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Visual perception relies on light scattering at the object’s surface in the direction of observa-
tion. By engineering the surface scattering properties, it is possible to realize arbitrary visual
percept. Here, we address theoretically this problem of electromagnetic field transition conditions
at conformal interfaces to achieve surface topography-dependent transmitted and reflected fields.
Our analysis, supported by two- and three-dimensional finite element simulations, provides a solid
theoretical framework to design metasurfaces for cloaking, wearable optics and next generation of
freeform imaging systems.

I. INTRODUCTION

For centuries, optical design consisted in developing
thin films and various coating to address light reflec-
tion, transmission and/or diffusion at interfaces. Devel-
opments in nanophotonics have strongly improved our
ability to control light scattering processes with optically
resonant nanostructures. Artificial optical materials, also
dubbed metamaterials and metasurfaces, presenting un-
expected light propagation effects have been realized,
leading to cloacking [1], negative refraction [2, 3], sub-
wavelength focusing, generalized refraction [4] and vec-
torial electromagnetic field control [5–8]. Today these
“conventional” metamaterials and metasurfaces are real-
ized assembling subwavelength photonic structures. The
study of the device’s optical response is generally com-
plex and requires lengthy numerical simulations that de-
scribe in detail the effect of light interaction with a large
number of nanophotonic building blocks. To avoid mod-
elling thousands and billions of small geometric features,
homogenisation methods that approximate the complex-
ity of an inhomogeneous material filed with nanoscale
inclusions by its effective medium response, i.e. homoge-
neous artificial material, have been proposed [9, 10]. For
the case of metasurfaces, consisting of a surfacic two-
dimensional arrangement of nanostructures, equivalent
transition conditions linking the values of the macro-
scopic field quantities on both sides of a thin homoge-
nized layer have been derived. In fact, such transition
conditions are well known in electromagnetics but also
in acoustics and are commonly used to simplify physi-
cal interpretation or ease numerical simulations [11–13].
Metasurfaces have thus been modelled using advanced
effective transition conditions, called Generalized Sheet
Transition Conditions (GSTCs). GSTCs were originally
derived in optics in the 90s in the seminal paper of Ide-
men [14]. These transition conditions conceal in a ten-
sorial form the equivalent response occurring on reflect-
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ing and transmitting fields at complex interfaces. Ef-
forts to reproduce above-mentioned intriguing effects us-
ing GSTC formulation, including anomalous refraction,
cloaking and vectorial electromagnetic field control have
been realized recently [15, 16]. But so far, modelling re-
lied on Idemen’s original work, and most papers dealing
with GSTCs only considered layers manufactured on pla-
nar surfaces.

Here, we provide a fully self-contained introduction
to GSTCs on arbitrary geometries - namely conformal
GSTCs (C-GSTCs) - with all the necessary theoretical
and numerical tools to exploit these transition condi-
tions. A schematic of the studied problem is presented
in Fig. 1). Inspired by Idemen’s original idea to calculate
the reflection and transmission properties of field discon-
tinuity at planar interfaces, our derivation considers both
electric and magnetic surface distributions on a shaped
surface (see formal description in the appendices). We
express these quantities in the sense of the distribution
function along the surface. After deriving the C-GSTCs,
we explain the inversion procedure to synthesize the sus-
ceptibilities of conformal interfaces for arbitrary input-
output fields. Finally, a numerical implementation of
these expressions using a finite element method (FEM) is
realized to study the angular sensitivity of simple meta-
surfaces, including deflector and lenses, and we also pro-
pose a generic method for surface cloaking of complex
objects.

A) B)

FIG. 1. Schematic representation of conformal metasurfaces.
A) light reflection and refraction across a conformal metasur-
face defined by an ensemble of nanostructured materials along
the curved surface; B) The conformal metasurface is modelled
using equivalent GSTCs and the associated physical proper-
ties defined along the surface to satisfy the input-output field
discontinuities.
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II. DERIVATION OF CONFORMAL GSTCS
USING SURFACIC DISTRIBUTIONS

We consider Maxwell’s equations in the time-harmonic
regime assuming a time-dependency in exp(+iωt):

∇×E=−iωB, ∇×H= iωD, ∇·D=0, ∇·B=0. (1)

together with the following (simply anisotropic) consti-
tutive relations linking the electromagnetic fields with
the electric and magnetic inductions through electric and
magnetic susceptibility tensors:

D = ε0(χee + 1)E and B = µ0(χmm + 1)H. (2)

With these definitions, the electromagnetic fields satisfies
the following natural transition conditions at the inter-
face between two media:

n× JEK = 0, n× JHK = 0, n · JDK = 0, n · JBK = 0,

With a metasurface however, the interface is covered with
resonant nanostructures of various geometries that can
resonatly interact with the incident light, inducing local-
ized surface electric and magnetic dipole moments at the
interface plane responsible for electromagnetic field dis-
continuities. This interaction modifies the natural tran-
sition conditions. The derivation of C-GSTCs begin by
considering that discontinuities may be formally treated
by decomposing the fields (A = E,H,D,B) according to

a series of n-th derivatives of Dirac delta functions δ
(n)
S

defined along the surface (a proper mathematical defini-
tion of this distribution is provided in appendix II). We
consider here an arbitrary conformal metasurface located
on a two-dimensional surface S = {(x, y, z), z = f(x, y)},
as presented in Fig. 1, and assume that each field A can
be decomposed as a series of Dirac’s surface distribution
δS with multiple singular and one regular part as follows:

A(x) = A(x) +

∞∑
n=0

An(x, y)δ
(n)
S (x), (3)

where the An are the singular parts of A defined on the
conformal interface while the regular part A is given by:

A(x) = A+(x) if z > f(x, y) and A−(x) if z < f(x, y).

Now and for the remainder of this paper, we will consider
that An = 0 for n > 0 (this is due to the fact that we
are only interested in the first order transition conditions
verified by the fields). By substituting the distribution
form of the fields from (3) into Maxwell equations (1)
and using the identities discussed in appendix II, which
provides the curl and divergence of singular fields, we
then find that:

(∇‖ ×E0)δS + n×E0∂nδS +∇×E

+ n× JEK δS = −iω
(
B0δS + B

)
, (4)

(∇‖ ×H0)δS + n×H0∂nδS +∇×H

+ n× JHK δS = iω
(
D0δS + D

)
, (5)

(∇‖·D0)δS+n·D0∂nδS +∇·D + n·JDK δS = 0, (6)

(∇‖·B0)δS+n·B0∂nδS +∇·B + n·JBK δS = 0. (7)

Without loss of generality, we can now consider that the
interface is surrounded by air (this situation occurs for
example in the case of nanoholes arrays in slab waveg-
uides [17]) and use the same decomposition of the sus-
ceptibilities as the one for the fields in eq. (3), that is
χι(x) = χι,0(x, y)δS(x) for ι equal to either ee or mm.

The χι,0 terms are refereed to as the surfacic suscepti-
bility tensors (and are given in meter). Putting this def-
inition into the constituve relations of eq. (2), one find
that the first order fields are linked to the mean value of
the regular fields across the interface via the surfacic sus-
ceptibilities (see appendix C where the full details of the
proof are given). Finally, separating the regular and sin-
gular terms in eqs. (4)-(7) we ends up with the following
C-GSTCs:

n× JEK=−iωµ0

(
χmm,0{H}

)
‖+∇‖×

(
χee,0{E}

)
⊥, (8)

n× JHK= iωε0

(
χee,0 {E}

)
‖+∇‖ ×

(
χmm,0{H}

)
⊥, (9)

n · JDK=−ε0∇‖ ·
(
χee,0 {E}

)
‖ , (10)

n · JBK=−µ0∇‖ ·
(
χmm,0 {H}

)
‖ . (11)

III. SUSCEPTIBILITY SYNTHESIS

GSTCs provide a way to synthesize the optical re-
sponse of a shaped metasurface to transform any given
incident field into user-defined outgoing transmitted and
reflected fields (denoted by E0

+ and E0
− respectively) [18–

20]. The results of our synthesis are therefore the co-
efficient values of the C-GSTCs electric and magnetic
surfacic susceptibility tensors χι,0 as a function of the
position along arbitrarily shaped surface. Solutions are
obtained by solving the inverse problem in eqs. (8)-(9).
Note that no physical assumption has been made so far
to restrict the susceptibilities tensors values, leaving us
with 12 complex unknown coefficients (due to the sym-
metry of the susceptibility tensors). Thus, if we con-
sider setting only one incident and one outgoing fields,
the solution of the inversion problem is underdetermined.
Eqs. (8)-(9) only provide 4 equations in the interface local
system of coordinates), indicating that multiple combi-
nation of coefficients could satisfy the equations. To ob-
tain a well-posed inversion problem, the most traditional
method consists in relying on physical conditions, includ-
ing for example symmetries and reciprocity such that the
C-GSTCs share the same number of equations and un-
known susceptibility coefficients. In the following, we
consider tensors such that the tangential curl terms in (8)
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and (9) vanish. This is a common assumption made with
planar GSTC where this term is usually set to zero by
taking χαzι,0 = χzαι,0 = 0 for α = x,y, z when n = z. For
nonplanar interface a similar assumption is made using
the local orthonormal curvilinear basis (τ 1, τ 2,n) with
tangential vectors τ 1 and τ 2. Given the decomposition of
any field A on S by A = (A·τ 1)τ 1+(A·τ 2)τ 2+(A·n)n,
the assumption of vanishing tangential curl terms in (8)
imposes that the matrices χι,0 satisfies:(

χι,0A
)
⊥ =

[(
χι,0A

)
· n
]
n = 0. (12)

Introducing now the general decomposition of the sus-
ceptibility tensors in any basis B:

χι,0 =
∑
α,β∈B

χαβι α⊗ β ⇒ χι,0A =
∑
α,β∈B

χαβι (A ·α)β

valid in both Cartesian or curvilinear coordinates con-
sidering either B = {x,y, z} or B = {τ 1, τ 2,n}, eq. (12)
leads to χαnι,0 = 0 for α = τ 1, τ 2,n. With this choice
of susceptibility tensors, we drastically simplify the first
two C-GSTCs into their compact forms:

n× JEK = −iωµ0χmm,0
{
H‖
}
, (13)

n× JHK = iωε0χee,0
{
E‖
}
. (14)

Setting the off-diagonal terms χτ
1τ2

ι,0 and χτ
2τ1

ι,0 to zero
then leaves only 4 unknown coefficients in the curvi-
linear coordinate system. In Cartesian coordinates the
susceptibilities are then found for α,β = x,y, z as

χαβι,0 = χτ
1τ1

ι,0 τ 1
ατ

1
β + χτ

2τ2

ι,0 τ 2
ατ

2
β. Given injected and

transmitted electromagnetic fields E0
±,H

0
±, the inversion

of C-GSTCs eqs. (13)-(14) around the interface leads to:

χτ
1τ1

ee,0 =
−1

iωε0

q
H0 · τ 2

y

{E0 · τ 1}
, χτ

2τ2

ee,0 =
1

iωε0

q
H0 · τ 1

y

{E0 · τ 2}
,

χτ
1τ1

mm,0=
1

iωµ0

q
E0 · τ 2

y

{H0 · τ 1}
, χτ

2τ2

mm,0=
−1

iωµ0

q
E0 · τ 1

y

{H0 · τ 2}
.

(15)

IV. FINITE ELEMENT IMPLEMENTATION

To verify the validity of our C-GSTCs derivation we
implemented these equations using the FEM and tested
the performance of the synthesized interfaces in terms of
angular response efficiency. Incidentally, and to the best
of our knowledge, only a recent work dealing with FEM
modelling of planar GSTCs in two dimensions has been
proposed [21]. Here, we provide a full three-dimensional
modelling method that applies to both planar and con-
formal interfaces. This modelling method relies on the
FEM and thus on the variational formulation associated
with the vectorial form of the wave equation. In general,

this formulation is given in the frequency domain as:∑
D∈D

∫
D

1

µ
∇×E·∇×φ−k2εE·φ dx+B∂D = 0, (16)

where D is the set of domains present in the simulation
and B∂D is a surfacic integral accounting for the bound-
ary conditions on the domains borders ∂D and given by:

B∂D = −iωµ0

∫
∂D
n×H · φ ds.

At the interface ∂D1 ∩ ∂D2 between two domains, the
natural transition conditions gives n × JHK = 0, thus
canceling out the surfacic integral. With the C-GSTCs
however, the jump of the fields components are not equal
to zero and BS 6= 0 (with S the C-GSTCs interface).
From eqs. (13)-(14) one find (see appendix E) that BS =

Bee,1S +Bee,2S +Bmm,1S +Bmm,2S with:

Bee,`S = −
∫
S

k2
0χ
τ `τ `

ee,0

{
E · τ `

}{
φ∗ · τ `

}
ds,

Bmm,`S =

∫
S

(χτ
`τ `

mm,0)−1
r
E · τ ¯̀

z r
φ∗ · τ ¯̀

z
ds,

where ¯̀ = 1 if ` = 2 and 1 otherwise. One modifi-
cation of the FEM scheme is also required in order to
account for these surfacic integrals. Indeed, the Nédélec
elements usually considered in electromagnetic FEM sim-
ulations [22, 23] ensure that the natural transition condi-
tions are verified; it considers the same degrees of freedom
for the tangential components of the electric field on each
side of the interfaces. To account for the C-GSTCs, we in-
stead discretized separately the two domains on each side
of S so as to duplicate the number of degree of freedom
for the tangential components and thus make it possible
to have a non-zero jump of the fields on S. The sur-
facic integrals in BS together with (16) and additional
boundary conditions at the edge of the simulation area
to generate an input plane wave and to absorb all out-
going waves (open system) define the whole simulation
problem. With respect to existing works dealing with
GSTC equations that replace metasurface discontinuous
regions with small equivalent volumes [24, section IV.
B][25, Section IV], our approach implements directly the
real transition conditions inside the variational formula-
tion. Our FEM simulations were performed using Comsol
Multiphysics in both two and three dimensions [26].

V. NUMERICAL EXAMPLES

The ability to design arbitrary shaped functional in-
terfaces is of particular interest to study the impact of
freeform geometry and compare their performance with
respect to conventional flat optical components. We have
first realized two simple studies of usual optical compo-
nents, a lens and a deflector, to illustrate the impact of
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interface geometry and how it influence the device optical
performance.

A. Deflector
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FIG. 2. Planar and sinusoidal light deflectors. A) Flat meta-
surface deflecting light at an angle θ◦r ; B) Similar calculation
as in A) but considering a sinusoidal (conformal) interface; C)
and D) Associated electric susceptibilities (here χee = χmm)
for both planar and conformal metasurfaces; E) Sensitivity of
the transmission (normalized by the total output power) into
the θ◦r order of diffraction depending on the amplitude α of
the interface’s sinusoidal oscillations.

In this first example, we consider a periodically oscil-
lating interface designed using C-GSTCs from which an
incident plane wave is refracted at an angle of θr ' 45◦

(the precise value of θr is given by the order of diffrac-
tion) with respect to the z axis. We synthesized the
susceptibilities using (15) considering z-polarized input

and output plane waves and the output one given by an
order of diffraction with angle θr.

The interface geometry is given by f(x, y) =
α cos( 2π

5λx) for α ranging from 0 to 2.5λ. We implemented
the C-GSTCs FEM as mentioned above considering a
simulation domain size of 20λ × 20λ and the results are
summarized in Fig. 2.

As we can see in Fig. 2 E) the sinusoidal interface does
not perform well when the plane wave is sent with an in-
cident angle different than zero. More precisely, we can
see that its performances drastically reduces the deflec-
tion efficiency from 100 % to only 50 % for less than 10◦

incident angle change.

B. Lens

This example is inspired from pioneering work realized
by Ernst Karl Abbe back in 1881 [27]. It states that for
any optical system, which would be able to produce on-
and off-axis sharp images, the ratio of the sines of the
entrance and exit angles (αin, αout) of optical rays must
equal to the magnification M of the optical system with
the relationship: sin(αin)/ sin(αout) = |M |. Ray tracing
calculations of light focusing from curved metasurfaces
have suggested that Abbe-Sine condition can be realized
for spherical interface with radius of curvature equal to
the focusing distance of the curved metalens [28] and [29].
C-GSTCs proposed herein have been utilized to calculate
the susceptibilities of a focusing half-circle metalens and
are used to study the angular response of the Abbe-Sine
component. We thus consider the focusing of an incident
plane wave from a metalens covering a hemisphere cen-
tered at (0, 0, R) with radius R while imposing a spheri-
cal output wave centered at the focal point (0, 0, f). The
simulation results are provided in Fig. 3 b)-c) using a
domain size of 10λ× 30λ with f = 10λ.

To reach the Abbe-Sine condition with curved inter-
faces, it is necessary to study the focusing responses of
metalens for arbitrary incident angles, while keeping the
surface susceptibilities initially calculated for normally
incident beam. The comparison of both planar versus
curved focusing efficiency are presented in Fig. 3 d)-e),
including a quantitative comparison with the evolution
of the Full Width at Half Maximum (FWHM) in Fig. 3
f). It indicates that the FWHM of the conformal meta-
surface is almost invariant with respect to the incident
angle while it increases for the planar interface case as a
function of the incident angle from 0 to 20◦. Conformal
metasurface are thus able to improve the focusing profile
and the point-spread function to reduce monochromatic
abberations. In the appendix VI we also present incident
angle characterization of a sinusoidal interfaces that are
traditionally used for light deflection in generalized Snell-
law experiments. We show that instead their deflection
efficiency are extremely sensitive to the incident angles.



5

0         5        10        15       20      25
Distance to x (m)0 0

2.4e-13
2.2e-13

2e-13
1.8e-13
1.6e-13
1.4e-13
1.2e-13

1e-13
8e-14
6e-14
4e-14
2e-14

0

E
ne

rg
y 

de
ns

ity
 (

J/
m

 )3

0°
5°
10°
22.5°

0         5        10        15       20      25
Distance to x (m)

0°
5°
10°
22.5°

0          5         10        15        20   22.5
Incident angle (°)

Fu
ll 

W
id

th
 a

t 
H

al
f M

ax
im

um
 (

F
W

H
M

) 
(m

) 9
8.5

8
7.5

7
6.5

6
5.5

5
4.5

4
3.5

3
2.5

R = f
R = 1.5f
R = 2f
R = 4f
planar

A)

D) E) F)

Object Image

Metasurface

f

R

G)

H)

3.5e-8

3e-8

2.5e-8

2e-8

1.5e-8

1e-8

0.5e-8

0

E
nergy density (J/m

 ) 3 R=f

R=∞

0.2

0.15

0.1

0.05

0

0.05

-0.1

-0.15

-0.2

z com
ponent of E

 (V
/m

)

B) C)

FIG. 3. Planar and conformal metalenses. A) schematic of the Abbe sine numerical experiment realized with curved metalens;
B) and C) Calculation of the field transmitted through a synthesized conformal metalens when R = f ; D) Focusing profile
(dashed lines in B)-C) and G)-H) respectively) of the curved metalens when R = f ; E) Same as D) for the planar metalens;
F) Sensitivity of the Full width at half maximum with respect to the incident angle for different radii of curvature of the
metasurface. G) and H) Same calculation as in C) but using a plane wave tilted by 22.5◦ while adjusting the surface curvature
to R = f and R = inf respectively.

C. Cloaking

In our second example, we realize a new sort of opti-
cal illusion, manipulating the optical signature of an ac-
tual object, for example a cat-shaped structure, to mimic
light scattering of another object, a mouse-shaped struc-
ture. Applying a metasurface conformally to the shape
on the former object, one can realize an advanced version
of cloaking accounting for both the complex shapes and
projection of arbitrary field distributions. Our approach
suggests wrapping a metasurface conformally to an ob-
ject, while adjusting the surface susceptibilities, to reflect
and/or transmit light as if it was coming from another
user-defined object.

The synthesizing of the susceptibilities is realized by
computing first the electromagnetic fields scattered by
both objects, i.e. cat and mouse-shaped nanostructures
in the absence of a metasurface (see Fig. 4 c) and d)),
considering an incident plane wave impinging from the
bottom left of the simulation domain. We then apply
the inversion procedure to adjust the interior fields from
the cat geometry to the exterior fields scattered by the
mouse shaped structure through the conformal suscep-
tibilities disposed along the cat surface (see Fig. 4 e) ).
The calculations are performed considering a background
domain with permittivity equal to εr = 1 and assuming
that the objects are made of homogeneous medium with
a permittivity εr = 2. The results summarized in Fig. 4

thus indicate that the mouse-scattered fields are repro-
duced almost perfectly, even from an arbitrary shaped
structure, producing the illusion of light scattering from
a different object. For practical applications, it is neces-
sary to verify that the scattering illusion is preserved over
a relatively large incident angle range. Fig. 4 g) presents
the angular cross sections as a function of the incident
angles (the outward Poynting vector norm) computed
on the edge of the simulation domain (circle boundary).
Fig. 4 g) shows that the performance of the illusion sys-
tem behaves poorly for incident angles slightly different
from the designed case. Note that here the susceptibil-
ities have been calculated considering that the field in-
side the cat-shaped nanostructure remains equal to the
field distribution in absence of beam shaping metasur-
face. Choosing other inner field distribution is also pos-
sible. As an example, to study designs with reduced an-
gular sensitivity, we show in Fig. 4 f) that imposing a
zero field inside the shaped nanostructure could main-
tain broader angular scattering.

VI. CONCLUSION

In conclusion, we have proposed a detailed derivation
and full wave implementation of conformal GSTCs. We
proposed several numerical examples showing the versa-
tility of the inversion procedure with C-GSTCs. Our pro-
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FIG. 4. Conformal metasurface making the cat reflections look like the ones coming from a virtual mouse. A) and B) Schematic
representation of the system: a shape Ω with an optical index equal to 2 is coated with a conformal metasurface on its borders
∂Ω with susceptibilities synthesized in such a way that the reflections produced by this shape are equal to the one from a
non-modified shape ω with the same optical index; C) and D) Simulation of the reflected field for Ω (resp. ω) representing a
cat (resp. a mouse); E) Simulation of the C-GSTC coated Ω shape (ω given for comparison with dashed lines); G) Absolute
difference of the outgoing Poynting vectors normal component on the exterior circle between the field reflected by the ω shape
and the C-GSTC coated Ω one; F) Same as G) but imposing a zero electric field inside the Ω shape during the susceptibility
synthesization step.

posed modeling technique may be of interest to scientists
and engineers searching for innovative solutions to ad-
just the optical response of freeform optical components.
However, it is important to keep in mind that even if
the presented numerical results may seem promising for
future applications of conformal metasurfaces, the sus-
ceptibilities obtained through the inversion procedure are
not directly linked to physical materials or structures. To
alleviate this issue one could for instance consider using
susceptibilities coming from the homogenization theory
such as in [30, 31]. Other synthesis method could also be
considered (and adapted to conformal geometries) such
as the one producing physically relevant real-valued sus-
ceptibilities in [32].
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Appendix A: Vectorial identities on surfaces

In all the appendices we consider a surface S embedded
in R3. In terms of notation, we used JAK the jump of the
fields A at the interface and n the associated surface
normal vector pointing from the bottom to top domain.
The jump J·K and mean {·} operators are defined for any
field A on S as:

JAK = A+ −A−

{A} =
A+ + A−

2

with A+ (resp. A−) the value of A above (resp. below)
the surface S.

All the following definitions and properties presented
here are fairly classical but we have decided to include
them here in order to guide the reader who wants to
implement numerically the C-GSTCs.
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1. Definitions

Let us assume that the surface S is given as the 0 level
set of a function F (x, y, z) = z − f(x, y) and that it cut
the whole R3 space into two parts D+ ∪ D− = D with
D+ = {x, F (x) > 0}. For more general surfaces (such as
the one in the cloaking example), other definitions of F
must be considered. The normal vector n on S pointing
into D+ is then given by:

n =
∇F
|∇F |

=
(−∂xf,−∂yf, 1)√
∂xf2 + ∂yf2 + 1

.

In the same way, two tangential vectors τ 1 and τ̃ 2 may
be found as:

τ 1 =
(1, 0, ∂xf)√
∂xf2 + 1

and τ̃ 2 =
(0, 1, ∂yf)√
∂yf2 + 1

, (A1)

For more general surfaces one need to consider vectors τ
such that ∇F · τ = 0. For instance if ∂zF 6= 0, fixing
τx = 1, τy = 0 or the contrary, one find that he need
to have τz = −∂xF/∂zF which leads to eq. (A1). In
practice we will consider vectors (τ 1, τ 2,n) such that it
corresponds to an orthonormal basis with:

n =
∇F
|∇F |

, τ 1 =
(1, 0, ∂xf)√
∂xf2 + 1

and τ 2 = n× τ 1.

With this definition we also have τ 1 = τ 2 × n. Note
also that such a bundle of tangent vectors forming an
orthonormal basis is not unique. We define the tangential
and normal components of any vector field A as:

A‖ = n×A× n and A⊥ = (A · n)n (A2)

such that A = A‖ + A⊥. The same definitions may be
used to define the tangential and normal derivatives by
assuming that the nabla (gradient) differential operator
∇ is equal to the vector (∂x, ∂y, ∂z). This may eventually
be written as:

∇‖ = (Id− n⊗ n)∇ and ∇⊥ = (n⊗ n)∇.

For a more precise mathematical definition the reader is
referred to [33, Section 5.4].

2. Integration by parts

Most of the results from this subsection regarding tan-
gential operators formulas may be found in [23, section
3.4].

a. Integrals involving the curl operator

First, let us recall the integration by parts formula for
the curl on any Ω ⊂ R3 with contour ∂Ω:∫

Ω

A·∇×Bdx =

∫
Ω

∇×A·Bdx+

∫
∂Ω

A×n·Bds. (A3)

A similar formula may be obtained for the tangential curl:∫
∂Ω

∇‖×A‖ ·B⊥ ds =

∫
∂Ω

A‖ ·∇‖×B⊥ ds+b.t. (A4)

where b.t. corresponds to boundary terms which will be
ignored afterward since they are equal to zero for vanish-
ing fields on the edges of ∂Ω or if ∂Ω is a closed contour.
We will also use the following equality for the curl on a
surface:∫
∂Ω

A ·∇×Bds =

∫
∂Ω

(
∇‖ ×A

)
·B+A‖ · ∇⊥ ×B‖︸ ︷︷ ︸

(A‖×n)·∂nB‖

ds

(A5)
where ∂nB‖ = ∂n(B ·τ1)τ1 +∂n(B ·τ2)τ2. This equation
is obtained using the following decomposition and (A4):

A · ∇ ×B = A‖ · ∇⊥ ×B‖

+ A‖ · ∇‖ ×B⊥ + A⊥ · ∇‖ ×B‖.

b. Integrals involving the divergence operator

Again we remind the reader of the classical integration
by parts formula for the divergence on any open subset
Ω of R3:∫

Ω

(∇ ·A)B dx = −
∫

Ω

A · ∇B dx+

∫
∂Ω

(n ·A)B ds.

Regarding the tangential divergence we will use the rela-
tion: ∫

∂Ω

A · ∇‖B ds = −
∫
∂Ω

(∇‖ ·A)B ds,

which allows to write:∫
∂Ω

A · ∇B ds = −
∫
∂Ω

(∇‖ ·A)B ds+

∫
∂Ω

A · ∇⊥B︸ ︷︷ ︸
(n·A)∂nB

ds

using the decomposition:

A · ∇B = A · ∇‖B + A · ∇⊥B.
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Appendix B: Dirac distributions on surfaces

1. Definition of a Dirac on a surface

The Dirac distribution on the surface S is denoted by
δ◦F = δS and defined (see for instance [34]) such that for
any smooth, and compactly supported function φ (a.k.a
“test function”): ∫

R3

δSφ dx =

∫
S

φ ds.

With a small abuse of notation we will also use the no-
tation δS for vectorial Dirac surface distributions on S.

The derivative of a surface Dirac along the direction α
is noted ∂αδS and given for all test functions φ by:∫

R3

∂αδSφ dx = −
∫
S

∂αφ ds. (B1)

2. Operators on a surface-step functions

We now define a continuous by part step vector-
function A as:

A(x, y, z) =

{
A+(x, y, z) if z > f(x, y)
A−(x, y, z) if z < f(x, y)

with A+,A− smooth functions. We also remind the
reader that a vectorial function A is said to have a dis-
tributional curl (resp. distributional divergence) if there
exist a g (resp. g) such that for all vectorial test functions
φ (resp. scalar test functions φ):∫

R3

A · ∇ × φ dx =

∫
R3

g · φ dx, (B2)∫
R3

A · ∇φ dx = −
∫
R3

gφ dx. (B3)

a. Curl

The distributional curl of the step function A is found
using the integration by parts formula of (A3):

(B2) =

∫
D+

A+ · ∇ × φ dx+

∫
D−

A− · ∇ × φ dx

=

∫
∂D+

A+×nD+ · φ dx+

∫
∂D−

A−×nD− · φ dx

+

∫
D+

∇×A+ · φ dx+

∫
D−
∇×A− · φ dx

=

∫
S

JAK× n · φ dx+

∫
R3

∇×A · φ dx

where we have used the fact that φ→ 0 at infinity. From
the definition of the surface Dirac function we thus have:

(B2) =

∫
R3

δS JAK× n · φ+∇×A · φ dx

We thus find that the distributional curl of A is ∇×A+
δS JAK× n.

b. Divergence

Here we have to consider the following integral:

(B3) =

∫
D+

A+ · ∇φ dx+

∫
D−

A− · ∇φ dx

=

∫
∂D+

A+ · nD+φ dx+

∫
∂D−

A− · nD−φ dx

−
∫
D+

∇ ·A+φ dx−
∫
D−
∇ ·A−φ dx

=

∫
R3

δS JAK · nφ−∇ ·Aφ dx,

which gives the distributional divergence of A as ∇·A+
δS JAK · n.

3. Operators for the product between a function
and a surface Dirac

a. Curl

With the same method as in appendix B 2 using the
integration by parts formula of equation (A5) we find
that (for A defined on S):∫

R3

(AδS) · ∇ × φ dx =

∫
S

A · ∇ × φ ds

=

∫
S

(∇‖ ×A) · φ ds+

∫
S

(A‖ × n) · ∂nφ‖ ds

Using the definition of the Dirac derivative in (B2) we
then find that the curl of AδS is given as (∇‖ ×A)δS +
n×A‖∂nδS .

b. Divergence

In the same way we have:∫
R3

(AδS) · ∇φ dx =

∫
S

A · ∇φ ds

= −
∫
S

(∇‖ ·A)φ ds+

∫
S

n ·A(∂nφ) ds

The divergence of AδS is thus given as (∇‖ ·A)δS + n ·
A∂nδS .
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c. Identities

We summarize in this subsection the identities dis-
cussed above.

For any “singular” field A0 defined on the surface S:

∇× (A0δS) = (∇‖ ×A0)δS + n×A0∂nδS ,

∇ · (A0δS) = (∇‖ ·A0)δS + n ·A0∂nδS .

For any “regular” field A defined in the whole space:

∇×A = ∇×A + n× JAK δS ,

∇ ·A = ∇ ·A + n · JAK δS .

Appendix C: Full derivation of C-GSTCs

Note that readers interested in the derivation for the
planar case could refer to [20, Appendix A] [14] and [35].

We recall that we consider the following Maxwell equa-
tions:

∇×E = −iωB, ∇×H = iωD,
∇ ·D = 0, ∇ ·B = 0,

(C1)

with the constitutive relations

D = ε0(χee + 1)E, B = µ0(χmm + 1)H. (C2)

Note however that the general case with D = ε0(E + P)
and B = µ0H + M may be considered (for instance if
one is interested in bi-anisotropic materials where D =
εE + ξH, B = µH + ζE) in our analysis but additional
assumptions on the polarization and magnetization fields
will be required in order link their first order singular
values with the regular fields. We consider the following
decomposition of the fields:

A(x) = A(x) +

∞∑
n=0

An(x, y)δ
(n)
S (x). (C3)

A similar decomposition is also assumed for the suscep-
tibilities. To further simplify the analysis, we consider,
without loss of generality, that the metasurface is embed-
ded in air. The regular part of the susceptibilities thus
vanishes and gives for ι = ee,mm:

χι(x) =

∞∑
n=0

χι,n(x, y)δ
(n)
S (x), (C4)

where χι,n is referred to as the n-th surfacic susceptibil-
ity tensor. These singular decompositions may be seen
as a limit case of the classical Taylor expansion for func-
tions which became discontinuous as the thickness of the
interface tends to zero. Indeed, the n-th derivative of

a discontinuous function is given by δ(n−1) and the sur-
facic susceptibilities are then none other than the coef-
ficients present in the Taylor expansion. This remark
shows that χι,n is proportional to `n+1 (where ` is the
thickness of the interface) and thus that it is expressed
in meter to the power n+1. It also suggests that by
considering sufficiently thin interfaces we should have
An = χee,n = χmm,n = 0 for n > 0 since the first order
effects in the expansion are dominant.

Injecting these decompositions into Maxwell equations
we find that:

∇×
(
E0δS + E

)
= −iω

(
B0δS + B

)
, (C5)

∇×
(
H0δS + H

)
= iω

(
D0δS + D

)
, (C6)

∇ ·
(
D0δS + D

)
= 0, (C7)

∇ ·
(
B0δS + B

)
= 0. (C8)

Now considering the identities of section B 3 c these equa-
tions are modified into:

(∇‖ ×E0)δS + n×E0∂nδS +∇×E

+ n× JEK δS = −iω
(
B0δS + B

)
,

(∇‖ ×H0)δS + n×H0∂nδS +∇×H

+ n× JHK δS = iω
(
D0δS + D

)
,

(∇‖ ·D0)δS + n ·D0∂nδS +∇ ·D + n · JDK δS = 0,

(∇‖ ·B0)δS + n ·B0∂nδS +∇ ·B + n · JBK δS = 0.

Splitting these previous equations between similar singu-
larities, we obtain for the regular part:

∇×E = −iωB, ∇×H = iωD, ∇ ·D = 0, ∇ ·B = 0,

from which we infer that the regular part of the fields are
solutions to the classical Maxwell equations. The simply
singular parts (sorting terms in front of δS) implies that:

∇‖ ×E0 + n× JEK = −iωB0,
∇‖ ×H0 + n× JHK = iωD0,
∇‖ ·D0 + n · JDK = 0,
∇‖ ·B0 + n · JBK = 0.

(C9)

Note here that once the first order singularities A0 are
known, these previous equations gives the transition con-
ditions verified by the fields. The “second order” singular
parts (terms in front of ∂nδS) gives:

n×E0 = 0, n×H0 = 0, n ·D0 = 0, n ·B0 = 0, (C10)

which may be interpreted as the fact the first order sin-
gularities verifies the natural transition conditions.

The same manipulation may be done in the constitu-
tive relations of (C2) using the decomposition (C4) for
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any x with z 6= f(x, y):

D + D0δS = ε0(χee,0δS + 1)(E + E0δS), (C11)

B + B0δS = µ0(χmm,0δS + 1)(H + H0δS). (C12)

This gives for the simply singular terms:

D0 =ε0

(
χee,0E+E0

)
, B0 =µ0

(
χmm,0H+H0

)
. (C13)

Note however that equations (C11)-(C12) are not well-
defined since they involve the product of two Dirac distri-
butions. By passing to the limit on the interface we can
write (C13) for any x such that z = f(x, y) as (since the
regular part may be chosen as either the top or bottom
values):

D0 =ε0

(
χee,0{E}+E0

)
, B0 =µ0

(
χmm,0{H}+H0

)
.

(C14)
These constitutive relations may also be seen as D0 =
ε0E0 + P0 and B0 = µ0H0 + M0 where the polarization
P0 and magnetization M0 are given by P0 = ε0χee,0 {E}
and M0 = µ0χmm,0 {H} (note that in [35, Section 4.3.1]
the author directly assume that the polarization and
magnetization are given by such relations while we tried
here to justify such expressions through equations (C11)-
(C12), although a proper justification of these relations is
only found through the homogenization theory as it was
done in [30, 31]). Now, by taking the scalar and cross
product of the constitutive relations (C14) with the nor-
mal vector n and using eq. (C10) we find that:

n ·E0 = −n · χee {E} , n×D0 = ε0n×
(
χee {E}

)
,

n ·H0 = −n · χmm {H} , n×B0 = µ0n×
(
χmm {H}

)
.

Now using the notation of (A2) (A0,‖ = n × A0 × n,
A0,⊥ = (A0 · n)n) these last equations may be written
as:

E0,⊥ = −
(
χee {E}

)
⊥ , D0,‖ = ε0

(
χee {E}

)
‖

H0,⊥ = −
(
χmm {H}

)
⊥ , B0,‖ = µ0

(
χmm {H}

)
‖ ,

while (C10) gives:

E0,‖ = 0, H0,‖ = 0, D0,⊥ = 0, B0,⊥ = 0,

meaning that using the decomposition A0 = A0,‖+A0,⊥
we have the following expressions of the first order sin-
gularities:

E0 = −
(
χee {E}

)
⊥ , D0 = ε0

(
χee {E}

)
‖ ,

H0 = −
(
χmm {H}

)
⊥ , B0 = µ0

(
χmm {H}

)
‖ .

(C15)

Finding the C-GSTCs then amounts to injecting these

expressions into the previously found equations (C9):

n× JEK=−iωµ0

(
χmm,0{H}

)
‖+∇‖×

(
χee,0{E}

)
⊥,

n× JHK= iωε0

(
χee,0 {E}

)
‖+∇‖ ×

(
χmm,0{H}

)
⊥,

n · JDK=−ε0∇‖ ·
(
χee,0 {E}

)
‖ ,

n · JBK=−µ0∇‖ ·
(
χmm,0 {H}

)
‖ ,

Note that these equations reduce to the GSTCs reported
in [20, Eq. (2a)-(2d)] for a planar interface with n = z
and the operators ∇‖, (·)⊥, (·)‖ defined on the conformal
interface (see equation (A2)).

Appendix D: The two-dimensional case

We propose in this appendix details on the simplifica-
tion of C-GSTCs in two dimensions. This section may
be useful for those who want to implement by themselves
these boundary conditions and test them on small and
easier cases, or simply to understand our two-dimensional
model. Here, we consider two-dimensional materials and
sources with an invariance in the y direction, meaning
that all the y partial derivatives are equal to zero. This
lead to two independents triplets of fields coordinates,
namely the Transverse Electric (TE) for (Ex,Hy,Ez)
and Transverse Magnetic (TM) for (Hx,Ey,Hz) with
Ey and Hy solutions to scalar wave equations (with
∇ = (∂x, 0, ∂z)):

−∇ ·
(

1

µ
∇Ey

)
− k2

0εEy = 0,

−∇ ·
(

1

ε
∇Hy

)
− k2

0µHy = 0,

complemented by the following relations:

Ex =
−∂zHy

iωε0
, Ez =

∂xHy

iωε0
, Hx =

∂zEy
iωµ0

, Hz =
−∂xEy
iωµ0

.

For any interface we also have n = (nx, 0,nz), τ
1 =

(τx, 0, τz) with τx = nz, τz = −nx and τ 2 = n × τ 1 =
(0, 1, 0). The C-GSTCs reduces to the following systems
for TM:

− JEyK = −iωµ0χ
τ1τ1

mm (τx {Hx}+ τz {Hz}),

nz JHxK− nx JHzK = iωε0χ
τ2τ2

ee {Ey} ,

where we used the fact that nxτz−nzτx = −1. Similarly
for the TE polarization:

nz JExK− nx JEzK = −iωµ0χ
τ2τ2

mm {Hy} ,

− JHyK = iωε0χ
τ1τ1

ee (τx {Ex}+ τz {Ez}),

meaning that only χτ
1τ1

ee and χτ
2τ2

mm are used for the TE

polarization while χτ
2τ2

ee , χτ
1τ1

mm are used in the TM case.
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The susceptibilities are obtained through the inversion
procedure as:

χτ
1τ1

ee =
−1

iωε0

q
H0
y

y

τx {E0
x}+ τz {E0

z}
,

χτ
2τ2

ee =
1

iωε0

τx
q
H0
x

y
+ τz

q
H0
z

y{
E0
y

} ,

χτ
1τ1

mm =
1

iωµ0

q
E0
y

y

τx {H0
x}+ τz {H0

z}
,

χτ
2τ2

mm =
−1

iωµ0

τx
q
E0
x

y
+ τz

q
E0
z

y{
H0
y

} .

Appendix E: Full derivation of the variational
formulation

We remind the reader that the variational formulation
associated with Maxwell equations in the frequency do-
main is obtained from the vector wave equation:

∇×∇×E− k2εrE = 0.

Note that we consider here the case of constant perme-
ability only for simplicity of the following equations but
this is not a mandatory assumption. Taking the scalar
product of this equation with a test function φ and inte-
grating on the domain D we find that:∫

D

∇×∇×E · φ− k2εrE · φ dx = 0.

Using the curl integration by part formula of (A3) we
then obtain:∫

D

∇×E · ∇ × φ− k2εrE · φ dx+B∂D = 0, (E1)

where

B∂D =

∫
∂D

n×∇×E · φ ds = −iωµ0

∫
∂D

n×H · φ ds.

Now if there is two domains D+ and D− sharing a com-
mon surface S, the sum of the associated variational for-
mulation gives:∑
ι∈{+,−}

∫
Dι
∇×E · ∇ × φ− k2εrE · φ dx+B∂Dι = 0,

with the common boundary terms given by:

BS = B∂D+∩S +B∂D−∩S

= iωµ0

∫
S

Jn×H · φK ds

= iωµ0

∫
S

n× JHK · {φ}+ n× {H} · JφK ds

where n is pointing from D− to D+. The terms inside
this last integral may be written using solely their tan-
gential components using that

n×JHK ·{φ} = (JHK ·τ 1)({φ}·τ 2)−(JHK ·τ 2)({φ}·τ 1),

n×{H}·JφK = ({H}·τ 1)(JφK ·τ 2)−({H}·τ 2)(JφK ·τ 1).

Now, thanks to the definition of the susceptibilities, one
can see that the C-GSTCs may be expressed as (by taking
the dot products with τ 1 and τ 2):

n× JEK · τ 1 = −iωµ0χ
τ1τ1

mm {H} · τ 1,

n× JEK · τ 2 = −iωµ0χ
τ2τ2

mm {H} · τ 2,

n× JHK · τ 1 = iωε0χ
τ1τ1

ee {E} · τ 1,

n× JHK · τ 2 = iωε0χ
τ2τ2

ee {E} · τ 2.

Or equivalently:{
H · τ 1

}
=

1

iωµ0
(χτ

1τ1

mm )−1
q
E · τ 2

y
,{

H · τ 2
}

=
−1

iωµ0
(χτ

2τ2

mm )−1
q
E · τ 1

y
,

q
H · τ 2

y
= −iωε0χ

τ1τ1

ee

{
E · τ 1

}
,

q
H · τ 1

y
= iωε0χ

τ2τ2

ee

{
E · τ 2

}
.

We thus find that the surface integrals may be simplified
into BS = Bee,1S +Bee,2S +Bmm,1S +Bmm,2S with:

Bee,1S = −
∫
S

k2
0χ
τ1τ1

ee

{
E · τ 1

}{
φ∗ · τ 1

}
ds,

Bee,2S = −
∫
S

k2
0χ
τ2τ2

ee

{
E · τ 2

}{
φ∗ · τ 2

}
ds,

Bmm,1S =

∫
S

(χτ
1τ1

mm )−1
q
E · τ 2

y q
φ∗ · τ 2

y
ds,

Bmm,2S =

∫
S

(χτ
2τ2

mm )−1
q
E · τ 1

y q
φ∗ · τ 1

y
ds.

The surfacic integrals in BS together with (E1) and
additional boundary conditions at the edge of the simu-
lation area to generate an input plane wave and to absorb
all outgoing waves (open system) define the whole simu-
lation problem.
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Appendix F: Additional details on numerical tests

1. Deflector

a. Three-dimensional example
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FIG. 5. Three-dimensional simulation of a sinusoidal light
deflector using C-GSTCs. Top: real part of the z component
of the electric field. Bottom: energy density of the electro-
magnetic field.

In order to emphasize on the versatility of our FEM
approach, we provide in Figure 5 the result of our sim-
ulation method on a three-dimensional sinusoidal meta-
surface. We considered here a 20λ × 10λ × 10λ simula-
tion domain with a sinusoidal interface given by f(x, y) =
1
2 cos( 4

9πx) cos( 4
9πy)−2 and an incident plane wave given

by E0(x, y, z) = (1, 1, 0) exp(−ik0z).

b. Sensitivity to the beam size
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FIG. 6. Simulation of the sinusoidal (with sinusoids of am-
plitude 2.5λ) and planar deflectors using an input Gaussian
beam with varying variance σ. First column: conformal in-
terface. Second column: planar interface. A)&D) σ = 2λ
B)&E) σ = 6λ, C)&F) σ = 20λ.

Another sensitivity analysis which was not studied in
the main part of the paper is concerned with the beam
size of the incident wave. Indeed, as we can see in Fig-
ure 2 C) and D), the susceptibilities associated with the
planar surface have a period which is much smaller than
the width of the simulation domain while the sinusoidal
interface has susceptibilities which vary along the whole
size of the periodic interface. This difference is important
since sending an input wave beam with a radius smaller
than the susceptibilities periodicity will inevitably de-
grade the solution. This can be seen in Figure 6 where
Gaussian beams with different variances are considered.
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2. Lens

a. Three-dimensional example
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FIG. 7. Simulation of a three-dimensional curved metalens
using C-GSTCs. A) Electric field (real part of Ez) when
the input wave is in the z direction. B) Electric field for an
input wave sent with an angle of 22.5 degrees with the z axis.
C)-F) Associated susceptibilities computed via the inversion

procedure. C) real part of χτ1τ1

ee,0 D) imaginary part of χτ1τ1

ee,0

E) real part of χτ2τ2

mm,0 D) imaginary part of χτ2τ2

mm,0.

As in appendix F 1 a, we consider here the simulation of
a three-dimensional metalens. The goal of this example
is again only to show the application of our C-GSTCs

to real three-dimensional structures. It is important to
note that even if the simulation domain is invariant by
rotation, it is still mandatory to perform a full three-
dimensional simulation instead of an axisymmetric one
since we are sending waves that are not always in the z
direction and thus are not invariant by rotation. Figure 7
shows the simulation result of the three-dimensional lens
when a Gaussian wave is sent with two different angles.

Regarding the computation time, one simulation takes
roughly 10 minutes on a 16 cores 3.2 GHz computing
server with 200 gigabytes of dedicated memory. This has
to be compared to the two-dimensional lenses considered
in the main paper where one simulation only takes a cou-
ple of seconds on a common laptop.

3. Cloaking

a. Synthesis using different internal fields

We display in Figure 9 the reflected fields of the cloak-
ing problem when considering different interior fields.
These results have to be compared with the fields ob-
tained for the mouse with the same angles. As it may
be seen, even with ±5 degrees, the field reflected by the
mouse shape is not really altered while depending on the
considered interior field the illusion may not work when
the incident angle is changed.

FIG. 8. Zoom on the mesh used for all the simulations of
the cloaking system. The local basis vectors are represented
in red along the cat and mouse interfaces.

We also show in Figure 8 the mesh which is used in
the FEM simulations of the cloaking system. This figure
clearly shows the benefit of using the FEM instead of the
Finite Difference Time Domain (FDTD) method since a
Cartesian grid, contrary to a triangular mesh, does not
allow to handle such small geometric features and will
inevitably lead to discrepancies in the results.
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FIG. 9. Comparison of the reflected fields obtained using different interior field to synthesize the susceptibilities for the
C-GSTCs to the reflected field of the classical shape used for the illusion. First row: angle of 40 degrees. Second row: angle
of 45 degrees (C-GSTCs synthesized at this angle). Third row: angle of 50 degrees. First column: Synthesization using a zero
interior field. Second column: Synthesization using an interior field equal to the one from the ‘cat’ simulation. Third column:
Synthesization using a plane wave as interior field. Fourth column: Simulation of the reflected field by the ‘mouse’ shape.
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