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Abstract

We study the problem of sampling from a probability distribution 7 on
R? which has a density w.r.t. the Lebesgue measure known up to a normal-
ization factor x — er(z)/ fRd e~V®dy. We analyze a sampling method
based on the Euler discretization of the Langevin stochastic differential
equations under the assumptions that the potential U is continuously dif-
ferentiable, VU is Lipschitz, and U is strongly concave. We focus on the
case where the gradient of the log-density cannot be directly computed but
unbiased estimates of the gradient from possibly dependent observations
are available. This setting can be seen as a combination of a stochastic
approximation (here stochastic gradient) type algorithms with discretized
Langevin dynamics. We obtain an upper bound of the Wasserstein-2
distance between the law of the iterates of this algorithm and the tar-
get distribution 7 with constants depending explicitly on the Lipschitz
and strong convexity constants of the potential and the dimension of the
space. Finally, under weaker assumptions on U and its gradient but in
the presence of independent observations, we obtain analogous results in
Wasserstein-2 distance.
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1 Introduction

Sampling target distributions is an important topic in statistics and applied
probability. In this paper, we are concerned with sampling from a distribution
7 defined by

m(A) == / e U0 qdg/ [ e VO dg, A BRY,
A Rd

where B(R?) denotes the Borel sets of R? and U : R? — Ry is continuously
differentiable.

One of the sampling schemes considered in this paper is the unadjusted
Langevin algorithm (a.k.a. Langevin Monte Carlo). The idea is to construct
a Markov chain which is the Euler discretization of a continuous-time diffusion
process that has an invariant distribution .

We work on a fixed probability space (2, F, P) throughout the paper. We
consider the so-called overdamped Langevin stochastic differential equation (SDE)

df, = —h(6,)dt + v/2dB,, (1)

with a (possibly random) initial condition 6y, where h := VU and (B;)i>0 is
a d-dimensional Brownian motion. It is well-known that, under appropriate
conditions, the Markov semigroup associated with the Langevin diffusion () is
reversible with respect to 7, and the rate of convergence to 7 is geometric in the
total variation norm (see [22], [28, Theorem 1.2], and [I, Theorem 1.6]). The
Euler-Maruyama discretization scheme for SDE (I, which is referred to as the
unadjusted Langevin algorithm (ULA), is given by

—A —A —A —A

0y =060, 0,,1:=0,—A(0,)+ V2, (2)
where (£, )nen is a sequence of independent, standard d-dimensional Gaussian
random variables, A > 0 is the step size and 6 is an R%valued random variable
denoting the initial values of both (2)) and (). Under appropriate assumptions

on the step size A and the potential U, the homogeneous Markov chain (6,,)nen
converges to a distribution 7y which differs from 7 but, for small A, it is close
to m in an appropriate sense; see [6], [8],[10], and Section [£11

We now adopt a framework where the exact gradient A is unknown, however
one can observe at each iteration an unbiased estimator. Let H : R? x R™ — R¢
be a measurable function and X := (X,,)nen an R™-valued process adapted to
some given filtration G,, n € N satisfying

h(#) =E[H(0, X,)], 0e€R? n>1, (3)

where the existence of the expectation is implicitly assumed. Note that (3]
holds, in particular, when (X,,),>1 is a strictly stationary process. Denoting by
& the (common) distribution of X,,, n > 1 we may write

ho) = / H(6, )u(d), (4)



in this case. We also assume henceforth that 6y, Goo, (§n)nen are independent.
For each A > 0, define an R%valued random process (6;))nen by recursion:

0 =00, Onp1 =0y — AH (0, Xps1) + V2Ap1. (5)

Such a sampling scheme is often called a stochastic gradient Langevin dynamics
(SGLD) algorithm; see [31], [8] and [29]. Data sequences (X, )nen are in gen-
eral not i.d.d., not even Markovian. They may exhibit strong non-Markovian
features as it is observed in various stochastic phenomena. Stochastic approx-
imation for dependent data sequences (gradient and Kiefer-Wolfowitz proce-
dures) has been successfully used in financial applications, see [18] [33] and the
references therein. With these examples in mind, in the present paper we seek
theoretical guarantees for the convergence of the closely related SGLD procedure
to ensure its validity for non-independent data sets, too.

The only instance we know of that provides results in such a setting is The-
orem 4 of [8]. The main condition of that result (Condition N in [8]) requires
estimates on the conditional bias and variance of the updating function with
respect to the previous iterate of the recursion (@), see Subsection B3 for exten-
sive discussions. In concrete examples it seems very difficult to determine the
order of these quantities. We follow a different path. Intuitively, if the signal
X, is “sufficiently ergodic” then one should be able to estimate the sampling
error, without checking conditions on the conditional bias/variance of specific
objects. We will assume a certain mixing condition, conditional L-mizing for
the data sequence (X, )nen; see Section 2 below for technical details. Theorem
is obtained which guarantees an (essentially) optimal estimate in terms of
the stepsize. Our approach involves several new ideas which serve as a basis for
further developments in the case of non-convex U, see [5].

The goal of this work is to establish an upper bound on the Wasserstein
distance between the target distribution 7 and its approximations (Law(6)))nen
generated by the SGLD algorithm (Bl). This goal is achieved while the rate of
convergence is improved with respect to the findings in [25], see also [32], [7]
and [8]. We stress that we prove the validity of sampling procedures driven by
SGLD (@) within a framework where (X, ),ecn are not assumed i.d.d. and hence
0> fails to be Markovian and related techniques are not applicable. Algorithms
for variance reduction of SGLD have been suggested by [3] [32], however, we do
not see for the moment how these could be treated by our methods here.

The paper is organized as follows. Section [2] recalls the theoretical concept
of conditional L-mixing which is required below for the process (X, )nen. This
notion accommodates a large class of (possibly non-Markovian) processes. In
Section 3, assumptions and main results are presented in the case where the pro-
cess (Xp )nen is conditionally L-mixing (Section B1l) and i.d.d. (Section[B.2l), re-
spectively. In Section 3.3 we discuss the contributions of our work with respect
to existing results reported in the literature. In Section A1l and Subsection [4.2]
the properties of (1)), ), and (B are analyzed. The proofs of the main theorems
are provided in Sections Ml and B while certain auxiliary results are presented
in Sections [Al and [Bl



Notations and conventions. Scalar product in R? is denoted by (-,-). We
use || - || to denote the Euclidean norm (where the dimension of the space may
vary). B(R?) denotes the Borel o- field of RY. For each 29 € R and R > 0,
we denote B(zg, R) := {z € R? : ||z — z0| < R}, the closed ball of radius R
centered at xg. For two sigma algebras J1, Fo, we define F1 Vs := o (F1 U Fa) .
The expectation of a random variable X is denoted by E[X]. For any m > 1,
for any R™-valued random variable X and for any 1 < p < oo, we set || X||, :=
EYP[||X]||P]. We denote by LP the set of X with || X||, < oo. The indicator
function of a set A is denoted by 14. The Wasserstein distance of order p > 1
between two probability measures 1 and v on B(R?) is defined by

W) = (e[ |x—y|pdw<x,y>)l/p, (6)

mell(p,v)

where TI(, v) is the set of couplings of (u,v), see e.g. [30].

2 Conditional L-mixing

L-mixing processes and random fields were introduced in [12]. They proved to
be useful in tackling difficult problems of system identification, see e.g. [13], 14}
15, 16, 26]. In [], in the context of stochastic gradient methods, the related
concept of conditional L-mixing was introduced. We now recall its definition
below.

We consider the probability space (2, F, P), equipped with a discrete-time
filtration (F,,)nen as well as with a decreasing sequence of sigma-fields (F,)nen
such that F,, is independent of F,I, for all n € N.

For a family (Z;);es of real-valued random variables (where the index set I
may have arbitrary cardinality), there exists one and (up to a.s. equality) only
one random variable g = esssup;c; Z; such that:

(i) g > Z;, as. foralli eI,
(ii) if ¢’ is a random variable, ¢’ > Z;, a.s. for all i € I then ¢’ > g P — a.s.,

see e.g. [24] Proposition VI.1.1].

Fix an integer d > 1 and let D C R? be a set of parameters. A measurable
function U : N x D x Q — RF is called a random field. We drop dependence on
w € Q in the notation henceforth and write (U, (0))nenpep. A random process
(Un)nen corresponds to a random field where D is a singleton. A random field
is L"-bounded for some r > 1 if

sup sup || U, ()], < oo.
neNoeD

Let U,(0) € L', n € N, § € D and U}

n+m

Define, foreachn e N, i =1,...,k,and 7 € N

is the i-th coordinate of Uy y,.

]\;[T”(U,i) := ess sup sup EY/" [|Ufl+m(6‘)|r ’]—'n] , (7)
6D meN



A (1,U,1) :== esssup sup E 1/r [| n+m(9) E [U:Hm(ﬁ) ‘ .7-':{+me \/fn] | ’fn] ,
6eD m>rt
(8)

and set

k k
(U, 7) : Z% U, i), MM(U Z ,and T (U) = > THU, ).
i=1 i—1

7=0
(9)
When necessary, the notations M(U, D), v (7,U, D) and T'?(U, D) are used to
emphasize dependence of these quantities on the domain D which may vary.

Definition 2.1 (Conditional L-mixing). Let r,s > 1. We say that the random
field (U (0))nen,0ep is uniformly conditionally L-mixing (UCLM) of order (r, s)
with respect to (Fpny F, )nen if (Un(0))nen is adapted to (Fp)nen for any 0 € D;
it is L"-bounded; and the sequences (M™(U))nen, (T™(U))nen are L*-bounded.
When this holds for all ;s > 1 then we call the random field simply “uniformly
L-mizing”. In the case of stochastic processes (when D is a singleton) the
terminology “conditionally L-mizing process (of order (r,s))” is used.

Remark 2.2. The definition of conditional L-mixing in [4] is slightly different
from the definition above but they are clearly equivalent.

Although we do not use the concept of L-mixing in the present paper it is
worth noting that the definition of a uniformly L-mixing process follows natu-
rally from the above definition if one sets d = 1, n = 0 and F,, is replaced by
the trivial o-algebra in the definitions of M*(U), v2(7,U) and I'?*(U). Then,
one obtains deterministic M, (U), v.(7,U), T'-(U) and the required condition
for these quantities becomes M,.(U) +I',.(U) < co. For more details, one can
consult [4] and [12].

Let (Up)nen be a conditionally L-mixing process. For later use, we also
introduce the quantities for r,s > 1,

M, (U) := ilelgE[HUnHr]v Crs(U) = ilelgE[{F?(U)}s]- (10)

The interpretation of M,.(U) is straightforward while C, s(U) serves as a certain
measure of dependence for the process U.

Example 2.3. Let (X, )nen be i.d.d. random variables (d = 1) and set F,, :=
o(Xk, k <n), F;f :=0(Xk, k>n),neN. IfE[|X(|"] < oo for any r > 1, then
(X, )nen is conditionally L-mixing with respect to (F,, F,/ )nen. Moreover,

M (X) =E[|Xo|"], Crs(X)=E"[|Xo—E[X]["]r,s > 1. (11)

Example 2.4. Let us consider, for example, a functional of a linear process
U :={U,(0) }nen, such that

U, (0) == G(0,X,), Xn .—Zakan ko (12)



with scalars (ax)gen, some sequence (gx)kez of i.d.d. R-valued random variables
satisfying ||eg||, < oo for all p > 1 and G : R x R — R a function satisfying

|G(0,2) — G(0',2")| < L1|0 — 0| + La|z — 2]

Let G, = o(¢j,j < n), and G} = o(gj,j7 > n) for n € N. If we further
assume that |ax| < c¢(1 +k)~# k € N for some ¢ > 0, 8 > 3/2 then the
argument of [4, Lemma 4.2 | shows that (X,,)nen is a conditionally L-mixing
process with respect to (Gn, G )nen. Applying Lemma 7 below with ¢ = 0
shows that for all j € N, M™(U,B(0,7))) < L1j + LoaM?(X) + |G(0,0)| and
DI, B(0, ) < 2L (X).

Remark 2.5. If (X,)nen is a conditionally L-mixing process with respect to
(Fny FF )nen then so is (F(X,,))nen for any Lipschitz-continuous function F, see
[4, Remark 2.3]. Finally, we know from [II, Example 7.1] that a broad class of
functionals of geometrically ergodic Markov chains have the L-mixing property.
It is possible to show, along the same lines, the conditional L-mixing property
of these functionals, too.

3 Assumptions and main results

3.1 Dependent data

Assumption 3.1. Let Gy := {0,Q}. The process (X,)nen is conditionally L-
mizing with respect to (G, G, Jnen, where (G )nen is some decreasing sequence
of sigma-fields with G, independent of G for all n € N. Furthermore, let
16o]lp < oo for all p > 1.

For (z,0) € R™ x R?, we denote H(x,0) = [H'(z,0),..., H(z,0)]T.

Assumption 3.2. There exist constants Li, Ly > 0,i € {1,...,d} such that for
all 0,0 € R? and x,2' € R™, |H (0, 2) — HY(0',2")| < Li||0 — ¢'|| + Li ||z — 2/||.

We set . 4
Li=) Ly and Ly=) L. (13)
i=1 i=1
Note that, under Assumption 3.2 for any (z,6) € R™ x R? we get
|H(x,0) — H(z,0")|| < Lp]|0 — 0| + Loz — 2| .

Assumption Bl implies, in particular, that || Xy|| € L”, for any » > 1, thus,
under Assumption B0 and B2 h(0) := E[H(0, Xo)], 6 € R?, is indeed well-
defined.

Assumption 3.3. There is a constant a > 0 such that for all 6,0’ € R? and
reR™,
(0—0 H(O,z)—HO x))>ald—0> (14)



Two important properties immediately follow from AssumptionsB.21and 3.3l
(B1) For all 0,0 € R?, ||h(6) — h(0")|| < L, |6 — ¢

(B2) There exists a constant a > 0 such that, for all 6, 6" € R¢,(§ — 0’ h(0) — h(¢)) >
alld — 6%

[23, Theorem 2.1.12] shows that, under these assumptions, for all 6,6’ € R9,

1
(0 —0',h(0) — h(0") > all0 —0'||* + I1(0) — h(6")]]%, (15)
a+ L
where we have set I
- alsg
= . 1
a - (16)

—A
Our aim initially is to estimate [|0;) — @2, uniformly in n € N. To begin
with, an example is presented where explicit calculations are possible.

Example 3.4. Let d :=1, H(0,z) := 6+x, (X,,)nez be a sequence of satisfying
([@2) with (¢;)jez an independent sequence of standard Gaussian random vari-
ables independent of (£,)nen; and |ag| < ¢(1 +k)=#, k € N for some 8 > 3/2
and

oo
E age” HE

k=0

0<m:= inf

< sup
pE[—m,m]

pE[—m,m]

<M< oo. (17)

oo
E ape” HE
k=0

We observe that the function H satisfies Assumptions and Take 0y := 0.
It is straightforward to check that, for any A € (0, 1),

n—1
G, — 0 =3 (1-A\VAX,_,
=0

which clearly has variance

2 2

_y )\2 T | oo ) n—1 )
El(§" — 9)\ 21 _ / —ikp 1— k —ikup d
[( n n) ] 2 . 320 age kEZO( A) € H

It follows that, using () and the Parseval-Plancherel Theorem

M- =N _ = M1 — (1 -2}
MNP 3y < g AR

A
This shows that the best estimate we may hope to obtain for sup,,cy [|0,, — 0, |2

is of the order v/A. Theorem below achieves this bound asymptotically as
P — 00.

Our main results may be stated as follows.



Theorem 3.5. Let Assumptions[3.1, [3.2 and[3.3 hold. For every even number
p >4 and A < X\, where

< 2
A= — 18
a+ L1 ’ ( )
there exists Co(p) > 0 such that
A —A 1_ 1
”971 - 971”2 < Co(p))\2 Py neN (19)

holds for a constant Cy(p) that is explicitly given in the proof. It depends only
on a, Ly, Lo, d, p and on the process (X, )nen through the quantities defined in

(@
Proof. The proof of this theorem is postponed to Section O

The next result relates our findings in Theorems to the problem of sam-
pling from the probability law .

Theorem 3.6. Let Assumptions [31], [73 and hold and let X be given by
@8). For each k > 0, there exist constants c1(k),ca(k) > 0 such that, for each
0<e<e ! one has

Wa(Law(6)),7) < €

whenever A < X satisfies

K CQ(H)
A=~ (5)624’ and n > 2+ ln(l/e), (20)

where c1(k), ca(k) (given explicitly in the proof) depend only on k, d, a, Ly, L
and on the process (Xp)nen through the quantities defined in (I0J).

Proof. The proof of this theorem is postponed to Section [£.4] O

3.2 Independent data

When the data sequences (X, )nez are i.d.d., then the full rate is recovered
under more relaxed conditions for the unbiased estimator of the gradient of U.
More concretely, one may assume the following:

Assumption 3.7. There exist positive constants L1, Lo and p such that, for
all z, 2" € R™ and 6,6 € R?,

IH (0, 2) = H(0', z)|| < La(1+ [[z]))?1]6 — ¢,
1H (0, 2) = H(O,2')| < La(1 + [l2[| + [|2/ )" (1 + 6D ]|z — 27|

Assumption 3.8. The process (Xp)nen is i.d.d.with || Xoll2(p41) and ||6o]|2
being finite.



Assumption 3.9. There exists a mapping A : R™ — R¥*? sych that
(y, A(z)y) >0, for any z,y € R? (positive semidefinite)
and, for all 9,0 € R% and x € R™,
(0 -0 HO,z)— HO  z))>(0—-0,A(x)(0 —0"))

with the smallest eigenvalue of the matriz E[A(Xo)] being a positive real number
which is denoted by a.

It is clear then that properties (B1) and (B2) are still valid for the gradient
h of U, with the only difference that the Lipschitz constant in (B1) is given by
L1E[(1 + || Xo|[)?]. This allows us to obtain the following result.

Theorem 3.10. Let Assumptions [3.7, and 39 hold and let \ be given by
(I8). There exist constants c1,c2 > 0 such that, for each 0 < e <1/2,

Wa(Law(62),7) < €.

whenever A < min (a/?L%E[(l + || Xol)?7], 1/a) satisfies
A< e andn > C—; In(1/e), (21)
€

where c1,co (given explicitly in the proof) depend only on d, a, E[||Xo]/?°*2],
Ly and La. If p = 0 in Assumption [3.7, then the above results are true for
A< 1/2min(L7N).

Proof. The proof of this Theorem is postponed to Section O

3.3 Discussion

Rate of Convergence: Theorem significantly improves on some of the
results in [25] in certain cases, compare also to [32]. In [25] the monotonicity
assumption (I4]) is not imposed, only a dissipativity condition is required and
a more general recursive scheme is investigated. However, the input sequence
(Xn)nen is assumed i.d.d. In that setting, [25, Theorem 2.1] applies to (@) (with
the choice 6 = 0, 8 = 1 and d fixed, see also the last paragraph of Subsection
1.1 of [25]), which implies that

Wa(Law(62),7) < €
holds whenever A < cs(e/In(1/€))* and n > % In°(1/€) with some c3,cq > 0.

For the case of i.d.d.(X,,)nen see also the very recent [19]. Our results provide
the sharper estimates (20) in a setting where (X, ),ecy may have dependencies.



Comparison with [8] : One notes, further, that a noisy Langevin Monte
Carlo algorithm (nLMC) with inaccurate drift is proposed in [8], where the
drift is assumed to be a linear combination of the original gradient and of ran-
dom noise represented by a dependent sequence of random vectors with non-zero
means. Thus, a particular form of dependency is included in this approach. A
convergence result, [8, Theorem 4], in Wasserstein-2 distance between nLMC
and the target distribution 7 is provided, which is in agreement with our find-
ings, i.e. rate of convergence equal to 1/2 is given when the bias term is elimi-
nated.

In [8 Condition N], two quantities enter into play: the upper bound L?-
norm of the conditional bias, E[||E [ H (0}, Xk41) | 0)] — h(67)]|*] and the vari-
ance E[||H (63, Xp11) — E [H(07, Xi41) | 02] [|?]. We stress that, when the pro-
cess (X)ken is actually dependent, 92‘ and Xj41 are dependent and therefore
E [H(0}, Xis1) ’ 03] # h(6;) in general. With the exception of a few very sim-
ple cases, a precise computation of conditional bias E [H(O,)c‘, Xkt1) ‘ 92} —h(67)
(or of a tight upper bound for the L? norm of this quantity) is out of reach.
Using ([B) and Assumption [3.2] we get that, for all k € N,

I (16}, Xa) |62] — h(6}) P < 23 [ B 10—l | 6] (o).

where y denotes the common law of the Xj. This implies that E[[|E [ H (67, Xx41) | 02] —
h(OM)|?] < 6%d with

# <27 { a0 + [ ol |
Similarly, using again Assumption [3.2], we get

E[|H(0}, Xk1) — E [H(el’g\,XkJrl) ’ 92} 2] < 2E[|| H (63, Xx+1) — H(67,0)?]
+ 2E[|E [H (6, Xrt1) — H(67,0) | 03] I”] < 4LIMo(X) =: 0d.

Our assumptions therefore imply [8, Condition N] but the conclusions that
we reach in Theorems and are sharper (note that the bias term in [8]
Theorem 4] does not vanish as A | 0).

Choice of step size: It is pointed out in [28] that the ergodicity property of
(@) is sensitive to the step size A. Moreover, [20, Lemma 6.3 | gives an example
in which the Euler-Maruyama discretization is transient. As pointed out in [20],
under discretization, the minorization condition is insensitive with appropriate
sampling rate while the Lyapunov condition may be lost. An invariant measure
exists if the two conditions hold simultaneously, see |20, Theorem 7.3] and also
[28, Theorem 3.2] for similar discussions. In this work, an approach similar to [6]
is chosen, in that strong convexity of U is assumed together with Lipschitzness
of its gradient and, thus, the ergodicity of (2]) is obtained.

10



4 Proof of main results: dependent data

4.1 The Langevin SDE and its discretization: the strongly
convex case

Before proceeding to the demonstrations of the main results, we recall here some
recent results on the diffusion of Langevin and its discretization for strongly
convex potentials. All the results presented here are classic and can be found
in either [10] or [§].

By [23, Theorem 2.1.8], U has a unique minimum at some point §* € R%,
Note that due to the Lipschitz condition (B1), the SDE () has a unique strong
solution. It is a well-known result that the Langevin SDE ([]) admits a unique
invariant measure 7. By [I7, Theorem 4.20], one constructs the associated
strongly Markovian semigroup (P;);>o given for allt > 0, z € R? and A € B(RY)
by Pi(z,A) = P(0; € Alfy = x).

The following lemma from [I0] with adapted statement provides the explicit
bound of the second moment of the Langevin diffusion, which allows the anal-
ysis of the Wasserstein-2 distance between 7 and the aforementioned sampling
algorithms.

Lemma 4.1 (Proposition 1 in [10]). Let Assumptions[Z2 and[Z3 hold and thus
(B1), (B2) are thereby implied.

(i) For allt >0 and ¥ € R4,

/ 19 — %[> P(6,d9) < [|6 — 67 ||*e™>*" + (d/a)(1 —e~>*).
Rd

(i) The stationary distribution 7 satisfies
[ 1= () < da
Rd

For a fixed step size A € (0, 1], consider the Markov kernel Ry given for all
A € B(R?) and 0 € R? by

R\(0, A) :/

(47\) "2 exp (—(4)\)_1 19 — 6+ /\h(0)|\2) 4. (22)
A

The discrete-time Langevin recursion (2]) defines a time-homogeneous Markov

chain, and for any n > 1, and for any bounded (or non-negative) Borel function
f:RY SR,

A

E | /@)

Do) = RafOo) = [ 1O RA@-1.09).

Lemma below is also a result from [10] and along with Lemma 1] are
presented here for completeness by using the notation of this article. In par-
ticular, Lemma states that R, admits a unique stationary distribution 7y,
which may differ from 7.

11



Lemma 4.2. Let Assumption[3.3 hold and thus (B2) is thereby implied. Then,
for all X < X, where X is defined in ([A8)), the following hold:

(i) For all € RY, n > 1,

/Rd [0 — 6*||2RY(0,d9) < (1 —2a\)"||6 — 6*||*> + (d/a)(1 — (1 — 2a\)™).

(i) The Markov kernel Ry has a unique stationary distribution wy which sat-
isfies

/d 16 — 6% (d0) < d/a.
R

where a is defined in (I0).
(iii) For all € R4, n > 1,

Wa(6RY, my) < e~ 2([10 — 6|2 + d/a)*/2.

(iv) For allm € N and square-integrable R%-valued random variables 1y, ns with
o(ni,m2) independent of &, k € N

E[[Gn(1) — G (2)7] < e 2 E([lny — a2,

where gz(i), i = 1,2 denote the solutions of the recursion (@) with the
respective initial conditions 8g =n;, 1 =1,2.

Proof. For the first three statements, see [10, Propositions 2 and 3]. For [yl see
the proof of [I0, Proposition 3]. O

Note that by Lemma[d2] a Foster-Lyapunov type drift condition is satisfied

—=A
with V3 (0) := [|@ — 6*||?, which yields that sup,, [|0,[]2 < co. This allows the
analysis of the convergence between the recursive scheme (2)) and the stationary
distribution 7 in Wasserstein-2 distance (see Theorem [.11] below). However,
in order to obtain the rate of convergence between [2)) and the SGLD scheme

), the finiteness of higher moments is required. In the following Lemma, one
obtains the drift condition with V,(0) := [|§ — 6*||*?, p € N\ {0}.

Lemma 4.3. Let Assumptions[3.1, [3.2 and hold. For any integer p > 1,
let V,,(0) == ||0 —6*||*. Then, the process 7 satisfies, for anyn € N and X < X,

where X is defined in (18],

E V(@)

where py =1 —ah € (0,1) and

0] < pVo@2) +2C'(p), (23)

C'(p) = dP(2p — 1)PpP2P2P= NGl =P 4 (2p — 1)p23P— 222 @Pp3P.  (24)
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Moreover,

sup sng[vp@iﬂ < E[V,(60)] + C'(p)/a. (25)

and C'(p)'/?P < ¢ (p) holds with
d(p) =pVd (21’“/2&22‘5 + 24). (26)

Proof. Recall equation (2] and define

A, = 52 — 6" — )\(h@z) —h(6%)), for every n > 0.

Then, one calculates
E sy — 0"177| 0a] = E [I180 + V22011 |5,)]
=E [(1An]12 +2 (A0, V2R G011 ) + V2N 11 )

SEL > g P NA (2 (A Vi) VIV | B

i+j+k=p
=
en}

{i<p—1}n{j#1}
where the last term is clearly zero. Thus, due to Lemma [A3]

+E | 20842070 (An, V2Rt )

2p
- N - 2p _ -
E |8 - 0717 |7,] <E Z(k)mm FIVERE ]t |,

i

k#1
2
= [|AL]I”P + E < <p AR PP~ *IV2AE 1 || 2)II\/ Ania)?
k=

2p

<180 +8 | 3 () 1AV |7

d

=\
AP0 VA4 | >||\/ﬁ§n+1”2 9n]

2(p 1

= |A,|** +E
[An[I™ + l l+2

2 2“” (p—1)
< AP +E (”)( (7, )lAn||2<p-1>—l||m§n+1nl>Wﬁsnm2

2
2(p—1 Y
= A% + (2p — pE [(I\Anl\ + V2R )P |7)]
<Al + (2p = Dp2 @D | An| PP VE(|V2AGn 1)
+ (2p = )p2* VR V2G|, (27)

13
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Moreover, one recalls that for A < 2/(a + Lq)
1A < (1= 2an) 8, - 67
Consequently

Y N
E |04 — 071

7]
< (1= 2aN?[0) — 0*[|2F + (2p — 1)p22P~1Ad(1 — 2a\)P~1 |8 — 6%|]2e—D)
+(2p — D)p2* P VE[||V2XG [|*]
< (1—aN)(1 — 2aN)P LG, — 6%]2 — GA(1 — 2a\)P"L|[F) — 6|2
+(2p — 1)p22~IAd(1 — 2a\)P7[F) — 62D
+ (2p — Dp2° P VE[|[V22& | *7). (28)

As a result, for ||§2 —0*|| > M, where M = /d(2p — 1)p22P=1/a, one obtains

—A\ %
E | 1B — 071>

A [ _
B < (1= NP, — 0" + A2p — p2* *ElJj&a |7,
whereas, for ||§,); — 0*|| < M one obtains

A\ "
E (141 — 0"

52} <(1—aN)|[@) — 0%)|% + AdP(2p — 1)PpP2rp—Dgl—p
+A(2p — Dp2 E[l|& 7]
which yields (23). Consequently, by Lemma [A.4] below,

R * C/(p)
E | =071 ==

7] <(1—an)[80 — 0" +

Thus, one obtains the desired result regarding the uniform bounds. The estimate
C’'(p)'/?" < ¢ (p) follows, noting the trivial inequalities: p*/? < 2, p € N\ {0};
(x4 y)/2P < 22 4yl /2P gy > 0. O

4.2 Analysis for the SGLD scheme

One notes initially that the process in (2) is Markovian while the one in (&) is
not. However, uniform bounds are obtained in Lemma [£.4] below, for the 2p-th
moment of the SGLD scheme (&), for any p > 1. This result complements the
findings of Lemma [£.3] and is used in the proof of Theorem [3.5] which examines
the convergence between the two sampling algorithms, ULA ([@)) and SGLD (&),
in Wasserstein-2 distance.

The following inequalities, derived from Assumptions and [3.3] are often
used:

d

1H (6, 2)| < Lall6 — 6%|| + Lo|lz|| + H*, H* =) _|H(6",0)], (29)
=1

(0 =07, H(0,x)) > all — 0[] + (0 — 0", H(0", 2)) .

14



Lemma 4.4. Let Assumptions 31, 32 and[33 hold. Let V,(0) = ||0 — 6*|*"
Jor some integer p > 1. The process 0> satisfies, for any n € N and A\ < X,
where X is defined in ([I3),

E[V,(02)] < (px)"E[V5(63)] + AC" (p), (30)
where py =1 —aA € (0,1) and

C"(p) (2%Pdp(2p — 1))P(2/a)P~* + 2°P~4p(2p — 1)2%PdPp3P

22071 {(2p)*(2/@)"P " + (2% 'p(2p — 1))P(2/a)
+ 29 ip(ap— 1)} {2 TILI07 2 + 22T L3 Mo, (X) + {H Y}

_|_

As a result,

supsup BV, ()] < B[V, (00)] + . 1)

It follows also that C"(p)*/?P < ¢ (p) where

d(p) = pVd (2”“/2&2%‘% + 48)
L9 {4p/&1*1/2p +2PpV/2(2/a) Y21/ (2p)
+ 12 {on 7))+ 2L2Mm3, 7 (X) + B} (32)

Proof. For eachn € N, denote by A,, = 0} —0* —\(H (0}, Xp41)— H (0%, X,111))-
By direct calculations, one obtains,

E [0 — 07177 ] 67]

=K ”An + V2Xn41 — )‘H(e*vXn-‘rl)HQp

0]
=E | (I18nl? + V22041 = AH(0", X 10)]?
F2(A, V2XEn i1 — NH (67, X,,+1)>)

p 937\:|

p! *
CE| Y AR VG - AH (B, X ) [
kilkolks!
| F1tke+hks=p

X (2<An7 \/ﬁgn-i-l - )\H(6‘*, Xn+1)>)k3

93}

<E [ A0l ] 6] + 20 [ Anl?2(An, VEXEn 11— AH (0", Xoy1)

n

)

2p
2p - .
+> (k)E L1205 V2R 1 = AH (0%, X)) I*| 03]
k=2

where the last inequality holds due to Lemmal[A3] and further calculations yield
E[|631 —0*177]67]
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< E (1Al 03] + 2pAE [[|An P~ H (0%, Xng1)Il | 03]

2p
2p - *
3 ()8 (18P 1VERGrs = A", X1
k=2

93}
ax 2p | gA 2p 2 et * 2p | pA
< (1+ 5 )E[IAT 0] + @) (2] E[IHE Xeen)*]0)]

+22-3p(2p = DE [ Al 2V2NE 11 — MH (67, X 11)?| 03]

+ 22 p(2p — VE [ [V2Aus1 = AH(O", Xoy)[[7| 0)]

5 2 2p—1
< aNE (18,7 6] + A (2) B (1867 X0 |6
2\
exE - 0p (2) B [1HE X001 |02)

2\?"!
+A(2%dp(2p — 1)) <5> + X2 4p(2p — DE[||€pr1]|*]
+ 2P p(2p — DE [|H (0%, Xota)|? | 62)] (33)

where the second inequality follows the same argument as in the proof of Lemma
Moreover, for A < 2/(a + Ly),

B [18,177162] =& | (162 = 071 = 2003 0, H0, Xo10) = HO", Xo)

P
m}

N H(0, Xo) — H(e*,xnmnz)

< (1—2aN)"|6; — 6"
Then, substituting the above estimate into (B3] yields
E [[10341 = 011 |63] < (1= a6 — 0% + AE [g(Xn11) |6,] ,
where
9(Xnt1) = (2%dp(2p — 1))7(2/a)P =" + 2P *p(2p — DE[||&nr1[|*]
2 ()P 2/ + (27 p(2p — )P/
+274p(2p — 1)} {(Lal|0" ]| + L2 | Xnsa ) + | H (67, 0)[*} .
Using the trivial (z+y)? < 22P=Y(2% +4?P), 2,y > 0 and Lemma[A4] we have
E[g(Xn41)] < C"(p).
Finally, denote by pyx =1 — a\ € (0, 1), then by induction, one obtains

3

. N i ol
B[00 — 0°177] < ()" Ell o — 0°]7) + 2

which implies supy . sup, E[||0h,1 — 6*[|*"] < E[[|6o — 0*[|?*!] + C"(p)/a. 1t is

easy to check C”(p)'/?P < ¢(p), too. O
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Uniform L? bounds for the process in (B are obtained in [25] under dis-
sipativity condition on VU and the L? error of the stochastic gradient, i.e.
E[|H (6, X,) — h(0)]|?], see their Assumptions (A.3),(A.4). In that paper a
large size mini-batch could be used to reduce the variance of the estimator, which
requires more computational costs. We could also incorporate mini-batches in
our algorithm but this is not pursued here. For stability, the variance of the
estimator has to be controlled, see [29].

4.3 Proof of Theorem

We now sketch a roadmap for the proof of Theorem The time axis is cut
into intervals of size T. An auxiliary process Z* is introduced which equals 6*
at the points nT', n € N but it follows the averaged dynamics on [nT, (n+1)T),
see ([@).

Using the conditional L-mixing property, one obtains estimates for the L?-
distance between z* and 6*. If Z* were uniformly bounded, these would be of
the order v/X. However, z* is unbounded hence its maximal process needs to be
controlled which leads to the somewhat weaker rate )\%_5, for € > 0 arbitrarily
small.

Next, estimates for the difference between z* and " are derived using the

. . A .
contraction property of the dynamics of ", see Lemma [£.2l It follows that this
is of the same order as Z* — #*. These observations then allows us to conclude.

We proceed now with the rigorous arguments. Let

Hp =G, Vo(, jEN), HI =G neN

Observe first that, since (X, )nen is conditionally L-mixing with respect to
(Gn, G )nen, it is conditionally L-mixing with respect to (Hn, H )nen, too,
and the corresponding quantities (M, T, C, M) remain the same.

For each § € R?, 0 < i < j, one recursively defines

AMiyiy0) =0, 22 +1,0,0) := 2(j, i,0) — MNa(22(J, 3, 0)) + V2AEj 41

Let T := |1/A], then for each n € N and for each nT < k < (n + 1)T, one
defines
zZp = 2k, nT,0) ).

. —A
Consequently, Z; is defined for all k € N; ), = 6\, for n € N and ), =
2*(k,0,60p). Next, some simple but essential moment estimates are derived.

Lemma 4.5. Let ¢ > 1 be an integer. Then, for all X < \, where X is defined
in (19,

sup ||z — 6"z < C(q)

keN
holds for / ,
Cla) 1= 180 — 0y + “OF LD,

where ¢'(q), ¢’ (q) are as in Lemmata[{.3 and [{-4)

(34)
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Proof. Define V,(0) := ||0—6*|%?, 0 € R%. Let k € N be arbitrary and let n € N
be such that nT < k < (n + 1)T. Note that 23] and (31 imply
A A (Q) H2a)
sup 1Zx — 0" ll2g < |E[Va(0nr)] + —
nT<k<(n+1)T a
C'(q)V (29 4 " (q)"/ (2D

< ||00 -0 ||211 al/(29) )

Lemma 4.6. For all A < X\, where X is defined in (I8), it holds that

sup [H (03, Xns)ll2 + 1h(z)]12] < €

where

Cl/( )

C” =Ly |||6 — 072 + ——2| + 2Ly MY*(X) +2H* + C(1)Ly.  (35)

Proof. The first inequality of (29) implies
[H (63, Xos)ll2 < Ll — 6% (|2 + La|| Xnll2 + H*.
Combining this with Lemma (4] (applied with p = 1) shows that

0/1(1)1/2

= | LMy (0 + B

sup sup || H (6, X, 41)ll2 < L1 [EY2[Vi(6o)] +
A<A P

A similar argument can be applied to h(?;\L), in view of (I,
Ih(EZ)2 < LilZ) — 07|12 + LaMy/* (X) + H*
< C(1)Ly + LaMy*(X) + H,
where C'(1) is given by ([B4). O

Lemma 4.7. For each j € N, the random field H(0, X,,), n € N, 0 € B(6*,5)
satisfies
M (H(0,X),B(07,j)) < L1j + L2 M*(X) + H, (36)

Proof. Let 6 € B(6*,7). The Minkowski’s inequality imply for & > n and
ie{l,...,m},

EVT[[HY 0, Xp)|" | Ha] < Lij + LSEY" [[|Xkl|” | Ha] + [H'(67,0)].
Hence, using || Xx| < >0, |X7| and the Minkowski’s inequality again, we ob-

tain
M (H(0, X),B(0%,5),i) < Lij + Ly M (X) + [H'(6%,0)].

18



Summing the above relation over the indices i € {1,...,m} we get (36). One
also notes that, due to Lemma [A.2]

EY7 [|H' (0, Xp) —E [H'(0, Xi) | Ho VHS_] 7| Ho]
< 2EV" [|H'(6, Xi) — H'(0,E [ Xp | Ha V HE_ ]I | Hal

< 2LEYT (|| Xk — E [ Xp | Ho VI |7 Ha] <205 A7 (X, 75),

j=1
which implies (37). O
We shall also need the following measure-theoretical lemma.

Lemma 4.8. Let k > nT be an integer. There exists a version hy pr : §2 xR% —
RY of E[H (0, X)[Hnr], 0 € R which is jointly measurable.

Proof. For a fixed § € R?, the conditional expectation E [H (0, X}) | Hnur], 0 €
R4 is a H,,p-measurable random variable. We will construct a function RienT
Q x RY — R? that is measurable in its second variable and, for all § € R?,
hinr is a version of E[H (0, X} )|H,r]. The case k = nT is trivial. Let k > nT.
It is enough to construct hy,r(#), 8 € B(6*,N) for each N € N. Consider
B(N) := C(B(#*,N);R?), the usual Banach space of continuous, R%-valued
functions defined on B(6*, N), equipped with the maximum norm. The function

weN— GN(w) = (H(G’Xk(w))QEB(G*,N))a w e Qv
is a B(N)-valued random variable and, by (29I,

sup [|H(0, Xi)|| < L1N + Lo|| Xi| + H,
9EB(6*,N)

which clearly has finite expectation as the process X,, n € N is conditionally
L-mixing. Moreover, [24, Proposition V.2.5] implies the existence of a B(N)-
valued random variable &y such that, for each b in the dual space B'(N) of
B(N),

E[b(Gn)[Hpr] =b(&N).

This implies, in particular, that for all § € B(0*, N), E[H (0, X1.)|Hnr] = & (6).
We may thus set hy pr(w,0) := Gx(w,d). Since (w,0) - Gy (w, ) is measur-
able in its first variable and continuous in the second, it is, in particular, jointly
measurable, see e.g. [2] Lemma 4.50]. O

Lemma 4.9. Assumel31l and[31] and let p > 1.

supBY7 (327 subera i (0) = hO)N)'] < 201 (X),

where Cp1(X) is defined in ([I0).
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Proof. Let k > nT. Notice that, since X and Q;LT are independent of o(§;,j €
N), E [ Xy |H} 7| = E[ Xk |G|, P-as. Since Gy and G,r are independent,
we get that, for all £ > nT, P-a.s.,

E[H(0.E [Xk|Glr]) | Hor] =E[HO,E [ Xy |Gl7]) | Gur] = E[H (6, E[Xk|G, 7)) -
This implies that, for all £k > nT,
Vtn (6) = h(6)| < |ELH(O, Xi) | Gur] — E [H(O,E [ Xe|Gr]) | Gur]|

+ |E[H6,E [ Xk |G/2])] — E[H(O, X))

< LoE (X — E [X4 |G || Gur] + L [|X5 — E [Xi | 6] ]

Using the Minkowski inequality, we get

E'? [supgega [|hw.nr (8) — h(6)||")
< LoaEVP[| Xy — E [ Xi | Gip] 7] + LoE [[| Xk — E [ Xk |Gz ] ]
S 2L2ZFYS(X71€ - 7’LT, Z)a
i=1
noting that Gy is the trivial sigma algebra. This concludes the proof since
E[[H(X)] < Cpa(X). O

Proof of Theorem Fixn € Nand let nT < k < (n+1)T be an arbitrary

—A
integer. By the triangle inequality, the difference of * and 6" is decomposed
into two parts

=\ _ _ =\
162 = Oill < 1167 — =zl + |75 — O l- (38)

Let hgnr be the functional constructed in Lemma [I.8 Then, one estimates

-2 < A (O x) - H<AZ |6}, X0) - (), X0)]
+/\HZZ . Xi) = hinr(Z H+>\Z i @) = 1@z
k—1 m
< ALy Z ||6.z>\ —_;\H + A max Z _hi’nT(Ei))H

. nT<m<(n+1)T
i=nT

AN i (@) — hED)I
i=nT
due to Assumption Thanks to Lemmas [£.4] .5 [£.6] and all the terms

on the RHS of the previous inequality are almost surely finite. A discrete-time
version of Gronwall’s lemma and taking squares lead to

m 2

103~ 20l < 20PN e | 2 G XD = hinr (Z)
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00 2
* <Z ||hi,nT(??)—h(5?)l|> ,

i=nT

noting also (z + y)? < 2(2? + y?), z,y € R. Let us define the H,r-measurable
random variable

Ny := max Iz2 — 6%
nT<k<(n+1)T

Now, by recalling the definition of 7" and taking H,r-conditional expectations,
one obtains

EY2 103 =z P Har] SV2Ae™ 3 1 acnras)

Jj=1

m 2
1/2 A vy 1 =2
o |:nT<n131<a()7<1+1)T Hzi:nT (H @z X) = hine (37)) H ‘HHT}

+vV2X et sup Z |hi.nr (0) — h()]] -
oeRrd i=nT
Define for n € N,

Z2.) = {H(?gan)]l{”z;_gﬂgj}, nT <k < (n+1)T,

. (39)
0 otherwise

Recalling the H,,r-measurability of Z3, nT < k < (n + 1)T, and arguing like in
Lemma [£7] one obtains

MIT(Z3(5)) < Luj + LaMIT(X) + HY
UY(Z3(35)) < 2LaT 7 (X)
With these notation, for each j € N, the process defined by

Z () = (HE Xe) = bt GO L2y = Zaa) = | Z24(5) | Hur ]
(41)

(40)

for n'T <k < (n+1)T, n € N satisfies
MIT(Z3(7) < 2[Luj + La M (X) + H),

I77(Z)(5)) < 2LaT07(X) . (42)

Notice that Zﬁ"nT(j) = 0 hence the maximum can be taken over nT' < m <
(n 4+ 1)T instead of nT < m < (n+ 1)T. One then applies Theorem [B.4] with
the choice n =nT,r=3,b; =1, X := Zé,k(j) to obtain

m 2
L TRl/2 E A N h. A
vr<i B |:nT<77rzn<aZ):L+1)T H i=nT+1 (H (', X) = hinr ))H

7_[nT:|

m 3
Lo 527 6250 = )|
< LNar<i) B LT< meax Dy HES X = hir ) || Hur

< 101w, <, VTTET(Z2() + MET(Z2())),
(43)
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noting that C’(3) < 10 holds for the constant C”(3) appearing in Theorem [B.4l
Now we turn to estimating N, 7. Let ¢ > 1 be an arbitrary integer. Let us
apply Lemma [AT] with the choice r := 2 and p := 2¢ to obtain

E[Nyr] < TG0 sup  EYCO[|z3 — 672, (44)
nT<k<(n+1)T

which implies, by Lemma 5]
E[(Nyr +1)%] < 2[1 4+ T 0 C2(q)). (45)

By the Cauchy-Schwarz inequality, (@2]) and ({@H) we can perform the auxil-
iary estimate

Z E(l—1<nur<;3 D57 (Zp (7)) + MET(Z) (5)])] (46)
j=1
< 83 B[l 1en ey (L3R (X)) + [Loj + LaMET (X) + H'P?)
j=1
< SLIE[IT(X))2] + 24[E[LA(Nor + 1)% + LA(MIT (X)) + (H*)?]
< 8L3Cs + 24[LIME + (H*)?] + 48 L3[1 + T%/29]C°(q)
< 96T2/P[L2C7(q) + L2Cs + LIM2® + (H*)?,

using the notation introduced for conditionally L-mixing processes in ([I0) and
the trivial 7> 1 (in the last inequality). We define

C*(p) = 96[LIC? (p/2) + L3Cs2 + LIME'™ + (H')?] +4L3C3 .
Notice that (C#)'/2 < C*, where the latter constant is given by
C*(p) = 10[L1C(p/2) + LaCsly’ + LMy + H) 4+ 2LoCoy. (47)
We conclude from {@3]), (@6]) and @T) that

=

EY2)10) — 2)||% < 156X C* (p)[\WTTYP + A < 306X C*(p) Az~

for all k£ € N, noting also that v/2 < 3/2.
Now we turn to estimating ||z} — ?2” for nT < k < (n+1)T. We compute

S - . .
122 =0l < D Mk AT, 000) — 22 (K, (i = DT, 005 _4y7)|l2

=1

S N2k, 4T, 03) — 2 (ke AT, 26T (0 — V)T, 05 _1y7) 2.
=1

By Lemma £2liv] we estimate

122 (k. T, 677) — 2* (k. iT, 22 (0T, (i = 1)T,65;_ 1)) |12
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< (1= 2a\)*"7)0% — 26T, (i - VT, 67, 1>T>II2
< (1-2an)* 1T||91T 1 AH(G?T 1 Xaor) = Zar_y + AEro) 2
(1 — 2&)\) [||91T 1 ’LT 1||2 + A”H(G'LT 17XiT) - h(E?T,1)||2}

Using Lemma [4.0] the estimation continues as follows

IN

Iz = Byll2 < 26_2‘“('“ D102y = Zp—1lla + AH O3 1, Xir) = h(Z3p_1)]|2]
=1

Z —2aX(n—i)T 3061‘10*( )/\%—% —I—Cb>\]

30eL10*( )+ C° 30el1C*(p) + C°

11 11
S T eaar AT TS T AZTE.
The proof is completed by setting
30elrC*(p) +C*
Colp) = LD | o) (18)
and noting (38]). O

Remark 4.10. We track the dependence of the constant Cy(p) (appearing in
Theorem [BH) on the dimension d. Notice that Lemmata E3][£4] provide ¢ (p)
and ¢’(p), both of which of the order v/d. This order is inherited by C(q) in
Lemma and thus results in d*/? in C*(p) and C°, see @7) and ([B3). We
finally get that Co(p) is of the order d*/2.

4.4 Proof of Theorem [3.6

To prove Theorem [3.6] another convergence result is needed, which is the rate of
convergence to stationarity of the recursive scheme (2]) in Wasserstein-2 distance.
Note that with Lemma [ and [£2] the convergence in Wasserstein-2 distance
can be considered. The following is the adapted statement in [I0, Corollary 7]
using the notation of this article.

Theorem 4.11. [10, Corollary 7] Let Assumptions 31, [3.2 [3.3 hold and let
A < X where X is defined in ({IR)). Then, the Markov chain (92)7@1 admits an

invariant measure my such that, for allmn € N;
Wa(Law (@), m) < ée~  peN,
where ¢ is coming from (iii) Lemmal[].2
& =260 — 0> + d/a)'/2.
Furthermore,

W2(7T,7T)\) S C\/X,

23



where s
c= (L% (2 +a )(d+ SA2L2d+ $L2Ad/a)) "/
with a defined in (5.

Note that for the Langevin SDE (), the Euler and Milstein schemes coincide,
which implies that the optimal rate of convergence for scheme (2) is 1 instead
of 1/2. The bound provided in Theorem Il can thus be improved under
an additional smoothness assumption for the drift coefficient of ({]). However,
as our main focus is the behaviour of the SGLD algorithm () and, in view
of Example B4 it is known that its optimal rate of convergence is 1/2, any
improvement on the behaviour of scheme (2) does not change this fact.

Proof of Theorem Take p large enough so that x > 2/(p — 1) and thus
1/p < k/(k+2) holds. Denote by C' = max{Cy(p), ¢, c}. Theorems 3.5 and Tl
imply that
Wa(Law(0y).7) < Wa(Law(0)), Law(@,)) + Wa(Law(@,), 73) + Wa(ms, )
CA2 "% +e ™ 4 23]
2CIAT + e,

IN

IN

For 0 < € < e™!, choosing A := €2¥"/(4C)***, 2CA7H < €/2 holds. Now
it remains to choose n large enough to have Ce™" < ¢/2 or, equivalently,
aXn > In(2C/€). Noting the choice of A and In(1/e) > 1, this is possible if

co(k)

2
n > o In(1/e),

where (k) = Y97 (1 4+ In(20)). O

5 Proof of main results: independent data

For the case of independent data, it is enough to obtain the second moment of the
SGLD scheme (@l before considering the convergence in Wasserstein-2 distance.
The following lemma provides an upper bound for the second moment of the
scheme (Bl with explicit constants.

Lemma 5.1. Let Assumptions[3.7, [3.8 and[39 hold. Let
o = min (a/szE[(l + 1 Xol)?], 1/a). (49)
For X < o, the function V1 (0) := ||0 — 0*|| satisfies
E [Vi(02) [0n 1] < (1 —aVa(f) ) +AC,

where
C:=4L3(1 + ||0°)’E[(1 + || Xo|)?* 2] + 4{H*}* + 2d.

As a result, supy<y, sup, ey E[Vi(6;)] < 0o. Moreover, if p =0 in Assumption
[37 then the above result is true for A < min(1/2Lq,1/(a + L1)).
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Proof. By using the SGLD scheme (f), one calculates

1671 — 67117 = 1167 — 011> + 2007 — 6", =AH (6, Xui1) + V2AEn11)
+ 1 = AH(60), Xn11) + V2Ap 11|
=107 = O[> = 207 — 0", H(03, Xp41) — H(0", Xns1))
+200) — 0 VEAG 1) — 2M(6) — 0 H(", X,01))
+ N[ H (0, Xng1)[I* = 2MH (0}, Xnt1), V2Xng1) + 2[€nia ||
and thus
E[[107 1 — 671I*167]
<1107 = 0% 11 = 2XE[(0, — 0%, A(Xn11) (07 — 0°))03] — 20(0;, — 0, h(6"))
+NE[|[H (60;), Xn41)]12107] + 2Md (50)
< (167 = 0*11° — 2Xall6y — 671> + 2X°E[| H (6, Xns1) — H(0", Xp1)|*167]
+ 2XZE[| H (0%, Xpy1) ] + 2)d.

Hence, for A < min (a/mmu + 1 X020, 1 /a)

E[[l6711 — 07[17162] <(1 = Aa)[[6n — 67(|* + 4N2LE(1 + (|67 [)*E[(1 + || Xol|)**+]
+ 4N {H*}? + 2)\d
= E([[6n51 — 0%[1%167) <(1 = Aa)[65 — 67[* + AC,

where C' = 4L3(1 + ||6*)?E[(1 + || Xo|)?* 2] + 4{H*}? + 2d. Consequently, for
any n > 1,

C
B0 — 0°]1%) < (1= Aa)"E[[ldg — 0[] + = < o0,

Crucially, one observes here that if p = 0 in Assumption 3.7, then H is co-
coercive with the following property, for every 2 € R™ and all 6, 0* € R?

(0—6 HO,z)— H(O z)) > Lil”H(G,x) —H(O,z)|* (51)

It follows that, in view of (&Il), one rewrites (B0) as follows
E[|6741 — 6711%167)]
<1167 — 61 = AE[{(f — 6", A(Xns1) (6 — 67))67)]
- L%HH(@Q, Xns1) = H(0", Xni1)||” + 200, — 0%, h(67))
+NE[|[H (6, Xn+1)[12165] + 20d

A
<07 = 071 = Aallon — 071" + (2X* = )E[[H (07, Xny1) = H(0", Xony1)I|]

1
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+ 2NZE[|| H (0%, Xpy1)|?] + 2)d.
which yields, for A < 1/2L,

E[[167 11 — 67[1°167] <(1 = Aa)[1f — 67[|* +4N*L3(1 + [|6*|)*E[(1 + (| Xo])?]
+ 4N H*}? +2)Md
= E(6711 — 07[1°67) <(1 = Aa)|16 — 6"[|* + AC,

where C' = 4L3(1 + ||0*|)?E[(1 + || Xo|)?] + 4{H*}? + 2d.
O

Proof of Theorem One notes that (B1) is still valid, with the only
difference that the Lipschitz constant in (B1) is given by L1 E[(1+ || Xo]|)?], and
(B2) holds with a. Consequently, Theorem TT]is still true. The main steps of
the proof of Theorem need to be reformulated for the i.d.d.case. Initially,
one notes that the following result holds due to Lemma [5.1]

sup supE[[|6}]1?] < co,
AE(0,A0) n>0
where co = 2E||0p — 6*||> + 2C/a + 2||6*||?, and C is given explicitly in Lemma
Bl Then, using synchronous coupling for the schemes (2)) and (), one obtains

||97);+1 - éi\hLl ||2
=18} = 02 = A(H(B). Xns1) = (O ) I
<116 — B> — 276 — B, H(O3, X 1) — h(@) + N2 H (B3, Xoi1) — BB

<167 = 03117 = 2005 = 05, h(67) — h(67)) — 2X(0;, — O, H(0, X 1) — h(67))
+ 202 H (0, Xni1) — h(O2)|* + 222 1(67) — h(6)]1*.

Taking expectations on both sides and using (I3]) yields

_ _ _ o 22 .
E[l107 11— 1117167, 03] < ||9$—92||2—2/\a||9$—92||2—mllh(9$)—h(9$)||2
+ 2NE[|[H (07, Xns1) — h(O)I12167, 03] + 2521 (67) — h(0)]1*,

n»’n

where @ is defined in ({6]). Hence, for A <1/(a+ L),

Ell107 11 — 0412167, 03] < (1= Aa)|16;, — 631

nr’n

+ 2N%E[|[H (05, Xn41) — E[H (0, Xo11)]107, 021112167, 0]

nr’n n»’n

Thus, due to Lemma [A.2]

E[[10711 — a4 117167, 03]

< (1= 2a)ll6; — 0311° + 8N’E[| H(0;), Xn41) — H (6,

A E[X,041]0), 2])I1%[62, 6]

n’n n»-n
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< (1= 2a)[[0 — 02117 + 8A2L3(1 + [|631])) Vary (Xo)

which implies that

mzl}—*

(10711 — O all*]) < BAL3(L + SngEHI@ﬁIF])] Vary (Xo) =,

where
Vary (Xo) := E[(1+ | Xoll + [IE[Xo][)** | Xo — E[Xo][?].

Denote by ¢ = \/8L§(1 + ¢o)] Vary(Xo) 1, one obtains Wa (Law(6;), Law(?,);)) <
¢\'/2. Then, together with Theorem E-I1] the following result can be obtained

Wa(Law(62), Law(@))) + Wa(Law(8.), mx) + Wa(my, )
< O} e,

WQ(LaW(Hi), )

IN

where C' = max{¢, c1,¢}. For any 0 < e < 1/2, by letting Oz < €/2, and
Ce™ " < ¢/2, one obtains A < c1€? and n > coe 2 In(1/€?) with ¢; = (4C)~!
c2 = (ac1)1(In(2C) + 1). O

A Technical results

Lemma A.1. Let (X;)ien be a sequence of random variables such that for some
p >0, M = sup;cy E[|| X;[|P] < co. Then for 0 <r < p, E [suplgigj ||Xl||q <
Gr/PMTIP,

Proof. One has
EP/ { sup |XZ-|’”] <E [ s 1 X; H <E lz 1 X; ||P] < jM,
1<i<y P
by Jensen’s inequality. O

Lemma A.2. Let G,H C F be sigma-algebras. Letp > 1. Let X, Y be R-valued
random variables in LP such that Y is measurable with respect to HV G. Then

EVP[|X —E[X[HVG]|P|G] < 2EVP[|X —Y|P|G).
Proof. See [4, Lemma 6.1]. O
Lemma A.3. Let z, y € R?, then

> el ||y||2k<z( )Wp flylt

itj+k=p
{ip-11n (i1} =
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Proof. Note that

p! i j p! i j
> i,j,k,HxHQ (202 ) lyl** < > WHIH2 Nyl lyl>*.

it+jtk=p i+j+k=p
{i##p—1}n{j#1} {i#p—1}n{j#1}
(52)
Moreover,
2p 2p
S () el =Gl + 1102 = (ol + 20l + Io1?
k=0
p! i i
= > Wllﬂ?l\2 @l 1yl llyl1>*.
iy P!
Consequently,
2\ (2p p! j
_ ' i J
S (et = X el I 63)
k=0 i+j+k=p e
k71 {i#p—1}n{5#1}
Thus, in view of (52)) and (B3], the desired result is obtained. O

Lemma A.4. For each integer r > 1, E[||&]|?"] < 227d"r37/2.

Proof. Let (1, ..., (g denote the coordinates of &;. It is well-known that E[¢?"] =
2'T([2r 4+ 1]/2)/y/7. Clearly,
4 1/2
[I€1]l2r =< (Z‘_l El/r[g?r]) — (2drl/r([2r + 1]/2)7T*1/(2r))1/2

< mrl/%“(r + 1)7‘(71/470 < \/ﬁ(mTTJrl/Qefrel/(lQr))1/2T7T71/4r

where an estimate for the gamma function from [27] is used in the last inequality.
Continuing in a somewhat rough way, one obtains

€1]l2r < 2Vdrt/2HO/Ae=1/261/2 < 93/qr3/4,

B Proof of a pivotal inequality

In this section we prove the analogues of two moment inequalities from [12] for
conditional L-mixing processes. One of these has already been shown in [4] but
only under specific assumptions on the filtration. Our proofs (which mostly
take place in continuous time) follow closely the arguments of [I2]. There are,
however, a number of small modifications that need to be pointed out.

28



We consider a continuous-time filtration (R:):er . as well as a decreasing
family of sigma-fields (R );cr, . We assume that R, is independent of R, for
all ¢ S R+.

We consider an R?-valued continuous-time stochastic process (X;)¢er . which
is progressively measurable (i.e. X : [0,#] x Q — R? is B([0,t]) ® Rs-measurable
for all t € Ry).

From now on we assume that X; € L', t € R,. We define the quantities

M := ess. sup EY/" [1X7]" | Ro] ,
teRL

Fi(r) = ess.sup BV [|X] —E [ X[ | R{E, VRo]|"|Ro], T € Ry,
t>7
and set M, := 30 M T := 3% ~i(r) and T, := 3¢ T where X; refers
to the ith coordinate of X;.

Remark B.1. If d = 1, Ry is trivial and R/, t € R is right-continuous then
we get back to the setting of [12]. Tt is shown in Lemma 9.1 of [I2] that the (non-
random) function 7 — 4,(7), 7 € Ry is measurable hence I', := [~ ~,(7) dr
can be defined. [12, Theorems 1.1 and 5.1] formulate inequalities in terms of T,.
instead of T,..

We could attempt to define T, for general Ry as a random variable but it
requires further assumptions and tedious arguments which we do not pursue
here. We stay with I',. which is easier to handle and it suffices for our purposes.

Theorem B.2. Let (Xt)te]R+ be L"-bounded for some r > 2 and let M, + T, <
00 a.s. Assume E[X;|Ro] =0 a.s. fort e Ry. Let f:[0,T] = R be B([0,T])-

measurable with fOT fZdt < co. Then there is a constant C(r) such that

T
EY" / fi X, dt
0

almost surely. We can actually take C(r) = +/r — 1.

Theorem B.3. Let the conditions of Theorem hold for some r > 2. Then
there is a constant C'(r) such that

/ £ X, dt
0

almost surely. We can actually take

T

T 1/2
Ro| <C(r) < /0 f? dt) [M, +T,], (54)

T

EY" | sup Ro

s€[0,T]

T 1/2
<[ ga) prer) e

Vi1

C'(r) = 91/2 _ 911"

Note that the supremum in (55]) can be taken along rationals hence it defines
a random variable. We now state the corresponding results for conditionally L-
mixing processes.
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Theorem B.4. Let (X,,)nen be conditionally L-mixing of order (r,1) for some
r>2. Let b;, 1 <i<m be real numbers. Then for each n € N

i bi Xnti
i=1

almost surely. If r > 2 then also

|

holds.

T

E

Fn

m 1/2
<C(r) (Zb2> [M*(X) + X)),

k T

max lenJrl
1<k<m 4 1
i=

m 1/2
Fa| <C'(r) <Zb§> [M]'(X) +T7(X)]  (56)
=1

We are proceeding to the proofs of the above results. Since E [ X; | R, V Ro]
is R;Qm V Ro-measurable for t > 7 > 71, we obtain from Lemma [A.2] with the
choice X = X;, Y =E [X; | R/, VRo|, H=R{ ,,. G =Rp that

Yr(T2) < 279 (71). (57)

We need a measure-theoretical lemma about real-valued random variables
Y and ~Z.

Lemma B.5. Letr >1,1/r+1/¢g=1andletY € L" be Ry V R -measurable
for some s > 0. Then for all Rs-measurable Z € L9,

E[YZ|Ro]=E[Y|Ro] E[Z|Ro].

Proof. Let A € Rg be arbitrary. We assume Y = 1pl¢e with B € Rg, C € RY
and Z = 1p with D € Rs. Then we find that, by independence of R4 from R}
and by Rp C R,

E[1,4YZ] = P(C)P(AN BN D) = P(C)E[LanzE [1p | Ro]]
=E[1415P(C)E [1p | Ro]] = E[14E [V | Ro] E [Z | Ro]],

which proves the statement for this Y and Z. Now, by standard arguments, one
can extend these to Y = 1¢ for all G € Ry V RY. We thus obtain the result
for step functions Y, Z; then for bounded measurable functions and finally we
arrive at the general statement. O

Now we formulate, in the present setting, the analogue of [12, Lemma 2.3].

Lemma B.6. Let the assumptions of Theorem [B.2 be in force. Let d =1 and
1/r+1/q=1. We have, for all 0 < s <,

|E [Xen | Ro]| < 7ot — s)EY4 [|n]?| Ro]

for each n € LY which is Rs-measurable.
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Proof. Using Lemma, [B.5]
E[X:in|Ro] =E [E [X;|RE VRo] | Ro] E [1|Ro]+E [(X: —E [ X; | RE VRo])n| Ro] -

Note that E [E [ X; | RT V Ro] | Ro] = E[X:|Ro] = 0. The conditional Holder
inequality implies that

IE[(X; —E[X¢|RVRo))n|Ro]| <t — s)EY 9|7 Ro]
showing the statement. O

Proof of Theorem[B2. First let d := 1. For t € [0,T], define I; := fot fsXsds
and g; := E[|I}]"| Ro]. Following verbatim the arguments in the proof of [12]
Theorem 1.1] we arrive at

T t
IIT|T=/ / r(r — 1) fi X fo Xo| |2 ds dt.
0 0

Hence, using Lemma [B.6l |t — s| <t — s and (57)),

IN

T t
o< [ [ - DIALE (XL Ra) ds

IN

// (r = Dlfefel2m ([t = )M g2~/ ds e

/ o <r—1|fs|/ 2 ([t — s])M, i ds
0

almost surely, whereupon Lemma 2.5 of [12] implies

1/r 1 r T
ot s(m | =i | |ft|2%<u—sJ>Mrdtds>

almost surely. The Cauchy inequality leads to

T 1/4 T T 2
B < arIMM? (/O fgds> /0 (/ |ft|%(Lt—sJ)dt> ds

Moreover, by the Minkowski inequality for the Hilbert space L?([0, T], B([0, T]), Leb),

1/2

1/4

9 1/2

/oT </T | fele (Lt = SJ)dt> ds

T [ 1 2
= / Z ¥ (k) / | forhtul Lot kru<ty du | ds
0 s 0
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IA
gl
$

2 1/2
/ | fotbtulL{sthrusT) dU) dS)

1/2
/ fs+k+u]]-{s+k+u<T} du dS)

INA
gk
$

1/2
/ fs+k+u L{strqu<Ty ds du)

/
/ /mm{k+u T} i dt du)

/2

INA
gk
$

< Z%

Thus we finally arrive at

T 1/4 T 1/4
gy!" < ovr = 1M} (/ 72 ds) </ 12 dt) ri/?,
0 0

which allows to conclude since /T, M, < [, + M,.]/2. Now let d be arbitrary.
Applying the one-dimensional result componentwise gives the result, noting the
the Minkowski inequality and the definitions of M,, I, as sums of M¢, T,
respectively. O
Proof of Theorem[B.3. Again, let d := 1. Let Z := {(a,b) : 0 < a < b <
T, [ f2ds > 0} and define, for (a,b) € T

SUD;e (g, | ftstsdsV
f f2ds

which is a random variable since the supremum can be taken along the rational
numbers. Set M, p 1= EY/" [Kap| Ro]. Define, furthermore

Ka,b =

M7 :=ess. sup Mgp.
(a,b)eT

Noting Theorem [B.2] and following verbatim the arguments in the proof of The-
orem 5.1 in [I2] we arrive at

r—1[M, +1I,]  2Yr

M; +
’ V2 V2

IN

Mz

almost surely, which implies

M < Vr—1[M, + FT],
21/2 _91/r
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showing the statement. The case d > 1 follows by a componentwise application
of the one-dimensional result. O

Proof of Theorem B4 Fixn € N. We define the continuous-time process X =
Xn,
Xt Z:Xn+k+1 fork<t§k+1, k e N.

Set Ry := Fpype) and Ry = ]—':JFM for t € Ry. Notice that, for 7 € N, ~,.(7)
calculated for (X;, Ry, R )ier . coincides with ~*(7, X) as defined in (§) and

@) for (X, Fn, F; Jnen. Similarly, M, calculated for X coincides with M (X).
Let T :=m, define f; :=b;,i—1<t<i,i=1,...,m and fy = 0. Clearly,

T m
[iXedt = biXpai

An application of Theorems and B3l to X yield the result. O
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