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ABSTRACT

This paper presents a novel combination of reverse mode auto-
matic differentiation and formal methods, to enable efficient dif-
ferentiation of (or backpropagation through) shared-memory par-
allel loops. Compared to the state of the art, our approach can
reduce the need for atomic updates or private data copies during
the parallel derivative computation, even in the presence of un-
structured or data-dependent data access patterns. This is achieved
by gathering information about the memory access patterns from
the input program, which is assumed to be correctly parallelized.
This information is then used to build a model of assertions in a
theorem prover, which can be used to check the safety of shared
memory accesses during the parallel derivative loops. We demon-
strate this approach on scientific computing benchmarks including
a lattice-Boltzmann method (LBM) solver from the Parboil bench-
mark suite and a Green’s function Monte Carlo (GFMC) kernel from
the CORAL benchmark suite.
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1 INTRODUCTION

Gradients, adjoints, and derivatives are useful in countless applica-
tions including weather and climate modeling, engineering, finance,
and machine learning. Reverse-mode automatic differentiation (AD)
or the closely related method of backpropagation are particularly
efficient methods to obtain gradients or adjoints for large real-world
applications. We provide some background on this in Section 4.1.
While reverse-mode AD and backpropagation are appealing due
to their run time efficiency, they can be challenging to implement
for parallel programs. One reason is the data flow reversal inher-
ent to these methods, which turns read accesses in the original
program (the “primal”) into increment accesses in the derivative
computation, which may result in data races if not done conserva-
tively. Particularly on shared-memory parallel computers, it may
therefore become necessary for an AD tool to make extensive use
of atomic updates or privatized data copies that are later accumu-
lated using reduction operations. This introduces time and memory
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overheads that can cause adjoint programs to have lower scalability
than the primal program.

Previous work avoids this problem by performing differentiation
on a high level of abstraction that hides the parallelization from the
differentiation process, and results in derivatives that are expressed
in terms of building blocks that are internally parallelized. This
approach is very successful within domain specific languages and
machine learning frameworks, but does not offer the flexibility that
is needed for some scientific computing applications.

Instead, our work improves the code analysis of general-purpose
AD tools by introducing a novel static analysis approach that com-
bines formal methods and automatic differentiation to require fewer
updates and reductions. We implemented this approach, which we
will refer to as FormAD (Formal methods in AD), as an additional
analysis pass within the existing AD tool Tapenade. Unlike many
existing AD or automatic parallelization approaches, FormAD is
able to parallelize loops even in the presence of unstructured and
data-dependent memory access patterns, which are common in sci-
entific applications. This is possible because FormAD exploits the
relationship of primal programs with their corresponding gradients
or adjoints.

2 RELATED WORK

Applying automatic differentiation to shared-memory parallel pro-
grams has been discussed extensively in the past. For example, [14]
discusses manual detection of identical index expressions in the
primal and adjoint program, followed by a postprocessing step
to apply the same parallelization to both. Our work automates
and generalizes this type of analysis. Other previous work [13, 15]
focused on stencil kernels, where loop transformations or code
generation from high-level specifications can be used to obtain
efficient adjoint stencils. Our work is more general, as it can handle
data-dependent index expressions, loop bounds, control flow, and
other computations that can not be naturally expressed as regular
stencils.

There is previous work discussing OpenMP support for AD
tools, such as [2, 7, 8, 17], although it has been observed that par-
allel programs can be challenging to reverse-differentiate [1, 6],
and that static analysis may be needed to ascertain the absence
of increment-increment conflicts [6], which does not always suc-
ceed. Other papers use or discuss atomic or privatization/reduction
constructs as a safe fallback [2, 8, 16], which causes a performance
degradation that we try to avoid with our work.

Other work discusses knowledge derived from existing explicit
parallelism [3]. While the idea is similar in spirit, they are interested
in the absence of happens-before relationships to enable polyhe-
dral transformations, while we are interested in the absence of
overlapping memory addresses to enable AD.
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3 CONTRIBUTIONS AND LIMITATIONS
We make the following contributions.

e We present a novel method to reason about the relationship
between the memory access patterns in a primal and adjoint
program. Compared to previous work, our theory extends
beyond simple symmetry relationships, and is not restricted
to particular access patterns such as stencils.

e We present an implementation of the above model (FormAD)
within the AD tool Tapenade, which is to our knowledge the
first combination of an automatic differentiation tool with
a theorem prover. FormAD is publicly available under the
same MIT open source license as Tapenade.

e We evaluate FormAD on a number of parallel scalability
test cases, in which we improve upon the state of the art by
factors ranging from 5X to over 13x.

We are aware of the following limitations of our work.

e FormAD currently only supports Fortran input programs.
This is a consequence of the fact that Tapenade itself cur-
rently supports OpenMP only for Fortran programs. We
expect C to be a straightforward extension, requiring only
minor changes to the the Tapenade parser and scoping rules.

e FormAD is a prototype tool, and the OpenMP support in
Tapenade is experimental. For example, synchronization bar-
riers, tasks, offloading, and many other OpenMP features are
not supported yet.

e We assume no aliasing between arrays (aliasing is forbid-
den in Fortran in many situations), and assume that multi-
dimensional arrays are used “correctly”, i.e. all indices are
within the bounds of their dimension.

e FormAD assumes that the primal program is truly correctly
parallelized. Some programs may include “benign” races,
such as multiple threads writing the same value to a given
location. These races are seldom truly benign, despite the ex-
pectation of some programmers. FormAD may in such cases
produce derivative programs that break more frequently or
more obviously than the (already incorrect) primal.

4 BACKGROUND

This section summarizes concepts that are essential to understand
the remainder of this work.

4.1 Source-Transformation Adjoint AD

We present here only a small subset of Automatic Differentiation
theory to introduce notation and make the paper more readable.
A thorough introduction to AD can be found, for example, in [7,
9, 18]. We focus in this work on source-transformation AD, which
transforms a given source code, referred to as the “primal’, into a
new code that computes derivatives of the primal’s outputs with
respect to its inputs. Furthermore, we focus on reverse-mode AD
(implemented via source-transformation), which is a particularly
efficient strategy when the primal has many inputs and few outputs.
Applications with this property include shape optimization, inverse
design, medical imaging, and machine learning, where reverse-
mode AD is also known as back-propagation. Other application
domains commonly refer to reverse-mode AD as “adjoint AD”, and
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we use the terms gradients and adjoints interchangeably in this
work. An inherent feature of reverse-mode AD is that it propagates
derivatives backwards through the computation, starting from the
outputs and finishing at the inputs. This property is the reason
for its efficiency, and at the same time a source of implementation
challenges.

The computation of derivatives typically works on two levels: Lo-
cally, each instruction performed by the primal code is augmented
by a derivative instruction to compute that instruction’s local gra-
dient. Then, the derivative instructions must be combined globally
such that the gradient of the entire computation is correctly accu-
mulated. The challenges related to this global accumulation have
been discussed in previous work, and include the need to store and
retrieve branch decisions and intermediate values that influence the
derivatives, and to correctly handle communication, parallel sched-
ules, and variable scoping whenever necessary. We refer to [12]
for a discussion of these issues. The challenge addressed in this
paper occurs locally, during the execution of individual gradient
instructions, and only if the propagation happens within a parallel
region and affects a variable that is shared between threads.

We will now take a detailed look at the reverse-mode differ-
entiation of a single instruction. Subsection 4.2 will discuss the
interaction of differentiated instructions that may happen concur-
rently in a parallel region. We use as a representative example an
assignment that has a binary operation on the right hand side. The
treatment of operations with more (or fewer) operands is similar.

z=x0py

We assume here that Op is a differentiable operation, and x, y, and z
are variable references. These references could in practice be scalar
variables, array items, dereferenced pointers, etc. We further assume
for ease of notation that the memory location of z does not overlap
with any variable on the right-hand side. If this assumption is
violated, it is straightforward to introduce a temporary variable and
split the assignment into two statements to make the assumption
valid for each of the two statements.

With these assumptions, reverse-mode AD of the above instruc-
tion can be implemented as

- _ - . - . a0
x=x+z*?xp(x,y)
_ .- .9
y=y+Z*a—yp(x,y)
z =0,

where X, y, and z are the gradients of the final output with respect
to the current x, y, and z respectively. Formal justification of this
involves writing the 3x3 derivative (Jacobian matrix) of the function
implemented by the primal instruction, from IR? to IR? i.e. from the
values stored in {x, y, z} before the instruction to the values stored
in {x,y, z} after the instruction, and to multiply it on the right of
the gradient vector (X, Y, z). An intuitive way to understand this is
to view X as the influence of the current x on the final output. This
influence is the sum of contributions from each place where x is
used. In particular here, the contribution is the influence of z on

the final output, magnified by %). Similar reasoning holds for y.
Finally the influence of z before the instruction, onto the output, is
set to zero as z is going to be overwritten and therefore has finished
its life cycle.
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Assignment example Increment example

u(i-1) = a*xv(i,j) + 1.5 u(2*i) = u(2*i) + 2*a

vb(i,j) = vb(i,j) ab = ab + 2%ub(2*1i)
+ a*ub(i-1)

ab = ab + v(i,j)*ub(i-1)

ub(i-1) =0

Figure 1: Top: Two examples of original (primal) instruc-
tions. Bottom: Corresponding adjoint instructions for both
examples. In real code, we name adjoint variables after the
primal variable with "b" appended (read as "bar").

Figure 1 shows two examples of adjoint instructions of an as-
signment, including the special case where the assignment actually
increments its left-hand side. The general differentiation rules then
boil down to a simpler adjoint code where the adjoint of the left-
hand side is not overwritten.

4.2 Adjoint of OpenMP shared variables

We now extend the discussion to the interaction of instructions
across multiple threads within the same parallel region. We are
specifically interested in the situation where the primal code is
shared-memory parallelized, and we wish to compute its deriva-
tives in a similarly scalable fashion. Previous work [6, 12] explains
how this can be achieved in most situations. A challenge identified
in both papers is the efficient treatment of variables that are shared
(in other words, visible to multiple threads) in the primal. Although
we (and the cited papers) use OpenMP terminology and mostly
focus on OpenMP, we believe that other thread-parallel languages
can be treated similarly. Frequently, shared variables are accessed
by multiple threads concurrently for reading, which we will call a
read-read situation. In the primal code this is harmless and there-
fore not called a conflict. However, as visible on the left of figure 1,
the adjoint variable is incremented, which may cause a write-write
conflict or more precisely an increment-increment conflict. Two in-
crements to the same memory address may be executed by different
threads within the same parallel region only if increment opera-
tions are done with (often expensive) atomic updates, or if some
other expensive synchronization mechanisms are used. On most
systems, atomic updates are costly even in favourable situations
where each given memory address is accessed by only one thread.
Because of this, it is important to use atomic updates only sparingly
and when necessary, which is precisely the goal of our new analysis
technique.

If we fail to prove the absence of a read-read situation on the
primal variable v, instead of using atomic updates we may also
privatize v as a reduction(+), which also harms performance and
increases the memory footprint of the application. Even though
experimental libraries have been proposed [11] to reduce the cost
of such reduction operations, it is nevertheless profitable to detect
the absence of read-read situations in the primal code whenever
possible. Detection of read-read situations can be addressed by
classical data-dependence analysis. In a sense, this amounts to
running an automatic parallelization tool on the adjoint code, which
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I'$omp parallel do
do i=n,1,-1

!'$omp parallel do

do i=1,n
y(c(i))=x(c(i)+7) xb (c(i)+7)=xb(c(i)+7)+yb(c(i))
end do yb(c(i))=0.0

end do

Figure 2: A primal parallel loop with indirect memory access
(left), and its corresponding adjoint loop (right). Assuming
that the primal was correctly parallelized, for any two loop
iterations i and i’ the write indices c(i) and c(i’) can not
be identical. From this we deduce that the adjoint indices
c(i)+7 and c(i’)+7 can also not be identical, and thus we
may increment without atomic pragma.

may detect the absence of read-read situations, or use domain-
specific approaches such as polyhedral transformations to avoid
conflicts. Although these options work in some cases, they are
approximate (just like FormAD), and do not exploit domain-specific
knowledge about the assumed-correct parallelization of the primal
(unlike FormAD).

5 THE FORMAD APPROACH

We explain in this section our approach to more precisely analyze
whether atomic updates (or some other safeguard) are needed to
prevent race conditions in an adjoint program. Since we assume that
parallel loops in the primal code are correct, they may not contain
any loop-carried dependency, be it write-to-read, read-to-overwrite,
or write-to-overwrite. Therefore for every pair of references to a
given array that occur in a given primal parallel loop nest, at least
one of these references being a write, we know that the array indices
used are disjoint. This piece of information is exclusively about
the two sets of index expressions and about their relation with the
enclosing loop counters. It is not bound to the array itself. We can
use this information to reason about other arrays accessed with
similar index expressions, and in particular we can use it for the
adjoint arrays in the adjoint parallel loop nest that corresponds to
the given primal loop nest.

Consider for instance the simple parallel loop on the left of
figure 2. The corresponding adjoint loop, shown on the right of
the figure, is also a parallel loop. As we assume the primal loop
is correct, we know there can be no loop-carried dependency on
array y. In other words for any pair of loop indices i and i’, i # i’,
we know y(c(1)) and y(c(i”)) can not overlap, i.e. c(i) # c(i’).
This knowledge binds the iteration space of the parallel loop to
the array offsets defined by the array indices, independently of the
particular array y itself. We can therefore use this knowledge to
show that there is no loop-carried dependency in the adjoint loop
due to accesses to xb nor to accesses to yb. As a consequence, xb
and yb can be declared shared in the adjoint loop, and there is no
need for atomic pragmas or similar constructs.

For each parallel region, this results in two phases:

(1) Knowledge extraction: for each shared array in the given
parallel region, we collect all read references and all write
references. For example, in case of the stencil code in Sec-
tion 7.1 we collect references for the arrays unew and uold.
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For unew, the reference set includes reads and writes to both
i and i-1.For each pair of such references, at least one being
a write, we extract the index expression(s), and create a set
of assertions for this region that expresses the fact that these
indices are disjoint, i.e. they have a different value if loop
counters differ. We call this set of assertions our knowledge
base. We must handle the case where some variables appear-
ing in the index expressions are modified in the region: this
will be detailed in section 5.2.

Knowledge exploitation: just before creation of the ad-
joint region, and for each active shared variable, i.e. one that
will have an adjoint variable, we collect all future read and
write references to the adjoint variable in the adjoint region.
For each pair of such references, at least one being a write,
we ask the knowledge base to prove that their index expres-
sions have a different value when loop counters differ. Note
that by construction, loop counters and other integer vari-
ables appearing in index expressions have the same value in
the corresponding primal and adjoint instructions (they may
be modified or overwritten in between these instructions,
but the generated adjoint code must recompute or restore
such instructions regardless of our approach). If for all pairs
of references considered we can prove that different loop
counters imply different indices, then the adjoint variable
causes no increment-increment conflict, and can be declared
simply shared.

@

~

Knowledge exploitation for a given adjoint variable may use
constraints extracted from any primal variable. For example primal
variables of integer type, which are not differentiable and thus
have no adjoint counterpart, can still provide useful index knowl-
edge. Likewise, one can imagine an adjoint variable referenced at
three locations, and each of the three resulting potential conflicts
being proved inexistent using knowledge from three different pri-
mal variables. Conversely if no knowledge is available the proof
system can still, in some cases, prove the absence of conflicts just
like any automatic parallelization tool.

5.1 Dealing with control flow

In general, the body of the parallel loops in the parallel region need
not be simple straight-line code. Since we are defining a static anal-
ysis and control is dynamic, we must distinguish may-information
from must-information on the knowledge we extract and use. We
handle this by defining a notion of control context, representing the
control decisions that lead to executing a given instruction. The
context Cy attached to an instruction Iy will be said included in
the context C; of I; if any iteration of the parallel loop nest that
executes I necessarily executes I1. If Cy ¢ C; and C; C Cy, then
C1 = Cy. The top-level of the body of the parallel region receives a
root context. If the code is well structured, included contexts can be
created recursively. For the general case of an arbitrary control-flow
graph, we instead use a classical dominator analysis: I; dominates
I if it is a necessary predecessor of I, and I; post-dominates I if it
is a necessary successor of I. Each case implies that Cy € Cy.
Knowledge extraction creates a different knowledge base for
each context. A context included in another context C inherits
all knowledge from C. Each time we consider a pair (R, Rz) of
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references to a given array and try to extract knowledge from
it, their respective contexts (Cy, Cy) are compared. Knowledge is
added only to contexts that must execute both Ry and Ry. If C1 = Cy,
knowledge is added to this context (and consequently to all included
contexts). If C; C Cy, then knowledge is added to C; and not to Cy,
and likewise if C, C C;. Otherwise no knowledge is added as no
control certainly executes both Ry and R».

Knowledge exploitation works in a dual way. When considering a
pair (R_l, R_z) of references to one adjoint array, we take the contexts
(C1, Cy) of the corresponding references in the primal code. When
trying to prove the absence of loop-carried dependency between
Ry and Ry, we are only allowed to use the knowledge attached to
the common root of C; and Cy, which is the knowledge available
from iterations that executed both R_1 and R_z

5.2 Distinguishing overwritten index variables

Variables occurring in index expressions may be modified during
execution of the parallel body (except for the loop index itself,
as stated by the OpenMP standard) so that we cannot compare
them just textually. We therefore complement them with a so-called
instance number. Two uses of one variable will get the same instance
number when they are reached by the same set of Def-Use chains.
The proof system will be given index expressions in which each
variable name is accompanied with its instance number.

Instance numbers are created as follows. Each time an instruction
overwrites a variable, the current instance number for this variable
is set to a new value. As our method is static, control flow introduces
some blurring. When different control flows merge at some point,
variables with an instance number that differs according to the
flow must receive yet another new instance number. Similarly, at
the entry into a loop that overwrites some variable, the instance
number of this variable must be renewed, thus representing either
the entry value or the value coming from the previous iteration.

5.3 Handling private variables

Each thread holds its own instance of every private variable. This in-
cludes variables appearing in private, reduction, firstprivate,
or lastprivate clauses. When sending a pair of index expressions
to the proof system, either as extracted knowledge or as a question
during exploitation, the first expression is modified by substituting
private variables with a sibling variable (typically by appending a
’ to its name), to express that it is distinct to the similarly named
variable in the second expression. A special case is the parallel
loop counter, which is by default private, but unlike other private
variables, provides additional knowledge since the instances on
two threads must not have the same value.

5.4 Taking advantage of AD-specific structure

We can take advantage of knowledge specific to AD to reduce the
number of reference pairs to consider for loop-carried indepen-
dence. Not all variable references in the primal code give birth to
a corresponding adjoint reference in the adjoint code. To begin
with, only variables with a differentiable type (real or complex)
may require a derivative variable, as well as variables of a struc-
tured type that contains fields of a differentiable type. Additionally,
Tapenade and some other AD tools perform activity analysis to
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detect instructions or variables that do not influence the derivatives.
Thanks to activity analysis, only a subset of the variable references
of the given parallel region have a corresponding adjoint variable
reference, which reduces the number of array references that must
be analyzed by FormAD.

Furthermore, we detect when a primal instruction exactly incre-
ments a variable. As shown on the right of figure 1, the correspond-
ing adjoint will only read and not overwrite or increment. Since
FormAD is only needed to detect pairs with at least one write, this
reduces the number of reference pairs to consider.

5.5 Proof system

The proof system is provided with sets of index expressions that are
known to be disjoint. Each expression set is valid within a particular
context of the original program. The proof system contains a pro-
cedure that, within a given context, builds a set of assertions that is
known to hold. This assertion set is passed recursively to all child
contexts. The assertion set is built through a pairwise combination
of the expressions with the # operator, where private variables on
one side are replaced with sibling variables as explained above. The
recursive procedure is started at the root context, corresponding
to the body of the parallel loop, with the extra assertion i # i’,
which expresses the fact that no two threads may have the same
loop counter value, as is guaranteed by OpenMP. In pseudo code,
this procedure is as follows:

buildModel (rootContext, i_prime != i)

def buildModel (context, assertions):
model = z3.Solver ()
model . add(assertions)
for var in variables:
writeexprs = var.writeexprs(context)
readexprs = var.readexprs(context)
for expr@ in writeexprs:
exprop = expr@.putprimes()
for exprl in writeexprs+readexprs:
model.add(expr@p != exprl)
assert(model.check () == SAT)
for child in context.children:
buildModel (child, model)

One can see that the model size is proportional to the product of
the number of write expressions times the number of write or read
expressions. If the expressions contain variable references, they
will be with the appropriate instance number. Note the assertion
that checks after each addition whether the model is still satisfiable.
While this increases the number of calls to the theorem prover (here
called model. check()), we add this as a safeguard because a failing
assertion means that the expressions found in the primal program
can not all be disjoint, pointing at a data race in the primal program
or a bug in our system. To improve run time, the assertion could be
checked less frequently.

The knowledge exploitation phase tests, for each adjoint variable,
the set of candidate conflicting index expressions given by Tape-
nade. This is done by following a similar quadratic procedure to
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build pairs of expressions. We know by construction (and from our
assertion) that the existing model for each context is satisfiable. By
adding a pair of expressions from the set of candidate expressions
and asserting its equality, the model becomes unsatisfiable if the
expressions are provably disjoint. If the model remains satisfiable
or if the theorem prover fails to come to a conclusion, the tested
expression pair may not be disjoint and we will assume that the par-
allel accesses to this adjoint variable are unsafe. For a given model
(associated with a context) and some adjoint variable’s candidate
write and read index expressions, this can be written as follows:

def testVar(model, writeexprs, readexprs):
for expr@® in writeexprs:
exprop = expr@.putprimes()
for exprl in writeexprs+readexprs:
model . push ()
model . add(expr@p == exprl)
if (model.check () != UNSAT):
return False # unsafe pair
model . pop ()
return True # all pairs are safe

We use a functionality of Z3 that allows us to push the model
state onto a stack, then modify it (in this case, by adding another
assertion), and later restoring the previous state.

6 IMPLEMENTATION

We implement FormAD! within the Source-Transformation AD
tool Tapenade [10]. The implementation also uses the Z3 [5] model
checker through its Java APL. We use version 4.8.15-x64-glibc-2.31
of Z3 without modifications (although other versions will probably
work as well), and only modify Tapenade to enable our approach.
Prior to our work, Tapenade did not support theorem proving and
did not analyze accesses to shared arrays. Therefore we imple-
mented the following functionalities:

o Identification of the contexts (cf section 5.1) and of the in-
stances (cf section 5.2). Contexts are detected on the control
flow graph, based on the pre-existing dominator and post-
dominator analysis of Tapenade. Instances are detected by a
new data-flow analysis.

e Extraction, from the parallel regions of the primal code,
of knowledge of non-existing conflicts as well as of ques-
tions about potential increment-increment conflicts on future
shared adjoint variables. This is implemented by a single
sweep on the control flow graph of parallel loop bodies of
the primal code, that collects all reads and writes of arrays
then accumulates the (non-)conflicting pairs of those. The
existing activity analysis of the AD tool is instrumental here
to get fewer questions (cf section 5.4).

e Translation of each elementary knowledge or question, which
are pairs of array index expressions that are either known
or requested independent, into the form of a Z3 assertion.
Starting from the two expressions syntax tree, parallel loop
indices are identified, and all other variables are equipped

!The version used for the experiments in this paper is available at
https://gitlab.inria.fr/tapenade/tapenade/-/tags/ICPP2022
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with their current instance number. Actual translation into
a Z3 assertion uses a depth-first then bottom-up traversal of
both syntax trees.

The central algorithm described in section 5.5 is also implemented
in Tapenade, in the code section devoted to differentiation of a
thread-parallel loop. For each context, the accumulated knowledge
is passed as a set of assertions to Z3, then each question is posed
separately to Z3. When all potential conflicts about an adjoint vari-
able have been proven nonexistent, Tapenade can consequently de-
clare these conflict-free adjoint variables as shared with no atomic
pragma added.

The added analysis and algorithms are triggered if and only if
thread-parallel loops are present. As Tapenade’s internal represen-
tation for multithread loops was kept reasonably independent from
OpenMP, we have good hope that this implementation effort can be
reused for other multithread dialects. For instance a current devel-
opment to extend Tapenade for Cuda addresses the same internal
representation.

7 EXPERIMENTAL RESULTS

We evaluated FormAD on a number of test cases as discussed in
the following subsections. We discuss the performance of the For-
mAD analysis itself in Section 7.5, after showing run times of the
generated derivative programs. For some test cases, our method
did not find any opportunities to remove atomic pragmas, in which
case we do not actually compile and run the generated programs,
since there would be no performance difference to the baseline.

For all other test cases we create the following program versions,
all of which are compiled with the Intel Fortran compiler version
2021.2.0 and flags -03 -xHost -qopenmp:

Primal, the original function.

Adjoint Serial, the function generated by reverse-mode AD
without any OpenMP pragmas.

Adjoint FormAD, generated by reverse-mode AD with For-
mAD to avoid atomics whenever it is safe.

Adjoint Atomic, generated by reverse-mode AD using atomic
pragmas to guard shared array increments.

Adjoint Reduction, generated by reverse-mode AD using re-
ductions to guard increments to shared arrays.

Unless otherwise stated, when a serial time is reported, it is obtained
using the serial program version, not by running one of the other
versions with just one thread.

Our test system is a dual socket system with two Intel Xeon E5-
2695v4 (Broadwell) processors. To avoid NUMA issues we pin our
threads to one socket, which has 18 cores. The processor supports
up to 36 threads using hyper-threading, but we did not see a benefit
from this in preliminary test runs and therefore use a maximum of
18 threads in our benchmarks. We report average run times from 10
consecutive runs on the same system. We note that we only avoid
using a NUMA system to simplify our experimental evaluation,
since neither of our test cases was NUMA-aware to begin with,
and our approach is unrelated to NUMA. If a given program uses
NUMA-aware thread placement and memory allocation, an AD tool
could imitate that same strategy for the derivative code regardless
of whether or not FormAD is used.
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Figure 3: Absolute run time for small stencil test case. The
primal serial program takes 2.05s, whereas the parallel ver-
sion takes 0.146s. The best-performing thread count for the
parallel adjoint programs was 1, with 40.7s for the atomic
and 3.65s for the reduction version, both much worse than
the sequential adjoint at 1.58s. The FormAD version achieves
a run time of 0.116s on 18 threads.

Whenever we report parallel speedup numbers, we use the serial
version (without any OpenMP pragmas) as the baseline. This is done
to make a fair comparison with the times that a user would actually
obtain without parallelism, and causes most of our speedup plots
to start below 1 when only one thread is used, since reductions and
atomics introduce an overhead even in single-threaded execution.

It should be noted that the program versions with reduction
pragmas have a significantly larger memory footprint than the other
program versions, due to the need to store privatized instances of
the output data on each thread. On the other hand, whether or not
atomics are used does not significantly affect the memory footprint
of our test cases. While this can be seen as another advantage of
using our approach, we do not provide an in-depth discussion or
measurements of memory consumption in this paper.

7.1 Stencil

Stencils commonly occur in structured-mesh PDE solvers, image
processing, and convolutional neural network layers. Previous work
has proposed an implementation strategy that balances the number
of load/store operations in stencil kernels where each output index
depends on a large number of input indices [19]. The “compact”
scheme introduced in that work has identical read and write sets in
each iteration, which means that any parallelization scheme that is
safe for the primal must also be safe for the reverse mode AD. As
an example, we show the core computation (boundary treatment
and some factors omitted) which is equivalent to a conventional
three-point stencil here:
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Figure 4: Absolute run time for large stencil test case. The
primal serial program takes 8.72s, whereas the parallel ver-
sion takes 0.651s. The best-performing thread count for the
parallel adjoint programs was 1, with 95.8s for the atomic
and 16.5s for the reduction version, both much worse than
the sequential adjoint at 7.16s. The FormAD version achieves
a run time of 0.578s on 18 threads.

Scalability of small stencil
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Figure 5: Parallel speedup for small stencil test case. The
primal and FormAD programs scale well, with a maximum
speedup on 18 threads of 13.4x and 13.6X respectively. The
adjoint programs with atomics and reductions never exceed
the serial performance, and actually slow down as more
threads are added.
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Figure 6: Parallel speedup for large stencil test case. The
primal and FormAD programs scale well, with a maximum
speedup on 18 threads of 13.12x and 12.4X respectively. The
adjoint programs with atomics and reductions never exceed
the serial performance, and actually slow down as more
threads are added.

do offset=0,1
from = 2xT1+offset
!'$omp parallel do shared(unew,uold)
do i = from, n-2, 2

unew(i) = unew(i) + wlxuold(i-1)
unew (i) = unew(i) + wc*xuold(i)
unew(i-1) = unew(i-1) + wr*uold(i)
end do
end do

We apply FormAD to a compact 3-point and 17-point stencil-
equivalent, respectively referred to as small and large stencil, where
the output field unew is differentiated with respect to the input field
uold. Without FormAD, all increments in the generated adjoint
code are safeguarded with atomics, or alternatively, the derivative
counterpart variable of the input array is placed in a reduction
clause. Conversely, FormAD is able to prove the safety of the gener-
ated adjoint code, and no atomics or reduction constructs are used
in the program generated with FormAD.

We run this test case for a domain size of 1M grid points and
perform 1000 sweeps over the domain. Figures 5 and 6 show the
parallel speedup for the small and large stencil, whereas Figures 3
and 4 show absolute run times. The FormAD-generated adjoint pro-
grams generally scale as well as the corresponding primal programs,
and outperform the adjoint programs with atomics or reductions by
more than a factor of 10X on our system when executed in parallel.



ICPP °22, August 29-September 1, 2022, Bordeaux, France

Absolute time of GFMC
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Figure 7: Absolute run times for GFMC. The sequential pri-
mal and adjoint take 0.655s and 2.23s. The FormAD ad-
joint performs best on 18 threads with a run time of 0.266s,
whereas the adjoint with reductions performs best on 4
threads with 1.56s, which is 5.88% slower. The atomic adjoint
version requires at least 33.9s.

Scalability of GFMC
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Figure 8: Parallel speedup for GFMC. The primal and For-
mAD adjoint achieve up to 7.35x and 8.39x respectively. The
adjoint with reductions peaks at 1.43X on 4 threads. The ver-
sion with atomics is between 10x and 100x slower than the
serial version.

7.2 GFMC

The Green’s function Monte Carlo kernel (GFMC)? is part of the
CORAL performance benchmark suite [21]. While the original

Zhttps://asc.lInl. gov/coral-benchmarks#gfmemk
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benchmark contains just one parallel loop, we create an alternative
version in which we split the computation across two parallel loops,
the first one containing a dynamic part with large load imbalance la-
beled as spin exchange, the other part with a more regular workload
labeled as spin flip. We will refer to this version with two separate
parallel loops as GFMC, and refer to the original version as GFMC*.
We differentiate both versions by using both cl and cr as active
input and output variables.

When applied to GFMC*, FormAD correctly identifies a read
access during the spin exchange that yields an unsafe increment
access in the adjoint, which needs to be safeguarded with an atomic
pragma for parallel adjoint execution. Since both parts of the com-
putation are inside the same parallel loop, this makes all increment
accesses to the affected array potentially unsafe and requires Tape-
nade to guard them all.

In contrast, when applied to GFMC, FormAD can prove the ab-
sence of data races in the adjoint of the spin exchange computation,
and we obtain a parallel adjoint for this part of the code that does
not require atomics or reductions. Some of the most interesting
memory accesses from the primal are shown in the following listing.

idd=mss(1,ig,k12)
iud=mss(2,ig, k12)
idu=mss(3,ig,k12)
iuu=mss(4,ig,k12)

cl(idd, j) xeexcr (idd, j)
cl(iuu,j) = xeexcr(iuu,j)
cl(iud,j) = xmmxcr(iud, j)

+ 4+ o+ 4+

cl(idu,j) = xmmxcr(idu, j)

The shared array cr is overwritten within the parallel loop at data-
dependent indices (idd,j), (iuu,j), (iud,j), (idu,j).As-
suming that the primal code contains no data races, we can con-
clude that the index expressions yield different values on different
threads. The array cr is read at the same indices, which will cause
its corresponding array in the adjoint code to be incremented at the
same indices. We can thus conclude that the corresponding adjoint
increments to cr are safe to perform without atomics.

We run 500 repetitions of this kernel, except for the atomic
adjoint version, where we run only 5 iterations and multiply the
obtained time with 100 to reduce experimentation time, since this
program version is otherwise very slow. Figure 8 and 7 illustrate
the run time and scalability of this part of the computation. Because
this function is nonlinear, the adjoint computation requires saving
and restoring intermediate values and is overall more complicated,
which explains the larger run time of the adjoints compared to
the primal. The FormAD adjoint scales as well as the primal and
outperforms atomics or reductions by more than 5x.

7.3 LBM

This test case uses a Fortran translation of the Lattice-Boltzmann
Method [4] (LBM) solver from the Parboil benchmark suite [20].
This is a structured-mesh application that operates on a three-
dimensional grid of spatial points and performs a streaming opera-
tion that communicates data between neighboring grid points, as
well as a collision operation that computes point-local values.
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FormAD (correctly) concludes that atomics or reductions are nec-
essary, and no change to the code and thus no speedup is achieved
by using FormAD. We therefore discuss this test case only briefly,
as an example in which FormAD is ineffective.

The primal code contains long index expressions that are the
result of a sequence of preprocessor macros. FormAD simplifies the
expressions and builds a set of known safe write expressions:

(w_0 + n_cell_entries_0x*-1 + i_0)
(se_@ + n_cell_entries_0x-119 + i_0)
(c_@ + n_cell_entries_0*0 + i_0)

(nb_0 + n_cell_entries_0%*-14280 + i_0)
(s_@ + n_cell_entries_0*-120 + i_0)
(sb_0 + n_cell_entries_0x-14520 + i_0)
(eb_0 + n_cell_entries_0*-14399 + i_0)
(et_@ + n_cell_entries_0%*14401 + i_0)
(nt_0 + n_cell_entries_0%*14520 + i_0)
(t_0 + n_cell_entries_0%*14400 + i_0)
(ne_@ + n_cell_entries_0*121 + i_0)
(b_0 + n_cell_entries_0*-14400 + i_0)
(wb_0 + n_cell_entries_0*-14401 + 1i_0)
(wt_@ + n_cell_entries_0%14399 + i_0)
(sw_@ + n_cell_entries_0*x-121 + i_0)
(e_@ + n_cell_entries_0*1 + i_0)

(st_0 + n_cell_entries_0x*14280 + i_0)
(nw_0 + n_cell_entries_0x119 + i_0)
(n_@ + n_cell_entries_0%*120 + i_0)

At least one index expressions that is used to increment an adjoint
variable is not contained in this set:

eb_0 + n_cell_entries_0*x0 + i_0

FormAD thus considers the access to srcgrid as unsafe and does
not remove any safeguards from the generated code.

7.4 Green Gauss Gradients

Computing or approximating spatial gradients, which measure the
variation of a physical property in space, is an essential step in
partial differential equation (PDE) solvers. A popular approach
for Finite Volume based PDE solvers is given by the Green Gauss
theorem, which allows computing the gradients of a volume by
integrating an expression over the surface of that volume. Green
Gauss gradients were also used in previous work that discussed the
application of AD tools to unstructured PDE solvers[14].

Our Green Gauss Gradient implementation iterates over a set of
edges in a mesh. At each edge, values from both vertices connected
by this edge are retrieved and updated. To parallelize this loop
over edges and avoid conflicts on the nodes, we use a coloring
approach [14] to split the edges into groups that can be treated
concurrently. The parallel loop looks as follows:
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Figure 9: Absolute run times for Green Gauss Gradients. For
sequential execution, the primal takes 9.064s, whereas the
adjoint takes 66.84s. Using FormAD, we reduce this time to
24.32s on 18 threads (although 8 threads are nearly as fast).
Meanwhile, reductions are significantly slower with their
best performance on 8 threads still taking 85.77s. Atomics
are slower still; even with just one thread execution time in-
creases to 386s, and slowing down further as more threads
are added.
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Figure 10: Parallel speedup for Green Gauss Gradients. This
test case performs very few flops and has unstructured mem-
ory access, making it highly memory bound and explaining
some of the overall poor scalability. Still, we observe some
parallel speedup in the primal and adjoint using FormAD,
while atomics and reductions perform poorly.
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do ic=1,size(color_ia,1)-1
| $OMP PARALLEL DO PRIVATE(ie, i, j,
do ie=color_ia(ic),color_ia(ic+1)-1

dvFace)

i = edge2nodes(1,ie)

j = edge2nodes(2,ie)

if (i .ne. j) then
dvFace=0.5dox(dv(i)+dv(j))
grad(i) = grad(i) + dvFacex*xsij(ie)
grad(j) = grad(j) - dvFacexsij(ie)

end if

end do
end do

We note the data-dependent array indices to grad, which are depen-
dent on the unstructured mesh connectivity given in edge2nodes
and are therefore hard to analyze statically. size(color_ia) re-
flects the number of colors, and the loop bounds color_ia(ic)
and color_ia(ic+1)-1 reflect the first and last edge belonging to
a particular color. Both depend on the input mesh as well as the col-
oring strategy, while edge2nodes reflects the two nodes connected
by a given edge. Nevertheless, FormAD detects the equivalence of
primal and adjoint index expressions in this test case, and produces
an adjoint parallel loop without requiring safeguards.

We test the run time of this kernel by applying it 10,000 times
to a mesh with 100,000 nodes. Our test mesh was generated with
a simple, linear structure requiring only 2 colors to simplify the
experimental setup. The resulting absolute times and scalability are
shown in Figures 9 and 10. FormAD-generated adjoints are faster
than sequential by a factor of 2.75, whereas the other approaches
we tested can not achieve any parallel speedup.

7.5 Performance of FormAD analysis

Run times and relevant statistics for the differentiation aided by For-
mAD are shown in Table 1. In all our test cases, FormAD takes less
than 5 seconds to run. The number e of unique index expressions
detected in the input code is between 2 and 19. As expected, the
number of assertions that are sent to the Z3 theorem prover is 1+e?,
which in our test cases is between 5 and 362. A higher number of
expressions tends to also increase the number of queries that is sent
to Z3, as well as the run time of FormAD. The analysis can stop and
indicate a potential conflict as soon as an unsafe index expression
is found in the adjoint, whereas a response indicating safe (disjoint)
accesses requires exploring the full set of index expressions. This
explains why the GFMC test case (which is safe to parallelize with-
out atomics) takes more time and more queries than the GFMC* and
LBM test cases (which are both rejected as unsafe). FormAD is run
only once during compile time, which means that even significantly
longer times in larger test cases might be acceptable since they can
be amortized over many executions of the optimized programs.
It may become necessary to offer a user-configurable timeout in
future implementations if Z3 fails to answer certain queries in a
reasonable time.

8 CONCLUSION

We presented FormAD, a new type of static analysis plugin for
AD tools that is specifically designed for reverse-mode automatic
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problem | time Z3size queries exprs loc
stencil 1 | 0.677 5 3 2 3
stencil 8 | 1.033 82 82 9 17
GFMC | 4.145 65 772 8 54
GFMC™ | 3.125 65 261 8 65
LBM | 3.938 362 364 19 82
GreenGauss | 0.621 5 3 2 7

Table 1: Execution time in seconds for FormAD, size (num-
ber of assertions) of the generated model, number of queries
answered by the proof system, number of unique index ex-
pressions included in the model, and number of lines of code
within the parallel region that was analyzed. Note that the
statistics are from a (now replaced) previous implementa-
tion, which wrote the knowledge to a file and used a stan-
dalone Python tool to call Z3, which made it easier to obtain
timings for just the Z3 part.

differentiation of shared-memory parallel programs. By harnessing
information from the assumed-correct parallelization of the original
program, we can significantly improve the run time and parallel
speedup of generated derivative programs.

Our method and implementation could be improved in various
ways in the future, including support for input languages other
than Fortran. We also hope to apply this method to more, and larger,
applications in the future. Finally, our experiments are all using
OpenMP input programs. We postulate that the method should
in principle also apply to other shared-memory-parallel systems
including GPUs, where avoidance of reductions or atomic updates
could be even more beneficial. Investigating this is future work.
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