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Abstract: The prevalence of novel SARS-CoV-2 variants is also accompanied by an increased turnover
rate and additional cleavage sites at the positions necessary for priming the Spike (S) protein. Of
these priming sites, the proteolytically sensitive polybasic sequence of the activation loop at the
S1/S2 interface and the S2′ location within the S2 subunit of the S protein are cleaved by furin and
TMPRSS2, which are important for the infection of the target cell. Neutrophils, migrating to the site
of infection, secrete serine proteases to fight against pathogens. The serine proteases encompass
neutrophil elastase (NE), proteinase 3 (PR3), and cathepsin G (CatG), which can hydrolyze the peptide
bond adjacent to the S1/S2 interface. SARS-CoV-2 might take the opportunity to hijack proteases
from an immune response to support viral entry to the cell. The region near S704L within the S2
subunit, a novel amino acid substitution of SARS-CoV-2 Omicron sublineage BA.2.12.1, is located
close to the S1/S2 interface. We found that NE, PR3, and CatG digested the peptide within this
region; however, the S704L amino acid substitution altered cleavage sites for PR3. In conclusion,
such an amino acid substitution modifies S2 antigen processing and might further impact the major
histocompatibility complex (MHC) binding and T cell activation.

Keywords: neutrophil elastase; proteinase 3; neutrophils; serine proteases; COVID-19; SARS-CoV-2;
Omicron variant; cathepsin G; BA.2.12.1

1. Introduction

The continuous mutation of the Spike (S) protein of the severe acute respiratory
syndrome coronavirus 2 (SARS-CoV-2) is an immune evasion strategy of the virus. One
of the immune evasion strategies encompasses the escape from extracellular immune
detection by evasion into the target cell. Several mechanisms account for an increased
infection rate, including the enhanced receptor binding and proteolytic cleavage of the S
protein at the S1/S2 interface and S2′ site internal to the S2 subunit [1]. The prevalence of
novel proteolytic cleavage sites during the progression of amino acid substitutions within
the polybasic sequence of the S1/S2 interface of SARS-CoV-2 variants might promote this
process even further [2,3]. The cleavage of the polybasic sequence (RRAR↑S) primarily
by furin is a prerequisite for further hydrolysis of the S2′ site (PSKR↑S) to initiate the
membrane-fusion process. Interestingly, the S1/S2 interface is already hydrolyzed by
furin; however, the remaining S1 subunit, required to attach to the angiotensin-converting
enzyme 2 (ACE2), non-covalently associates with the S2 subunit in the infected producer
cell before the virions are released. In comparison, the S2′ site needs to be processed by
the host protease, predominantly by cell surface transmembrane protease serine subtype
2 (TMPRSS2) via cell surface entry or by cathepsin L following the clathrin-mediated
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endocytosis pathway (TMPRSS2 independent) to generate the fusion peptide. In both
pathways, the fusion peptide, more precisely the heptad repeat 1, propels the fusion
peptide towards the membrane initiating the fusion pore so that the viral genome can be
released into the cytosol [4,5].

In particular, the appearance of novel amino acid substitutions within the S protein
changes the protease-mediated SARS-CoV-2 entrance of the host cell, including viral
transmission, immune escape, and increased pathogenicity [6,7]. The distribution of the
SARS-CoV-2 Omicron sublineage, referred to as BA.2.12.1, is rapidly growing in several
regions of the world. BA.2.12.1 comprises additional amino acid substitutions at position
452 (L→ Q, L452Q), having a similar binding capacity to ACE2 receptor like BA.2 [8], and
at S704L, which is close to the polybasic sequence (https://covariants.org/variants/22C.
Omicron, accessed on 18 July 2022, [9]). Recent data showed that the neutralizing antibody
titer was lower by a factor of 14.1 against BA.2.12.1 (6.4 against BA.1, 7.0 against BA.2, and
21.0 against both BA.4 or BA.5) in comparison to the control (WA1/2020) [10], and the
L452Q mutation might be responsible for humoral immune evasion [8], which indicates the
need to develop vaccines provoking neutralizing antibodies towards the more conserved
S2′ region [11].

Activated neutrophils exocytose neutrophil serine proteases (NSPs), such as neutrophil
elastase (NE), proteinase 3 (PR3), cathepsin G (CatG), and neutrophil serine protease
4 (NSP4), at the site of infection [12]. In the case of SARS-CoV-2 infection, high levels of
CatG and NE are present in nasopharyngeal swabs of patients with SARS-CoV-2 [13], and
high CatG was found in plasma from patients depending on their COVID-19 status [14].
Whether the novel amino acid substitution of S704L might alter the proteolytic cleavage
signature of the S protein is unclear. To this end, we synthesized peptides spanning the
S704L sequence, examined the cleavage pattern after incubation with CatG, NE, and PR3,
and found that the S704L mutation adjusted the cleavage sites for PR3.

2. Results and Discussion

Protease-catalyzed hydrolysis ensues specifically between the P1 and P1′ peptide bond.
Prediction models are used to forecast the protease-specific substrate cleavage; therefore, both
peptides 695YTMSLGAENSVAYSNNS711 (S704 peptide) and 695YTMSLGAENLVAYSNNS711
(L704 peptide), including the amino acid substitution S704L, which might change the
proteolytic digest by proteases, were assessed for cleavage prediction approach for NE
(ExPASy (https://web.expasy.org/peptide_cutter/, accessed on 5 July 2022). As a result,
NE hypothetically digested both peptides in the same manner, where the cleavage sites
of the peptides occurred between 701AE702, 705VA706, and 706AY707 (Figures 1 and S1). In
order to evaluate these data, S704 and L704 peptides were synthesized, treated with NE,
CatG, or PR3, and the digestion pattern was analyzed by HPLC and MALDI-TOF-MS as
well as high-resolution ESI-QTOF-HRMS. Strikingly, NE catalyzed the hydrolysis of S704
and L704 peptides exclusively at 705VA706 (Figures 2 and S2–S8). CatG hydrolyzed the
peptide bond at 697MS698, 699LG700, and 707YS708, which were identified for both peptides.
PR3 digested the S704 and L704 peptides in the same manner as shown for NE; however,
additional cleavage sites were detected between 704SV705 for the S704 peptide that was
eliminated in the L704 peptide. In contrast, a novel cleavage site was located between
701AE702, which was most likely controlled by the P3′ position by the amino acid exchange
from S to L.

The specific cleavage site of proteases within the S protein provides a deeper un-
derstanding of the mechanism of antigen processing. Thereby, the prediction tool of
protease-controlled proteolysis supports such an insight and might lead to novel thera-
peutic targets. In accordance with the data obtained by the computational approach, three
positions (701AE702, 705VA706, and 706AY707) are sufficient for NE to cleave the S704 and
L704 peptides, which is contradictory to our findings where NE processed these peptides
only at 705VA706. In this regard, the in silico analysis has its limitations.

https://covariants.org/variants/22C.Omicron
https://covariants.org/variants/22C.Omicron
https://web.expasy.org/peptide_cutter/
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“ExPASy peptide cutter” and indicated by red arrows. 
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incubated with 4 μg/mL of NE, CatG, or PR3 for 2 h at 37 °C. The hydrolysis of the peptide bonds 
by the indicated proteases is summarized in a digestion map, where blue bars denote the digestion 
pattern and red arrows the cleavage sites. Four independent experiments for HPLC (n = 4), MALDI-
TOF-MS (n = 2), and HPLC-ESI-QTOF-HRMS (n = 2) were conducted. 
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In general, the hydrolysis of the peptide bond is influenced by glycans and can reg-
ulate substrate binding and turnover. While N-linked glycans are covalently bound to 
defined asparagine residues (N), O-linked glycans are attached to characteristic ser-
ine/threonine residues (S/T) [15]. N709, N717, and N801 are such glycosylation locations 
downstream of the S2 subunit [16] and have the potency to change the proteolytic capacity 
to nearby residues. However, our short peptides cannot be applied to address the impact 
of glycosylation on proteolytic digestion. 
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SARS-CoV-2 (S704L) BA.2.12.1: 695YTMSLGAENSVAYSNNS711
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Figure 1. Cleavage site prediction for NE. Potential cleavage sites of 695YTMSLGAENSVAYSNNS711

(S704 peptide) and 695YTMSLGAENLVAYSNNS711 (L704 peptide) were mapped for NE by using
“ExPASy peptide cutter” and indicated by red arrows.
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Figure 2. Proteolytic cleavage sites for NE, CatG, and PR3. S704 and L704 peptides (200 µg/mL)
were incubated with 4 µg/mL of NE, CatG, or PR3 for 2 h at 37 ◦C. The hydrolysis of the peptide
bonds by the indicated proteases is summarized in a digestion map, where blue bars denote the
digestion pattern and red arrows the cleavage sites. Four independent experiments for HPLC (n = 4),
MALDI-TOF-MS (n = 2), and HPLC-ESI-QTOF-HRMS (n = 2) were conducted.

In general, the hydrolysis of the peptide bond is influenced by glycans and can regulate
substrate binding and turnover. While N-linked glycans are covalently bound to defined
asparagine residues (N), O-linked glycans are attached to characteristic serine/threonine
residues (S/T) [15]. N709, N717, and N801 are such glycosylation locations downstream
of the S2 subunit [16] and have the potency to change the proteolytic capacity to nearby
residues. However, our short peptides cannot be applied to address the impact of glycosy-
lation on proteolytic digestion.

The extracellular processing of the S2 subunit by neutrophil-derived serine proteases
might have an impact on further intracellular antigen processing, binding to major histo-
compatibility complex I (MHC I, recognized by CD8+ T cells) and MHC II (monitored by
CD4+ T cells), and the presentation of S2-derived peptides for T cell inspection. Recently, it
was demonstrated that mutations in the S protein of SARS-CoV-2 mainly reduced antigenic
peptide binding to several MHC II alleles suggesting immune evasion [17]. In the case of
the S704L mutation and “preprocessing” of the S2 by PR3, a different set of antigenic pep-
tides might be generated intracellularly, possibly impairing or varying the peptide binding
properties to MHC I and II molecules, which can alter a T cell-mediated immune response.
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3. Materials and Methods
3.1. Analysis of Peptides In Silico

FASTA format sequences of the S protein peptides SARS-CoV-2 (Wuhan, WIV04,
UniProtKB: P59594, https://www.uniprot.org, accessed on 5 July 2022) 695YTMSLGAENSV-
AYSNNS711 or including the amino acid substitution S704L 695YTMSLGAENLVAYSNNS711.
Both peptides were assessed for potential cleavage sites for human NE (EC 3.4.21.37) using
in silico analysis of the program ExPASy Peptide Cutter (https://web.expasy.org/peptide_
cutter/, accessed on 5 July 2022).

3.2. Peptide Digestion In Vitro and Analysis

695YTMSLGAENSVAYSNNS711 and 695YTMSLGAENLVAYSNNS711 were synthe-
sized (EMC Microcollections GmbH, Tübingen, Germany), purified (reversed-phase high-
performance liquid chromatography, HPLC, C18 250 × 8 column, Dr. Maisch GmbH,
Ammerbuch, Germany), and the exact mass was determined by mass spectrometry (matrix-
assisted laser desorption/ionization-time-of-flight mass spectrometry, MALDI-TOF-MS,
Autoflex, Bruker Daltonics, Bremen, Germany) by applying the matrix 2,5-Dihydroxybenzoic
acid (DHB) (Bruker Daltonics, Bremen, Germany). Afterwards, the peptides were lyophilized
and dissolved with PBS (pH 7) to a final concentration of 10 mg/mL.

Peptides (200 µg/mL) were incubated with human CatG (4 µg/mL, neutrophil-derived
CatG, PN: 16-14-030107, Lot No. CG 2017-01, Athens Research and Technology, Athens,
GA, USA), human NE (4 µg/mL, neutrophil-derived human NE, PN: 16-14-051200, Lot
No. EH 2020-03, Athens Research and Technology, Athens, GA, USA), or 4 µg/mL PR3
(Athens Research and Technology, Athens, GA, USA) in PBS (pH 7.4). After an incubation
time of 2 h at 37 ◦C [18], the digestion pattern was resolved by HPLC (intelligent Pump
L-6200, Merck-Hitachi, Darmstadt, Germany), which was connected to a C18 column
(Reprosil 100, 250 × 2 mm, 5 µm particle diameter, Dr. Maisch GmbH, Ammerbuch,
Germany), and a linear acetonitrile gradient. The peptides were detected at 214 nm (UV
Vis detector L-4200, Merck-Hitachi, Darmstadt, Germany) with a Chromato-Integrator
(D-2500, Merck-Hitachi, Darmstadt, Germany). Subsequently, the collected samples were
analyzed by MALDI-TOF-MS (Autoflex, Bruker Daltonics, Bremen, Germany) and the
ExPASy FindPept tool (Expasy 3.0, Swiss Institute of Bioinformatics, Lausanne, Switzerland,
https://web.expasy.org/findpept/, [19], accessed on 8 July 2022).

3.3. HPLC Electrospray Ionization Quadrupole Time-of-Flight High-Resolution Mass
Spectrometry (HPLC-ESI-QTOF-HRMS)

Mass spectra were recorded on an HPLC-UV-HR mass spectrometer (MaXis4G with
Performance Upgrade kit with ESI-Interface, Bruker Daltonics, Bremen, Germany). Samples
were diluted with LC-MS-methanol (1:1), centrifuged (20,238 relative centrifugal force), and
applied to a Dionex Ultimate 3000 HPLC system (Thermo Fisher Scientific, Waltham, MA,
USA), which is coupled to the MaXis 4G ESI-QTOF mass spectrometer (Bruker Daltonics,
Bremen, Germany). The ESI source was operated at a nebulizer pressure of 2.0 bar, and dry
gas was set to 8.0 L·min−1 at 200 ◦C. MS/MS spectra were recorded in auto-MS/MS mode
with collision energy stepping enabled. Sodium formate was used as an internal calibrant
in each analysis. The routine gradient was 90% MilliQ deionized H2O with 0.1% formic
acid and 10% methanol with 0.06% formic acid to 100% methanol with 0.06% formic acid in
20 min with a flow rate of 0.3 mL/min on a Nucleoshell® EC RP-C18 (150 × 2 mm, 2.7 µm,
Macherey-Nagel, Düren, Germany).

4. Conclusions

The generation of a different set of antigenic peptides being loaded to MHC molecules,
due to the different antigen processing capacities of PR3 based on the novel S704L mutation,
might not be recognized by memory T cells. Hypothetically, this could be an additional
reason for immune evasion and the impaired immune response of vaccinated individuals.

https://www.uniprot.org
https://web.expasy.org/peptide_cutter/
https://web.expasy.org/peptide_cutter/
https://web.expasy.org/findpept/
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