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Introduction
Efforts to mitigate climate change are timelier and more relevant than ever. The Euro-
pean Commission recently launched the “fit for 55” package to reduce net greenhouse 
gas emissions across sectors by at least 55% from 1990 levels by 2030 (European Com-
mission 2021). With a share of 40% of energy consumption and 36% of energy-related 
greenhouse gas emissions, the building sector in the EU is a critical success factor to 
reach climate goals (European Commission 2020). In particular, residential buildings and 
their thermal energy for heating and hot water, with around 20% of the total energy use 
in Germany, offer great potential to reduce energy consumption and emissions (German 
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Federal Ministry for Economic Affairs and Energy 2018). Today’s building stock com-
prises many older buildings adhering to less stringent construction codes. Correspond-
ingly, these buildings have a high energy consumption. Low rates of new construction 
make this situation persist in the future, if there are not sufficient energetic retrofits per 
year (Deutsche Energie-Agentur GmbH 2016; Wenninger and Wiethe 2021). However, 
these energetic retrofits are too low to meet the EU’s objectives (German Energy Agency 
2018).

To improve the energy performance of buildings and increase the rate of energetic 
retrofits, the European Parliament and the Council passed a directive in 2002 already 
declaring the need for Energy Performance Certificates (EPC) (the European Parliament 
and the Council of the European Union 2002). EPCs are issued by qualified auditors and 
inform owners and occupants about the energetic condition of buildings, the associated 
operating costs, and recommendations for retrofitting (Arcipowska et al. 2014). Uncer-
tainty is a major barrier to energetic retrofits, and thus the accurate assessment of build-
ing energy performance (BEP) and the expected energy savings from retrofits are crucial 
for EPCs (Amecke 2012; Walter et al. 2014; Ahlrichs et al. 2020). However, EPCs are yet 
under debate for their inadequate determination of BEP (Hardy and Glew 2019).

Today, auditors are bound to use legally prescribed engineering methods based on 
physical laws and anchored in norms and standards (e.g., DIN V 18599 in Germany) to 
quantify BEP (Zhao and Magoulès 2012a). These so-called engineering methods demand 
qualified auditors to conduct on-site visits to estimate physical building measures (e.g., 
thermal transmittance represented by the U-value of the building envelope’s compo-
nents) (Arcipowska et  al. 2014). The apparent underlying assumption is that without 
these physical measures, BEP quantification is infeasible and that the average building 
occupant cannot assess these reliably.

Researchers study and propose data-driven methods to address issues with the accu-
racy of engineering methods, mostly relying on Machine Learning Algorithms (MLA) 
(Sutherland 2020; Bourdeau et al. 2019). In contrast to methods utilizing relationships 
from physical laws, MLA can learn from input data, which may also represent non-
physical measures such as building age (Amasyali and El-Gohary 2018). Various studies 
compare engineering and data-driven methods with a clear advantage for data-driven 
methods regarding prediction accuracy for BEP. To that end, Wenninger and Wiethe 
(2021) found that data-driven methods exceed the engineering method used in Ger-
many by almost 50% in terms of prediction accuracy for residential buildings.

So far, research has only investigated whether and how much data-driven methods 
perform better than engineering methods in terms of prediction accuracy of BEP (Wen-
ninger and Wiethe 2021; Tsanas and Xifara 2012). However, it is unclear what reasons 
and cause–effect relationships lead to the often observed and reported superior predic-
tion accuracy of data-driven methods. To further identify potentials for improvement in 
either class of methods, it is relevant to capture their underlying mechanics’ embedded 
in the real process of issuing EPCs (as opposed to lab environments). That is what this 
piece of research targets. To do so, we develop and discuss a testable theory to identify 
reasons and causes why data-driven methods exhibit superior prediction accuracy.

For our contribution, we first provide theoretical and practical foundations about 
EPCs as well as about engineering and data-driven methods for BEP quantification in 
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“Literature” section. “Research method and study design” section then presents the 
study’s design, before we derive method-agnostically cause–effect relationships for 
model quality, data quality, and output accuracy influencing the quantification of BEP in 
“Conceptual analytic model and research hypotheses” section. We further derive several 
design candidates based on data quality and model quality to account for the application 
of either engineering or data-driven methods and the conduct of on-site visits. The dif-
ferentiation whether on-site visits are conducted or not allows us to investigate and con-
sider the degree of expertise of the auditor issuing an EPC. We then qualitatively model 
the expected accuracy of the BEP prediction by the different design candidates before we 
evaluate our theory in “Evaluation” section and discuss it in the context of existing lit-
erature and case studies in “Discussion and implications” section. “Conclusion” section 
concludes the study.

With our work, we contribute to the scientific body of knowledge by giving insights 
on cause–effect relationships of data-driven methods that can compensate, e.g., for the 
lack of auditor expertise and lead to high prediction accuracy. We further provide rec-
ommendations to develop data-driven methods, enable the informed use of data-driven 
methods, and propose perspectives for further research.

Literature
Energy performance certificates

The introduction of EPCs dates to 2002 when the European parliament and council 
passed a directive that declared the need for EPCs to improve the BEP of the building 
stock (The European Parliament and the Council of the European Union 2002). EPCs are 
issued by qualified auditors and aim to inform owners, occupants, and property devel-
opers about the BEP (typically the annual final and primary energy consumption as well 
as associated carbon dioxide emissions), related operating costs, and recommendations 
for energetic retrofitting (Droutsa et al. 2016). EPCs further allow comparing different 
buildings’ BEP in an energy efficiency ranking scheme independent of their location, 
year of measurement, and climate effects (Poel et al. 2007). EPCs for residential build-
ings thereby focus on space heating, water heating, and cooling (Arcipowska et al. 2014), 
which constitutes the biggest share of residential households’ energy consumption [e.g., 
85% of the final energy consumption of German residential households (Energieeffizienz 
in Zahlen 2018)]. Other energy flows like electricity consumption are not considered in 
EPCs as these are highly occupant dependent (Gram-Hanssen 2013).

Two options are available to derive the BEP of a building: one refers to the final energy 
demand (demand-oriented), while the other is based on the final energy consumption 
(consumption-oriented) (Arcipowska et al. 2014). The demand-oriented EPC reveals the 
energetic quality of a building with the above-mentioned engineering methods based 
on a technical analysis of manifold building parameters. Building parameters comprise 
building geometry, building type, condition of the heating system, and material of build-
ing components like walls or thermal insulation. The consumption-oriented EPC reports 
on the metered or data-related final energy consumption of a building, therefore implic-
itly including occupant behavior (Semple and Jenkins 2020). According to Arcipowska 
et al. (2014), no EU country relied exclusively on consumption-oriented EPCs, but either 
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on demand-oriented EPCs or both options. Thus, we also focus on demand-oriented 
EPCs.

Recent research discovered deviations between both options summarized under the 
phenomenon of the energy performance gap, which describes the phenomenon that 
the metered BEP differs significantly from the calculated BEP (Wilde 2014; Hertle et al. 
2005). Studies on the energy performance gap depict deviations of up to 287% across 
Europe (Wilde 2014; Calì et al. 2016). Given that EPCs are supposed to provide a reli-
able basis for decision-makers (Arcipowska et  al. 2014), these strong deviations are 
unacceptable, as uncertainty and incomplete information are substantial investment 
barriers in energy efficiency (Amecke 2012). Therefore, many studies try to find causes 
and solutions to minimize the energy performance gap (Burman et al. 2014; Herrando 
et al. 2016; Menezes et al. 2012). In terms of the energy quantification methods used to 
determine the BEP, the current methods can either be gradually improved (Zhao and 
Magoulès 2012a; Bigalke and Marcinek 2016) or completely replaced by more accurate 
methods, e.g., data-driven methods (Wenninger and Wiethe 2021; Foucquier et al. 2013; 
Deutscher Bundestag 2013), to minimize the energy performance gap. The potentials of 
data-driven methods are expected to originate especially from the first two steps of cre-
ating EPCs. The creation of EPCs typically follows three generic process steps (Hardy 
and Glew 2019; Li et al. 2019). First, the auditor collects necessary input data (Hardy and 
Glew 2019) during on-site visits to ensure a high level of data quality (Arcipowska et al. 
2014). The collected data may stem from, e.g., photos, plans, or sketches and are then 
converted and pre-processed for the following calculations. Second, the auditor calcu-
lates the EPC’s target value, the BEP, and identifies possible retrofitting recommenda-
tions with the prescribed engineering methods, mostly implemented in software tools 
(Hardy and Glew 2019; Li et al. 2019). Third, the auditor prepares the EPC document 
and presents the results (Pasichnyi et al. 2019).

Energy quantification methods

Quantifying BEP is challenging since multiple influencing factors like building geom-
etry, occupancy behavior, thermal properties, or weather must be considered to achieve 
accurate results (Wei et al. 2018). Today’s energy quantification methods (EQMs) can be 
categorized, as mentioned before, into engineering and data-driven EQMs. A third type 
is hybrid EQMs, which combine the former two types (Amasyali and El-Gohary 2018; 
Foucquier et al. 2013; Borgstein et al. 2016). Hybrid EQMs require a deep knowledge of 
both types of EQMs and are computationally inefficient, posing a major challenge and 
making them less attractive (Wei et al. 2018; Coakley et al. 2014). Thus, not being in that 
niche, we focus on engineering and data-driven EQMs in our study. The purpose and 
level of detail of EQMs can vary widely (Wang et al. 2012). For instance, different predic-
tion periods, building types, or the type of predicted energy consumption can be distin-
guished (Amasyali and El-Gohary 2018). Besides quantifying annual BEP for EPCs, the 
predicting granular future energy consumption for the coming (quarter)hours or days 
is a relevant field of research and in practice allowing energy management systems to 
optimize operation (Qiao et al. 2021). Engineering EQMs differ strongly in complexity 
and accuracy from detailed computational fluid dynamic models to simplified lumped 
parameter models (Foucquier et  al. 2013; Andrade-Cabrera et  al. 2018). The thermal 
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behavior of heat flows in buildings sets the basis for these physical models (Foucquier 
et  al. 2013). To calculate the BEP for heating (or cooling), transmission heat losses 
through the building shell, ventilation heat losses, solar heat gains, and internal heat 
gains are part of the physical models (Ettrich 2008). Thus, to depict the BEP, all these 
heat flows must be considered and derived. In the EU, quasi-steady-state EQMs are typi-
cally used (Semple and Jenkins 2020; Eicker et al. 2018). For an accurate calculation of 
the heat flows, the correlations of all input parameters must be considered. Input param-
eters include detailed information about building location, building geometry, materi-
als used (e.g., insulation or masonry material), and the heating system(s). As a result of 
the high demand for information and the sophistication of the computation, software is 
commonly used to carry out demand-oriented EPCs (Foucquier et al. 2013). Since docu-
mentation is rare (in existing older buildings), and test drillings are cost-intensive, col-
lecting the necessary information (such as materials’ heat transmission coefficients) by 
identifying the materials used as well as the isolation thickness is challenging, time-con-
suming, and costly. Thus, for engineering EQMs, the data quality necessary for accurate 
calculations is a centrally limiting factor. Therefore, the research concludes that engi-
neering EQMs may be more appropriate in the design phase of buildings than assessing 
the BEP of existing buildings (Qiao et al. 2021).

Data-driven EQMs, in contrast, exclusively rely on data, requiring no expertise of 
physical phenomena to describe thermal behavior (Foucquier et  al. 2013). Instead, by 
learning from correlations between input and output parameters, the underlying model 
builds the knowledge to predict BEP for unknown buildings with new data. Regarding 
the historical data, these may only comprise easily collectible building and energy con-
sumption or demand data, as well as information on implemented energy retrofit meas-
ures. Several EQMs exist for data-driven prediction of BEP. The following data-driven 
EQMs for the prediction and classification of BEP are the most popular (Wei et al. 2018): 
Artificial neural networks (ANN), Support vector machines (SVM), statistical regres-
sions, and decision tree genetic algorithms. Thereby, ANNs and SVMs are particularly 
well suited to predict BEP, although requiring a large amount of high-quality data to 
make accurate predictions (Zhao and Magoulès 2012b; Kaymakci et al. 2021). Thereby 
ANNs are computationally less intensive at runtime than SVMs (Wei et al. 2018). On the 
other hand, Wenninger and Wiethe (2021) found that after reasonably hyperparameter 
optimization and thorough training, ANNs, SVMs, Random Forests, Extreme Gradient 
Boosting, and D-Vine Copulas perform comparably well. In addition, emerging methods 
from the data science disciplines gain momentum in energy research. Researchers seek 
improvements in prediction accuracy using deep neural networks or ensemble learning 
approaches combining several data-driven EQMs (Qiao et al. 2021). Thereby, ensemble 
learning assumes that more diverse compositions of models lead to more diverse errors 
that may cancel each other out, leading to higher prediction accuracy (Polikar 2006). 
Next to enhancing prediction accuracy, a new stream of explainable artificial intelligence 
analysis aims to shed light on the black box phenomenon of data-driven EQMs and 
derive insights into buildings’ energy behavior (Wenninger et al. 2022a).

Literature reports clear advantages in prediction accuracy for data-driven EQMs when 
comparing engineering and data-driven EQMs. Deb and Schlueter (2021) state that 
the accuracy surplus for data-driven EQMs results from training on data with no prior 
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defined model structure. Wenninger and Wiethe (2021) benchmarked several data-
driven EQMs against the status-quo engineering EQM for EPCs in Germany and found 
that all data-driven EQMs tested exceeded the engineering EQM by almost 50% in pre-
diction accuracy. Further, various case studies on different BEP prediction tasks reveal 
high prediction accuracy for data-driven EQMs (Tsanas and Xifara 2012; Li et al. 2010; 
Fernandez et  al. 2011). Remarkably though, literature focuses only on the prediction 
performance, i.e., whether and how much data-driven EQMs perform better than engi-
neering EQMs (Wenninger et al. 2022b). However, it is not clear why data-driven EQMs 
often depict higher prediction accuracy in BEP studies. To identify further potential 
improvements for both engineering and data-driven EQMs, it is important to address 
this research gap and capture the underlying mechanics embedded in the real-world 
process of predicting BEP and issuing EPCs outside the laboratory.

Research method and study design
The process of issuing EPCs involves both a technological (the software for BEP quan-
tification) and a social system (auditor collecting data and working with software), 
which interact with one another. According to Lee (2001), socio-technical systems are 
quite uniquely the unit of analysis of the information systems (IS) discipline. As a sub-
discipline of IS, based on Watson et al. (2010), Energy Informatics is concerned with 
these systems in the energy domain, including BEP quantification for EPCs. Episte-
mologically, we thus follow and refer to research from these fields to develop a theory 
on the design of EQMs for the BEP quantification for EPCs. With that as one goal of 
this study, we refer to Doty and Glick (1994) for the epistemology, stating that there is 
apparent consensus among the theory-building experts that the minimal definition of 
a theory must comply with three primary criteria:

1.	 Constructs must be identified,
2.	 Relationships among these constructs must be specified; and
3.	 These relationships must be falsifiable.

In this sequence, a theory can be viewed as a set of “statements of relationships 
among constructs that can be tested” (Gregor 2006). As a prominent example, Davis 
(1985) follows this sequence of steps unfolding his theory on technology acceptance. 
Constructs in this field, for example, are perceived usefulness and perceived ease-of-
use representing user beliefs, as well as technology acceptance behavior. Davis stipu-
lates that there is a specific relationship among these constructs so that both former 
constructs predict higher rates of technology acceptance (latter construct). These 
relationships are formulated so that they can always be tested empirically (e.g., Davis 
1989) and thus potentially be falsified.

Turning to the study design for the theory on BEP prediction as the main contribu-
tion of this research, we similarly follow Doty and Glick (1994), who prescribed the 
aforementioned primary criteria to establish a theory. Additionally, this study strives 
to go beyond mere prediction by characterizing causal explanations in line with, e.g., 
Bhattacherjee and Premkumar (2004).
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To do so, we follow Niehaves and Ortbach (2016) and gradually develop our predic-
tive-explanatory theory. First, we form an inner structural model, and second amend 
this inner model by outer constructs and relationships, i.e., the outer model. Introduc-
ing the process of issuing EPCs, we characterize the inner model, which is concerned 
with data quality, model quality, and (output) accuracy. These serve as constructs while 
the three essential cause–effect relationships (CER1, CER2, CER3) between those con-
structs define the relationships. We describe all CERs in detail in “Cause–effect relation-
ships between model quality, data quality, and output accuracy” section.

In “Design candidates based on data quality and model quality” section, we extend the 
inner model by the constructs of the outer model. The outer model falls into a design 
and a measurement model. The design model describes the design options of energy 
performance assessments (EPA), in particular the EQM. Design options influence the 
constructs of the inner model. The combinations of choices for the design options 
make up concrete design candidates. The measurement serves to evaluate the different 
design candidates on output accuracy as the outcome of the cause–effect relationships. 
Thereby, the measurement model allows for the requirement of a theory to be falsifiable.

In “Characterizing output accuracy of the design candidates” section, we then system-
atically characterize the functional relationship between these types of auditors, their 
expertise (as one design option), importantly the EQM (as the other design option), and 
the (output) accuracy. Thus, we analyze the design candidates backed by the CERs.

Subsequently, in “Conceptual analysis of design candidates” section, we present design 
candidates and derive their suggested preferability over others regarding (output) accu-
racy based on a conceptual analytic model, i.e., the design candidates’ relative position to 
one another in terms of (output) accuracy. The conceptual analytic model follows from 
the constructs and relationships described in “Cause–effect relationships between model 
quality, data quality, and output accuracy”, “Design candidates based on data quality and 
model quality” and “Characterizing output accuracy of the design candidates” sections.

Finally, in “Summary of the analysis of the design candidates” section, we summarize 
and illustrate the inner and outer model according to Niehaves and Ortbach (2016) so 
that each relationship can be tested individually and the proposed predictive-explana-
tory theory as a whole. In this study, we refer and cite existing research supporting and 
validating the concepts as part of our evaluation in “Evaluation” section following evalu-
ation guidance by Sonnenberg and Vom Brocke (2011) and on the evaluation criteria 
specified by March and Smith (1995).

Conceptual analytic model and research hypotheses
As mentioned in “Energy performance certificates” section, creating EPCs covers three 
high-level generic process steps: data gathering, BEP quantification, and assessment 
presentation. In theory, quantifying BEP (for EPCs) is an information-only process that 
would not necessarily involve physical actions such as on-site visits. However, on-site 
visits are still highly encouraged in practice, even if they are not compulsory (Arcip-
owska et al. 2014). If conducted, on-site visits occur during the first step of this process, 
while the other two steps are performed remotely. Since on-site visits add cost, regula-
tors who enforce them and auditors who willingly perform them expect larger benefits 
than the thereby incurred costs. Regulators otherwise fear future costs of low-accuracy 
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assessments, e.g., economically inefficient retrofit decisions (Heo et al. 2012). Auditors, 
similarly, fear future costs from low-accuracy assessments because of revisions and pen-
alties (Arcipowska et al. 2014). Irrespective of local policies, we find two options to man-
age accuracy:

(A)	Data quality, e.g., by changing what and how to gather input data, and
(B)	 Model quality, e.g., by choosing an EQM and configuring its underlying model for 

BEP quantification.

Figure 1 illustrates the generic process steps and the two options to manage accuracy 
(highlighted by the frame).

Cause–effect relationships between model quality, data quality, and output accuracy

Since option (A) and option (B) are subtly linked to output accuracy, we derive three 
theoretical cause–effect relationships (CERs):

•	 CER1: Higher levels of model quality lead to higher levels of output accuracy, i.e., 
BEP prediction accuracy

•	 CER2: Higher levels of data quality lead to higher levels of output accuracy
•	 CER3: Higher levels of data quality during model design lead to higher levels of 

model quality

CER1: Model quality refers to the degree of how well a model captures real-world 
relationships, i.e., theoretical accuracy under perfect information. For example, compu-
tational fluid dynamic simulations are known for their high theoretical accuracy (Zhao 
and Magoulès 2012a). In contrast, existent EQMs based on linear (regression) models, 
e.g., the US ENERGY STAR rating, are despised for capturing relationships insufficiently 
(Papadopoulos and Kontokosta 2019).

CER2: Data quality describes the fit of data for its purpose (Klobas 1995), making it 
context-specific (Strong et al. 1997). In the context of EPCs, the purpose of the input data 
is to quantify BEP as accurately as possible. To assess the fit of data, quality is considered 
multi-dimensional (Pipino et  al. 2002), with completeness and accuracy being particu-
larly vital in this context (Wang and Strong 1996). Incomplete data are imperfect data, 
especially when at least one attribute must be replaced by surrogate measures. Inaccu-
rate data (if quantitative) or mislabeled data (if qualitative), next to any other data quality 
issue, also leads to imperfect data. Generally, imperfect input data cannot generate more 

Fig. 1  Process of EPC creation and options to manage accuracy
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accurate results than perfect input data for any deterministic method without the model 
having a systematic error, i.e., bias (Schwarz and Köckler 2011; Bevington 1969).

CER3: Considering the influence of data quality on model quality, it is important to 
distinguish between engineering and data-driven EQMs. As the engineering EQMs are 
based on physical laws, human behavior and inaccuracies when collecting input data are 
exogenous to the models reviewed (Zhao and Magoulès 2012a; Foucquier et  al. 2013; 
Mathew et al. 2015). Thus, they not only work best when input data is perfect but are 
also adversely affected by error propagation (Schwarz and Köckler 2011; Fornasini 2008). 
In contrast, data-driven EQMs require their underlying model to be trained on data. For 
data-driven EQMs, data quality can also affect the model quality and thus, in addition to 
CER2, output accuracy (Kaiser et al. 2022). The model training corresponds to optimiz-
ing an objective function over all observations. Thus, the more accurately the input data 
resembles reality (all possible observations), the more likely it is that the model is of high 
theoretical output accuracy, while a model that is trained on lower-quality data will have 
lower theoretical accuracy (Bi and Zhang 2005). However, training a model on inac-
curate but unbiased data generates models more robust to lower data quality because 
parameters bearing greater uncertainty are weighted less (e.g., Pregenzer et al. 1994). In 
this context, adaptability corresponds to handling varying degrees of uncertainty. Data-
driven models exhibit a certain degree of adaptability to data uncertainty. We sketch the 
considered CERs in Fig. 2.

We denote CER3 as a dashed line, as it has practically no influence in cases where the 
EQM’s underlying model is purely based on physical laws. Thus, we consider this a con-
ditional CER as the relationship is conditional to the model in place.

Design candidates based on data quality and model quality

Having established that data and model quality are central influencing factors on accu-
racy while simultaneously influencing one another, we derive the design candidates 
based on the possible combinations of both. To this end, we assume binary choices for 
both to keep the analyses tractable.

Data quality Several different parameters affect data quality in EPCs. First, the exper-
tise of auditors is an important determinant of EPC’s quality, as in most countries, quali-
fications and often an accreditation is required (Arcipowska et al. 2014). Second, there 
is the possibility of collecting input data through on-site visits by a qualified auditor. 
Third, next to expertise, previous research found that auditors’ time constraints seem to 
limit output accuracy (Pasichnyi et al. 2019). We opt to use the design options “qualified 

Fig. 2  Cause–effect relationships explaining the accuracy of EPCs
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auditor” and “occupant” for data quality for our theoretical analysis. Without training, 
the average occupant might lack the expertise and tools to achieve the same data qual-
ity as a qualified auditor, which is consequently reflected in lower data quality (Claesson 
2011). We assume both occupants and qualified auditors to carry out on-site visits.

Model quality There is the choice of the EQM. As outlined before, however, EQMs are 
not only distinguishable by theoretical accuracy but react differently to data uncertainty 
from imperfect data quality depending on the type, i.e., engineering or data-driven 
EQM. For our analyses, we choose engineering and data-driven EQMs as overarching 
design candidates for model quality without committing to any particular EQM.

This leaves the four conceptual abstract design candidates for our study represent-
ing the design model, namely: (I) a qualified auditor using an engineering EQM, (II) an 
occupant using an engineering EQM, (III) a qualified auditor using a data-driven EQM, 
and (IV) an occupant using a data-driven EQM. Figure 3 summarizes all four conceiv-
able design candidates.

For the measurement model, we introduce (statistical) performance evaluation meas-
ures (PEM) required to meaningfully compare the BEP prediction performance of the 
different design candidates (Amasyali and El-Gohary 2018). PEMs quantify the good-
ness of fit for predictions against a ground truth, i.e., the predicted BEP using EQMs 
against the actual BEP. Some studies evaluate the impact of building parameters on BEP 
by using sensitivity or variable importance analyses (Ali et al. 2020; Yuan et al. 2019). In 
the following sections, we use the term “output accuracy” to describe BEP prediction 
performance, rather than restricting it to a specific PEM, such as the Coefficient of Vari-
ation (CV) most commonly used in BEP prediction studies (Amasyali and El-Gohary 
2018). Higher values for output accuracy indicate better BEP prediction performance.

Characterizing output accuracy of the design candidates

As mentioned, we use output accuracy as the key measure to compare EQMs. Analo-
gous to CER2 for model training, the output accuracy for model prediction also depends 
on data quality. When measuring data uncertainty using one single aggregated measure, 
we can then describe the output accuracy of one EQM as a function of uncertainty in 

Fig. 3  Design candidates for EPAs
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data. More precisely, let ξ ∈ [0, 1] denote the underlying uncertainty in the data, whereby 
1 corresponds to perfect data and 0 to random noise. We can then define a function 
f i(ξ) → R

+ mapping the uncertainty in data ξ to the respective output accuracy in R+ 
for a specific EQM i and PEM. It holds that for ξ = 1 this function delivers the EQM’s 
theoretical output accuracy, which, by CER1, can be made arbitrarily accurate. From 
CER2, however, it follows that with growing uncertainty, an EQM’s output accuracy 
declines monotonously, i.e., for all EQM i . Finally, CER3 suggests that the slope of the 
function varies depending on the type of the EQM, i.e., for two different EQMs i  = j , 
it may hold that ∂f

i

∂ξ
 =

∂f j

∂ξ
 . We assume that engineering EQMs dispose of higher theo-

retical output accuracy, while data-driven EQMs dispose of higher output accuracy for 
high uncertainty in data as they are less susceptible to data quality problems. By further 
considering continuous functions, we can apply the mean value theorem and derive that 
there exists a fixed ξ∗ ∈ [0, 1] for which the corresponding functions of the two types of 
EQMs must intersect, i.e., f i(ξ∗) = f j(ξ∗).1 The resulting point of intersection indicates 
a point of indifference, i.e., where both EQMs deliver the same accuracy given a level of 
uncertainty in data.2 Figure 4 sketches these conceptual analytical relationships visually 
for two EQMs.

We partition the continuous scale of uncertainty and then associate certain types 
of auditors (design option), or more generally, types of human agents, with the then 
divided segments of uncertainty. For our analyses, the differentiation between qualified 
auditors without time constraints, qualified auditors with time constraints, occupants 

Fig. 4  Sketch of the conceptual analytic model

1  Note, that continuity is a necessity for the mean value theorem yet must not necessarily hold. However, even for dis-
continuous function we can still determine an arbitrarily small ε-neighborhood around a fixed ξ∗ where the comparative 
advantage in output accuracy switches.
2  However, the point of intersection might also rest below the horizontal axis. Then, clearly, there is a dominant and an 
inferior EQM. Note that an EQM intersecting the horizontal axis is considered zero thereafter.
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without training, and auditors below basic requirements is relevant. We assume these 
types of agents to produce results in decreasing quality, as depicted in Fig. 5. In that vein, 
auditors below basic requirements provide the lowest output accuracy. We describe the 
divided segments of uncertainty as zones listed from 1 to 4 as follows:

•	 Zone 1 corresponds to uncertainty levels in data that can only be reached if qualified 
auditors perform EPAs without time constraints.

•	 Zone 2 represents the continuum of what might be expected by qualified auditors 
with time constraints concerning uncertainty in data.

•	 Zone 3 represents a larger continuum of what might be expected by occupants con-
cerning uncertainty in data. We allow an occupant without training but with basic 
general capabilities and knowledge to represent this type of human agent. This may 
be any person capable of keeping the house on one’s own.

•	 Zone 4 corresponds to an uncertainty level below what can typically be expected by 
occupants.

This is relevant as the intersection between the (output) accuracy function of any two 
EQMs and its position, i.e., the zone in which the point of intersection falls, guides deci-
sion-making on what type of EQM serves a specific type of human agent best.

Conceptual analysis of design candidates

This subsection presents the different possible graphs of the output accuracy func-
tions for the data-driven and engineering EQMs, building on the previous sections. As 
mentioned in “Literature” and “Cause–effect relationships between model quality, data 
quality, and output accuracy” sections, literature describes the theoretical output accu-
racy of engineering EQMs higher than for data-driven EQMs. At the same time, data-
driven EQMs can weigh down imprecise input variables, making them less susceptible 
to low data quality. Therefore, we argue that an engineering EQM provides better results 
under perfect data quality, while a data-driven EQM provides better output accuracy 

Fig. 5  Output accuracy-uncertainty plane partitioned in zones by the uncertainty levels of the four types of 
human agents
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under high data uncertainty. This leaves us with the question of where the two functions 
intersect.

First, we let MD denote the output accuracy function of a data-driven EQM. Then, 
we introduce four output accuracy functions each intersecting with MD in a different 
of the four zones. We let ME4 denote the engineering EQM intersecting MD in zone 4, 
ME3 the engineering EQM intersecting with MD in zone 3, ME2 the engineering EQM 
intersecting with MD in zone 2, and ME1 the engineering EQM intersecting in zone 1. 
In particular, if ME4 was the valid hypothesis for the output accuracy function, then 
the engineering EQM would dominate the data-driven EQM for all considered types of 
auditors, i.e., all considered types of human agents should use the engineering EQM. 
Likewise, if ME1 was the valid hypothesis for the output accuracy function, then all con-
sidered types of auditors should use the data-driven EQM. However, the interpretation is 
less clear when the point of intersection lies in zones 2 or 3. Assuming that it was in zone 
3, qualified auditors with time constraints would be advised to use the engineering EQM 
as they currently do. However, there are reasons to be skeptical to that end: first, previ-
ous research has validated that some data-driven EQMs can infer parameters very well 
from non-physical building attributes (Berger et al. 2016). Second, while a qualified audi-
tor might use (advanced) mechanical tools on-site to better assess parameters like heat 
transmittance of the building envelope, e.g., by thermography, there is some evidence 
that this is only done for a surcharge (Fox et al. 2016). This raises the question of why 
the auditor should do this if there is already sufficient certainty under limited time and 
effort. Both arguments suggest that such auditors might need more detailed information 
than standard on-site visit procedures would allow. This, in turn, indicates that even a 
qualified auditor with time constraints could prefer a data-driven EQM. Figure 6 depicts 
the different output functions with ME2 as the hypothesized output function in contrast 

Fig. 6  Conceptual analysis of the abstract design candidates (cf. “Design candidates based on data quality 
and model quality” section)
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to ME4, ME3, and ME1 serving as alternative (output) accuracy functions. However, a 
rigorous validation of this hypothesis is not feasible analytically, but only empirically. As 
of that reason, we leave the zone in which there is the point of intersection as a hypoth-
esis for now and refer to the empirical validation to “Evaluation” section. However, if this 
hypothesis holds, we can then infer the zonal positions of the design candidates (I), (II), 
(III), and (IV). We decide to place the design candidates at the conservative end of the 
zonal spectrum for reasons of consistency, while theoretically they might be placed any-
where along their output accuracy function within that zone. Nonetheless, design candi-
dates referring to the same human agent must feature the same level of uncertainty, i.e., 
they must be placed on the same vertical line. We find that candidates (I) and (III) fea-
ture the same level of uncertainty in data, whereas candidate (III) will presumably have a 
higher output accuracy. Similarly, we find that candidates (II) and (IV) feature the same 
level of uncertainty in data, whereas candidate (IV) is considered to have significantly 
higher output accuracy. Also, we see that candidate (IV) is positioned above candidate 
(I) on the (output) accuracy axis, while yet being exposed to more uncertainty in data. 
We present the conceptual analysis as a testable theory in Fig. 6.

Summary of the analysis of the design candidates

Based on the conceptual analysis and previous sections, we summarize and illustrate 
our findings as a testable theory with the inner and outer model according to Niehaves 
and Ortbach (2016) illustrated in Fig.  7. The model consists of an outer and an inner 
structural model, whereby the outer model divides into the previously derived design 
and measurement model. The design model specifies the design candidates with the two 
design options of the auditor type and the EQM. The measurement model allows testing 
different combinations of design options, i.e., design candidates. For this purpose, PEMs 
allow evaluating the results with respect to the BEP prediction performance. The inner 
model contains the two options to manage accuracy in EPCs, data and model quality, as 
well as their relationships via CERs. The design option auditor type strongly influences 
the data quality, and the design option EQM the model quality.

Fig. 7  Testable theory for EPCs based on Niehaves and Ortbach (2016)



Page 15 of 24Wederhake et al. Energy Informatics             (2022) 5:7 	

The developed theory represents the central result of our work and provides insights 
into CERs of EQMs, aiming to explain status quo prediction performances of differ-
ent EQMs used in practice and research. By allowing us to influence individual design 
options, which in turn affect data and model quality, our theory, in conjunction with the 
PEMs embodied in the measurement model, enables us to (empirically) test the accuracy 
functions and related hypotheses stated in “Conceptual analysis of design candidates” 
section. In “Evaluation” section, we validate and evaluate as far as possible the developed 
theory based on literature.

Evaluation
Evaluation design

Evaluation is a crucial step when developing artifacts to demonstrate the relevance of an 
artifact for practice and research (Sonnenberg and Brocke 2011). For our developed the-
ory, evaluation is important to ensure that the theoretical insights regarding the CERs 
and the influence of design options on BEP prediction performance reflect the real world 
in the best possible way. Only then, we can derive robust and valid implications for prac-
tice and research. For this purpose, artifact evaluation usually involves the definition of 
evaluation criteria, which measure the degree to which a developed artifact achieves its 
goal or its quality. March and Smith (1995) propose the evaluation criteria completeness, 
fidelity with real-world phenomena, internal consistency, level of detail, and robustness 
for models and theories. We aim to draw on all five evaluation criteria. To this end, we 
apply logical reasoning supported by first evidence from existing research.

Evaluation results

Here, we present the evaluation results for both the components of our theory and our 
theory as a whole.

Completeness: In terms of the completeness of our theory, we consider the inner struc-
tural model and the design and measurement models that form the outer model. First, 
and regarding the inner structural model, we derived from literature that data quality 
and model quality are ultimately the only options to manage accuracy in issuing EPCs. 
We subsume the expertise and possible time constraints under which auditors issue 
EPCs. Therefore, we argue that for each EQM, there are only these two options to influ-
ence accuracy. To this end, the inner structural model is complete, even though there 
could be other preceding influencing factors such as available training programs and 
documentation for auditors, which are not captured in our theory. Second and regard-
ing the design model, we restricted our study to four possible design candidates, even if 
there are multiple types of auditors and EQMs. Since our theory should be understand-
able and comprehensible, it is only possible to depict a well-defined range of real-world 
options. Thus, for both design options, we use terms established in literature. The dis-
tinction between data-driven and engineering EQMs, also often referred to as black-box 
and white-box EQMs, is the standard in literature (Amasyali and El-Gohary 2018). For 
the sake of completeness, it should be mentioned that so-called hybrid EQMs, which 
combine data-driven and engineering EQMs, are also available but are not widely used 
due to some drawbacks (Wei et al. 2018). Regarding the two auditor types, Wenninger 
and Wiethe (2021) already distinguished between occupants and qualified auditors in 
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an EQM benchmarking study. We further divided a theoretically continuous spectrum 
into four types of auditors for the evaluation of uncertainty in data. Even if there might 
be additional or differently grouped types of auditors, we argue that the split of auditor 
types is not crucial for the underlying principles of our theory. E.g., further levels in the 
quality of data recording could be achieved if, for example, house residents or auditors 
are further enabled to record the data in a quality-assured manner within the given time 
restrictions. We, therefore, consider our design model to be complete. Third and regard-
ing the measurement model, we referred to common PEMs. Regarding completeness, 
we distinguish between an evaluation based on literature and an evaluation based on an 
EPC user perspective, e.g., occupants. Based on literature, our evaluation is complete 
since we use established PEMs in our measurement model. From an EPC user perspec-
tive, it might be relevant for individual EPCs to specify the risk of BEP misprediction for 
informed energy efficiency investments (Rockstuhl et al. 2021). In contrast to the PEMs 
we use, additional information such as the probability of deviation from the BEP predic-
tion in addition to mean values would be useful. In the case of data-driven EQMs, quan-
tile regression could solve this task, for example. An adaptation of the PEMs and the use 
of EQMs that can provide such information would make sense in the context of an EPC 
user perspective.

Fidelity with real-world phenomena: Regarding fidelity with real-world phenomena 
and our findings derived in “Conceptual analysis of design candidates” section, we rely 
on and refer to already existing empirical research instead of replicating their findings 
in this piece of re-search. Even if findings across studies trivially differ due to different 
EQMs applied and datasets used, we identify a pronounced trend: particularly helpful 
in this context are studies that create comparability between results by simultaneously 
examining both engineering EQMs with officially collected parameters and data-driven 
EQMs with parameters collected by building occupants. To evaluate our theory, we rely 
on a study by Wenninger and Wiethe (2021). They investigated how well the established 
data-driven EQMs ANN, D-vine copula quantile regression, Extreme Gradient Boosting 
(XGB), Random Forest (RF), and Support Vector Regression (SVR) perform in compari-
son to the legally required engineering EQM for issuing EPCs. Note that the engineering 
EQMs were performed by qualified energy auditors, whereas for the data-driven EQMs, 
homeowners, i.e., non-experts, collected fewer and simpler data. Figure  8 shows the 
study results for the engineering and data-driven EQMs in different building age classes 
and living spaces. The prediction accuracy on the y-axis is represented by the CV, with 
smaller values indicating higher prediction accuracy. We see that all data-driven EQMs 
exceed the engineering EQM regarding prediction accuracy and nearly halve the predic-
tion error. For further details, we refer to Wenninger and Wiethe (2021).

Thus, from an evaluation perspective of our theory, first, we can confirm that the accu-
racy functions of data-driven and engineering EQMs differ. Second, the output accu-
racy functions displayed in Fig.  6 are likely to differ from the findings of Wenninger 
and Wiethe (2021). Since they tested design candidates I and IV with almost twice the 
accuracy for design candidate IV, MD’s accuracy for uncertainty in data of design can-
didate IV should significantly exceed ME’s accuracy for uncertainty in data of design 
candidate I. We conclude that, while our theory generally supports the findings of 
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existing empirical research, further empirical studies are needed for a complete evalua-
tion, which we discuss in more detail in the next section.

Internal consistency: For internal consistency, we suppose that all sub-models—design 
model, measurement model, inner structural model—as well as the outer model must 
be consistent and coherent. To evaluate this criterion, we put ourselves in the role of a 
user of our theory (e.g., an empirical scientist). The research process will start with the 
selection of design candidates by selecting different design options, and the end is the 
measurement of the BEP prediction accuracy in the measurement model. By doing so, 
we could discover possible inconsistencies. After determining the design candidates, the 
inner structural model maps the interaction of data quality and model quality, which 
results in a BEP prediction. The measurement model then can be understood as a test 
mechanism for empirical validation of the influence of different design options on the 
BEP prediction accuracy. Based on the results in the measurement model, the process 
could be re-run with a further iterative loop, and design options could be selected in 
such a way that, for example, the BEP prediction accuracy is increased, or the influence 
of different options is investigated in the sense of a “feature importance analysis.” For 
the inner structural model, we consider it to be consistent as long as our derived and 
defined assumptions hold. Using the mathematical derivation from “Characterizing out-
put accuracy of the design candidates” section, we can describe the output accuracy of 
an EQM as a function of the uncertainty in data. This allows us to model the effect of 
design options on output accuracy and strengthens consistency. Regarding the design 
model, further empirical evidence is needed to assess consistency scientifically. This 
mainly concerns the theoretically optimal accuracy. In addition, there is little empirical 
evidence on how the auditor types cope with uncertainty in data. The same is likely true 
for the measurement model to be consistent with literature. Since the PEMs in the meas-
urement model deterministically provide the same output for the same input, this sub 
model may also be considered consistent in itself. Nevertheless, from a process perspec-
tive, we consider the internal consistency as given to a large extent since all sub-models 
represent a continuous process.

Level of detail: The level of detail is relative to the current state of knowledge. Based 
on our literature analysis and best of our knowledge, there is no current attempt to syn-
thesize the findings from empirical studies into a theory. For that reason, we argue that 

Fig. 8  Comparison of engineering EQMs with established data-driven EQMs regarding prediction 
performance measured with the coefficient of variation (CV) (Figure from Wenninger and Wiethe 2021)
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even the simplest, lowest detailed theory can bring value to the scientific discourse and 
help guide EQM development. For the absence of the theory, evaluating completeness 
might be considered the more important evaluation criterion than the level of detail. 
Nonetheless, reading the detail, in this study, we describe the dimensions of the design 
candidates, the auditor types, and accuracy functions reflecting important constructs in 
the domain.

Robustness: Regarding robustness, our model is instance-agnostic and therefore gen-
erally applicable to any EQM. This, in turn, means that there are no specific instance 
problems, and we can first demonstrated robustness. In addition, our theory aims not 
to predict the location of the points of intersection. Instead, our theory demonstrates 
the existence of these as a function of data and model quality, influenced by the EQM 
and auditor type. This underlines that there is no dependence on an single instance so 
that high robustness can be assumed. Future research may empirically determine these 
points of intersection for different EQM and auditor types.

Summarizing, applying logical reasoning and evidence from existing research sup-
ports the validity of our proposed theory to a large extent. As pointed out, all sub-mod-
els and CERs can be empirically tested to further validate or falsify and refine the theory. 
Regardless of that, we discuss still vague or uncertain aspects found in the evaluation in 
the following section.

Discussion and implications
Our research attempts to explain why data-driven EQMs on simple data input can 
achieve higher levels of accuracy than engineering EQMs on data input from qualified 
auditors, as observed in empirical studies. This, as an artifact, is relevant because it pro-
vides a basis for conceiving and understanding a phenomenon potentially considered 
unreasonable before. In addition, this theory might inspire and guide the design of new 
and improved EQMs. In a similar vein, this theory intends to enable the informed use 
of data-driven EQMs. That might come in particularly handy given the ongoing policy-
related discussion on EPCs, as well as the process and the tooling for issuing EPCs. Pre-
viously, there has been the conception that high-quality input data for EQMs can only 
exist when there is a considerable effort while collecting the data. However, data-driven 
EQMs exhibit some traits that help accommodate uncertainty in data on top of their 
ability to produce reliable outcomes with less specific/detailed information than needed 
for engineering EQMs.

In this regard, the theory suggests three implications that can guide the use of data-
driven EQMs. First, data-driven EQMs can be a valid alternative to calculation-/simula-
tion-based, i.e., engineering EQMs under some conditions. The theory in this research 
has underlined the reasons for this. Second, data-driven EQMs can differ largely in the 
amount of input they require, accuracy, and robustness against missing or anomalous 
data input. Therefore, choosing an appropriate machine learning algorithm is a relevant 
decision, similar to choosing an appropriate physical calculation/simulation model. 
Likewise, is the selection of variables to consider for the data-driven EQM an important 
issue. This is especially true when not only physical measures serve as variables. Third 
and inapplicable to engineering EQMs, it is important to train a data-driven EQM on 
data that will be most similar to the data applied to the data-driven EQM for inference. 
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For example, a data-driven EQM trained on data collected by a qualified auditor apply-
ing much tooling should not be considered for application by occupants, although on 
validation data, the data-driven EQM has performed very well. To that end, the theory 
suggests calibrating for uncertainty under realistic (work) environments. In this theory, 
we have considered archetypical auditor types. In reality, the capabilities of collect-
ing data should be critically assessed and potentially revisited over time. In that sense, 
informed use of data-driven EQMs requires systematically identifying the building char-
acteristics the type of auditor can reliably assess. As can be seen, the design and use of 
data-driven EQM are strongly coupled.

In this study, we especially stressed the role of CER1 to CER3 to link the design can-
didates to performance evaluation measures of prediction via an inner structural model. 
For CER1, understanding and the ability to measure variable importance help manage 
model quality for both engineering (via sensitivity analyses) and data-driven EQMs. 
Regarding CER2, data quality can be managed by expertise and physical presence, 
among others. CER3 is specific to data-driven EQMs and is key for a data-driven EQMs 
trait to somewhat accommodate for uncertainty in data.

Similar to the introduction of technology acceptance models (Davis 1989), which 
enjoy great popularity in the information technology domain, we derived the CERs from 
literature before empirically testing and validating these CERs jointly in a consecutive 
study. Discussing the general testability of the CERs is important already at this stage. 
For that reason, we present a testing approach for each CER:

•	 As outlined before, testing CER1 for engineering EQMs has already been carried out 
many times (Foucquier et al. 2013). A typical approach is to look at a series of sample 
buildings, where input data for the simplest but also the most advanced EQM are 
available. Then, we can perform the calculations of all engineering EQMs, which are 
to be compared. The accuracy rankings for each EQM should be stable over sam-
ple buildings to validate CER1, e.g., by rank correlation (Yilmaz et al. 2008). We can 
apply a similar test for the data-driven EQMs. However, for data-driven EQMs, an 
experiment needs to isolate effects related to CER3.

•	 Regarding CER2, for each engineering EQM, we can perform analytical and numeri-
cal analyses to study and evaluate how error terms in the inputs influence the outputs 
quite generally. For data-driven EQMs, we could use any trained model for inference 
on data describing the same buildings to test if it performs worse when (artificially 
added) distortion (noise) on the data increases. This test should consider various 
classes of machine learning algorithms, e.g., random forests, extreme gradient boost, 
Bayesian networks, and shallow and deep neural networks (Wenninger and Wiethe 
2021).

•	 CER3 is relevant for data-driven EQMs, only. For testing purposes, we might provide 
a series of training datasets in decreasing levels of data quality on the same sufficient 
number of buildings. Any chosen machine learning algorithm should be applied con-
sistently to train as many models as there are datasets. Testing the models on another 
sufficiently sized out-of-sample dataset should allow ordering the models according 
to the data quality of the data set they were trained. This might serve as a test of 
CER3.
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From a further research point of view, there are open venues methodologically and 
regarding the adjacent (sub-) domains of the field. We subsequently suggest a three-
pronged research agenda.

Testing, confirming, and falsifying the theory: As mentioned above, the scope of 
this research article allows for describing the explanatory theory and performing 
first validation based on reported findings from literature as well as logical reason-
ing, particularly with regard to the inner structural model. However, a theory needs 
to withstand the storm of testing. We have highlighted ways for further empirical 
validation of the proposed theory. Further research will be beneficial at testing all 
presented relationships. In particular, it will be interesting to conduct studies where 
empirical evidence is low at the moment. This particularly involves designing rigor-
ous studies testing the slopes of the accuracy functions. Eventually, also if at some 
point, there is some evidence that this theory is flawed/falsified, from an epistemo-
logical point of view, the understanding of data-driven EQMs for socio-physical pro-
cesses like issuing EPCs will benefit based on that scientific discourse.

Extending the scope and detail of the model: The presented explanatory model 
contributes particularly to giving a rationale for the reported surplus accuracy of 
data-driven EQMs. An apparent gap in these studies reporting surplus accuracy has 
made those EQMs more interpretable and eliminated potential pseudo-relationships 
and unfair biases. This is the purpose of explainable artificial intelligence (Wen-
ninger et  al. 2022a). It appears reasonable that CER3 can benefit from a thorough 
analysis in this regard. In addition, understanding these implications will give rise to 
incorporating the view on hybrid EQMs discussed in literature more recently.

Applying the concepts to adjacent domains: First, research in this field has mainly 
focused on one- and two-family homes. It will be of interest to research how well the 
presented conceptual analytic model generalizes over other building types: multi-
family homes, condominiums, commercial buildings, and mixed-use buildings. Sec-
ond, in this research, we have suggested that regional factors might play a role, such 
as in Ahlrichs et al. (2022). While this should not impact the general CERs, we may 
expect design candidates to dominate one type of auditor in some country/region 
while the same design candidate may be dominated by another elsewhere. This sug-
gests conducting a cross-country study in the next step. Third, in this research, 
there is an emphasis on energy for heat loads. However, with the increasing intensity 
of sector-coupling, e.g., through heat pumps, alternative views on energy carriers 
and consumption may become prevalent. Fourth, with alternative building types or 
energy carriers, alternative time horizons become relevant. While in this study, we 
linked and compared studies typically researching annual consumption, this may be 
very different with alternative applications, e.g., on a daily or hourly basis. If this 
presented conceptual analytic model prevails over these time horizons will remain a 
question to be studied. Lastly, quantifying the savings from energetic retrofits con-
tinues to be a field of debate when it comes to identifying appropriate EQMs. This 
piece of research, though, might serve as a starting point for further considerations 
in that area.
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Conclusion
In this study, we developed and discussed a theory on how data collection, the type 
of auditor, the method for building energy performance prediction, and its accuracy 
relate to one another. To overcome limitations of previous studies that only examined 
prediction accuracy for building energy performance, but where it was unclear which 
cause–effect relationships lead to the surplus accuracy for data-driven methods, we 
provide three important contributions. First, we presented a testable theory giving 
a well-grounded basis for why there is a good reason that data-driven methods on 
simple input data can outperform currently applied engineering methods with data 
gathered by qualified auditors. To that end we highlighted that data-driven methods 
compensate for difficulties in collecting data, e.g., due to lack of auditor expertise. 
Second, by our testable theory, we provide a design framework for future energy 
quantification methods. While considering different design options, such as different 
types of auditors and methods, we model cause–effect relationships, which can be 
tested in a measurement model using different performance evaluation measures to 
ensure validity and robustness. In that vein, we set up a research agenda and depict 
approaches that allow future research to test and validate/falsify our developed the-
ory empirically. Third, as our findings come with practical caveats and limitations, we 
discuss and outline implications of designing data-driven energy quantification meth-
ods for practice and policymakers.

We conclude that analyzing the accuracy of building energy performance predic-
tion methods as an outcome of a sociotechnical system is a complex task. However, 
data and model quality are the most relevant levers driving accuracy. We, therefore, 
argue that the development of energy quantification methods should be viewed as a 
holistic and interdisciplinary approach. It thus should not be limited to traditional 
engineering disciplines and enables the broad use of energy performance certificates 
for benchmarking building energy performance and providing retrofit recommenda-
tions. Our study is the first to provide theoretical insights on factors affecting build-
ing energy performance prediction accuracy and comes with its limitations. However, 
we are confident that it provides very relevant insights and implications for energy 
performance certificate design and thus for a successful heat transition in the impor-
tant building sector.
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