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Abstract. We consider geometric hypergraphs whose vertex set is a finite set of points (e.g., in
the plane), and whose hyperedges are the intersections of this set with a family of geometric regions
(e.g., axis-parallel rectangles). A typical coloring problem for such geometric hypergraphs asks,
given an integer k, for the existence of an integer m = m(k), such that every set of points can be
k-colored such that every hyperedge of size at least m contains points of different (or all k) colors.

We generalize this notion by introducing coloring of t-subsets of points such that every hyperedge
that contains enough points contains t-subsets of different (or all) colors. In particular, we consider
all t-subsets and t-subsets that are themselves hyperedges. The latter, with t = 2, is equivalent to
coloring the edges of the so-called Delaunay-graph.

In this paper we study colorings of Delaunay-edges with respect to halfplanes, pseudo-disks, axis-
parallel and bottomless rectangles, and also discuss colorings of t-subsets of geometric and abstract
hypergraphs, and connections between the standard coloring of vertices and coloring of t-subsets of
vertices.
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1 Introduction

According to the classic Ramsey Theorem, for every integer m there exists an integer n = n(m) such
that for every 2-coloring of the edges of the complete graph Kn there exists a monochromatic copy of
Km. Moreover, an extension of Ramsey Theorem states that for all integers k, t and m there exists an
integer n = n(k, t,m) such that for every k-coloring of all the hyperedges of the t-uniform complete
hypergraph4 on n vertices there exists a monochromatic copy of the t-uniform complete hypergraph on
m vertices. Obviously, one wishes to find the minimum integer n that satisfies this property, however,
only asymptotic bounds on n are known [11].

From a different perspective, given k, t and n, one can look for the largest integer m = m(k, t, n)
such that for every k-coloring of the complete t-uniform hypergraph on n vertices there is a subset of
m− 1 vertices such that each t-subset of them has the same color. Or, equivalently, the smallest integer
m = m(k, t, n) such that there exists a k-coloring of the complete t-uniform hypergraph on n vertices
for which every subset of m vertices contains hyperedges of different colors. A coloring that satisfies the
latter is called a proper coloring. If every subset of m vertices contains a hyperedge of each of the k colors,
then we say that the coloring is polychromatic.

∗Research by the first author was partially supported by ERC AdG Disconv and MTA EU10/2016-11001.
Research by the second author was supported by the National Research, Development and Innovation Office –
NKFIH under the grant K 116769 and K 132696. Research by the second and third authors was supported by
the Lendület program of the Hungarian Academy of Sciences (MTA), under grant number LP2017-19/2017.

4A hypergraph is a pair (V, E) where V is a nonempty set (vertices) and E is a set of subsets of V (hyperedges).
A hypergraph is t-uniform if |e| = t for every e ∈ E . A t-uniform hypergraph is complete if every t-subset of V is
a hyperedge.
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We consider such colorings of hyperedges in geometric settings. Specifically, the vertex set is a finite set
of points S ⊆ Rd and we consider only m-subsets of S that are induced by a family of geometric regions.
For example, subsets S′ ⊆ S such that there is an axis-parallel d-dimensional box B with S′ = S ∩B.

Since the geometric setting is quite restrictive, many times m does not depend on n. For example,
we prove such a result for subsets that are induced by H-regions. Given a finite family of halfspaces
H = {H1, . . . ,Hh} we call a region R an H-region if it is the intersection of finitely many halfspaces,
such that each of them is a translate of one of the halfspaces in H.

Theorem 1. For all integers t ≥ 2, k ≥ 1, h ≥ 1 there exists an integer m = m(k, t, h) with the following
property: for every dimension d ≥ 1 and a finite family of h halfspaces H in Rd, the t-subsets of every
finite set of points S in Rd can be k-colored such that every H-region that contains at least m points from
S contains a t-subset of points of each of the k colors.

As a corollary, similar results hold for subsets that are induced by d-dimensional axis-parallel boxes
and by homothets1 of a d-dimensional convex polytope.

It is natural to consider not only m-subsets that are induced by geometric constraints, but also
hyperedges. Given a set of points S and a family of regions F (where a region stands for a set of points,
e.g., a disk or halfplane in the plane), we define the Delaunay-hypergraph G(S,F) as follows: S is its
vertex set and a subset S′ ⊆ S is a (Delaunay-)hyperedge if there exists a region F ∈ F such that
S′ = S ∩ F . A Delaunay-hyperedge of size t is called a t-Delaunay-hyperedge.

This definition gives rise to the following type of questions whose study we initiate here:

Given a family of regions F in Rd and integers k and t, is there an integer m = mF (k, t) such that
the following holds. For every set of points S ⊆ Rd there exists a k-coloring of the t-Delaunay-
hyperedges of G(S,F) such that every subset of at least m points that is induced by a region
from F contains t-Delaunay-hyperedges of two different colors.

If polychromatic coloring is sought, then ‘two’ is replaced by k. We remark that these questions have
been studied extensively for t = 1 and various types of geometric regions, see the related work section
later on. Therefore, our work continues and generalizes this line of research.

For convenience, instead of considering subsets of points that are induced by a region of F , we
will sometimes consider (equivalently) Delaunay-hyperedges. Furthermore, since in some cases an m-
Delaunay-hyperedge might contain very few or no t-Delaunay-hyperedges (for 1 < t < m), we sometimes
have to consider only m-Delaunay-hyperedges that contain enough t-Delaunay-hyperedges.

Especially interesting is the case in which we only consider Delaunay-hyperedges of size t = 2, called
Delaunay-edges. In this case G is the so-called Delaunay-graph of S with respect to F . See Figure 1 for
an illustration of these notions and various types of colorings that we consider.

Note that the notion of Delaunay-graph generalizes the well-known concept of the Delaunay trian-
gulation of a planar point set S (see, e.g., [9]), which, using the above notation, is equivalent to the
Delaunay-graph of S with respect to the family of all disks (assuming no disk contains four points of S
on its boundary).

In order to state our main result in the context of coloring Delaunay-hyperedges we need the following
definitions. A family of compact regions in the plane, each of which is bounded by a Jordan curve, is
called a family of pseudo-disks if every two boundary curves are disjoint or properly cross twice.

Definition 1. We say that a family of regions F is shrinkable with respect to a set of points S if for
every region F ∈ F with |F ∩ S| ≥ 3 and every p ∈ F ∩ S there exists another region F ′ ∈ F such that
p ∈ F ′ ∩ S ⊂ F ∩ S and |F ′ ∩ S| = |F ∩ S| − 1.

Note that we do not require F ′ ⊆ F . For example, disks are shrinkable with respect to any finite point
set whereas unit disks are not.

1A homothetic copy of a set is a scaled and translated copy of the set (rotations are not allowed).
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(a) (b) (c)

Fig. 1: Colorings with respect to halfplanes: a) coloring the points (t = 1) such that any 3-Delaunay-
hyperedge is non-monochromatic; b) coloring the Delaunay-edges (t = 2) such that any Delaunay-
hyperedge containing three Delaunay-edges is not monochromatic; c) coloring all 2-subsets (not nec-
essarily Delaunay-hyperedges) such that any 3-Delaunay-hyperedge is non-monochromatic. (Two points
were removed for better visibility.)

Theorem 2. Let S be a finite set of points in the plane, let F be a finite family of pseudo-disks that
is shrinkable with respect to S. Then it is possible to color the Delaunay-edges of S with respect to F
with four colors, such that every pseudo-disk F ∈ F that contains at least three points from S contains
Delaunay-edges of two different colors.

Theorem 2 also applies to the case where F is the family of all homothets of a (closed) polygon P
and S is in a certain general position with respect to P (namely, no homothet of P contains four points
of S on its boundary, and no two points in S define a line that is parallel to a line through two vertices
of P ). Indeed, one can apply Theorem 2 on such a family since: it trivially holds that there is a finite
subfamily which defines the same Delaunay-hypergraph on S; if needed, a slight perturbation of such a
finite subfamily can turn it into a family of pseudo-disks without changing the Delaunay-hypergraph; and
it can be shown that such a family is shrinkable (see [1, Lemma 2.3]).

Less than four colors suffice for two specific families.

Theorem 3. Let S be a finite set of points in the plane and let F be the family of all halfplanes. Then
the Delaunay-edges of S with respect to F can be 2-colored such that every halfplane that contains at least
three Delaunay-edges contains two differently colored edges. This statement is false if we replace three
with two.

We remark that the family of all halfplanes is not always shrinkable. For example, consider this family
with respect to six points that consists of the vertices of a regular pentagon and its center. If F is a
halfplane that contains two vertices of the pentagon and its center p, then there is no halfplane F ′ that
contains just p and exactly one of the other two points in F . For this reason a halfplane may contain
an arbitrary number of points from S while containing only one Delaunay-edge; this is why we consider
halfplanes that contain enough Delaunay-edges instead of halfplanes that contain enough points.

An axis-parallel rectangle is a rectangle in the plane whose sides are parallel to the x- and y-axes.
A region is a bottomless rectangle if it is the homothetic copy of the set {(x, y) : 0 < x < 1, y < 0}).
Theorem 2 can be applied to the family of bottomless rectangles, however, two colors already suffice in
this case:

Theorem 4. Let S be a finite set of points in the plane and let F be the family of all bottomless rectangles.
Then the Delaunay-edges of S with respect to F can be 2-colored such that every bottomless rectangle that
contains at least four points from S contains two differently colored edges. This statement is false if we
replace four with three.

We also consider coloring Delaunay-edges with respect to axis-parallel rectangles. However, in this
case we only managed to show that by using O(log |S|) colors one can guarantee that every rectangle
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that contains at least three points from S contains two differently colored Delaunay-edges. We leave it
as an open problem whether constantly many colors also suffice.

Suppose that for a given family of regions, k and t we have m = m(k, t) such that there is a poly-
chromatic k-coloring of t-Delaunay-hyperedges (resp., t-subsets) such that every set of at least m vertices
induced by a region from the family contains a hyperedge (resp., subset) of each color. Then it seems
reasonable to expect that a similar statement holds for every t′ > t (with a different m). We could
prove such a statement for subsets induced by H-regions and coloring of all t-subsets (not necessarily
Delaunay-hyperedges).

Theorem 5. Given a family of h halfspaces H in Rd and a positive integer k, suppose that for some
positive integer t there exists an integer m = m(k, t,H) with the following property: the t-subsets of every
finite point set S in Rd can be k-colored such that every H-region that contains at least m points from
S contains a t-subset of each of the k colors. Then the same property holds when exchanging t with an
integer t′ > t and m with m′ = m+ t′ − t.

We could not prove a similar statement when instead of all t-subsets we only color t-Delaunay-
hyperedges. A possible reason that obtaining such a result is harder, is that the number of t-Delaunay-
hyperedges increases more moderately when compared to the number of all t-subsets. For example,
in the case of a pseudo-disk family, a pseudo-disk that contains m points contains at most O(t2m)
Delaunay-hyperedges of size at most t [6], whereas it contains

(
m
t

)
t-subsets (that are not necessarily

Delaunay-hyperedges). Nevertheless, we believe that Theorem 5 (and also Theorem 1) should also hold
for t-Delaunay-hyperedges.

It is also an open question whether a similar statement holds in the abstract (non-geometric) setting,
that is, for every subset of m vertices. We could only prove such a statement in the abstract setting for
t = 1. We also remark that it is an open problem whether proper 2-colorability of vertices (t = 1) implies
polychromatic k-colorability of vertices for k > 2; see [25].

In general, call an abstract hypergraph family closed for subhypergraphs if for every hypergraph (V, E)
in the family each of its subhypergraphs (V ′, E ′) where V ′ ⊂ V and E ′ = {e ∩ V ′ | e ∈ E}, is also in the
family. Denote by (k, t) → (k′, t′) the following statement: IF for an abstract hypergraph family closed
for subhypergraphs there is an integer m such that for any hypergraph from the family the t-subsets of
its vertices can be k-colored such that any hyperedge with at least m vertices contains a t-subset of each
of the k colors, THEN there is an integer m′ such that for any hypergraph from the family the t′-subsets
of its vertices can be k′-colored such that any hyperedge with at least m′ vertices contains a t′-subset
of each of the k′ colors. Note that the implications (k, t) → (k′, t) trivially hold for any k′ ≤ k and a
central question of polychromatic k-coloring is whether (2, 1) → (k′, 1) holds for every k′. We show in
Proposition 3 that (k, t) → (2, t′) for every k ≥ 2 and t′ > t and in Proposition 4 that (k, 1) → (k′, t′)

for k′ ≤∑t′

i=0

(
k−1
i

)
. In fact, in the proof of these statements we do not use that the family is closed for

subhypergraphs. The general question whether (k, t) → (k′, t′) holds for every k, k′ and t′ ≥ t remains
open.

Organization. We consider coloring Delaunay-edges in Section 2: Theorems 2, 3 and 4 are proved in
Sections 2.1, 2.2 and 2.3, respectively. In Sections 3 and 4 we consider coloring of all the t-subsets: first,
in Section 3 we prove results of the form (k, t)→ (k′, t′) for abstract hypergraphs. Then, in Section 4 we
go back to the geometric setting and prove such a result for H-regions, Theorem 5, and use it to prove
Theorem 1.

1.1 Related work

The notion of coloring the edges of a graph is as old as that of coloring the vertices of a graph, where often
these colorings exhibit substantially different behaviors. Edge-coloring problems give rise to completely
new questions, as in the case of Ramsey theory, while at other times they are natural extensions of
problems about vertex-colorings. For example, in the paper of Erdős et al. [10] Euclidean Ramsey theorems
concerning inevitable monochromatic structures when coloring the points in Rd are studied. In the last
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section of this paper, the authors prove Ramsey-type results for coloring all the pairs of points (2-subsets).
For example, they prove that it is possible to 2-color every pair of points in the plane, such that the vertices
of every acute triangle define pairs of both colors. This generalization from coloring of points to coloring
of pairs of points is of the same flavor as our coloring of t-subsets.

Another generalization of this flavor is a recent work of Mustafa and Ray [23] concerning ε-Mnets.
Given a hypergraph (set system) (V, E) and a constant ε > 0, an ε-net is a subset N ⊆ V such that for
every e ∈ E with |e| ≥ ε|V| we have N ∩ e 6= ∅. Epsilon-nets are well-studied due to their applications
in discrete and computational geometry, approximation algorithms and machine learning. Mustafa and
Ray [23] introduced the notion of ε-Mnets: An ε-Mnet is a family of subsets {M1,M2, . . . ,M`} each of
size Ω(ε|V|), such that for every e ∈ E with |e| ≥ ε|V| we have Mi ⊆ e for some 1 ≤ i ≤ `. Thus,
ε-Mnets generalize ε-nets in a way which is similar to our generalization of vertex-coloring to coloring of
t-hyperedges and t-subsets. Moreover, suppose that there are constants c1, c2 > 0 and a k-coloring of the
t-hyperedges of a certain hypergraph on n vertices such that every induced subset of m vertices contains
a t-hyperedge of each of the k colors, for t = c1εn and m = c2εn (c2 > c1). Then each of the k colors is
an ε-Mnet of the hypergraph.

We are not aware of any work that considers coloring of Delaunay-hyperedges or t-subsets of vertices
as defined in this paper. There is however a vast literature on coloring points with respect to Delaunay-
hyperedges (that is, when t = 1). Most of the results in this area are about the same planar families of
regions that we study in this paper, namely, pseudo-disks, halfplanes and axis-parallel rectangles. One
usually considers the existence of proper two-colorings with respect to these families. This has motivated
us to investigate the existence of proper two-colorings of Delaunay-edges (that is, when t = 2) with
respect to the same planar families. Here we briefly describe the results that are most relevant to our
work.

It is known that one can properly 4-color points with respect to pseudo-disks since their Delaunay-
graph is planar [6]. On the other hand, there is no constant m for which we can properly 2-color points
with respect to (unit or pseudo) disks containing at least m points [24,26]. That is, in our terminology,
mF (2, 1) does not exist when F is the family of (unit) disks in the plane. It is an open problem whether
mF (3, 1) exists, even for unit disks [12,15].

For halfplanes containing 3 points there is a 2-coloring [12], and more generally, for halfplanes con-
taining 2k − 1 points there is a polychromatic k-coloring [29]. It is also known that there is a proper
2-coloring with respect to bottomless rectangles containing 4 points [12], and more generally, for bottom-
less rectangles containing 3k − 2 points there is a polychromatic k-coloring [3].

Considering the family of all axis-parallel rectangles, observe that the Delaunay-graph in this case is
not necessarily planar. Estimating the chromatic number of this Delaunay-graph is a famous open problem
with a large gap between the best known lower bound of Ω( logn

log logn ) [8] and the best known upper bound

of O(n0.368) [7] (where n is the number of points). There is however a proper O(log n)-coloring with
respect to axis-parallel rectangles that contain at least 3 points from the given point set [2].

For results about polychromatic coloring of vertices of abstract hypergraphs see, e.g., [5,31]. We
remark that in the case of hereditary hypergraph families, it is an open problem whether 2-colorability
(with respect to hyperedges of size at least m, for some m) implies polychromatic k-colorability for k > 2
(with respect to hyperedges of size at least mk, for some mk that depends on m and k); see [25]. The
only related result that we are aware of is by Berge [4] who showed that m2 = 2 implies mk = k for all
k. For more results, see the survey [25] or the webpage [16].

The geometric hypergraphs that we consider are usually called primal hypergraphs. We briefly mention
that one can define dual hypergraphs where the vertices correspond to regions from F and the hyperedges
correspond to points of the plane (a hyperedge that corresponds to the point p consists of every vertex
that corresponds to a region F ∈ F that contains p). One can even generalize these notions further,
in particular one can define intersection hypergraphs where the vertices correspond to regions from a
family F and the hyperedges correspond to regions from a family G (the hyperedge that corresponds to a
region G ∈ G contains exactly those vertices whose corresponding region F ∈ F intersects G). All of these
variants have a vast literature with connections to the notions of cover-decomposability and conflict-free
coloring.
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2 Coloring Delaunay-edges

Let S be a finite set of points in the plane and let F be a family of regions. Recall that G(S,F) is the
Delaunay-hypergraph whose vertex set is S and whose hyperedge set consists of all subsets S′ ⊆ S for
which there exists a region F ∈ F such that S′ = S ∩ F .

Definition 2. The Delaunay-edges of S with respect to F are all the hyperedges of size two in G(S,F).
The Delaunay-graph D(S,F) is the graph whose vertex set is S and whose edge set consists of the
Delaunay-edges of S with respect to F .

Our goal is to find a coloring such that every region in F that contains m = m(F) points from S
contains two differently colored Delaunay-edges. The families that we consider are pseudo-disks, axis-
parallel rectangles, bottomless rectangles and halfplanes.

2.1 Coloring Delaunay-edges with respect to pseudo-disks

We say that a family of pseudo-disks F is saturated with respect to a set of points S, if there is no region
R such that F ∪ {R} is a family of pseudo-disks and G(S,F) 6= G(S,F ∪ {R}). Note that every family
of pseudo-disks can be extended greedily to a saturated family with respect to S.

2.1.1 The Delaunay-graph with respect to pseudo-disks

Let S be a set of points in the plane and let F be a family of regions. It is well-known [19] that when
F is the set of homothets of a convex shape (or any other convex pseudo-disk family), then embedding
the Delaunay-graph D(S,F) such that every two adjacent points in S are connected by a straight-line
segment results in a plane graph. For Delaunay-graphs with respect to (non-convex) pseudo-disks this
might not hold, but using the Hanani-Tutte theorem it is possible to show that the Delaunay-graph is
always planar [6]. We need the following stronger result, which is proved in a companion paper [17].

Theorem 6 ([17]). Given a finite point set S and a finite pseudo-disk family F , there is a drawing of
the Delaunay-graph D(S,F) such that every edge lies inside every pseudo-disk that contains both of its
endpoints and no two edges cross.

A useful ingredient of the proof of Theorem 6 is the following lemma of Buzaglo et al. [6].

Lemma 1 ([6]). Let D0 and D1 be two pseudo-disks from a pseudo-disk family and let γ0 and γ1 be two
curves such that Di contains γi and does not contain the endpoints of γ1−i, for i = 0, 1. Then γ0 and γ1
cross each other an even number of times.

We will use this lemma as well as the next one due to Pinchasi [28], whose proof applies a result of
Snoeyink and Hershberger [30].

Lemma 2 ([28]). Let B be a family of pairwise disjoint sets in the plane and let F be a family of pseudo-
disks. Let D be a member of F and suppose that for some integer k ≥ 2, D intersects exactly k members
of B, one of which is B ∈ B. Then for every integer 2 ≤ ` ≤ k there exists D′ ⊆ D such that D′ intersects
B and exactly `− 1 other sets from B, and F ∪ {D′} is a family of pseudo-disks.

As usual, in Lemma 2 two sets are defined to intersect if and only if they have a non-empty intersection.
By setting B to be S, Lemma 2 implies that a family of pseudo-disks which is saturated with respect to
S is also shrinkable with respect to S.
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2.1.2 Coloring Delaunay-edges with respect to pseudo-disks

Let S be a finite set of points in the plane, let F be a finite family of pseudo-disks that is shrink-
able with respect to S. Theorem 2 states that it is possible to color the edges of the Delaunay-graph
D(S,F) with four colors, such that every pseudo-disk F ∈ F that contains at least three points from S
contains Delaunay-edges of two different colors.

Proof of Theorem 2. Let D be a plane drawing of D(S,F) such that every Delaunay-edge lies inside every
pseudo-disk that contains its endpoints. By Theorem 6 such a drawing exists.

Let J be a subgraph of the line graph of D(S,F) that is defined as follows. The vertex set of J is the
set of Delaunay-edges, and two Delaunay-edges e and e′ are adjacent in J if they share an endpoint and
there is a pseudo-disk F ∈ F such that F ∩ S is exactly the three endpoints of e and e′.

Using D we draw J as follows (we do not distinguish between points and edges and their embeddings).
For every Delaunay-edge e we choose arbitrarily a point pe in the interior of this edge. Suppose that e
and e′ are two Delaunay-edges that are adjacent in J , and let q ∈ S be the common endpoint of e and e′.
Then the drawing of the edge {e, e′} of J consists of the segment of e between pe and q and the segment
of e′ between q and pe′ .

Note that the drawing of J does not contain crossing edges, since D is a plane graph. However, J
contains several overlaps between the drawn edges.

Proposition 1. The graph J can be redrawn as a plane graph.

Proof. In order to remove overlaps between the edges we re-draw the edges with the following procedure
(see Figure 2 for an illustration).

C(q)

p{q0,q}

p{q1,q}

p{q2,q}
p{q3,q}

p{q4,q}

q0,4

q4,0

q0,1

q1,0
q1,2

q2,1

q2,3

q3,2
q3,4

q4,3

Fig. 2: Drawing J in the proof of Theorem 2.

First, we replace every vertex q by a very small disk C(q) whose center is q. The radius of C(q) should
be small enough such that (1) C(q) does not contain points of S besides q, (2) the boundary ∂C(q) of
C(q) does not intersect the boundary of a pseudo-disk from F (that is, C(q) lies inside every pseudo-disk
that contains q) and (3) C(q) does not intersect any edge which is not adjacent to q nor any C(p) with
p 6= q.

Now for each vertex q and incident edge {p, q} we take the intersection rpq of {p, q} with ∂C(q) which
is farthest from q along {p, q} and delete the edge part that is between rpq and q. We get a drawing in
which pairwise disjoint disks around the points are connected by pairwise disjoint edges that have one
endpoint on the boundary of one disk and the other endpoint on the boundary of another. Additionally,
besides these endpoints, the disks and the edges are pairwise disjoint.
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Then we slightly inflate every (truncated) edge {p, q} such that it has a very small width and it is
still connecting C(p) and C(q). We make sure that the width of every edge is small enough such that the
thickened edges are still pairwise disjoint. We do the thickening such that the intersection of a thickened
edge and a disk that corresponds to one of its endpoints consists of an arc on the boundary of this disk
and these arcs along the boundary of a disk are pairwise disjoint.

Denote the neighbors of some vertex q by q0, . . . , q`−1 in clockwise order around q. We choose ` − 1
points, called ports, on the small arc which is the intersection of the inflated edge {qi, q} and C(q) for
each i (so in total `(`− 1) ports). We denote the ports by qi,j (j = 0, . . . , i− 1, i+ 1, . . . `− 1) and order
them counter-clockwise around q, such that qi,i+1 is the first port, qi,i+2 is the second port and so on
(addition is modulo `). Every edge {p{qi,q}, p{q,qj}} of J is drawn as follows: p{qi,q} is connected to qi,j
with a curve γi,j inside the inflated {qi, q}, then qi,j is connected to qj,i inside C(q) with a straight-line
segment, and finally qj,i is connected to p{qj ,q} with a curve γj,i inside the inflated {qj , q}. Due to the
ordering of the ports, it is easy to achieve that for every i the curves γi,j do not cross inside the inflated
edge {qi, q}. It is also easy to obtain that these curves do not cross the curves that go from pqi,q towards
qi (which correspond to the edges of the line graph between the edges incident to qi, that is, edges for
which qi plays the role of q in the current description). Also, due to the ordering of the ports, drawings
of qiqj and qiqk (for any i, j, k) do not intersect inside C(q).

We also need to show that no segments cross inside C(q). Suppose that this is not the case and
denote the endpoints of the respective edges (after a suitable reindexing) by q1, q2, q3, q4. Let D and D′

be the pseudo-disks in F whose intersections with S are {q1, q, q3} and {q2, q, q4}, respectively. Since
the Delaunay-edges are drawn such that they are contained in every pseudo-disk that contains their
endpoints, and by our choice C(q) lies inside every pseudo-disk that contains q, it follows that our drawn
curves lie inside D and D′, respectively. Moreover, by Lemma 1 they must cross an even number of times.
Since the parts outside C(q) are disjoint, and inside C(q) the two segments can cross at most once, we
get a contradiction. Therefore, we have proved that with this drawing J is a plane graph. �

Since J is a planar graph, it is 4-colorable. We use a 4-coloring of J to color the Delaunay-edges of
D. Now suppose that D ∈ F is a pseudo-disk that contains at least three points. Since F is shrinkable,
it follows that there is a pseudo-disk D′ ∈ F that contains exactly three points from S ∩ F . Lemma 2
also implies that each of the three points from S inside D′ is connected by a Delaunay-edge to one of the
other two points. Therefore, D′ contains two Delaunay-edges that share a common endpoint and thus
are colored with different colors. �

Note that Theorem 2 implies the same for saturated pseudo-disk families as a saturated family is
always shrinkable. The following result concerning homothets of a convex compact set is also implied by
Theorem 2.

Let C be a convex compact set and let ∂C denote its boundary. We say that a set of points S is in
general position with respect to C, if there is no homothet of C that contains more than three points of S
on its boundary and no two points in S define a line that is parallel to a line-segment which is contained
in ∂C.

Corollary 1. Let C be a convex compact set and let S be a finite planar set of points that is in general
position with respect to C. Then it is possible to 4-color the Delaunay-edges of S with respect to the family
of all homothets of C such that every homothet of C that contains at least three points from S contains
Delaunay-edges of different colors.

Proof. Let F be a finite subfamily of the set of homothets of C such that if C ′ is a homothet of C, then
there is C ′′ ∈ F such that C ′′ ∩ S = C ′ ∩ S. One can show along the lines of the proof of Lemma 2.3
in [1] that this subfamily is shrinkable with respect to S.

We may assume that for every C1, C2 ∈ F the boundaries ∂C1 and ∂C2 intersect a finite number of
times. Indeed, if there are overlaps between boundaries, then we can slightly inflate one of the homothets,
say C1, without changing C1 ∩ S since C1 is closed.

It follows from the next folklore lemma (see, e.g., [22, Corollary 2.1.2.2]), that F is a family of pseudo-
disks.
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Lemma 3. Let C be a convex and compact set and let C1 and C2 be homothets of C. Then if ∂C1 and
∂C2 intersect finitely many times, then they intersect in at most two points.

Since F is also shrinkable, the corollary now follows from Theorem 2. �

2.2 Coloring Delaunay-edges with respect to halfplanes

Let S be a finite set of points in the plane and let F be the family of all halfplanes. Note that a halfplane
may contain an arbitrary number of points from S while containing only one Delaunay-edge of D(S,F),
see Figure 3a for an example. Therefore a claim along the lines of, e.g., Theorem 4 is impossible. Thus,

(a)

e1
e2 e3 e4

e5

e6
e7

ek

(b)

Fig. 3: (a) A halfplane may contain many points but only one Delaunay-edge. (b) Coloring the Delaunay-
edges.

Theorem 3 states that the edges of the Delaunay-graph D(S,F) can be 2-colored such that every halfplane
that contains at least three Delaunay-edges contains two differently colored edges.

Proof of Theorem 3. For simplicity we assume that the points are in general position, as it is easy to
modify the proof so that it works for points that are not in general position.

Let S be a finite set of points in the plane and let F be the family of all halfplanes. The convex hull of
S, CH(S), is a convex polygon whose vertices are points from S. Note that for each of the Delaunay-edges
in the Delaunay-graph D(S,F) at least one of the two endpoints is a vertex of CH(S). Thus, D(S,F)
consists of the sides of CH(S) and stars centered at each of the vertices of CH(S).

Starting from an arbitrary vertex of CH(S) we go over all the Delaunay-edges adjacent to this vertex
in a counter-clockwise order and color them alternatively with red and blue. Then we move to the next
vertex of CH(S) in a clockwise order. Repeat the same process (the first edge adjacent to it is already
colored), and so on until all the edges are colored (see Figure 3b for an example).

Let e1, e2, . . . , ek be the Delaunay-edges listed in the order they were visited by the coloring algorithm.
Note that every pair of consecutive edges are of different colors, except perhaps e1 and ek which are of
the same color if k is odd.

Proposition 2. If a halfplane H contains two Delaunay-edges ei and ej, i < j, then H contains the
edges ej+1, . . . , ek, e1, . . . , ei−1 or the edges ei+1, . . . , ej−1.

Proof. Suppose first that ei and ej share a vertex of CH(S) as an endpoint and denote it by v. Assume
without loss of generality that all the edges ei, . . . , ej are incident to v and let v` denote the other endpoint
of e`, ` = i, . . . , j. Assume for contradiction that H does not contain e` for some i < ` < j. It follows



10 E. Ackerman et al.

that v, vi, v`, vj are in convex position such that this is also their clockwise or counter-clockwise order
around their convex hull. However, then there cannot be a halfplane that separates {v, v`} from {vi, vj}
contradicting the fact that {v, v`} is a Delaunay-edge.

Suppose now that ei and ej are disjoint and let u and u′ be vertices of CH(S) such that u is an
endpoint of ei and u′ is an endpoint of ej . Let U be the vertices of CH(S) in the clockwise order from u
to u′, and assume without loss of generality that H contains all of them (this can be assumed since if H
does not contain all of them, then it must contain all the vertices of CH(S) from u′ to u). We may also
assume that ei+1, . . . , ej−1 are incident to the vertices in U .

We claim that H must contain each of these edges. Indeed, suppose that H does not contain e`, for
some i < ` < j. If none of u and u′ is an endpoint of e`, then let u′′ ∈ U be one of its endpoints and
let v` be its other endpoint. As in the previous case, it follows that u, u′′, u′, v` are in convex position
such that this is also their clockwise order around their convex hull. However, then there cannot be a
halfplane that separates {u′′, v`} from {u, u′}. Finally, suppose that one endpoint of e` is, without loss of
generality, u and let v` be its other endpoint. Denote also by vi the other endpoint of ei. Then, as before,
it follows that u, vi, v`, u

′ are in convex position in this cyclic order. However, there should be a halfplane
that separates {u, v`} from the other two vertices which is impossible. �

Suppose that H ∈ F is a halfplane that contains at least three Delaunay-edges. Then it follows from
Proposition 2 that H contains at least three consecutive Delaunay-edges and therefore it contains two
edges of different colors.

To see that the constant three in the theorem is tight, note that when S is a set of an odd number of
points in convex position, then it is impossible to 2-color the Delaunay-edges of D(S,F) such that every
halfplane that contains two Delaunay-edges contains edges of both colors. �

2.3 Coloring Delaunay-edges with respect to bottomless rectangles

A bottomless rectangle is the set of points {(x, y) | a ≤ x ≤ b, y ≤ c} for some numbers a, b, c such that
a ≤ b. Let F be the set of bottomless rectangles and let S be a finite set of points in the plane. As in
the previous section, we may assume that no two points in S share the same x- or y-coordinates. It is
known [12] that it is possible to color the points in S with two colors such that every bottomless rectangle
that contains at least four points from S contains two points of different colors. This easily implies that
the Delaunay-edges of D(S,F) can be colored with two colors such that every bottomless rectangle that
contains at least five points from S contains two Delaunay-edges of different colors. Indeed, color first the
points of S such that every bottomless rectangle that contains four points from S is non-monochromatic.
Then color every Delaunay-edge with the color of its left endpoint. Suppose that R ∈ F contains at least
five points from S and let pi be the ith point in R∩S from left to right. There is a bottomless rectangle R′

such that R′ ∩ S = {p1, p2, p3, p4}, therefore there are two differently colored points among these points.
Since {pi, pi+1} is a Delaunay-edge for every i, it follows that R contains two Delaunay-edges of different
colors.

Next we prove Theorem 4. Namely, that containing four points from S suffices for a bottomless
rectangle to contain Delaunay-edges of different colors and this is tight. The proof is similar to proof of
the aforementioned statement in [12].

Proof of Theorem 4. We add the points in S one-by-one from bottom to top. Note that any Delaunay-
edge that is introduced when a point is added, remains a Delaunay-edge when adding the remaining
points.

At any moment call an edge neighborly if it connects points that are next to each other in the horizontal
order of points. Denote the points added so far by their order from left to right, p1, p2, . . . , pk, and let pi
be the last point to be added. Thus, the neighborly edges are {pj , pj+1}, for j = 1, . . . , k−1. We maintain
the invariant that there are no three consecutive neighborly edges of the same color. This is trivial to
obtain for k ≤ 3, so assume that k ≥ 4. When pi is added, it introduces either one (if i = 1 or i = k)
or two new neighborly edges (and causes an existing edge to cease being a neighborly edge). In the first
case we color the new edge with a color that is different from the color of the single neighborly edge that
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shares an endpoint with the new edge. In the second case, if i = 2 (resp., i = k − 1), then we color the
new edges {p1, p2} and {p2, p3} (resp., {pk−2, pk−1} and {pk−1, pk}) with a color that is different from the
color of {p3, p4} (resp., {pk−3, pk−2}). When 2 < i < k− 1 there are two cases to consider: If {pi−2, pi−1}
and {pi+1, pi+2} are of the same color, then we color the new edges {pi−1, pi} and {pi, pi+1} with the
opposite color. Otherwise, if {pi−2, pi−1} and {pi+1, pi+2} are of different colors, then {pi−1, pi} is colored
with the color of {pi+1, pi+2} and {pi, pi+1} is colored with the color of {pi−2, pi−1}. It is easy to verify
that the invariant that there are no three consecutive neighborly edges of the same color is maintained
in all cases.

Suppose now that R is a bottomless rectangle that contains at least four points. When the topmost
point from S ∩R was added, then all the points in S ∩R formed |S ∩R| − 1 ≥ 3 consecutive neighborly
edges. Therefore, not all of these edges are of the same color. Since these edges remain Delaunay-edges
(perhaps non-neighborly) when the remaining points are added, R contains Delaunay-edges of both colors.

To see that it is not enough to consider bottomless rectangles that contain three points from S,
consider the point set in Figure 4 and assume it is colored as required. Assume without loss of generality

p1

p2

p4

p5

p3

Fig. 4: Considering bottomless rectangles containing three points is not enough.

that {p1, p2} is red. Then {p2, p3} and {p2, p4} must be both blue. This implies that {p4, p5} must be red,
and so {p3, p4} must be blue. Therefore, all the Delaunay-edges in the bottomless rectangle that contains
p2, p3 and p4 are blue, a contradiction. �

We remark that it is possible to modify the proof and show that one can two-color the Delaunay-
edges such that any bottomless rectangle that contains at least three edges contains edges of both colors.
Specifically, one can define a subgraph J of the line graph of the Delaunay-graph, similarly to the proof of
Theorem 2, and show that this graph is ‘doubly 2-degenerate’, by which we mean that we can recursively
find two adjacent degree-2 vertices in it. Then, it follows by induction that we can two-color the vertices
of J such that any connected component on at least three vertices is non-monochromatic.

2.4 Coloring Delaunay-edges with respect to axis-parallel rectangles

For a partially ordered set P = (X,≤) we say that x ∈ X is an immediate predecessor of y ∈ X if x < y
and there is no z ∈ X such that x < z < y (where x < y means that x ≤ y and x 6= y). The directed
Hasse diagram of P is the directed graph (X, {(x, y) | x is an immediate predecessor of y}). The following
is easy to prove.

Lemma 4. Let P = (X,≤) be a partially ordered set such that X is finite. Then it is possible to color
the edges of the directed Hasse diagram of P with dlog2 |X|e colors such that there is no monochromatic
directed path of length two.

Proof. Denote n = |X|. It is enough to prove the lemma for n = 2k, k ∈ N. We prove by induction on k.
For k = 0 the lemma holds. Let P = (X,≤) be a poset where |X| = n = 2k and k > 0. Let P ∗ = (X,≤∗)
be a linear extension of P and let x1 ≤∗ x2 ≤∗ . . . ≤∗ xn be the elements of X ordered according to P ∗.
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Set P1 = (X1 = {x1, . . . , xn/2},≤) and P2 = (X2 = {xn/2+1, . . . , xn},≤). Note that the directed Hasse
diagram of P consists of the directed Hasse diagrams of P1 and P2 and edges of the form (x, y) such that
xi ∈ X1 and y ∈ X2. By the induction hypothesis the edge set of each of the directed Hasse diagrams of
P1 and P2 can be colored with (the same set of) k − 1 colors such that there is no monochromatic path
of length two.

By using the same coloring for the edges of the directed Hasse diagram of P and introducing a new
color for the edges {(x, y) | x ∈ X1, y ∈ X2} we obtain the required coloring. �

Remark. The number of colors in Lemma 4 cannot be an absolute constant. In fact, for any integer d > 0
there is no integer c = c(d) such that it is possible to color the edges of the directed Hasse diagram of
any finite poset with c colors such that there is no monochromatic path of length d. To see this, observe
that if such an integer would exist, then it would be possible to properly color the vertices of the Hasse
diagram of any poset P with O(1) colors which is known to be false [8,18]. Indeed, it is easy to verify
that by assigning each vertex v the color (c′, d′) where d′ is the length of the longest monochromatic path
ending at v (in the directed Hasse diagram of P ) and c′ is the color of that path one obtains a proper
coloring with O(1) colors.

Corollary 2. Let S be a finite set of n points in the plane and let F be the family of axis-parallel
rectangles. Then it is possible to color the edges of the (non-planar) Delaunay-graph D(S,F) with O(log n)
colors such that every axis-parallel rectangle that contains at least three points from S contains Delaunay-
edges of different colors.

Proof. We may assume without loss of generality that no two points in S share the same x- or y-
coordinates.1 Indeed, this can be obtained by a mapping (x, y) 7→ (x+ εy, y+ εx) for a very small ε (that
depends on S) without changing the hyperedges of G(S,F).

Orient every edge of D(S,F) from left to right. Let P1 = (S,≺1) where (x, y) ≺1 (x′, y′) if x < x′

and y < y′. Let P2 = (S,≺2) where (x, y) ≺2 (x′, y′) if x < x′ and y > y′. Note that the edge set of
the oriented Delaunay-graph is the union of the (disjoint) edge sets of the directed Hasse diagrams of P1

and P2. Therefore, it follows from Lemma 4 that we can color these edges with 2dlog2 ne colors such that
there is no monochromatic path of length two.

Let R′ ∈ F be an axis-parallel rectangle that contains at least three points from S and let p1, p2, p3 be
the leftmost points in R′, ordered from left to right. Then (p1, p2) and (p2, p3) are edges in the oriented
Delaunay-graph D(S,F). If they belong to different Hasse diagrams, then they are of different colors.
Otherwise, if they belong to the same Hasse diagram, then they are of different colors since they form a
path of length two. �

3 Coloring all t-subsets of abstract hypergraphs

Henceforth we consider colorings of all the t-subsets of points. In this section we show some general
results that do not rely on geometric assumptions. First, intuitively, as the number of all t-subsets
increases considerably by increasing t, the coloring problem should become easier or at least not become
(significantly) harder. The next claim confirms this intuition in the following sense: proper k-colorability of
t-subsets implies proper 2-colorability of t′-subsets for t′ > t (while the corresponding m might increase).

Proposition 3. For every fixed positive integers m, k, t and t′ > t there exists an integer m′ =
m′(m, k, t, t′) with the following property. Let G be a hypergraph such that the t-subsets of the vertices
of G can be k-colored such that every hyperedge that contains at least m vertices contains two differently
colored t-subsets. Then the t′-subsets of the vertices of G can be 2-colored such that every hyperedge that
contains at least m′ vertices contains two differently colored t′-subsets.

1Note that we cannot just take an arbitrary perturbation, as we did for points. For example, if we have 3
collinear points inside a rectangle (thus two Delaunay-edges) we might introduce a new Delaunay-edge with an
arbitrary perturbation.
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Proof of Proposition 3. We construct a coloring c′ of t′-subsets from the coloring c of t-subsets. The color
of a t′-subset T is red if every t-subset of the vertices of T is colored with the same color by c, and blue
otherwise. By Ramsey’s Theorem (for hypergraphs) we can choose m′ ≥ m such that in any coloring
of all t-subsets of a set of size m′ there is a monochromatic t′-subset, i.e., whose every subset of size t
got the same color. This way in c′ every set of size at least m′ (and so also every hyperedge of size at
least m′) contains a red t′-subset. Also, in the coloring c every hyperedge in G of size m ≤ m′ was not
monochromatic, thus such a hyperedge also contains a blue t′-subset. �

One can of course get better bounds on m′ if we construct a coloring more carefully instead of using
Ramsey’s theorem. The following is such a claim for t = 1 about polychromatic k-colorability.

Proposition 4. For every fixed positive integers m, k and t′ > 1 there exists an integer m′ = m′(m, k, t′)
with the following property. Let G = (V,E) be a hypergraph such that the vertices of G can be k-colored
such that every hyperedge of G that contains at least m vertices contains a vertex of each of the k colors.

Then for any k′ ≤ ∑t′

i=0

(
k−1
i

)
there exists a k′-coloring of the t′-subsets of the vertices of G such that

every hyperedge of G that contains at least m′ vertices contains a t′-subset of each of the k′ colors.

Moreover, this is best possible, i.e., the statement does not hold for k′ ≥ ∑t′

i=0

(
k−1
i

)
+ 1. Also, we can

pick m′ = max{m, k(t′ − 1) + 1}.

Note that
∑t′

i=0

(
k−1
i

)
is always more than k, but never exceeds 2k−1. We will denote by [n] the set

{1, 2, . . . , n} and by
(
A
k

)
the k-element subsets of a set A.

Proof. Note that by definition of polychromatic colorings, it is enough to prove Proposition 4 for k′ =∑t′

i=0

(
k−1
i

)
. Let c : V → [k] be a k-coloring of the vertices of G as above, and set k′ =

∑t′

i=0

(
k−1
i

)
=(

k
t′

)
+
∑t′−2

i=0

(
k−1
i

)
. We will construct a k′-coloring c′ of the t′-subsets of vertices of G such that c′ is a

mapping to the union of the t′-element subsets of [k] and the i-element subsets of [k−1], for i = 0, . . . , t′−2.
Thus, there are indeed k′ colors.

The color of each t′-subset T will be determined by the multiset of the colors of its vertices, c(T ) :=
{c(v) | v ∈ T}, as follows:

– If no color appears twice in c(T ) (only possible if t′ ≤ k), then c′(T ) is the t′-element subset of [k]
defined by those colors, i.e., c′(T ) = c(T ).

– If exactly one color (say, r) appears at least twice in c(T ) and each of the other i colors in c(T ) appears
once, then c′(T ) will be an i-element subset of [k − 1], determined as follows. Define a bijection ϕr

between [k] \ {r} and [k − 1] such that ϕr(j) = j − r for r + 1 ≤ j ≤ k and ϕr(j) = j − r + k for
1 ≤ j ≤ r − 1. Then c′(T ) = {ϕr(c(v)) | v ∈ T, c(v) 6= r}.

– Otherwise, define c′(T ) arbitrarily.

Now we need to show that all k′ colors appear in a hyperedge e of size m′ = max{m, k(t′ − 1) + 1}.
Note that among the vertices of e we have all k colors from [k] since m′ ≥ m. Let U = {u1, u2, . . . , uk} ⊆ e
be a set of vertices such that c(vi) = i. If t′ ≤ k, then the

(
k
t′

)
t′-subsets of vertices from U are colored by

all colors in
(
[k]
t′

)
.

Now let A be an i-element subset of [k− 1], for some 0 ≤ i ≤ t′− 2. By the pigeonhole principle there
is a subset U ′ ⊆ e of t′ vertices that are colored by the same color r ∈ [k]. Suppose that T is a t′-subset
that consists of t′ − i ≥ 2 vertices from U ′ and every vertex uj ∈ U such that ϕr(j) ∈ A. Since ϕr is a
bijection there are i such vertices and it follows that c′(T ) = A.

To see that for k′ =
∑t′

i=0

(
k−1
i

)
+1 there might not be such a coloring for any m′, consider the following

hypergraph G = (V,E). V consists of two parts, U = {u1, u2, . . . , uk−1} and W = {w1, w2, . . . , wN},
where N is some sufficiently large number. The hyperedges E are all supersets of U , i.e., they all contain
every vertex from U , and an arbitrary subset of W . The coloring c(ui) = i, c(wj) = k is a polychromatic
k-coloring of G for m = k. Suppose for a contradiction that there is an integer m′ for which there exists
a k′-coloring c′ of the t′-subsets of the vertices of G such that every hyperedge of G that contains at
least m′ vertices contains a t′-subset of each of the k′ colors. For each X ⊂ U , define a coloring cX of the
(t′ − |X|)-subsets of W so that for a subset Y of size t′ − |X| we have cX(Y ) = c′(X ∪ Y ).
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Let X1, X2, . . . , X` be the subsets of U of size at most t′ − 1, ` =
∑t′−1

i=0

(
k−1
i

)
. For any integer N1 we

can choose N to be large enough such that it follows from the hypergraph Ramsey Theorem that there
is a subset W1 ⊂ W of size N1 such that all of its subsets of size t′ − |X1| are of the same color with
respect to cX1

. Thus we may say that this color (of c′) is associated with X1. Similarly, for any integer
N2 we can choose N to be large enough such that there is a subset W2 ⊂W1 such that all of its subsets
of size t′ − |X2| are of the same color with respect to cX2

. Thus we may say that this color (of c′) is
associated with X2. Continuing in this manner, we may choose N to be large enough and obtain a subset
W ′ = W` ⊂W`−1 of size m′− k+ 1 such that every t′-subset of U ∪W ′ has a color (according to c′) that
is associated with some i-subset of U , where i ≤ t′. However, this implies that the m′-subset U ∪W ′ has

t′-subsets of at most
∑t′

i=0

(
k−1
i

)
< k′ different colors. �

Surprisingly, obtaining a polychromatic k-coloring in a similar way when t > 1 fails already for
t = 2, i.e., when the condition is that pairs of vertices have a suitable coloring. Note that it follows from
Proposition 4 that if for t = 1 and k = 3 we have a polychromatic k-coloring of the t-subsets (i.e., the
vertices), then for t′ = 3 and k′ = 4 (and thus also for every k′ ≤ 4) we have a polychromatic k′-coloring
of the t′-subsets. Below we give an example showing that such an implication does not hold for t = 2,
k = 3 and t′ = 3, k′ = 3.

Suppose we are given a 3-coloring of every pair of the vertex set of a hypergraph G such that every
hyperedge that contains at least m vertices contains a pair of each of the 3 colors, and we want to
construct a 3-coloring of the triples of vertices with the same property (possibly for a larger m′). We
show that this is not possible if the color of each triple depends only on the colors of the three pairs in it:

Proposition 5. There is no mapping ĉ from the 3-element multisets of [3] to [3] such that the following
holds for some m′(m). For every hypergraph G = (V,E) if c :

(
V
2

)
→ [3] is a 3-coloring of the pairs

of vertices of G such that every hyperedge that contains at least m vertices contains pairs of all three
colors, then c and ĉ defines a 3-coloring c′ :

(
V
3

)
→ [3] of the triples of vertices of G such that every

hyperedge that contains at least m′(m) vertices contains triples of all three colors (where c′({x, y, z}) =
ĉ({c({x, y}), c({x, z}), c({y, z})}) for every triple of vertices {x, y, z}).

Proof. Suppose for contradiction that ĉ and m′ = m′(m) as above exist. Note that there are ten 3-element
multisets of [3], that is, there are ten possible colorings of the three pairs of a triple by 3-colors: {1, 1, 1},
{1, 1, 2}, {1, 1, 3}, {2, 2, 1}, {2, 2, 2}, {2, 2, 3}, {3, 3, 1}, {3, 3, 2}, {3, 3, 3} and {1, 2, 3}.

Let G1 = (V1, E1) be a hypergraph such that |V1| = max{m,m′} and let M1 ⊆
(
V1

2

)
and M2 ⊆

(
V1

2

)
be two non-empty sets of pairs of vertices such that no vertex belongs to two pairs in M1 ∪M2, i.e.,
M1 ∪M2 is a matching. Let E1 consist of the hyperedge V1 (all the vertices) and all the subsets of V1 of
size at least max{m, 4} that contain a pair from M1 and a pair from M2.

Suppose that c1 is a 3-coloring of the pairs in
(
V1

2

)
such that the color of every pair in Mi is i, for

i = 1, 2, and the color of every other pair is 3. Then clearly every hyperedge of G1 of size at least m
contains a pair of each of the colors. Note that the colors of the three pairs defined by a triple of vertices
are either {3, 3, 1}, {3, 3, 2} or {3, 3, 3}. Consider the coloring of the triples as defined by c1 and ĉ. Since
the hyperedge V1 must contain a triple of every color, it follows that ĉ maps each of the above 3-multisets
of colors to a different color.

Suppose now that G2 = (V2, E2) is a hypergraph such that |V2| = 2 · max{m,m′(m)} and let A =
{a1, a2, . . . , a|V2|/2} and B = {b1, b2, . . . , b|V2|/2} be two disjoint subsets of vertices. Let E2 consist of the
hyperedge V2 (all the vertices) and all the hyperedges A ∪ {bi} and B ∪ {ai}, for some i. Let P1 be the
pairs of vertices of the form {ai, aj} or {bi, bj} (for i 6= j), Let P2 be the pairs of vertices of the form
{ai, bi}, and let P3 be the (remaining) pairs of vertices of the form {ai, bj} (for i 6= j).

Suppose that c2 is a 3-coloring of the pairs in
(
V2

2

)
such that the color of every pair in Pi is i, for

i = 1, 2, 3. Then clearly every hyperedge of G2 of size at least m contains a pair of each of the colors. Note
that the colors of the three pairs defined by a triple of vertices are either {1, 1, 1}, {1, 2, 3} or {3, 3, 1}.
Consider the coloring of the triples as defined by c2 and ĉ. Since the hyperedge V2 must contain a triple of
every color, it follows that ĉ maps each of the above 3-multisets of colors to a different color. Therefore,
{1, 2, 3} is mapped to a color different from the colors of {1, 1, 1} and {3, 3, 1}. Similarly, if we color the
pairs in P1 with 2, the pairs in P2 with 1 and the pairs in P3 with 3, then we conclude that ĉ maps
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{1, 2, 3} to a color different from the colors of {2, 2, 2} and {3, 3, 2}. And if we color the pairs in P1 with
3, the pairs in P2 with 2 and the pairs in P3 with 1, then we conclude that ĉ maps {1, 2, 3} to a color
different from the colors of {3, 3, 3} and {1, 1, 3}. Thus, according to ĉ the color of {1, 2, 3} is different
from the colors of {3, 3, 1}, {3, 3, 2} and {3, 3, 3}. However, we observed before that ĉ maps these three
3-multisets of colors to different colors, a contradiction. �

It is possible to change the constructions in the proof of Proposition 5 such that every hyperedge that
contains at least m vertices contains many pairs of each of the colors, so even such an assumption is not
strong enough to guarantee a coloring for triples. One might try to get a k-coloring of t′-subsets from
stronger conditions on the coloring of the t-subsets, however, we do not further study this question.

4 Coloring all t-subsets of geometric hypergraphs

In this section we consider mainly three (closely related) types of families of geometric regions, H-regions,
homothets of a convex polytope and axis-parallel boxes.

Given F and S, we want to color all t-subsets of S such that no member of F that has many points
of S is monochromatic, i.e., it contains two t-subsets that are colored with different colors.

Definition 3. Given a finite family of halfspaces H = {H1, . . . ,Hh} we call a region R an H-region if it
is the intersection of finitely many halfspaces, such that each of them is a translate of one of the halfspaces
in H.

Note that every such region R can be expressed as an intersection of at most h halfplanes (at most one
translate of each Hi).

Throughout this section we assume, without loss of generality, that any given point set S is in general
position in the sense that there are no two points in S that are contained in ∂Hi for some Hi ∈ H, where
∂Hi denotes the hyperplane that bounds the halfspace Hi. Indeed, otherwise after a small perturbation
of the points of S for every subset S′ ⊆ S that is the intersection of S and some H-region, the perturbed
subset S′ is still the intersection of (the perturbed) S and some (possibly different) H-region.

As mentioned in the Introduction, the requirement that t ≥ 2 in Theorem 1 is essential. Indeed, Chen
et al. [8] proved that there is no absolute constant m with the property that every set of points S in
the plane can be 2-colored such that every axis-parallel rectangle that contains at least m points from S
contains points of both colors. Note that axis-parallel rectangles can be defined as the H-regions of four
halfplanes. Several other constructions about polychromatic colorings/cover-decomposition can also be
realized as the H-regions of four halfplanes; see [26,27]. If there are only three halfspaces in H ⊂ R3 that
are in general position, then after an affine transformation the problem becomes equivalent to coloring
points with respect to octants (non-general position and different dimension can only make the problem
easier). For this case, it was shown in [13] that m(k, 1, 3) exists for every k, i.e., for |H| = 3 any finite
collection of points S has a k-coloring such that if an H-region contains at least m(k, 1, 3) points from S,
then it contains all k colors. (This implies the same for m(k, 1, 2) and m(k, 1, 1) although these can be
shown directly as well.)

Note that a homothet of a convex polytope P is a H-region when H is the family of all the supporting
halfspaces of P . Thus Theorem 1 implies:

Theorem 7. For every dimension d, integers t ≥ 2, k ≥ 1 and a convex polytope P in Rd there exists
an integer m = m(k, t, P ) with the following property: the t-subsets of every finite point set S in Rd can
be k-colored such that every homothet of P that contains at least m points from S contains a t-subset of
points of each of the k colors.

As mentioned above, it is impossible to 2-color points (that is, the case t = 1) with respect toH-regions
in the plane such that every region that contains a constant number of points (for some absolute constant)
contains a point of each color. However, for homothets of a convex polygon it might be possible. The
following is an equivalent restatement (by the self-coverability of convex polygons [14]) of a conjecture
that first appeared in [1].
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Conjecture 1. For every convex polygon C and a positive integer k there exists an integer m = m(k,C)
with the following property: the points of every finite point set S in the plane can be k-colored such that
every homothet of C that contains at least m points from S contains a point of each of the k colors.

We note that Theorem 7 for d = 2 would be implied by Conjecture 1 using Theorem 5 (see the
proof below), however, Conjecture 1 was verified only for triangles [20] and parallelograms [1]. Recently, a
relaxation of this conjecture was proved in [15], namely, that it is possible to 3-color the points such that
each homothet with enough points contains points of at least two colors. The conjecture fails in d ≥ 3
for every polytope [27].

We have seen that for general hypergraphs we could not show that polychromatic colorability of t-
subsets implies the same for t′-subsets, t′ > t. On the other hand we can prove Theorem 5 which states
this for H-regions.

Proof of Theorem 5. Let H be a halfspace in H and let H ′ be a translate of H that contains all the
points in S. We fix an order of the points in S in decreasing order of their distance from ∂H ′ (recall that
the points are in general position and therefore no two points can be at the same distance). Consider a
coloring of the t-subsets having the property assumed by the theorem and let T = {p1, p2, . . . , pt, . . . , pt′}
be a t′-subset of points, where the points are listed according to the determined order (that is, p1 is the
farthest from ∂H ′ and so on). Set the color of T to be the color of the t-subset {p1, p2, . . . , pt}.

Let m = m(k, t,H) and m′ = m + t′ − t and suppose that R is an H-region that contains ` ≥ m′

points from S, denote them by p1, p2, . . . , p` according to their order. Since S is in general position, it is
possible to continuously translate H ′ such that it is still a translate of H, and obtain a translate H ′′ of H
such that H ′′ ∩ (R ∩ S) = {p1, p2, . . . , p`−(t′−t)}. Note that H ′′ ∩R is an H-region that contains at least
m points and therefore for each of the k colors it contains a t-subset of that color. Let {q1, q2, . . . , qt} be
such a t-subset. Then {q1, q2, . . . , qt, p`−(t′−t)+1, . . . , p`} is a t′-subset of the same color that is contained
in R. Therefore, R contains a t′-subset of each of the k colors. �

Remark. Note that in the above proof we have only used that the points of S can be ordered as s1, . . . , s|S|
such that if {si1 , . . . , sim} = S ∩F for some F ∈ F , then also {si1 , . . . , sim−1

} = S ∩F ′ for some F ′ ∈ F .
This implies that similar arguments work not only for H-regions but for other families as well, especially
if we do not insist on m′ = m+ t′ − t.

In order to prove Theorem 1, we reduce the problem of coloring with respect to H-regions to coloring
with respect to axis-parallel boxes (which are possibly higher dimensional). Note that axis-parallel boxes
are also H-regions.

For a point p ∈ Rd we denote by (p)i the ith coordinate of p. An axis-parallel d-dimensional (closed)
halfspace is a halfspace of the form {p | (p)i ≤ β} or {p | (p)i ≥ β} for some 1 ≤ i ≤ d and a number β.
A d-dimensional box is the intersection of d-dimensional axis-parallel halfspaces. Theorem 1 follows from
the next result.

Theorem 8. For every integer t ≥ 2 and positive integers d, k there exists an integer m = m(k, t, d) ≤
k2

d−1

+ t − 1 with the following property: the t-subsets of every finite point set S in the d-dimensional
space can be k-colored such that every axis-parallel box that contains at least m points contains t-subsets
of points colored with each of the k colors.

Before proving Theorem 8 we show how Theorem 8 implies Theorem 1.

Proof of Theorem 1 using Theorem 8. Let H = {H1, . . . ,Hh} be a set of halfspaces in Rd such that
Hi = {x : x ∈ Rd,Ai · x ≤ 0} for some Ai ∈ Rd.

Let f : Rd → Rh be a mapping such that f(x) = (A1 · x, . . . ,Ah · x). Suppose that p is a point in Rd

and H = {x : Ai · x ≤ β} is the translate of some halfspace Hi ∈ H. Then clearly p ∈ H if and only if
(f(p))i ≤ β.

Let S be a set of points in Rd and let R be anH-region that is the intersection of halfspacesHi1 , . . . ,Hi`

such that ij ∈ {1, 2, . . . , h} and Hij = {x : Aij · x ≤ βj}, for j = 1, . . . , `. It follows that the points of
S that belong to R are exactly the points whose images under f belong to the intersection of the set of
h-dimensional axis-parallel halfspaces (x)ij ≤ βj , for j = 1, . . . , `.
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Since the intersection of h-dimensional axis-parallel halfspaces is a h-dimensional axis-parallel box,
this completes the reduction from coloring with respect to d-dimensional H-regions to coloring with

respect to h-dimensional axis-parallel boxes. From Theorem 8 we get that m(k, t, h) = k2
h−1

+ t− 1 is a
suitable choice. �

It remains to prove Theorem 8. The following result of Loh [21] will be useful. It is a simple application
of a classic result known as the Gallai-Hasse-Roy-Vitaver theorem, but can also be proved by a simple
application of the pigeonhole principle. Recall that a tournament is a complete oriented graph (between
every pair of vertices there is exactly one directed edge).

Theorem 9. [21] For all positive integers c and n, every c-coloring of the edges of every n-vertex tour-
nament contains a monochromatic path with at least n1/c vertices.

The following notation will also be used in the proof of Theorem 8 and later on. For two points
p,q ∈ Rd, we denote by box(p,q) the smallest axis-parallel box that contains p and q. The directed type
of a vector is the sequence of signs of its coordinates. For example, the directed type of ~v = (2, 1,−3) is
(+,+,−).

Proof of Theorem 8. It follows from Theorem 5 that it is enough to consider the case t = 2. That is,
given a set of points S in Rd, we wish to color the edges of the complete graph on S, such that every box
that contains enough points from S, contains an edge of each of the k colors.

Every pair of points p and q yields two vectors, p−q and q−p, with opposite directed types. Among
these two vectors pick the one whose first sign is a +, and assign its direction and type to the edge {p,q}.
Denote by G the tournament we obtain by orienting every edge this way (that is, for every edge {p,q},
we direct it from p to q if and only if (p)1 < (q)1.)

Suppose that {p,q} is a pair such that (p,q) is an edge (with this direction) in G. Then the color of
this pair and also of the edge (p,q), is the minimum of k and the length of a longest path from p to q in
G such that all the edges along this path have the same type as (p,q) (we call such a path a monotone
path).

Suppose that {p,q} gets color i and consider a monotone path of length i from p to q in G (assuming
that (p,q) is the edge in G). Then for every 1 ≤ j ≤ i, if r is the point at distance j from p on this path,
then the edge {p, r} must get color j. Observe also that all of these edges are in box(p,q). This implies
that if a box contains an edge with color i, then it contains an edge with color j for every 1 ≤ j ≤ i.

Thus, it remains to prove that if a box contains at least k2
d−1

+ 1 points, then it contains an edge
of color k. Since there are 2d−1 different types of directed edges and hence edge colors in G, it follows
from Theorem 9 that G contains a monochromatic directed path on k+ 1 vertices. This is by definition a
monotone path of length k between its two endpoints, thus the edge between these two endpoints must
get color k, as required. �

In general the integer m that we get from the proof of Theorem 8 is surely not the best possible. It
follows from Theorem 5 that an upper bound for t = 2 yields a very similar upper bound for any larger t.
Therefore, we may focus on coloring pairs of points. For the most natural case of axis-parallel rectangles
in the plane and coloring pairs of points with two colors (that is, k = t = d = 2) we determine the optimal
upper bound:

Theorem 10. The pairs of every finite point set S in the plane can be 2-colored such that every axis-
parallel rectangle that contains at least 3 points contains pairs of points colored with both colors.

Proof. As in the proof of Theorem 8, for every pair of points p and q, among the two vectors p → q
and q → p we pick the one whose first sign is a +, and assign its type to the edge {p,q}. Thus, in the
plane there are two types of edges: those with the sign sequence (+,+) (i.e., the points are in NE/SW
position) and those with the sign sequence (+,−) (i.e., the points are in SE/NW position). We color
the pairs of points as follows: color a pair {p,q} red (resp., blue) if (1) p and q are in NE/SW (resp.,
SE/NW) position and |box(p,q) ∩ S| = 2; or (2) p and q are in SE/NW (resp., NE/SW) position and
|box(p,q) ∩ S| > 2.
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It is enough to consider an axis-parallel rectangle R such that |R ∩ S| = 3. Let x,y, z be the points
from S in R, ordered by their x-coordinates. If y ∈ box(x, z), then the edges {x, z} and {x,y} are of
different colors. Otherwise, if y /∈ box(x, z), then the edges {x,y} and {y, z} are of different colors. This
concludes the proof of the theorem. �

Clearly, the value 3 in Theorem 10 is optimal, since if a rectangle contains only 2 points, then it
contains only one pair of points, so it is impossible that it contains pairs of both colors.

We also note that Theorem 10 could not hold with these constants if instead of coloring all pairs, we
would only color Delaunay-edges, as witnessed by the five-point configuration {(0, 0), (1, 1), (2, 4), (3, 3), (4, 2)}.

5 Discussion

We have introduced the notion of coloring t-subsets of vertices of a (geometric) hypergraph such that
every hyperedge with enough vertices contains t-subsets of different colors (or all colors). This generalizes
the well-studied problem of coloring the vertices. An interesting variant that we focused on is coloring of
Delaunay-edges. Perhaps the most interesting problem that we leave open is whether there is a constant
k such that it is possible to k-color the edges of the Delaunay-graph of a finite point set in the plane
with respect to axis-parallel rectangles such that every rectangle that contains m = m(k) points from the
point set contains edges of different colors.

For coloring with respect to pseudo-disks we have shown that four colors suffice. It would be interesting
to determine whether three or two colors are enough. It would also be interesting to establish more
connections between coloring vertices and coloring Delaunay-edges, and, more generally, to show that
a coloring for t-subsets of the Delaunay-hypergraph implies a coloring for t′-subsets of the Delaunay-
hypergraph, for t′ > t. Theorem 5 is such a statement for the case of coloring all t-subsets, yet the
proof of Theorem 5 does not seem to be adaptable to the case when we color only the t-subsets of the
Delaunay-hypergraph.

Finally, let us define a very general notion that contains all the problems considered (including the
ones mentioned in the Discussion), namely, coloring the hyperedges of a hypergraph with respect to another
hypergraph and a given relation. That is, given a vertex set V , two hypergraphs H1 and H2 on this vertex
set, and a relation R (e.g., intersection, containment, reverse containment), we define the hypergraph
H(H1,H2, R) as follows. Its vertex set is the hyperedge set of H1 and for every hyperedge H2 in H2 it
has a hyperedge which contains exactly those hyperedges of H1 which are in relation R with H2. Now
a (proper) coloring of the hyperedges of H1 with respect to H2 and R means to color the vertices of
H(H1,H2, R) (that is, the hyperedges of H1) such that every (large enough) hyperedge of H(H1,H2, R)
(defined by some H2 ∈ H2) is not monochromatic.

We conclude by saying how all the problems considered are special cases of this very general definition.
For geometric problems the vertex set is always a finite point set S and we are given a family of regions
F . We say that a hyperedge is defined by some region if it is the intersection of the region with S.

For the point coloring problem H1 consists of the one-element hyperedges while H2 consists of the
hyperedges defined by the regions, while R is the containment relation. For the dual problem of coloring
regions, H2 consists of the one-element hyperedges while H1 consists of the hyperedges defined by the
regions, while R is the reverse containment relation. For the intersection hypergraph coloring problem
H1 = H2 consists of the hyperedges defined by the regions and R is the intersection relation. Considering
the problem of coloring all t-subsets with respect to some regions, H1 consists of all t-subsets, H2 consists
of the hyperedges defined by the regions (and R is the containment relation). For t-subsets that are
themselves hyperedges H2 consists of the hyperedges defined by the regions and H1 consists of the
hyperedges of H2 of size t (and R is the containment relation). Note that the respective hypergraph
coloring problems are also special cases, where instead of hyperedges defined by some region we have
hyperedges of some given hypergraph H.

Acknowledgment We would like to thank our anonymous referees for several suggestions that improved
the presentation of our results.



Coloring Delaunay-Edges and their Generalizations 19

References

1. E. Ackerman, B. Keszegh, M. Vizer, Coloring points with respect to squares, Discrete and Computational
Geometry 58 (4) (2017), 757–784.

2. E. Ackerman and R. Pinchasi, On coloring points with respect to rectangles, J. Combinatorial Theory Ser.
A. 120 (2013), 811–815.

3. A. Asinowski, J. Cardinal, N. Cohen, S. Collette, T. Hackl, M. Hoffmann, K. Knauer, S. Langer-
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