 6 concludes the 
paper and proposes future work perspectives. 

2. Related work 

Prognostics in maintenance can be carried out by different types 
of models (Montero Jimenez et al., 2020; Berri et al., 2021). These 
models can be classified in three main families: data-driven models, 

knowledge-based models, and physics-based models. Models from 
these families can be combined and these multi-model combina-
tions are often called hybrid models. Within the data-driven models 
the Similarity-Based Models (SBM) are found. SBM have been widely 
used for prognostics purposes as they are relatively simple to im-
plement and provide results that are explainable. 

One of the main challenges in prognostics models is related to 
the Health Index (HI) generation that allows the study of degrada-
tion trends of a system of interest. For a SBM, these degradation 
trends are stored in the SBM library and are used as reference to 
assess the degradation of other systems of the same type. There have 
been some attempts to automate the creation of HI from raw data for 
SBM. For example, in Wang et al. (2008), sensor reduction is per-
formed, followed by a linear regression on the remaining sensor set 
to compute the HI. Then, an exponential nonlinear regression model 
is used to generate the degradation trends. In Huang et al. (2019), HIs 
are produced by multi-linear regressions and trajectory similarity- 
based prediction is used for real-time estimation of remaining useful 
life. In order to improve RUL estimation, several variables can be 
considered to build the HI, increasing the complexity in the creation 
of the HI. For example, Cai et al. (2020) uses a similarity matching 
procedure to query similar run-to-failure profiles from historical 
data library. The selection is performed by the technique of the 
kernel two sample test (Gretton et al., 2013). The probability dis-
tribution of the RUL is obtained by a Weibull analysis. Other ap-
proaches use artificial neural networks with similarity-based 
approaches such as in Yu et al. (2020), or Bektas et al. (2019). 

The level of complexity increases with the data size for training 
the SBM. Large databases can demand high computational resources 
to compute the HI and obtain the degradation trends. To overcome 
these obstacles, data reduction is crucial. However, reducing the data 
and keeping the relevant information poses a challenge to predictive 
maintenance systems developers (Kumar and Galar, 2018). Two main 
techniques are often implemented for the data reduction: feature 
selection and feature extraction. Feature selection techniques reduce 
a data set by discarding inappropriate or redundant variables (fea-
tures), but may result in a loss of information from discarded fea-
tures (Guyon and Elisseeff, 2003). Feature extraction techniques 
attempt to extract new features from an initial set of data mea-
surements. Feature extraction tends to preserve more information 
than feature selection after the data reduction. It involves a trans-
formation that is often not reversible due to information loss during 
the process, an example of feature extraction in the principal com-
ponent analysis Pearson (Pearson, 1901). An example of this can be 
found in Chen et al. (2017), where sensors showing evident trends 
are manually selected and a Principal Component Analysis (PCA) is 
later performed to create a new basis generated by the two principal 
components. In this new basis, a failure center is determined. It 
corresponds to a point reached by system instances when a failure 
occurs. The distance between a projected instance and the failure 
center is used to represent the system health state. An extension of 
the PCA is the Kernel Principal Component Analysis (KPCA) which 
can be used to generate a degradation indicator by combining KPCA 
outputs (i.e. principal components) with Arrhenius and Eyring 
models (Feng et al., 2016). Model parameters are estimated with the 
maximum likelihood estimation. As part of the current study con-
tributions, a KPCA is implemented to build a HI, reducing the 
amount of data that allows a reduction of computation power to be 
processed, but also avoiding the loss of important information 
during the data reduction. 

Another challenge of SBM for prognostics in maintenance is re-
lated to the RUL computation. When a new system unit is tested 
with the SBM, several reference degradation trends can be retrieved 
from the SBM library with a close similarity in terms of the de-
gradation evolution but with different RUL estimations. To overcome 
this uncertainty problem, fusion rules are often implemented in SBM 
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to estimate a consolidated value from a contribution of the in-
dividual RULi obtained from comparing a testing unit against the 
reference degradation trends in the SBM library. Khelif et al. (2014) 
and Bektas et al. (2019) propose a fixed number of individual RULi to 
be fused which is fixed by a human expert while Wang et al. (2008) 
considers all available RULi and proposes some expert rules to dis-
card non-representative ones. However, the selection of the in-
dividual RULi that will be used to estimate the final RUL is not a 
trivial task and has a high dependence on human expert judgments 
that will select the number of RULi to be considered or will discard 
manually non-representative reference degradation trends from the 
available options. As these fusion rules highly rely on human ex-
perts, there is no possibility to incorporate new knowledge acquired 
during the SBM operation. The current study proposes a self-adap-
tive method that autonomously proposes a set of individual RULi to 
compute the final RUL. The goal is not only to avoid the dependence 
on the human experts to discard non-representative degradation 
trends, but also to incorporate the accumulated knowledge during 
the SBM operation that can be used to refine the fusion rule. 

This study attempts to improve RUL estimation using a SBM. The 
contributions of the current study can be seen as:  

1. An unsupervised building of a Health Index with limited in-
formation loss by the implementation of a KPCA in the data 
preprocessing to train the SBM.  

2. A self-adaptive fusing rule to estimate the final RUL without the 
dependence of human experts manipulation that is also capable 
to incorporate accumulated knowledge acquired from the tested 
units over the SBM operation. 

3. Proposed methodology 

3.1. Overview 

A Similarity-Based Model (SBM) development includes two main 
parts: the creation of the library of known references which in the 
case of predictive maintenance are the known degradation refer-
ences, and the similarity measures that will compare a target data 
record against the known references in the SBM library. In the cur-
rent study, this comparison will allow to determine the RUL of a 
system. Fig. 1 summarizes the proposed SBM model for RUL esti-
mation. It has been divided in three main steps: data processing, 
performance assessment and RUL estimation. 

On the left side of Fig. 1 the training of the SBM is explained. The 
raw training data is assessed with the Kernel Principal Component 
Analysis (KPCA) to obtain the principal components to build the 
health index with a reduced data but keeping as much degradation 

information as possible. The health index for each operational cycle 
of each run-to-failure system in the training data can be used to 
build the degradation reference trends. 

On the right side of Fig. 1 the RUL estimation process is pre-
sented. The data from the target system to be assessed is processed 
(the same way as for the training of the SBM) in order to obtain the 
actual health index. Then, by accumulating a health index from each 
operational cycle of the target system a degradation trend can be 
obtained. This degradation trend is compared against those in the 
SBM Library to obtain individual RULs from each comparison. At this 
point, several comparisons with a very high similarity can be iden-
tified, but often these multiple comparisons provide very different 
RUL estimations. To overcome this uncertainty problem a fusion rule 
is proposed in order to obtain the actual RUL of the evaluated 
system. This chapter addresses the theoretical background of the 
proposed SBM for RUL estimation and extends the explanations of 
the main steps presented on the right side of Fig. 1. 

3.2. Similarity-based model library 

A vital component in a Similarity-Based Model (SBM) for prog-
nostics in predictive maintenance is the library that stores known 
degradation trends, that are later compared against the current de-
gradation of a system to compute the RUL. These degradation trends 
can be built from raw sensor data in form of time series. A data 
processing step is often performed on the sensor data to select 
features that can describe the system behavior and to eliminate 
unusable and redundant data (Guyon and Elisseeff, 2003). Variance 
offers a good mathematical tool to automatically discard features 
with a low evolution. Performing variance sensors with a custom 
threshold produces a subset of selected features. 

In the proposed methodology, the Kernel Principal Component 
Analysis (KPCA) (Schölkopf et al., 1997) is used. The approach is able 
to represent the high order statistics of data thanks to its nonlinear 
nature (Datta et al., 2018), compared to the principal component 
analysis, which is a linear transformation. The KPCA is an un-
supervised technique that reduces the data set and leads to a lower 
feature set, with a normalization on the interval [-1;1]. A min-max 
normalization method is adopted favouring the KPCA to find a better 
subset representation with all variables in the same scale. No 
knowledge about system specificities nor system lifetime is used. 
KPCA might be confused with an auto-encoder approach. Despite the 
similarities, it is important to recall that auto-encoders rely on a 
machine learning structure that requires training and testing phases 
that are not required in a KPCA approach (Fournier and Aloise, 2019). 
In addition, because of its structure, an auto-encoder approach may 
lead to reasoning that can not be explained. Most of the time, feature 

Fig. 1. Proposed similarity-based model for RUL estimation.  
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selection and feature extraction techniques are used to reduce the 
amount of information so to perform prognostic estimation effi-
ciently. The proposed methodology aims at automating these feature 
selection and extraction processes using KPCA in such a way the 
approach becomes consistent, supported by more formal approaches 
that allow to estimate the loss of the data and keeping as much 
information as possible in the reduced subset of data. 

Let us now describe briefly how KCPA works. KPCA is an exten-
sion of Principal Component Analysis (PCA) that generalizes it to 
nonlinear dimensionality reduction by using kernel methods. 
Considering n as the number of samples and m as the number of 
features, the input space of data x(k, l) ∈ R(m×n) is mapped to the 
feature space F: Φ(xk) with k ∈ [1, m] by the non-linear function Φ as: 

F: n m (1) 

It is assumed that feature data are centered, i.e. x( ) 0k
m

k1 == . The 
covariance matrix C is: 

C
m

x x
1

( ) ( )
j

m

j j
T

1

=
= (2) 

The Principal Component (PC) of the feature space F are determined 
through the eigenvalues λ≥0 and the unitary eigenvectors V from the 
relation: 

V C V. = (3) 

This formula is equivalent to: 

x V x CV k m( ), ( ), for all [1, ]k k= (4) 

where 〈x, y〉 is the dot product operation of x and y. Eigenvectors V 
can be written as: 

V x( )
i

m

i i
1

=
= (5) 

where αi is the corresponding eigenvector coefficient. Substituting  
Fig. 2 and Fig. 5 into Fig. 4 and defining the kernel m × m matrix K as: 

K x x i m j m( ), ( ) , [1, ], [1, ]ij i j= (6) 

the following expression is exhibited: 

m K K2= (7) 

where [ , ..., ]m
T

1= . The resolution of this relation is performed 
through the sub-system: 

m K= (8) 

In general, the ϕ(xi) are not centered. In this case, matrix K is re-
placed by the kernel-centered matrix K (Schölkopf et al., 1997), 
which is then computed by: 

K K I K K I I K I.m m m m= + (9) 

where Im is the diagonal m × m squared matrix with 1∕m as value on 
the diagonal. There exist several kernel non-linear functions to 
compute the matrix K. A Gaussian Radial Basis Function (RBF) kernel 
is used here. For a given couple x x( , )i j , the RBF kernel, named G, is 
defined as: 

G x x exp

K G x x i m j m

( , )

( ( , )) , [1, ], [1, ]

i j
x x

ij i j ij

2
i j

2

2=

= (10) 

where σ is the dispersion coefficient of the RBF. Thus, the kth KPCA 
feature is expressed as: 

PC x V x x x( ) , ( ) ( ), ( )k k
i

m

i k i
1

,= =
= (11) 

where Vk is the kth eigenvector, Φ(x) is a test point and PCk is the kth 

principal component (PC). The number of PCs has an influence on 
the computed health index (HI). First, PCs are ordered in a des-
cending order on the corresponding eigenvalue and each PC con-
tribution is evaluated using: 

Contr 100%k
k

i
m

i1

= ×
= (12) 

where Contrk is the contribution of the kth PC. Then, the number of 
Principal Components (nPC) is evaluated using the Cumulative 
Contribution Percent (CCP) with a custom threshold (CCPth) as: 

CCP Contr CCP
i

nPC

k th
1

=
= (13)  

The Health Index (HI) is then computed by linear combination 
weighted with the percentage of contribution as: 

HI x Contr PC x( ) ( )
i

nPC

k k
1

=
= (14) 

The generated HI is rescaled in the interval [0;1] and represents the 
system health state. A high value equal or close to 1 represents a 
healthy system whereas a low value close to 0 corresponds to a 
faulty system. In addition to the physical degradation trends, con-
fidence bounds are estimated with bootstrap techniques (Carpenter 
and Bithell, 2000). Confidence bounds are the lower and upper in-
tervals that indicate the likelihood to predict correctly the remaining 
useful life within a given certainty. 

The training of the similarity-based model is performed using all 
available run-to-failure instances of a system. The generated physical 
degradation trends expand the similarity database in order to be 
used by the similarity method itself for the RUL estimation. 

3.3. Similarity assessment for RUL estimation 

A degradation trend Mi from each training unit (i.e. a system 
instance used to train the similarity-based model) is created and 
stored in the model library. These trends can be described as func-
tions y in terms of a time t: 

M y f t t T: ( ), [0, ]i i= (15) 

where Ti is the final time associated to the trend Mi. The physical 
degradation trend shape depends on the application. Different 
physical models could be used to create the function that describe 
the system health state. 

Fig. 2. Confidence interval for the Health Index/degradation function of a jet-engine 
example. 
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The similarity degree di between a testing unit (i.e. a system 
instance under investigation) and training units is determined with 
a distance function d(Yj, Mi) where Yj is the output of the testing unit 
j of Tj instances as Yj = y y T[ (0), ..., ( )]j

T . In this paper, Yj represents the 
health index of a testing unit j. A small distance means high simi-
larity whereas the opposite represents no relation. This function can 
be defined in various ways such as the Manhattan distance. The 
Euclidean distance is the simplest one (Wang et al., 2008): 

d d Y M Y M( , )i j i j i
2= = (16)  

The two vectors Yj and Mi are respectively of length Tj and Ti. The 
distance is then computed on the minimum of the length as 

T Tmin( , )j i . A first attempt to estimate the RUL could be performed by 
assessing the most similar degradation reference trend to the cur-
rent degradation of the system under study. It is important to note 
that the age at which data is recorded, as well as the initial de-
gradation of time series, has no influence in proposed approach. In 
contrast to other approaches such as a Cox model, in which the in-
itial risk of failure is required to estimate a RUL, the proposed si-
milarity-based degradation assessment and RUL estimation can be 
performed on systems with unknown initial degradation. 
Incidentally, the case study in the next section is composed of de-
gradation records with an unknown initial point that helped confirm 
the proposed approach advantages. Different reference trends from 
the SBM library might show the highest similarity with a different 
RUL estimation. This phenomena is often observed when the system 
is in the incipient phase of degradation and the process until failure 
could last a few or several cycles. To overcome this uncertainty 
problem, SBM for predictive maintenance often use fusion rules to 
estimate the RUL based on several retrieved references from the SBM 
library. For the proposed model, a distance measure di is estimated 
for each degradation reference trend Mi, and using a fusion rule the 
individual RULi are consolidated in a final RUL value: 

RUL w RUL w w
w

w
¯ . , ¯ 1, ¯

i
i i

i
i i

i

k k
= = =

(17) 

where wi and wk are respectively a weight that is estimated by the 
inverse of the degree of similarity di and dk, using Fig. 16. The 
weights w̄i represent the percentage of similarity between a testing 
unit j with a unit i in the SBM library. The weight sum of all con-
sidered units i are then equal to 1 (i.e. 100%). It means that a unit 
with a high degree of similarity will have a weight value near 1. The 
number of unit i used to compute the final RUL is addressed by a 
fusion rule (see Fig. 3.4). This number is the same for the sum of 
index k. At the minimum, only 1 engine in the SBM library is con-
sidered and at the maximum, all of them. Fig. 17 provides a guideline 
for estimating the RUL as single value in terms of operational cycles. 

In real life applications, the RUL estimation is often provided in 
intervals. This practice is intended to deal with uncertainties and 
facilitate the decision-making process based on the RUL estimation. 
Confidence bounds are a tool that is often implemented to obtain a 
confidence interval from a RUL estimation. It is a custom threshold 
that estimates the lower and upper bounds of health index/de-
gradation functions. The built-in Matlab function ‘predint’ allows the 
user to compute the confidence bounds of a fitted function with a 
custom confidence threshold. Fig. 2 represents the confidence 
bounds of a degradation function example of a jet-engine that shows 
a exponential degradation behavior. This example is part of the case- 
study in section 4 and shows a confidence interval of 95% for the 
degradation of the jet-engine. In order to provide an alternative 
option to present the RUL estimation of the proposed SBM, each 
degradation reference trend in the SBM library is assigned with a 
confidence interval of 95% leading to lower and upper RUL estima-
tion (respectively RULloweri and RULupperi). The fusion rule is applied 
on each bound estimation from each trend in Mi of a training unit i in 
order to estimate the RUL as follows: 

RUL w RUL w w
w

w
¯ . , ¯ 1, ¯lower

i
i lower

i
i i

i

k k
i= = =

(18)  

RUL w RUL w w
w

w
¯ . , ¯ 1, ¯upper

i
i upper

i
i i

i

k k
i= = =

(19) 

where wi are the same weight than from Fig. 17, RULloweri and 
RULupperi are respectively the lower and the upper final RUL esti-
mations. 

3.4. Fusion rule for RUL estimation 

The final RUL is estimated using a fusion rule that takes into 
consideration the contribution of individual RULi that are obtained 
from the comparison of the current degradation of a system under 
study and the retrieved degradation reference trends of the SBM 
library. 

The proposed fusion rule is based on the principle that data ac-
quired from the tested units with the SBM can be used to improve 
the fusion rule. The number of the most similar Retrieved Reference 
Degradation Trends (RRDT) to be considered to compute the in-
dividual RULi changes depending on the accuracy of the final RUL 
estimation on previous tested units. 

Given a SBM library with n reference trends and a testing unit j at 
a specific lifespan point with known true RUL:   

1. The final RULj of the testing unit j is computed using as number of 
RRDT all possible options from 1 until n.  

2. Each estimated final RULj is assessed against the true RUL using a 
performance indicator (see Fig. 3.5).  

3. Best number of RRDT is obtained from best performance of RULj 

against the true RUL, and it is selected for the next testing unit.  
4. The testing unit with known true RUL is stored in the SBM library 

to improve the reference trends records.  
5. Any time a testing unit reaches its end of life and its true RUL 

information becomes available it can be used to update the 
number of RRDT following the previous steps. 

It is important to notice that the number of RRDT to be con-
sidered for the final RUL estimation can benefit of the acquired 
knowledge from tested units only when they have been run-to- 
failure and the true RUL becomes available. The number of RRDT will 
be updated once all this knowledge is assessed and incorporated into 
the SBM library. If the tested units are replaced before failure, the 
knowledge is incomplete and cannot be used to update the number 
of RRDT. For the validation of the proposed fusion rule, two scenarios 
are being considered:  

1. With the assumption that the tested units do not reach the end- 
of-life, then the number of RRDT remains static from the first 
proposal.  

2. With the assumption that the tested units reach the end-of-life 
and the true RUL is available. The accumulated knowledge is used 
to reevaluate and refine the number of RRDT. 

The main advantage of this fusion rule is a reduction of human 
interaction in the RUL estimation. It is an automatic approach that 
self-adapts to any application and can benefit from accumulated 
knowledge acquired over the SBM operation. 

3.5. Prognostics evaluation 

In order to assess the impact of the KPCA for the degradation 
reference trends generation, and the self-adaptive fusion rule, the 
Remaining Useful Life (RUL) should be assessed. A first step to per-
form the prognostics evaluation is by comparing the estimated RUL 
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against the true RUL. For a given testing unit j, this comparison can 
be estimated as follows: 

RUL RULEstimated Truej j j= (20) 

where Δj is the difference between the estimated and the true RUL of 
a testing unit j (i.e. the error in number of cycles, see Fig. 3). This 
comparison can also be performed if the RUL estimation is per-
formed using a confidence interval instead of a single RUL value. The 
upper and lower bounds RUL create a confidence interval. If the true 
RUL belongs to this interval, the estimation is considered to be true. 
Hence, Fig. 20 is modified as follows: 

if RUL RUL RUL

RUL RUL if RUL RUL

RUL RUL if RUL RUL

0

j

lower true upper

upper lower upper true

lower upper true lower

j

j

j

=

(21)  

This comparison between the estimated RUL and the true rule 
can be used in different indicators calculation so that the perfor-
mance of the SBM can be assessed. One example of these perfor-
mance indicators can be found in Saxena et al. (2008a), in which a 
custom score that provides an absolute linear penalty for RUL esti-
mations (see Fig. 3). It is computed as follows: 

score S S
e

e
,

1, 0

1, 0k
j j

j

j
b j2

j
b1

= =
>

(22) 

where Si is the computed score for the tested unit i, b1 and b2 are 
both determined constants according to the required system criteria. 
In Saxena et al. (2008a) these constants are set as b1 = 13 and b2 = 10, 
for the case study used in this paper. In the current paper, the same 
values were used. This performance indicator will be referred to as 
PHM08 score as it was original used to assess the results in the 
Prognostics and Health Management (PHM) prognostics challenge in 
2008. The PHM08 score has been adopted as it is the performance 
indicator that has been mostly used in the case study used in the 
current research (see Fig. 4). 

The Root Mean Square Error (RMSE) is also a performance in-
dicator that is often used to assess prediction models for RUL esti-
mation. It is less restrictive than the PHM08 score for the 
estimations that are close to the true RUL but as the RMSE uses an 
exponential penalty, the error is higher than the one obtained from 
the PHM08 score for estimations that are far from the true RUL (see  
Fig. 3). The RMSE is calculated as follows: 

RMSE
N
1

j

N

j
1

2=
= (23) 

where N is the number of evaluated samples. 
The mean error indicator is also used to have an overview of the 

RUL estimation on the database. This traditional error provides a 
global overview of the testing phase. As the mean error relies on the 
True RUL for its computation is not simple to plot the penalty be-
havior as for the RMSE and the PHM08 score. 

Mean error
N RUL
1

Truej

N
j

j1

=
= (24)  

A prognostic approach could provide good results with a specific 
performance indicator, and bad results with another one. Therefore, 
having good results using multiple performance indicators si-
multaneously is a challenge. It improves the approach validation. For 
this research effects, the three performance indicators are then used 
in the validation of the proposed approach as they provide a wider 
overview of the its performance. Using only one of these indicators 
may not be representative to evaluate the results. 

4. Case study 

4.1. Overview 

To illustrate the proposed approach, a case study using the 
Commercial Modular Aero-Propulsion System Simulation (CMAPSS) 
is proposed (Saxena et al., 2008a; Saxena et al., 2008b). This case 
study is a NASA benchmark and is composed of simulated run-to- 
failure data of commercial jet engines and has been widely used in 
academic research to test predictive maintenance models. CMAPSS is 
a tool for the simulation of a realistic large commercial turbofan 
engine (Fig. 4) for the 90,000 lb thrust class. Thanks to editable input 
parameters, it is possible to specify operational profile, closed-loop 
controllers, environmental conditions such as altitude, etc. Further-
more, various degradation profiles can be managed in different 
components of the engine. 

The CMAPSS case study available in the NASA repository NASA 
(NASA, 2007) is composed of five data sets (see Table 1), one of 
which for the 2008 Prognostic Health Management (PHM08) chal-
lenge. In these data sets, the simulated engines have one or six op-
erational conditions driven by engine control settings (Altitude, 
Mach number and Throttle Resolver Angle) and one or two fault 
modes. Each engine has different initial wear, degradation rate, the 
exact moment of first use is not known and in addition, all data have 
process and measurement noises. In the current study, there are 
three datasets with one fault and two with two faults (see Table 1). 

Each dataset consists of multi-variable time series, divided into a 
training and a testing file. Each data set contains three input Fig. 3. Prognostic evaluation metrics.  

Fig. 4. Simplified diagram of the 90K engine Saxena et al. (2008a).  
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variables representing the control/environment settings and 21 
outputs sensors (see Table 2). 

4.2. Case study adaptation 

For this research study, only the three data sets with one failure 
mode out of the five available ones have been selected: FD001, 
FD002 and FD005. Each CMAPSS data set is composed of two main 
files, the first one is intended for training of prognostic models and 
the second one for testing. The training file includes several engines 
that have been run-to-failure, meaning that the true RUL for each 
engine cycle is known. For the testing file the engines have not been 
run-to-failure and their true RUL is not provided. This testing file 
cannot be directly used to test prognostic models. To overcome this 
limitation and obtain faster results the training file has been split in 
two parts: 80% will remain as training data and 20% will be used for 
testing with a known RUL value. 

The extracted testing subset (i.e. the 20% of the original training 
file) has been adapted in order to have multiple engine data records 
with known RUL that can be used for the SBM validation. For each 
engine in the testing subset, partial sections of the lifetime records 
have been extracted. These sections cover the 40%, 50%, 60%, 70%, 
80%, and 90% of the total life time records available for each engine 
in the extracted testing subset. For example, considering an engine 
with a run-to-failure life of 100 cycles: a life time records percentage 
of 40% will contain the 40 first cycles of the engine and the true RUL 
for this engine would be 60 cycles. This adaptation of the testing 
subset will also allow to evaluate how the proposed SBM behaves 
with different amounts of data records. 

5. Results and discussion 

5.1. Physical degradation reference trends generation 

For the implementation of the proposed approach on the 
CMAPSS case study, the feature selection is performed by using 
variance analysis with a threshold of 0.001; this aims at removing 
sensors with constant or binary values that do not provide much 
information for RUL estimation (Li et al., 2018). All sensors with a 
variance below or equal to this threshold are discarded. From the list 
of 21 sensors (see Table 2), the number 1, 5, 6, 10, 16, 18, and 19 are 
removed. The remaining 14 sensors are used as input for the KPCA 
feature reduction after a re-scaling in the interval [0,1] for the 
minimal and maximal values of each variable. The 14 input sensors 
result in 6 principal components after performing the KPCA. Fig. 5 
shows the individual and the cumulative contribution of these six 
main principal components for datasets FD001 and FD002. 

For the training phase of the SBM, the KPCA is used on each 
engine and on each operational mode to obtain the degradation 
reference trends. These degradation reference trends are stored in 
the SBM library. As a custom threshold in this research, it has been 
decided to keep 85% of the original sensor data to compute the 
health indexes of the engine. This threshold is motivated by ob-
servations in the literature such as Feng et al. (2016) on the same 
case study and Jiang and Yan (2013) on a nonlinear chemical process 
monitoring. It means that based on the information provided in  
Fig. 5 and using Fig. 13 with CCPth = 85%, the four first principal 
components are selected. Then, the selected principal components 
are fused using Fig. 14 to obtain the degradation reference trends (i.e. 
the Health Indexes (HIs)). These reference trends are first of all ob-
tained as series of points. To facilitate their analysis, these series of 
points go through a curve fitting process. It allows to manage noise 
and to have smoothed degradation trends. For the CMAPSS case 
study, the degradation trends are fitted using a generic exponential 
regression model, inspired by the fitting model used by Saxena et al. 
(2008a): 

f t a e( ) b t c= + (25) 

where a, b and c are constants. These constants are obtained by a 
regression process on the reference trend of a unit. The resulting 
curve is the HI curve of the unit. 

For each testing unit, the data processing must be done following 
the same way as for the training instances of the SBM. A degradation 
trend of the testing unit is obtained from the same four principal 
components and using Fig. 14 and Fig. 25. Once the degradation 
trend of the testing unit has been obtained, the degree of similarity 
between the testing engine and each reference degradation trend 
(from SBM library) is estimated with Fig. 16. The RUL is estimated 
using equation Fig. 17 for a single value RUL, or using Fig. 18 and  
Fig. 19 for a confidence interval of RUL. For the validation of the 
Proposed Approach (PA) of a SBM for RUL estimation, a series of tests 
are performed and the results are compared against those of a Re-
ference Approach (RA) from Wang et al. (2008). It is important to 
note that the reference approach was the winner at the PHM08 
contest (Saxena et al., 2008a), and provides accurate results on RUL 
computation with an explainable similarity-based approach on the 
CMAPSS case study. Other approaches have been developed to ad-
dress the same case study that outperform the Reference Approach 
but are inspired in Machine Learning techniques whose reasoning 
cannot be explained. As the proposed approach is oriented to ex-
plainable solutions, Machine Learning techniques are not been 
considered. The main goal of the comparison between the PA and 
the RA is to demonstrate that the PA provides benefits at computing 
RUL of technical systems with an explainable reasoning compared to 
other approaches in the same conditions. Explainable reasoning is 

Table 1 
C-MAPSS datasets characteristics.        

Id Name Operational 
conditions 

Fault 
Modes 

Failed 
System 
Part 

Number of 
Engines  

#1 FD001 1 1 HPC 100 
#2 FD002 6 1 HPC 260 
#3 FD003 1 2 HPC, Fan 100 
#4 FD004 6 2 HPC, Fan 549 
#5 FD005 

(PHM08) 
6 1 HPC 218    

Table 2 
List of 21 output variables from CMAPSS tool.      

Sensor id Symbol Description Units  

1 T2 Total temperature at fan inlet ∘R 
2 T24 Total temperature at LPC outlet ∘R 
3 T30 Total temperature at HPC outlet ∘R 
4 T50 Total temperature at LPT outlet ∘R 
5 P2 Pressure at fan inlet psia 
6 P15 Total pressure in bypass-duct psia 
7 P30 Total pressure at HPC outlet psia 
8 Nf Physical fan speed rpm 
9 Nc Physical core speed rpm 
10 epr Engine pressure ratio (P50/P2) – 
11 Ps30 Static pressure at HPC outlet psia 
12 Phi Ratio of fuel flow to Ps30 pps/psi 
13 NRf Corrected fan speed rpm 
14 NRc Corrected core speed rpm 
15 BPR Bypass Ratio – 
16 farB Burner fuel-air ratio – 
17 htBleed Bleed Enthalpy – 
18 Nf_dmd Demanded fan speed rpm 
19 PCNfR_dmd Demanded corrected fan speed rpm 
20 W31 HPT coolant bleed lbm/s 
21 W32 LPT coolant bleed lbm/s    
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still a crutial point for the implementation of predictive main-
tenance in complex systems such as aircraft. The RA implements a 
SBM for RUL estimation of aircraft jet engines (see Fig. 4). The main 
differences between the PA and RA are in the way the HI is generated 
and the fusion rule for the RUL estimation. The RA performs a 
manual process for feature selection. A linear regression model is 
used to merge the selected features into a consolidated degradation 
reference trend for each training unit. For the fusion rule, the RA uses 
the contribution of almost all possible individual RULi that can be 
obtained from comparing a testing unit with the reference de-
gradation trends in the SBM library. Some non-relevant individual 
RULi are discarded manually using an expert rule. However, as the 
authors of the RA point out, the expert rules they implement for the 
final RUL calculation are highly application dependent. It means that 
the rule to fuse the individual RULi should not be directly used for a 
different application, some expert knowledge is needed for its 
adaptation. The RA came out best in the 2008 Prognostic and Health 
Management challenge (Saxena et al., 2008a). A little adaptation of 
RA is done in the current study as it turns out difficult to replicate 
the expert rule the RA used for deleting non-representative re-
ference degradation trends for the fusion rule. In the context of this 
research, the RA uses all possible individual RULi without deleting 
the non-representative reference degradation trends. 

Remaining Useful Life (RUL) estimation using the PA and the RA 
is assessed using the performance indicators of Section 3.5. A per-
formance gain is used to study the benefits of the proposed approach 
implementation. A performance gain is a percentage that shows a 
relative improvement compared to the reference approach. A per-
formance gain of 100% means an ideal improvement in which the 
error has been reduced to 0 and the estimated RUL is equal to the 
true RUL in all the tested engines. The performance gain is computed 
as follows: 

PG
PA
RA

1 100%= ×
(26) 

If PG  >  0, it means the PA performed better than the RA. If PG  <  0, it 
means the PA does not improve results compared to the RA. 

5.2. KPCA contribution assessment 

For the assessment of the KPCA contribution for HI generation, a 
comparison of the RUL estimations using the PA and the RA is per-
formed. The fusion rule of RA is used for both PA and RA. This is to 
measure the actual contribution of the KPCA without any influence 
of the fusion rule. Table 3 summarizes the PHM08 score for RUL 
estimation using the proposed approach and the reference approach 
on the testing subset introduced in Section 4.2. The proposed ap-
proach improves significantly the performance in RUL estimation as 
can be seen on the performance gain percentage in Table 3. The 
results of the proposed approach always outperformed those of the 
reference approach. The performance was also evaluated using the 
RMSE and the mean error with similar results as for the PHM08 
score. 

5.3. Complete approach contribution assessment 

The complete proposed approach of a SBM for RUL estimation 
includes the use of the KPCA for HI generation and a fusion rule for 
the RUL estimation that can benefit from the acquired knowledge 
during the SBM operation to improve the RUL estimation. For the 
proposed fusion rule assessment, two different scenarios are being 
considered. The first scenario assumes that the testing units do not 

Fig. 5. KPCA: individual and cumulative contribution of Principal Components (PCs).  

Table 3 
Performance gain of implementing the KPCA for Health Index generation using testing 
units at different lifetime percentage.      

Lifetime 
records  
(%) 

Proposed Approach  
performance with the  
RA fusion rule  
(PHM08 score) 

Reference 
approach  
performance 
(PHM08 score) 

Performance  
Gain (%)  

40 17299 117648 85.30 
50 7080 78723 91.01 
60 2117 10184 79.21 
70 642 1136 43.48 
80 503 653 22.97 
90 1639 6370 74.27    
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reach the end of life before they are taken out from operation, as it 
can happen because of a maintenance policy. In this first scenario 
the accumulated knowledge over the SBM operation can not be used 
for to improve the fusion rule and the number of Retrieved 
Reference Degradation Trends (RRDT) to compute the individual RULi 

remains the same as it was initialized (see Fig. 3.4). The second 
scenario assumes that the testing units do reach their end of life and 
the true RUL of the testing units become available. The information 
from the tested units is used to update the number of RRDT for the 
fusion rule. 

For the complete assessment of the proposed approach, three 
datasets of CMAPSS have been selected: FD001, FD002 and FD005. 
These datasets have been selected because they present one single 
failure mode at different operational modes. Tables 4, 5 and 6 shows 
the assessment of the fusion rule of the proposed approach con-
sidering the first scenario, and comparing the results against the 
reference approach using three performance indicators: PHM08 
score, RMSE, and mean error correspondingly. The results of the 
proposed approach outperformed those of the reference approach 
independently of the performance indicators for the three selected 
datasets. 

It is important to point out that the proposed approach needs 
fewer data records to have higher performance in the RUL estima-
tion. For example with the FD001 dataset, it can be noticed for ex-
ample that the PHM08 score of the PA for a lifetime at 40% is better 
than the RA with a lifetime at 60%. A normal behavior in SBM for RUL 
estimation is that they have better results when more records are 
available to perform the similarity analysis between the testing units 
and the reference degradation trends in the SBM library. The need of 
fewer records to achieve better results is an evidence of the benefits 
of the proposed approach over the reference approach; accurate 
results of the RUL will be known earlier and this will lead to a better 
decision making process in a maintenance department. Overall, 
there is better results with the proposed approach for the three 
databases (i.e. FD001, FD002, and FD005). The “RMSE” and “Mean 
error” show as well homogeneous improvements of the PA over the 
RA on all studied datasets (see Table 5 and Table 6). The minimum 
performance gain is around 13%, for the FD002 database. 

In interesting behavoir can be observed for FD005 in Table 4, 
when the lifetime records percentage increases, the PHM08 score 
sometimes also increases which means a RUL estimation error in-
crement. For example, the performance of the proposed approach is 

lower at 50% of the lifetime records than at 40% using the PHM08 
score. This is not an expected behavior as prognostics tend to be 
more precise with more data to be assessed. Having a closer look on 
the RUL estimation for the engines in the FD005 dataset, the esti-
mated value was often higher than the true RUL which is highly 
penalized by the PHM08 score. This can provide an explanation of 
lower performances with more percentage of lifetime records for 
RUL estimation in Table 4. This behavior is not visible using the 
RMSE and the mean error as performance indicators (see Table 5 and  
Table 6) as they are based on an average value. The performance 
indicator choice has a high impact on the approach evaluation. 

Table 7 summarizes the results of the proposed approach using 
the second scenario for the fusion RUL and the PHM08 score as 
performance indicator. The overall improvement on the RUL esti-
mation is at least 38% on the three datasets used. This is not only a 
improvement compared to the reference approach but also an im-
provement compared to the first scenario of the proposed approach. 
Similar results where also observed using the RMSE and the mean 
error as performance indicator. Comparing the results in Tables 4 
and 7, it can be seen the second scenario outperforms the benefits of 
the of the first scenario of the proposed approach. It means that the 
more available data to estimate the number of RRDT for the fusion 
rule, the better results are obtained. 

5.4. Proposed approach assessment using a confidence interval 

Table 8 summarizes the PHM08 score at a confidence of 95% for the 
three databases. As can be expected, the performance indicator improves 
(PHM08 score decreases) since providing a RUL interval instead of a 
single value increases the chances to estimate closer values to the true 
RUL. For the three databases, a confidence threshold of 95% seems to 
improve the RUL estimation compared to an approach without con-
fidence bounds, but the results have to be analyzed carefully. By de-
creasing the confidence threshold, the score decreases as well. Fig. 6 
shows the score versus the evolution of the confidence threshold for the 
RUL estimation on FD001 sliced at 40% can be observed. The blue line 
represents the score for the proposed approach without the use of 
confidence interval. It results in a constant curve. The red line represents 
the score of the proposed approach with the use of various values of 
confidence thresholds. With a confidence interval of 100%, the proposed 
approach with confidence bounds provides the same result than without 
confidence bounds (single value RUL estimation represented by a blue 

Table 4 
RUL estimation assessment using the first scenario of the proposed fusion rule and the PHM08 score as a performance indicator.            

LRP (%) FD001 FD002 FD005  

PA (PHM08 score) RA (PHM08 score) PG PA (PHM08 score) RA (PHM08 score) PG PA (PHM08 score) RA (PHM08 score) PG  

40 2 259 39 041 94.21% 13 521 15 512 12.83% 6 561 12 361 46.92% 
50 489 21 710 97.75% 7 874 11 349 30.62% 10 180 16 084 36.70% 
60 235 5 303 95.57% 5 522 9 996 44.76% 3 551 20 883 83.00% 
70 137 1 385 90.13% 5 049 5 955 15.22% 4 018 19 537 79.43% 
80 103 1 435 92.85% 3 060 3 760 18.62% 2 495 18 712 86.67% 
90 91 3 898 97.66% 1 364 2 770 50.78% 1 776 12 352 85.62% 

LRP: Lifetime Records Percentage, PA: Proposed Approach, RA: Reference Approach, PG: Performance Gain  

Table 5 
RUL estimation assessment using the first scenario of the proposed fusion rule and the RSME as a performance indicator.            

LRP (%) FD001 FD002 FD005  

PA (RMSE) RA (RMSE) PG PA (RMSE) RA (RMSE) PG PA (RMSE) RA (RMSE) PG  

40 42.87 58.01 26.10% 39.07 44.89 12.96% 36.11 42.33 14.71% 
50 33.23 54.84 39.40% 34.86 42.84 18.63% 35.29 41.64 15.25% 
60 25.96 48.60 46.58% 31.81 40.56 21.59% 29.24 41.77 30.01% 
70 20.96 37.63 44.29% 26.41 35.08 24.73% 29.27 40.68 28.05% 
80 17.00 30.23 43.78% 23.15 28.48 18.72% 25.13 39.74 36.77% 
90 14.30 41.57 65.59% 20.68 28.44 27.26% 22.95 41.04 44.09% 

LRP: Lifetime Records Percentage, RMSE: Root Mean Square Error, PA: Proposed Approach, RA: Reference Approach, PG: Performance Gain  
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line in Fig. 6). With a confidence threshold of 0.95, it leads to a con-
fidence interval of 95% on the RUL estimation. The score is then eval-
uated using Fig. 21 and Fig. 22, which resulting into a single value (i.e. no 
confidence interval on results that are from a confidence interval). Even 
if the performance indicator seems to be improving while decreasing the 
confidence threshold, it does not mean it is advisable. Fig. 6 shows the 

perverted effect of the confidence threshold on the RUL estimation and 
the score. The lower the confidence threshold is, the bigger the RUL 
estimation interval is and the bigger the uncertainty is when computing 
the RUL. 

A different methodology is needed in order to evaluate the per-
formance of the RUL estimation using confidence interval. For this 
aim, a Percentage of Disparity (PoD) that can evaluate the confidence 
interval for a given confidence threshold is proposed. The PoD is 
computed through the quotient between the relative variation and 
the mean estimation (PoD = RelativeRUL/MeanRUL) and it is an in-
dicator of how dispersed the values are in the confidence interval.  
Table 9 presents the average range of the relative RUL variation (i.e. 
difference between the maximum and the minimum RUL estima-
tion, respectively Fig. 18 and Fig. 19), the mean RUL estimation and a 
Percentage of Disparity (PoD). It can be observed that the PoD and 
the relative RUL range is different for each database. The mean PoD 
for FD001, FD002 and FD005 are respectively 5%, 21% and 20%. To 
analyzed these results a maintenance policy that allows no more 
than 10% of error on the RUL estimation is assumed. For FD005, a 
PoD of 20% means the confidence threshold of 95% is not a good 
choice as it does not meet the maintenance policy. Some modifica-
tions would be needed in the confidence threshold to reach the 
desired error value. The confidence interval can be seen as an al-
lowed error rate for the RUL estimation. A big interval leads to big 
uncertainty on the RUL. The PoD highlighted this problem with the 
database FD005. This interval width is directly linked to the con-
fidence threshold. Decreasing the confidence threshold leads to the 
increase of the RUL estimation interval. 

Table 6 
RUL estimation assessment using the first scenario of the proposed fusion rule and the mean error percentage as a performance indicator.            

LRP (%) FD001 FD002 FD005  

PA (mean error %) RA (mean error %) PG PA (mean error %) RA (mean error %) PG PA (mean error %) RA (mean error %) PG  

40 28.47 32.96 13.60% 27.71 31.95 13.26% 26.83 31.57 15.02% 
50 27.72 38.07 27.19% 31.09 37.28 16.60% 30.71 37.84 18.84% 
60 25.10 45.00 44.22% 36.64 44.53 17.71% 32.28 47.75 32.39% 
70 28.05 52.70 46.79% 40.09 52.99 24.34% 42.64 62.78 32.08% 
80 33.96 64.03 46.97% 52.33 64.06 18.32% 53.88 91.30 40.99% 
90 55.35 183.29 69.80% 94.16 128.31 26.62% 97.84 201.75 51.50% 

LRP: Lifetime Records Percentage, PA: Proposed Approach, RA: Reference Approach, PG: Performance Gain  

Table 7 
RUL estimation assessment using the second scenario of the proposed fusion rule and the PHM08 score as a performance indicator.            

LRP (%) FD001 FD002 FD005  

PA (PHM08 score) RA (PHM08 score) PG PA (PHM08 score) RA (PHM08 score) PG PA (PHM08 score) RA (PHM08 score) PG  

40 1 140 39 041 97.08% 7 135 15 512 54.00% 5 428 12 361 56.09% 
50 300 21 710 98.62% 6 123 11 349 46.05% 3 688 16 084 77.07% 
60 129 5 303 97.56% 4 124 9 996 58.74% 2 267 20 883 89.14% 
70 31 1 385 97.78% 3 614 5 955 39.31% 1 259 19 537 93.55% 
80 55 1 435 96.18% 2 332 3 760 37.97% 309 18 712 98.35% 
90 61 3 898 98.43% 784 2 770 71.72% 956 12 352 92.26% 

LRP: Lifetime Records Percentage, PA: Proposed Approach, RA: Reference Approach, PG: Performance Gain  

Table 8 
RUL estimation comparison between the PA and PA-CI for FD001, FD002, and FD005 databases using a PHM08 score as a performance indicator.            

LRP (%) FD001 FD002 FD005  

PA-CI (PHM08 score) PA (PHM08 score) PG PA-CI (PHM08 score) PA (PHM08 score) PG PA-CI (PHM08 score) PA (PHM08 score) PG  

40 1 932 2 259 14.48% 6 132 13 521 54.65% 3 188 6 561 51.41% 
50 412 489 15.73% 3 956 7 874 49.76% 4 455 10 180 56.24% 
60 197 235 16.27% 2 769 5 522 49.86% 1 762 3 551 50.37% 
70 112 137 17.81% 2 573 5 049 49.03% 1 780 4 018 55.69% 
80 84 103 17.97% 1 494 3 060 51.18% 1 265 2 495 49.29% 
90 76 91 16.62% 785 1 364 42.43% 903 1 776 49.14% 

LRP: Lifetime Records Percentage, PA-CI: Proposed Approach with Confidence Interval, PA: Proposed Approach, PG: Performance Gain  

Fig. 6. Confidence threshold influence for RUL estimation on FD001 sliced at 40%.  
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6. Conclusion 

This study proposed two different improvements for similarity- 
based models for RUL estimation. As a first contribution a health 
index building method using the Kernel Principal Component 
Analysis (KPCA) was proposed. It allowed the creation of the de-
gradation reference trends that are stored in the SBM library in a 
generic way, by using automatic and unsupervised techniques. As a 
second contribution a novel fusion rule for RUL estimation was 
proposed. It is a self-adaptive method that can benefit from the 
accumulated knowledge over the SBM operation. 

For the assessment of both contributions different tests where 
performed using the CMAPSS case study and comparing the results 
against a reference approach that also implements a SBM for RUL 
estimation but in contrast, it uses several experts rules that are not 
easily adaptable on different applications. The validation of the 
proposed SBM aimed at proving that it can outperform other ap-
proaches with explainable reasoning. This is an important point for 
the implementation of predictive maintenance in critical systems 
such as aircraft. 

In a first row of test, the contribution of the KPCA for the HI 
generation was successfully validated. The results were better than 
those of the reference approach. In a second row of test the complete 
approach was validated: the implementation of the KPCA and the 
proposed fusion rule. Different performance indicators where used 
for the approach validation: the PHM08 score, the RSME and the 
mean error. It provides a better idea of how the SBM performs with 
the proposed approach. For the fusion rule two different scenarios 
where explored. The first scenario does not consider the accumu-
lated knowledge over the SBM operation. The second scenario 
benefits from the accumulated knowledge to update the fusion rule. 
Both scenarios shown better results compared to the reference ap-
proach that uses experts rules for the RUL estimation. 

As a complementary analysis, the proposed approach was also 
studied if the RUL estimation should be in confidence interval. The 
performance indicators used for single value RUL estimation do not 
provide a good overview of the RUL estimation using confidence 
bounds. Another performance evaluation was proposed using the 
percentage of disparity in the confidence interval. Performance of 
the RUL estimation would rely on maintenance policies and the 
confidence threshold that should be modified to meet the expected 
results. 

Further work focuses on enhancing the proposed approach so to 
consider the presence of several failure modes with the same case 
study, which is currently a limitation of the presented approach. In 
addition, the proposed SBM for RUL estimation can also be im-
plemented in other case studies. Spontaneous important health 
index improvements, such as may happen in batteries (Zhou et al., 
2016), are not managed by the current approach, and will be ad-
dressed in the future. 
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