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Abstract

The Commodity constrained Split Delivery Vehicle Routing Problem (C-SDVRP) is a routing problem where

customer demands are composed of multiple commodities. A fleet of capacitated vehicles must serve customer

demands in a way that minimizes the total routing costs. Vehicles can transport any set of commodities and

customers are allowed to be visited multiple times. However, the demand for a single commodity must be delivered

by one vehicle only.

In this work, we developed a heuristic with a performance guarantee to solve the C-SDVRP. The proposed

heuristic is based on a set covering formulation, where the exponentially-many variables correspond to routes.

First, a subset of the variables is obtained by solving the linear relaxation of the formulation by means of a column

generation approach which embeds a new pricing heuristic aimed to reduce the computational time. Solving the

linear relaxation gives a valid lower bound used as a performance guarantee for the heuristic. Then, we devise a

restricted master heuristic to provide good upper bounds: the formulation is restricted to the subset of variables

found so far and solved as an integer program with a commercial solver. A local search based on a mathematical

programming operator is applied to improve the solution.

We test the heuristic algorithm on benchmark instances from the literature. Several new (best-known) solutions

are found in reasonable computational time. The comparison with the state of the art heuristics for solving C-

SDVRP shows that our approach significantly improves the solution time, while keeping a comparable solution

quality.
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1. Introduction

Splitting customer demands has proven to be beneficial in reducing the transportation costs and the number of

vehicles [see 2, 6]. A first work in this direction is the article by [19]. The authors introduced the Split Delivery

Vehicle Routing Problem (SDVRP), where customer demands are composed of a single commodity and can be split

among any number of vehicles. This problem and its variants have been widely studied and exact [e.g. 9, 16, 4, 29]5

and heuristic algorithms [e.g. 3, 38, 14, 11] were proposed. Among these, [13] studies a particular case of the

SDVRP, where customer demands are discretised a priori.

Although this delivery policy brings remarkable cost savings when compared with the policy where no splits are

allowed, it is hardly applicable from a practical point of view. Indeed, customers are usually not keen to accept an

unconstrained split delivery [6]. One step in the direction of making the split deliveries more adherent to real-world10

logistics is made in [24]. The authors proposed a variant of the SDVRP where the quantity delivered to each

customer has to be greater than a preset minimum amount.

Finally, under a multi-commodity setting, a delivery policy that might reduce customer inconvenience due to

split deliveries is to allow demands to be split by commodity. Whenever a vehicle delivers a commodity to a

customer, the entire quantity associated with the commodity has to be provided. This policy was firstly studied15

in the Discrete Split Delivery Vehicle Routing Problem (DSDVRP) proposed in [31] to deal with a real-life case

study. The problem was formally introduced in the literature under the name of Commodity constrained Split

Delivery Vehicle Routing Problem (C-SDVRP) in [6]. In the C-SDVRP, a minimum cost set of routes have to be

determined such that the customer demands, composed of multiple commodities, are met, and the capacity of the

vehicles is respected. The authors showed that the C-SDVRP is a relaxation of the Capacitated Vehicle Routing20

Problem (CVRP) where all commodities of each customer are delivered with a single vehicle, and a restriction of

the SDVRP. In addition, they proposed an in-depth analysis to assess the benefits of the C-SDVRP in terms of

cost savings and applicability in comparison with the CVRP and the SDVRP. To do so, they introduced the first

compact mathematical formulation and devised a branch-and-cut and a heuristic algorithm to solve it. Finally,

they introduced a first set of benchmark instances characterised by 15, 20, 40, 60, 80 or 100 customers requiring 225

or 3 commodities.

Despite its practical relevance, the literature on the C-SDVRP and its variants is quite limited. An exact

approach for the C-SDVRP was proposed in [5]. Specifically, the authors modelled the problem by means of a

set covering formulation and devised a first branch-price-and-cut (BPC) algorithm. They formulate the pricing

problem as an Elementary Shortest Path Problem with Resource Constraints (ESPPRC) and solve the ng-path30

relaxation by means of a label setting dynamic programming technique. [22] enhanced the performances of the

BPC algorithm of [5] by embedding new procedures as the implicit bidirectional labelling search to solve the

ESPPRC, the separation of non-robust valid inequalities to strengthen the lower bound, and the stabilization of

the column generation procedure via dual-optimal inequalities. The authors extended the test-bed introduced in [6]
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with 336 new instances with 4, 5 and 6 commodities. The enhanced BPC algorithm outperformed the one of [5],35

being faster and providing several new optima and better lower bounds.

Conversely, [23] focused on a heuristic algorithm for the C-SDVRP and proposed an adaptive large neighbour-

hood search (ALNS) that exploits the inherent characteristics of the problem. Specifically, several existing local

search moves were adapted to better deal with the multi-commodity aspect, and a mathematical programming

operator was developed to reassign commodities to routes. The authors assess the performance of their ALNS on40

the test-bed introduced in [6]. The ALNS found the optimal value for 81 out of the 84 instances with 15 and 20

customers, and provided 344 new best-known solutions for the 380 instances with more than 40 customers. In [39]

the authors propose a small and large neighbourhood search (SLNS) which is capable of solving different variants

of routing problems, among those the C-SDVRP. The SLNS is compared with the ALNS proposed in [23] on 320

instances with 100 customers and 2 and 3 commodities. The SLNS found 155 new best-known solutions, while the45

computational time is on average three times that of ALNS.

Finally, variants of the C-SDVRP (or of the DSDVRP) have been studied, see e.g. [37, 43, 1, 33, 28, 44, 25].

In [37], customer demands are composed of multiple items grouped in orders. Each order can be seen as a commodity

required by a customer in the C-SDVRP. In addition to the C-SDVRP, this variant includes time windows for the

customers and considers service times that depend on the order delivered. The authors proposed a branch-and-price50

approach.

An extension of the aforementioned problem in a pickup and delivery context is the Vehicle Routing Problem

with Discrete Split Deliveries and Pickups proposed by [33]. [28] study the effect of splitting customer demands by

commodity in a multi-compartment vehicle routing problem. The authors propose a branch-and-price to solve this

multi-compartment C-SDVRP. [44] addressed another multi-compartment C-SDVRP in the context of a capacitated55

arc routing problem arising in the collection of recyclable waste. Vehicles with multiple compartments may make

multiple visits to the same household to collect different recyclables, however, the amount of a single recyclable

cannot be split.

In this paper, we consider a set covering formulation for the C-SDVRP, where the exponential number of

variables are related to routes. Generating all such variables is intractable. Hence, we propose a restricted master60

heuristic [36] to solve the problem. This heuristic scheme consists in solving the formulation restricted to a subset of

variables as a static integer program. Similar approaches have been successfully applied to deal with vehicle routing

problems [see, e.g., 41, 30, 32, 12]. The main difference in the methodologies proposed in these works is the way the

subset of variables is generated. [41] and [30] developed a tabu search heuristic to populate a subset of variables

for the solution of a routing problem with a heterogeneous fleet of vehicles and the Vehicle Routing Problem with65

Time Windows, respectively. In [32], the authors devised a restricted master heuristic for the dial-a-ride problem:

variables are generated by means of a hybrid column generation procedure where a variable neighbourhood search

heuristic is employed to identify negative reduced cost columns. Finally, [12] deals with the Joint Order Batching

and Picker Routing Problem (JOBPRP). The authors proposed formulation with exponentially many variables and
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solve its linear relaxation by means of column generation. The objective is twofold: determining a subset of variables70

to use in a restricted master heuristic and calculating a lower bound on the optimal solution value.

The approach proposed in the current paper follows the strategy used in [12]. Unlike the existing literature on

the C-SDVRP, our approach is a heuristic that provides lower and upper bounds even for large-scale instances of the

problem within reasonable computation times. The lower bound serves as a performance guarantee for our heuristic.

In the column generation phase, the pricing problem reduces to solve an ESPPRC. Efficient handling of the pricing75

problem is essential in a column generation procedure. Therefore, heuristics are commonly used to address the

pricing problem before solving it exactly. In this respect, we devise a new pricing heuristic that exploits the multi-

commodity aspect of the problem. More precisely, the heuristic articulates in two phases: Phase 1 computes a set

of promising customer sequences by solving the ESPPRC on a modified version of the pricing graph; Phase 2 is

called for each customer sequence produced by the first phase and determines all the negative reduced cost routes80

arising from the sequence by solving the Shortest Path Problem with Resource Constraints (SPPRC) on acyclic

graphs. It is noteworthy that the first phase of our heuristic also provides a valid lower bound on the value of

the pricing problem. After the column generation procedure, upper bounds are identified by the restricted master

heuristic. Finally, a local search phase is applied to improve the upper bound. This phase uses the mathematical

programming operator proposed in [23] to reassign commodities to the routes. Computational experiments proved85

that our approach successfully provides upper bounds of good quality in shorter computational times than the

state-of-the-art heuristic approaches. More precisely, it is capable of solving large-size instances with four, five, and

six commodities and improves a few best-known solution values from the literature. When compared against the

state-of-the-art heuristics of [23] and [39], our approach improves the solution time with an average speedup ratio

of 17.0, while keeping the percentage gap with respect to the upper bounds to 0.55% on average.90

The remainder of the paper is organized as follows. In Section 2, we give a formal description of the C-SDVRP

and introduce the notation. In Section 3, we present a set covering formulation for the problem. In Section 4 we

describe the main components of the restricted master heuristic we devised to solve it. Finally, the computational

results obtained on the benchmark instances are reported and discussed in Section 5.

2. Problem description95

In the Commodity constrained Split Delivery Vehicle Routing Problem (C-SDVRP) the commodities of a set

K = {1, . . . , κ} have to be delivered from a depot 0 to a set of customers N = {1, . . . , n}. The request of a customer

j ∈ N may be composed of multiple commodities and is identified by set Kj = {k ∈ K : Djk > 0}, where Djk ≥ 0

is the demand of commodity k ∈ K to be delivered to customer j. An unlimited fleet performs the distribution of

the commodities to the customers. Each vehicle has a capacity Q and is initially based at the depot. The vehicles100

can transport any subset of commodities provided that their capacity is not exceeded. We suppose without loss

of generality that Q ≥ max{Djk : j ∈ N , k ∈ Kj}. When a vehicle visits a customer j ∈ N , a non-empty subset
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Mj ⊆ Kj of commodities is delivered to j. Hence, a customer request may be split, and a customer may be visited

multiple times. However, when a vehicle visits customer j, the amount of each commodity k ∈ Mj delivered by

the vehicle to j must be equal to Djk. In other words, the demand for a single commodity cannot be split.105

The C-SDVRP can be defined on a directed weighted graph G = (V,A). The vertex set V = {0} ∪ N contains

a vertex 0 representing the depot, and the set N of vertices representing the customers. The arc set A = {(i, j) :

i, j ∈ V, i ̸= j} contains arcs modelling each possible vehicle travel between two distinct vertices. Each arc (i, j) ∈ A

is associated with a non-negative cost Cij which corresponds to the cost of traversing arc (i, j). We suppose that

the arc costs satisfy the triangular inequality. A route in graph G is a non-empty circuit starting and ending at110

the depot. A route is feasible if the total amount of commodities delivered to the customers visited along the

route does not exceed the vehicle capacity Q. The set of feasible routes is denoted by R. The cost of a route r is

Cr =
∑

(i,j)∈A(r) Cij , where A(r) is the set of arcs traversed by the route.

The C-SDVRP aims to find a least-cost set of feasible routes such that all the customer requests are served.

3. Problem formulation115

We consider the set covering formulation proposed in [5]. For each feasible route r ∈ R, we introduce a binary

coefficient arjk with value one if commodity k ∈ K is delivered to customer j ∈ N by route r and zero otherwise.

Then, for r ∈ R, we introduce a binary variable λr taking value one if the route is selected in the solution and zero

otherwise. Last, we define an auxiliary variable v to count the number of vehicles in the solution.

The Set Covering formulation [SC] reads as follows:

[SC] min
∑
r∈R

Crλr (1)

s.t.
∑
r∈R

arjkλr ≥ 1 ∀j ∈ N ,∀k ∈ Kj (2)

∑
r∈R

λr = v (3)

v ≤ v ≤ v̄ (4)

λr ∈ {0, 1} ∀r ∈ R (5)

Objective function (1) minimizes the total routing costs. Constraints (2), which we refer to as covering con-120

straints, ensure that the customer demands are met. Constraints (3) and (4) define an auxiliary variable v and

impose a lower bound and an upper bound on it, i.e., on the number of vehicles used in the solution. Finally,

constraints (5) define variables λr as binary.

Bounds in constraints (4) can be obtained by solving an instance of the Bin Packing Problem (BPP), where

bins represent vehicles associated with their capacity, and objects, with the respective weights, are the customer125

demands. The BPP is formulated as an integer program and solved with a commercial solver within a time limit.
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Values d and d̄ denote the obtained lower and upper bounds, respectively. Hence, the number of vehicles is bounded

from below by the ceil function of d (v := ⌈d⌉) and from above by the minimum between twice value d̄ [see 20] and

the number of customers (v̄ := min{2d̄, |N |}).

4. A restricted master heuristic130

This section describes the main components of the restricted master heuristic we designed to tackle [SC]. The

heuristic scheme articulates in three phases.

In the first phase, the Master Problem (MP), i.e., the linear relaxation of the formulation [SC] is solved using

a column generation procedure ( see, e.g., [17]) to obtain a subset of variables R′ ⊆ R and a valid lower bound.

Afterwards, if the solution of the MP is fractional, valid inequalities are possibly included to strengthen the lower135

bound and enrich the set R′. The procedure is then repeated. In the second phase, an upper bound is obtained by

solving formulation [SC] defined on the variables of R′ generated in the first phase. Specifically, [SC] restricted to

R′ is solved as a static integer program with a commercial solver run within a time limit. Note that the set R′ is

preprocessed before solving [SC] to repair all the routes whose total amount of delivered commodities is not tight

with respect to the vehicle capacity. For each of these routes, we randomly select commodities to be delivered to140

the customers they visit in order to generate new routes that fill the vehicle capacity. Finally, in the third phase,

the mathematical programming operator proposed in [23] to reassign commodities to the routes is used to improve

the upper bound determined in the second phase.

4.1. Column generation

As mentioned above, we developrd a column generation algorithm to solve the MP and populate a subset of145

variables R′ ⊆ R. The restriction of the MP to R′ is referred to as Restricted Master Problem (RMP). At each

iteration of the procedure, the RMP and the pricing problem are solved sequentially. The pricing problem aims to

either identify negative reduced cost variables (columns) to add to R′ or to produce a certificate of optimality for

the solution of the MP. We consider some heuristic approaches to quickly identify negative reduced cost variables

when solving the pricing problem. Among others, we devised a novel pricing algorithm which exploits the multi-150

commodity aspect of the C-SDVRP. When the heuristic column generators do not yield negative reduced cost

variables, we solve the pricing problem using an exact algorithm to produce a certificate of optimality. In addition,

it allows us to compute the Lagrangian bound, a valid lower bound on the value of [SC] which we use to provide

an optimality gap for the solution of the restricted master heuristic.

4.2. Pricing problem155

In this section, we use the terms path and route interchangeably.
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As in [5], at each iteration of the column generation procedure, we price out routing variables λr, r ∈ R. The

reduced cost of λr is given by:

C̄r = Cr −
∑
j∈N

∑
k∈Kj

arjkρjk − τ,

where ρjk and τ are the dual prices associated with constraints (2) and (3), respectively.

[5] showed that the pricing problem reduces to an Elementary Shortest Path Problem with Resource Constraints

(ESPPRC), where the resource is associated with the vehicle capacity. Following to some extent [22], we formulate

the ESPPRC on a directed multi-graph G′ = (V ′,A′) defined over the original graph G as follows. We include in160

vertex set V ′ two replica i′ and i′′ of each vertex i ∈ V. In arc set A′, we include an arc (i′′, j′) for each arc (i, j) ∈ A

to model the trip of a vehicle from vertex i to vertex j. Finally, for all non-empty subsets of commodities Mj ⊆ Kj ,

we introduce an arc (j′, j′′)Mj to model the delivery of Mj to customer j. The resource consumption D̄ is set to

zero (D̄i′′j′ := 0) on arcs (i′′, j′), whereas on arcs (j′, j′′)Mj , it is equal to the demand associated with commodity

subset Mj , i.e., D̄
Mj

j′j′′ :=
∑

k∈Mj
Djk. Finally, the cost on arcs (i′′, j′) is C̄i′′j′ := Cij if i′′ ̸= 0′′ and j′ ̸= 0′, and165

C̄i′′j′ := Cij − τ/2, otherwise. The cost on arcs (j′, j′′)Mj considers the dual prices of constraints (2) associated

with customer j ∈ N and the commodities k ∈ Mj , that is C̄
Mj

j′j′′ := −
∑

k∈Mj
ρjk.

Solving the pricing problem results in searching for a negative reduced cost elementary path in G′ from 0′′ to 0′

such that the resource consumption does not exceed the vehicle capacity Q.

4.3. Solution of the pricing problem170

Negative reduced cost paths are retrieved in the multi-graph G′ by solving the ESPPRC by means of a label

setting dynamic programming algorithm [see 21]. More precisely, labels identify partial paths in G′ starting at 0′′

and are characterised by the following resources: reduced cost, accumulated demand, set of visited customers, and

for each customer, the subset of commodities delivered. The starting point of the procedure is a label associated

with vertex 0′′ with resources set to zero or empty. Then, labels are propagated from a vertex to another while175

satisfying the elementarity and capacity constraints: each customer is visited at most once along a partial path, and

the accumulated demand cannot exceed the vehicle capacity Q. Dominance rules are applied to prune unpromising

labels.

In order to accelerate the solution of the pricing problem, we implemented some state-of-the-art procedures.

Specifically, the first one is the ng-path relaxation [7] which partially relaxes the elementarity constraint of the180

paths: a neighbourhood is pre-assigned to each customer, and cycles are allowed only if the customer visited more

than once in a path is not in the neighbourhood of its predecessor in that path. In addition, we incorporate an

implicit version of the bidirectional labelling search algorithm proposed in [35]. The labels are extended from vertex

0′′ to the other vertices of G′ up to a value of the accumulated demand equal to Q/2. Then, the generated labels

are merged to obtain complete paths [see 10, for more details].185

However, even by embedding the two techniques mentioned above, the exact resolution of the pricing problem

might be time consuming. We therefore proceed as follows. First, the pricing problem is solved with a new
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heuristic coupled with two reduced graph heuristics similar to those presented in [22]. Then, the same reduced

graph heuristics are also applied on the multi-graph G′. Finally, the exact pricing method is invoked. We switch

from one pricing algorithm to the next one when the first fails to produce negative reduced cost paths.190

In the following, we give a detailed description the heuristics mentioned above, together with the description of

the preprocessing phase to reduce the size of the multi-graph G′.

4.3.1. Preprocessing phase

We perform the preprocessing procedure proposed in [5] and [22] to reduce the size of the multi-graph G′. At

each iteration of the column generation procedure, we only consider in G′ arcs of type (j′, j′′)Mj whose associated195

pair demand-cost (D̄
Mj

j′j′′ , C̄
Mj

j′j′′) is Pareto-optimal. Since the number of commodities is small in the benchmark

instances of the C-SDVRP (|K| ≤ 6), the Pareto-optimal commodity subsets can be computed by enumeration.

The reader may refer to [22] for a general procedure, based on the solution of the Shortest Path Problem with

Resource Constraints (SPPRC) on acyclic graphs, to determine such subsets when the enumeration strategy is not

applicable.200

4.3.2. A new two-phase pricing heuristic

The heuristic we propose to solve the pricing problem consists of two phases. Phase 1 aims to compute a set

of promising customer sequences. To do so, we solve the ESPPRC on a modified graph of reduced size compared

with the multi-graph G′. Solving the ESPPRC on such a graph is not only faster than solving it on G′, but Phase

1 also permits to derive a valid lower bound on the pricing problem value. Phase 2 aims to determine all negative205

reduced cost paths arising from each of the customer sequences provided by Phase 1. We solve the SPPRC on an

acyclic graph for each customer sequence. The topology and size of graph G′ allow to perform such operation in

negligible time (see [26]).

The graph used in Phase 1, denoted by G′′ = (V ′,A′′), differs from the multi-graph G′ in the arcs modelling the

deliveries to the customers: in G′′ a unique subset of commodities can be delivered to each customer. Hence, G′′ is210

obtained from G′ by removing, for each customer j ∈ N , all the arcs of type (j′, j′′)Mj but one, which we denote

by (j′, j′′). The demand and cost are set on these arcs so that whenever a customer j ∈ N is visited the least

consuming commodity is delivered and all profitable dual prices related to j are collected. Hence, they are defined

as D̄j′j′′ := min{Djk : k ∈ Kj} and C̄j′j′′ := −
∑

k∈Kj
ρjk, respectively.

This definition of demand and cost permits to derive the following properties.215

Proposition 1. All feasible solutions of the ESPPRC on multi-graph G′ are feasible solutions for the ESPPRC on

graph G′′.

Proposition 2. The optimal solution of the ESPPRC on graph G′′ provides a lower bound on the optimal value of

the ESPPRC on multi-graph G′.
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Corollary 1. If the optimal value of the ESPPRC on the reduced graph G′′ is positive then the optimal value of the220

ESPPRC on multi-graph G′ is positive as well.

In Phase 2, we determine all negative reduced cost routes arising from each customer sequence (path) generated

in Phase 1. We do this by solving the SPPRC on an acyclic multi-graph for each path. Specifically, let p = (j′′0 =

0′′, j′1, j
′′
1 , . . . , j

′
l(p)−1, j

′′
l(p)−1, j

′
l(p) = 0′) be a path produced in Phase 1, where l(p) denotes the length of p. The

acyclic multi-graph G′(p) = (V ′(p),A′(p)) associated with p is defined as follows. V ′(p) is the vertex st that includes225

only vertices visited along p, i.e., V ′(p) = {j′′0 = 0′′, j′1, j
′′
1 , . . . , j

′
l(p)−1, j

′′
l(p)−1, j

′
l(p) = 0′}. A′(p) contains the arcs

of G′ connecting each vertex in V ′(p) to its successor in p, i.e. (i) arcs (j′′h , j
′
h+1), h = 0, . . . , l(p) − 1 to model the

travel from jh to jh+1, and (ii) arcs (j′h, j
′′
h)

Mjh , h = 1, . . . , l(p) − 1, Mjh ⊆ Kj to model the deliveries of subsets

of commodities Mjh to customer jh.

The negative reduced cost routes arising from path p correspond to the negative cost paths in G′(p) from j0 = 0′′230

to jl(p) = 0′, which satisfy the capacity constraint. These paths are determined by solving the SPPRC on the multi-

graph G′(p). Although solving the SPPRC on acyclic graphs is NP-hard (see [18]), the size and particular topology

of multi-graphs G′(p) allow to do this operation very efficiently in terms of computational time (see [26]).

In the following, we provide an example to illustrate how the proposed pricing heuristic works.

Example 1. We consider a C-SDVRP instance with three customers N = {1, 2, 3} and three commodities K =235

{1, 2, 3}: customer 1 requires the commodity of K1 = {1}, with D11 = 2; customer 2 requires the commodities of

K2 = {1, 2, 3}, with D21 = 2, D22 = 4 and D23 = 3 ; customer 3 requires the commodities of K3 = {1, 3}, with

D31 = 2 and D33 = 1. We assume the travelling cost from the depot to the customers and between customers to be

unitary. The vehicle capacity is set to 10.

Figure 1 shows the pricing multi-graph G′ = (V ′,A′) arising from such instance at a certain iteration of the240

column generation procedure. The consumption and cost on arcs of type (i′′, j′) ∈ A′ modelling the movement of

the vehicle from one vertex to another are (D̄i′′j′ , C̄i′′j′) = (0, 1). Differently, the consumption and cost on arcs of

type (j′, j′′)Mj ∈ A′ modelling the delivery to the customers are reported in the figure with the following notation:

Mj:(D̄
Mj

j′j′′ , C̄
Mj

j′j′′). We only consider the Pareto-optimal deliveries to the customers.

The graph G′′ = (V ′′,A′′) built at phase I is shown in Figure 2a. The consumption and cost on arcs of type245

(i′′, j′) ∈ A′ are as in G′ and those on arcs (j′, j′′) ∈ A′ are displayed in the figure with the same convention as in

Figure 1. In the first phase,we solve the ESPPRC on the graph G′′ to obtain all non-dominated negative cost paths

(customer sequences) that respect the vehicle capacity. The second phase of the heuristic identifies the negative

reduced cost routes arising from each of these sequences by solving the ESPPRC on acyclic multi-graphs. As an

example, we show how this is done on the most negative path found in phase one (in red in Figure 2a), i.e., on250

p = (0′′, 2′, 2′′, 3′, 3′′, 0′) with consumption and cost equal to 3 and −13, respectively. The acyclic multi-graph G′(p)

associated with path p is shown in Figure 2b. In G′(p), all the possible deliveries to customers 2 and 3 are restored.

Finally, the SPPRC is solved on G′(p) to obtain all non-dominated feasible routes with negative reduced costs. We
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0′′

1′ 1′′

2′ 2′′

3′ 3′′

0′

{2}:(2,-1)

{1}:(2,-4)

{2}:(4,-5)

{1,2}:(6,-9)
{1,3}:(5,-6)

{1,2,3}:(9,-11)

{1}:(2,-3)

{3}:(1,-2)

{1,3}:(3,-5)

Figure 1: Pricing multi-graph G′ for the C-SDVRP instance defined in Example 1.

obtain six routes that visit customers 2 and 3 in the order imposed by path p and deliver either subset of commodities

{1} or {1, 2} to customer 2, both combined with all the possible deliveries to customer 3. The route with the most255

negative reduced cost (in red in Figure 2b) delivers {1, 2} to customer 2 and {1, 3} to customer 3. Its consumption

and reduced cost are 9 and −11, respectively.

4.3.3. Reduced graph heuristics

In this section, we present two classical heuristics to decrease the size of the pricing graph. They are applied to

the multi-graph G′ and to the graph G′′ of the first phase of heuristic, we just described. We discuss them for the260

case of G′, knowing that the case of G′′ can be treated similarly.

The first heuristic is inspired by [42] and limits the possibilities of moving between customers. Specifically, a

neighbourhood containing the g closest customers is built for each customer j ∈ N . A partial path ending in j can

only be extended to customers belonging to its neighbourhood. This is implemented by removing from G′ all arcs

of type (j′′, l′) such that l does not belong to the neighborhood of j. The pricing problem is solved considering a265

sequence of increasing neighbourhood sizes: g = 3, 6, 10, |N |. The value of g is incremented when the associated

pricing problem produces no negative reduced cost path.

The second heuristic is specifically designed to handle the multi-commodity aspect of the C-SDVRP. Indeed, it

aims at reducing the delivery possibilities to customers. Specifically, we impose an upper bound b on the number

of customers whose demand can be split per path. This strategy is motivated by the analysis carried out in [5]270
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0′′

1′ 1′′

2′ 2′′

3′ 3′′

0′

{2}:(2,-1)

{1}:(2,-11)

{3}:(1,-5)

(a) Graph G′′ arising from the first phase of the pricing heuristic in Example 1.

0′′ 2′ 2′′ 3′ 3′′ 0′

{1}:(2,-4)

{2}:(4,-5)
{1,2}:(6,-9)
{1,3}:(5,-6)

{1,2,3}:(9,-11)

{1}:(2,-3)
{3}:(1,-2)
{1,3}:(3,-5)

(b) Acyclic multi-graph G′(p) where p = (0′′, 2′, 2′′, 3′, 3′′, 0′) arising from the second phase of the pricing heuristic in Example 1.

Figure 2: Graphs of the first and second phase of the novel pricing heuristic built in Example 1.
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on optimal solutions of the C-SDVRP. They note that in most of them the number of split deliveries is less than

three. To count the number of split customers in a path, we introduce an integer resource s in the label definition.

The value of s is initially set to zero and is incremented by one unit along arcs of type (j′, j′′)Mj , if Mj does not

correspond to the full delivery to j (Mj ⫋ Kj). On the other arcs, the value of s is simply propagated. Once s

reaches the bound b, all the following customers visited in the path are delivered only with subset Kj , i.e., only arcs275

(j′, j′′)Kj are considered. As for the previous heuristic, we consider an incremental procedure relying on a sequence

of increasing upper bounds: b = 0, 1, 2, 3,∞.

4.4. Valid inequalities

We consider a family of robust valid inequalities, the so-called capacity cuts:

∑
r∈R

 ∑
(i,j)∈δ−(S)

brij

λr ≥

⌈∑
j∈S

∑
k∈Kj

Djk

Q

⌉
∀S ⊆ N , (6)

where δ−(S) = {(i, j) ∈ A : i /∈ S, j ∈ S} is the set of arcs of graph G having their final extremity in S and brij is a

binary coefficient taking value one if route r ∈ R traverses the arc (i, j) ∈ A.280

If the solution of the MP is fractional, we separate the capacity cuts (6). Since the separation of these inequalities

is NP-hard, we do so by means of the heuristic algorithms presented in [34], namely the extended shrinking heuristic

and the greedy shrinking heuristic. The violated cuts are included in the RMP, and the associated dual prices πS

are incorporated in the definition of the reduced cost of the variables λr, and then considered in the pricing problem

solution.285

4.5. Initialization of the set R′

We initialize the set of routes R′ to avoid starting the column generation procedure with large dual prices, which

usually slows down the pricing problem resolution. Specifically, for each customer j ∈ N , we include a round trip

(0-j-0) delivering the commodities of each subset Mj ⊆ Kj requested by j, feasible with respect to the capacity

Q. Moreover, we insert in R′ the routes obtained by applying a variant of the Clarke-Wright algorithm (CW) [15].290

Precisely, we modified the randomized CW algorithm proposed in [8] to take into account the multi-commodity

aspect of the C-SDVRP. We set a limit of 20 runs.

4.6. Local search

In this section, we present the local search we implement to improve the C-SDVRP solution provided by the

restricted master heuristic. Specifically, we consider the Mathematical Programming Operator (MPO) proposed295

in [23] to reassign the commodities of a specific customer j ∈ N to the routes of the solution. We iteratively call

the MPO for each customer in N .

Let j ∈ N be a customer. We introduce the following notation. We denote by R̄−j the set of routes in the

current C-SDVRP solution where all the visits to customer j are removed. More precisely, R̄−j contains the routes
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of the current C-SDVRP solution which do not visit j and, for the ones that visit j, R̄−j contains a copy of those300

routes where j has been removed from the sequence of visited customers. For each r ∈ R̄−j , Qj
r denotes the residual

capacity in route r. Finally, we indicate by Cj
r the cost of the cheapest insertion of customer j in route r ∈ R̄−j .

The MPO consists in solving a Capacitated Facility Location Problem (CFLP) [see 27] where all commodities

k ∈ Kj of customer j have to be assigned to the routes (facilities) of R̄−j at minimum insertion costs and such that

residual capacities of the routes are not exceeded.305

The integer program on which the MPO is based makes use of the following decision variables. For each k ∈ Kj

and each r ∈ R̄−j , we introduce a binary variable

yjkr =

1 if commodity k is delivered to customer j by route r

0 otherwise.

In addition, for each r ∈ R̄−j we include a binary variable zjr defined as follows

zjr =

1 if route r delivers to customer j at least one commodity

0 otherwise.

Note that j refers to a specific customer and is not used as an index for the variables.

The integer program is for customer j as follows:

min
∑

r∈R̄−j

Cj
rz

j
r (7)

s.t.
∑

r∈R̄−j

yjkr = 1 ∀k ∈ Kj (8)

∑
k∈Kj

Djky
j
kr ≤ Qj

rz
j
r ∀r ∈ R̄−j (9)

yjkr ∈ {0, 1} ∀k ∈ Kj ,∀r ∈ R̄−j (10)

zjr ∈ {0, 1} ∀r ∈ R̄−j (11)

The objective function (7) minimizes the total insertion cost. Constraints (8) guarantee that all commodities of

customer j are covered by exactly one route. Constraints (9) ensure that if some commodities of Kj are added to a

route, their demand do not exceed the remaining capacity of the route. Finally, Constraints (10) and (11) are the

binary requirements.310

5. Computational experiments

Our algorithm is implemented in C++ and compiled in release mode under a 64-bit version of MS Visual

Studio 2019. CPLEX 12.9.0 (64-bit version) is used to solve the RMP in the column generation procedure and the

restricted version of the formulation [SC]. All experiments are carried out on a 64-bit Windows machine equipped
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with a Intel(R) Xeon(R) Silver 4214 processor with 24 cores hyper-threaded to 48 virtual cores, with a base clock315

frequency of 2.2 GHz, and 96 GB of RAM. A time limit of one hour and a single thread are imposed for each run

of the algorithm.

In the following, we denote by LB and UB, respectively, the lower and upper bounds returned by our restricted

master heuristic. The percentage optimality gap is defined as 100((UB − LB)/LB). The percentage gap with

respect to the best-known solution value UBbk from the literature is computed as 100((UB−UBbk)/UBbk). More320

precisely, values UBbk are retrieved from [6, 23, 22] or [39]. Finally, all the solution times are expressed in seconds.

In this section, we first describe the benchmark instances, then, we measure the impact of the new two-phase

pricing heuristic on the performance of the overall solution algorithm. Later, we present the results on the whole

testbed. Finally, we compare our algorithm with the two existing heuristic approaches from the literature, providing

the majority of the best-known solution values.325

5.1. Benchmark instances

We tested our restricted master heuristic on the benchmark instances for the C-SDVRP proposed by [6] and [22].

The instances are divided in three groups: small (|N | = 15), mid-size (|N | = 20, 40, 60, 80) and large (|N | = 100).

In each small and mid-size instance, customers’ locations are taken from the C101 and R101 Solomon’s instance

[40], whereas, in each large instance, locations are taken from the Solomon’s RC101 instances. In addition, the330

following parameters define the instances: (i) number of commodities |K|; (ii) probability p that a customer requires

a commodity with a non-zero demand; (iii) interval ∆ to select the non-zero demand of a commodity required by

a customer, expressed as a percentage of vehicle capacity; (iv) percentage α of vehicle capacity with respect to the

maximum demand (Q = αmax{
∑

k∈Kj
Djk : j ∈ N}). Table 1 summarises the values of these parameters which

characterise each group of instances.335

Table 1: Characteristics of the small, mid-size and large instances.

Values of the parameters

Group
Number of

|N |
customers’

|K|
p

∆ α
instances locations

small 160 15 C101, R101 2, 3, 4, 5, 6 0.6, 1.0 [40, 60], [1, 100] 1.1, 1.5, 2.0, 2.5

mid-size 320 20, 40, 60, 80 C101, R101 3, 4, 5, 6 0.6, 1.0 [1, 100] 1.5

large 900 100 C101, R101, RC101 2, 3, 4, 5, 6 0.6, 1.0 [40, 60], [1, 100] 1.1, 1.5, 2.0, 2.5

Finally, we report a problem with the name of some of the instances in the benchmark with 100 customers,

which are called C101, when the locations of the customers correspond to Solomon’s RC101 instance. This problem

has been corrected in the new database available at https://hal.inria.fr/hal-03836982v1. In addition, we

mention that 40 instances with 100 customers with the locations of RC101, and 2 and 3 commodities are available

at https://logistik.bwl.uni-mainz.de/forschung/benchmarks/, but have not been tested in any of the former340
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papers dealing with the problem, i.e, in [6, 23, 22] and [39]. Thus, we exclude this subset of instances when presenting

the comparison with benchmark approaches.

5.2. Impact of the novel pricing heuristic

In this section, we measure the impact of the novel pricing heuristic presented in Section 4.3.2 on the performance

of the overall solution algorithm. To do so, we define RMH-2P (RMH-N2P) to be the variant of the restricted master345

heuristic presented in Section 4 where we enable (disable) the two-phase pricing heuristic. We test the two variants

on a subset of 180 instances characterised by 100 customers and 4 commodities, which is representative of the whole

testbed.

The results obtained by comparing RMH-2P against RMH-N2P are shown in Table 2. We group the considered

instances by the value of ∆, i.e., by the interval where the commodity demands are selected. Hence, for each group350

of instances, we have two columns associated with RMH-2P and RMH-N2P, respectively. The row headings of the table

are: avg. exact pricing it.: average number of iterations of the exact pricing algorithm; avg. UB : average upper

bound value; avg. t[s] : average solution time in seconds.

Table 2: Impact of the two-phase pricing heuristic on the instances with |N | = 100 and |K| = 4.

∆ = [40, 60] ∆ = [1, 100]

RMH-2P RMH-N2P RMH-2P RMH-N2P

avg. exact pricing it. 69.37 111.20 128.39 168.42

avg. UB 3 170.03 3 175.56 2 359.43 2 353.60

avg. t[s] 530.17 692.17 1900.58 1942.55

First, both variants can provide a lower bound for all instances. Variant RMH-2P yields better results on the

instances characterised by ∆ = [40, 60]. Indeed, it allows us to reduce the iterations of the exact pricing algorithm by355

38% and, consequently, the solution time on average by 23%. In addition, RMH-2P provides upper bounds of slightly

better quality (see row avg. UB). Differently, both variants behave similarly on the instances with ∆ = [1, 100].

Although RMH-2P shows a good reduction of 24% of the iterations of the exact pricing algorithm, the reduction

of the solution time of RMH-2P with respect to the one of RMH-N2P is rather limited (2%). This means that the

two-phase heuristic in RMH-2P is not effective enough compared with the reduced graph heuristics and the exact360

pricing algorithm.

From these results, we infer that the performance of RMH-2P heavily depends on the interval of commodity

demands ∆. The reason lies in how Phase 1 of the two-phase pricing heuristic is designed. The main idea of

Phase 1 is to reduce the combinatorics in the solution of the ESPPRC due to the multi-commodity aspect of the

C-SDVRP. Indeed, each customer is delivered with its least consuming commodity and all the profitable dual prices365

associated with the customer are collected. The quality of such an approximation is highly affected by the variability
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of the commodity demands. If ∆ = [40, 60], Phase 1 provides a reasonable approximation of the benefit of serving

a customer, whereas this might not be the case if ∆ = [1, 100]. Indeed, in the latter case, when a customer is

visited, we might collect all the profitable dual prices against a minimal consumption of the resource associated

with capacity.370

Based on the analysis conducted in this section, we apply variant RMH-2P to obtain results on the whole testbed.

In the following, this variant will be referred to simply as RMH.

5.3. Results on the whole testbed

In this section, we discuss the results obtained by the restricted master heuristic (RMH) on the 1380 benchmark

instances. Due to the large number of instances, the results are presented in an aggregated form. The detailed375

instance-wise version can be found at https://hal.inria.fr/hal-03836982v1. We compare the results with the

best-known solution values from the state-of-the-art exact and heuristic methods for the C-SDVRP available in

the literature, namely [6, 23, 22] and [39]. Note that in Section 5.4, we compare in more details RMH against [23]

and [39].

Table 3 shows the results obtained by RMH on the small and mid-size instances. Each table row corresponds to380

a subset of instances with the same number of customers and commodities. The first four columns report some

information regarding the instance subsets: |N |: number of customers; |K|: number of commodities; avg.#CC : av-

erage number of customer-commodities (
∑

j∈N |Kj |) per instance; #: number of instances in the subsets. The

remaining eight columns of the table summarise the results of the RMH: #LB : number of instances for which a LB

is found; opt. gap[%] avg./min./max.: average/minimal/maximal optimality gap expressed as a percentage; avg.385

t[s] : average solution time in seconds; #opt : number of optima identified by RMH with respect to the ones identified

by [22]; #equal : number of times RMH returned the best-known solution values from the literature; #impr.: number

of times RMH improved the best-known solution values from the literature (considering also the new solutions, i.e.,

the cases where no solution was available in the literature); avg. gap[%].: average percentage gap with respect to

the best-known solution values; the character ’-’ indicates that no best-known solution value is available.390

First, note that RMH provides a lower bound for all the small and mid-size instances. For the instances with

|N | = 15 and |N | = 20, the branch-price-and-cut algorithm of [22] provides 158 and 71 optima over 160 and 80

instances, respectively. RMH is able to identify 119 of them if |N | = 15 and 41 of them if |N | = 20. In respectively

50 and 6 of such cases, RMH proves the optimality of the obtained solutions (opt. gap = 0). The identified solutions

are globally good, the optimality gap being on average equal to 0.69% and larger than 2.5% only for nine instances395

out of 240. Moreover, the average gap with respect to the best-known solution is 0.18%. Six new best solutions are

found (see column #impr.) and the optimality gap referred to these six new best solutions is, on average, 2.09%.

For the instances with |N | = 40, 60, 80, the number of commodities has a significant impact on the measure of

the quality of the solutions found by RMH: the greater the number of commodities, the larger the average optimality

gap (see columns opt. gap[%]). However, the number of instances for which the optimality gap exceeds 5% is limited400
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Table 3: Results on the small and mid-size instances.

Instances
RMH results

opt. gap[%] best known

|N | |K| avg.#CC #inst. #LB avg. min. max. avg.t[s] #opt #equal #impr. avg. gap[%]

15

2 26.00 32 32 0.29 0.00 2.16 0.32 30 30 0 0.02

3 36.50 32 32 0.68 0.00 5.89 3.98 22 22 0 0.23

4 48.56 32 32 0.43 0.00 2.19 14.59 29 29 0 0.04

5 60.13 32 32 0.84 0.00 6.93 57.30 18 18 0 0.41

6 72.66 32 32 0.63 0.00 2.51 87.25 20 20 1 0.12

20

3 48.70 20 20 0.81 0.00 2.45 4.52 10 10 0 0.19

4 64.10 20 20 0.94 0.00 2.70 33.54 9 9 1 0.24

5 80.50 20 20 0.97 0.00 4.70 137.27 11 12 2 0.12

6 96.10 20 20 0.98 0.04 2.76 467.27 11 11 2 0.28

40

3 98.10 20 20 1.69 0.24 2.79 58.76 2 2 0 0.41

4 129.10 20 20 1.90 0.79 4.16 243.24 0 0 9 0.76

5 160.40 20 20 2.35 0.58 5.27 749.61 1 1 14 0.71

6 192.45 20 20 2.74 0.73 5.91 1627.37 0 0 17 0.27

60

3 145.00 20 20 2.27 1.14 3.38 170.76 0 0 0 0.76

4 193.70 20 20 2.66 0.62 4.89 556.42 0 0 18 0.51

5 240.10 20 20 3.46 0.92 6.21 1848.11 0 0 20 -

6 287.70 20 20 4.66 1.71 7.70 2467.48 0 0 20 -

80

3 195.20 20 20 2.75 1.47 5.02 354.51 0 0 2 0.98

4 256.40 20 20 3.74 1.52 8.34 1045.47 0 0 20 -

5 320.80 20 20 4.31 2.31 7.46 2268.34 0 0 20 -

6 386.75 20 20 6.16 2.37 13.28 3044.60 0 0 20 -

(35 out of 240), and most of them correspond to instances with 80 customers and a number of commodities larger

than four. For these instances, no further insight can be drawn regarding solution quality. Indeed, no solution was

reported in the literature. RMH equals three best-known solutions and improves 160 of them (see columns #equal.

and #impr.). Note that, out of those 160, RMH provides the first known solution for 39, 58 and 60 instances with

40, 60 and 80 customers, respectively. The average optimality gap of such solutions is 2.72%, 3.68%, and 4.73%.405

The gap with respect to the best-known solution values is on average equal to 0.70% and larger than 2.5% only in
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four cases.

In general, RMH runs in relatively short computational times on small and mid-size instances. Moreover, Table 3

shows that the average solution time grows with the number of commodities and the number of customers.

In Table 4, we report the results obtained on the large instances (|N | = 100) which are grouped by the410

number of commodities |K|, the interval ∆ for customer demand and the probability p that a customer requires a

commodity. The remaining columns reporting the characteristics of the instance are as in Table 3. The columns

which summarise the results of the RMH are: #LB : number of instances for which a LB is found; opt. gap[%]

avg./min./max.: average/minimal/maximal optimality gap expressed in percentage; avg.t[s] : average solution time

in seconds; #impr.: number of times RMH improved the best-known solution values from the literature (counting415

also the new solutions); gap[%] avg./min./max.: average/minimal/maximal percentage gap with respect to the

best-known solution values. A character ’-’ indicates that no solution value was previously known.

First, we note that RMH manages to provide a lower bound for 874 of the 900 instances. The 26 instances where

it does not succeed are characterised by |K| = 5, 6 and 25 of them also by p = 1 and ∆ = [1, 100], i.e., they have

500 or 600 non-zero customer demands. When a lower bound is found, the optimality gap mirrors the behaviour420

observed in Table 3: it deteriorates as the number of commodities increases. More precisely, it is generally larger

when p = 1, and especially when ∆ = [1, 100]. In addition, the optimality gap is larger than 5% for 241 instances

and, among those, 191 are characterised by five and six commodities. For the instances with fewer commodities,

the average optimality gap is 2.71%, meaning that RMH offers a good performance guarantee. For the ones with

|K| = 2, 3, RMH shows a behaviour comparable with the approaches from the literature identifying the best-known425

solution values, namely [6], [23] and [39]. Indeed, the gap against the best-known solution values is on average

0.79% and it is zero for five instances with two commodities. Our approach provides a new solution for the 540

instances with |K| = 4, 5, 6. In addition, RMH manages to improve the value of 55 instances with |K| = 2, 3, 40 of

these are new solutions. More insights about the comparison against the existing heuristic methods in the literature

are drawn in Section 5.4.430

We conclude this section with a discussion of the price to be paid to have a performance guarantee, i.e., to

compute good lower bounds. In the case of RMH, providing lower bounds involve invoking the exact pricing algorithm

in the column generation procedure and the separation of the capacity cuts (6).

To analyse the impact of the lower bound computation, we record the upper bound and the computational

time before the first iteration of the exact pricing algorithm. Note that such upper bounds are obtained by solving435

the formulation [SC] restricted to the subset of columns found so far and applying the mathematical programming

operator. Such results are reported in Table 5 in the columns with the heading RMH-NG. The rows of the table

represent subsets of instances with the same number of customers. The columns are: |N |: number of customers;

#inst.: number of instances; avg.UB : average upper bounds of RMH-NG and RMH; avg.gap[%] : average percentage

gap between the upper bounds of RMH with respect to the ones of RMH-NG; avg.t[s] : average solution time in seconds440

of RMH-NG and RMH; avg.ratio: ratio between the solution time of RMH with respect to the one of RMH-NG;
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Table 4: Results on the large instances.

Instances

RMH results

best known

opt. gap[%] gap[%]

|K| ∆ p avg.#CC #inst. #LB avg. min. max. avg.t[s] #impr. avg. min. max.

2

[40,60]
0.6 136.40 40 40 1.36 0.03 3.39 30.49 0 0.43 0.00 1.74

1 200.00 50 50 1.39 0.09 3.12 68.28 11 0.39 -0.05 1.10

[1,100]
0.6 136.40 40 40 2.40 1.06 5.24 183.20 0 0.95 0.04 2.87

1 200.00 50 50 1.94 0.54 3.95 250.62 16 0.48 -0.23 2.27

3

[40,60]
0.6 188.40 40 40 1.77 0.70 3.22 155.42 1 0.45 -0.15 1.79

1 300.00 50 50 2.46 0.74 7.22 247.15 12 1.09 -0.60 5.17

[1,100]
0.6 188.40 40 40 2.46 0.67 5.54 459.32 2 0.89 -0.11 3.49

1 300.00 50 50 3.51 1.50 6.71 995.53 13 1.62 -0.45 4.48

4

[40,60]
0.6 242.95 40 40 2.42 1.00 5.00 379.13 40 - - -

1 400.00 50 50 3.91 0.93 9.11 651.01 50 - - -

[1,100]
0.6 243.30 40 40 3.29 0.80 7.33 1100.49 40 - - -

1 400.00 50 50 5.10 2.05 9.61 2540.64 50 - - -

5

[40,60]
0.6 299.13 40 40 3.66 1.65 6.19 957.39 40 - - -

1 500.00 50 50 5.19 2.54 10.08 1609.24 50 - - -

[1,100]
0.6 301.48 40 40 4.82 1.66 13.01 2196.31 40 - - -

1 500.00 50 45 5.85 2.99 11.50 3479.58 50 - - -

6

[40,60]
0.6 359.65 40 40 4.78 2.03 8.05 1764.76 40 - - -

1 600.00 50 50 6.43 2.95 11.98 2641.67 50 - - -

[1,100]
0.6 357.73 40 39 6.04 3.14 15.24 2972.40 40 - - -

1 600.00 50 30 7.37 4.99 11.89 3622.95 50 - - -

As expected, the price to be paid for having a performance guarantee is paid in terms of computational time:

that of RMH is on average 3.9 times that of RMH-NG. The extra time spent in RMH serves not only to compute good

lower bounds but also to improve the quality of the upper bounds. Indeed, several additional columns are generated

in RMH and the improvement of the upper bounds of RMH compared with respect to those of RMH-NG is on average445

0.6%. These results show that RMH can be easily adapted according to the needs: in the case where a solution is

needed in a short computing time, the RMH-NG can be used without sacrificing solution quality to a large extent.
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Table 5: Impact of the performance guarantee.

Instances
RMH-NG vs. RMH

avg. UB avg.t[s]

|N | #inst. RMH-NG RMH avg. gap[%] RMH-NG RMH avg. ratio

15 160 389.35 386.69 -0.65 9.92 32.69 3.93

20 80 703.78 693.76 -1.41 41.47 160.65 4.07

40 80 1152.61 1139.68 -1.14 135.62 669.74 5.67

60 80 1659.90 1644.11 -0.96 254.19 1260.69 4.72

80 80 2126.85 2113.77 -0.66 361.21 1678.23 4.45

100 900 2793.71 2780.10 -0.38 382.29 1348.10 3.64

5.4. Comparison with [23] and [39]

In this section, we analyse how RMH performs against the two existing heuristic algorithms available in the

literature providing the majority of the best-known solution values, namely [23] and [39]. [23] consider instances450

with two and three commodities, as those with more commodities were not yet available. Among the instances used

in [23], [39] considers only the ones with 100 customers. Hence, in this section, the testbed is restricted accordingly.

Tables 6 and 7 report the comparison against [23] and [39], respectively. The rows of the tables correspond

to subsets of instances with the same number of customers and commodities. The first three columns report the

number of customers (|N |), commodities (|K|) and instances (#inst.) in each subset. The next five columns455

compare the upper bounds reporting the number of instances where RMH matches (#equal) or improves (#impr.)

the upper bounds of the competing algorithm and the average/minimal/maximal gap (gap[%] avg./min./max.).

The last three columns indicate the average solution times (avg.t[s]) of RMH, that of the compared heuristic, and

the average ratio between the solution times of the compared heuristic with respect to those of RMH (avg.ratio).

The RMH runs much faster than the other heuristics: the speedup ratio is on average 9.4 and 28.0 against [23]460

and [39], respectively. In spite of the significant decrease in the solution time, the quality of the solutions provided

by RMH remains comparable with that of the competing algorithms. Indeed, when compared with [23], RMH matches

71 upper bounds, improves 70 of them by an average of 0.26% and the percentage gap of the remaining ones is

on average 0.83%. The results show a similar trend in the comparison with [39]: RMH matches five upper bounds,

improves 36 of them by an average of0.35% and the percentage gap of the remaining ones is on average 0.69%.465

Recall that our heuristic also provides a performance guarantee contrary to [23] and [39].
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Table 6: Comparison with [23] on the instances with |K| = 2, 3 and customers’ locations from C101 and R101.

Instances

RMH vs. [23]

UB

gap[%] avg.t[s]

|N | |K| #inst. #equal #impr. avg. min. max. RMH [23] avg.ratio

15 2 32 30 0 0.02 0.00 0.28 0.32 8.91 35.12

15 3 32 22 0 0.17 0.00 2.47 3.98 15.63 21.05

20 3 20 12 0 0.18 0.00 0.98 4.52 56.78 14.28

40 3 20 2 2 0.36 -0.09 1.01 58.76 117.14 2.72

60 3 20 0 0 0.70 0.05 2.15 170.76 281.83 1.94

80 3 20 0 2 0.98 -0.26 2.83 354.51 511.00 1.47

100
2 160 5 42 0.34 -0.67 2.66 136.07 445.09 9.46

3 160 0 24 0.91 -0.96 5.17 481.80 822.60 4.02

Table 7: Comparison with [39] on the instances with |N | = 100 and |K| = 2, 3 and customers’ locations from C101 and R101.

Instances

RMH vs. [39]

UB

gap[%] avg.t[s]

|N | |K| #inst. #equal #impr. avg. min. max. RMH [39] avg.ratio

100
2 160 5 12 0.49 -0.34 2.84 136.07 1800 44.62

3 160 0 24 0.63 -1.45 4.03 481.80 1800 11.47

6. Conclusions

In this paper, we considered the Commodity constrained Split Delivery Vehicle Routing Problem (C-SDVRP), a

routing problem where customer demands may be composed of multiple commodities, and split deliveries are allowed

as long as the demand of a single commodity is delivered all at once. We presented a heuristic with a performance470

guarantee to solve the problem. Our heuristic is based on a column generation approach which embeds a new

pricing heuristic that exploits the multi-commodity aspect of the problem. Such contribution allowed us to reduce

the computational time on instances where the variability of the customer demands is not large. We performed a

thorough computational analysis on the 1380 benchmark instances available in the literature. We provide an upper

bound for all the considered instances, the majority of those are guaranteed to be of good quality (optimality gap475

less than 5%). Some new best-known solutions are found. Finally, our approach outperforms the state-of-the-art

metaheuristic for the C-SDVRP ([23] and [39]) in terms of computational time while maintaining the quality of the
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upper bounds comparable.

Future research may be devoted to the inclusion of additional families of valid inequalities (possibly robust)

to improve both the lower and upper bounds. Finally, our approach may be adapted to solve variants of the480

problem where the additional constraints can be easily handled in the pricing problem (e.g. a multi-compartment

C-SDVRP).
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