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High order numerical methods for Vlasov-Poisson models of
plasma sheaths

Valentin Ayot∗, Mehdi Badsi†, Yann Barsamian‡, Anaïs Crestetto§,
Nicolas Crouseilles¶, Michel Mehrenberger‖, Averil Prost∗∗, Christian Tayou-Fotso††.

Abstract
This article is a report of the CEMRACS 2022 project, called HIVLASHEA, standing for "High order
methods for Vlasov-Poisson models for sheaths". A two-species Vlasov-Poisson model is described to-
gether with some numerical simulations, permitting to exhibit the formation of a plasma sheath. The
numerical simulations are performed with two different methods: a first order classical finite difference
(FD) scheme and a high order semi-Lagrangian (SL) scheme with Strang splitting; for the latter one, the
implementation of (non-periodic) boundary conditions is discussed. The codes are first evaluated on a
one-species case, where an analytical solution is known. For the two-species case, cross comparisons and
the influence of the numerical parameters for the SL method are performed in order to have an idea of a
reference numerical simulation.
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Introduction
Plasmas are neutral at the equilibrium in a sufficiently large domain. However, near a boundary, a charge
imbalance may be observed in a thin layer called sheath. This phenomenon stems from the interaction of ions
and electrons with the boundary media (a cold metallic wall, for instance). Both species will be absorbed
by the wall, but with a rate proportional to their speed. Since the electrons are moving faster than the ions,
a positively charged layer (the Debye sheath) forms near the boundary.
Plasma sheaths are particularly challenging to simulate for several reasons. In this region, the plasma
parameters (temperature or density) develop steep gradients. Due to their different mass, electrons and ions
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have a very different behaviour close to the boundary, and a two-species model is required to describe the
formation of the sheath. Moreover, kinetic models are necessary to capture the velocity effect of the particles
(see [Rie91]), and we have to deal with different scales to account for each species. Hence, we are considering
in this work a two-species Vlasov model to run simulations of the plasma sheath.
Recent works are dedicated to the non homogeneous equilibrium sheath, both on the mathematical side
and on the numerical side [Bad21, BBC21, DPB16]. Regarding the dynamical approaches, one refers to
[CM14, BMG+22] or [BMN18] for which this study is a follow-up. In the latter work, we studied the behaviour
of the numerical solution of the Vlasov equation, initialized with a sheath homogeneous equilibrium. In this
work, our purpose is to investigate numerically the formation of a sheath, when we include ionization in the
model, inspired by the recent work [ALPM+20] where a fluid model is proposed.
Then, we are concerned by the numerical approximation of the two-species Vlasov model including ionization
and boundary. To do so, we propose a high order semi-Lagrangian method combined with a time splitting
method. The presence of boundaries requires specific adaptation to define correctly the semi-Lagrangian
method close to the boundary. We adapt the strategies developed in [CL20, BNS+21] to define inflow
and outflow ghost points according to the order of the Lagrange interpolation used in the semi-Lagrangian
method.
The paper is organized as follows: in Section 1, we introduce the two-species Vlasov-Poisson system with
boundary, the numerical methods are described in Section 2 and Section 3 is devoted to numerical results. The
different codes are available respectively on https://github.com/JuliaVlasov/DynamicElectricSheath.jl for
the Finite Difference solver, and on https://github.com/averil-prost/HiVlaSheaSL for the Semi-Lagrangian
solver.

1 Plasma sheaths
The model Let t ∈ R+ denote the time variable, x ∈ [−1, 1] denote the spatial variable in a normalized
one-dimensional domain, and v ∈ R denote the speed variable. Each species is described through their
density in the phase space, denoted by fi : (t, x, v) ∈ R+ × [−1, 1]× R 7→ R for the ions, and fe : (t, x, v) ∈
R+ × [−1, 1]× R 7→ R for the electrons. Macroscopic quantities will be needed in the modelling, so that we
consider the densities ρi,e and currents Ji,e defined by

ρi,e(t, x) :=

∫
v∈R

fi,e(t, x, v)dv, and Ji,e(t, x) :=

∫
v∈R

vfi,e(t, x, v)dv. (1.1)

In the sequel, we will denote ρ(t, x) := ρi(t, x)− ρe(t, x), and J(t, x) := Ji(t, x)− Je(t, x).
Phase space densities are assumed to obey the Vlasov equation where the force term is the self-consistent
electrostatic potential φ which obeys the Poisson equation. In short, the system writes

∂tfi + v∂xfi − ∂xφ∂vfi = νfe, (t, x, v) ∈ R+
∗ × (−1, 1)× R,

∂tfe + v∂xfe +
∂xφ

µ
∂vfe = 0, (t, x, v) ∈ R+

∗ × (−1, 1)× R,

−λ2∂2
xxφ = ρ, (t, x) ∈ R+ × (−1, 1).

(1.2a)

(1.2b)

(1.2c)

The physical parameters ν, µ and λ have the following meaning:

− ν ⩾ 0 is the ionization frequency. It describes the rate of creation of ions in presence of electrons.

− µ := me/mi is the mass ratio between electrons and ions.

− λ > 0 is the Debye length.

In the sequel, we may use the electric field E(t, x) := −∂xφ(t, x) instead of the potential. Then, the Poisson
equation rewrites as

λ2∂xE(t, x) = ρ(t, x), (t, x) ∈ R+ × (−1, 1). (1.3)
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Remark 1.1. To reduce the notations, we will use fs, s ∈ {i, e} to denote either the ionic or the electronic
distribution. The Vlasov equations (1.2a) and (1.2b) rewrite

∂tfs + v∂xfs − cs∂xφ∂vfs = Ss,

with the coefficients cs and source terms Ss defined as

ci := 1, ce := − 1

µ
, Si := νfe, Se := 0.

The densities fi and fe are subject to initial and boundary conditions, given by{
fs(0, x, v) := f0

s (x, v), (x, v) ∈ (−1, 1)× R,
fs(t, x = 1, v < 0) = fs(t, x = −1, v > 0) := 0, t ∈ R+

∗ .

(1.4a)

(1.4b)

The homogeneous boundary condition (1.4b) stems from the non-emitting wall model: the boundary absorbs
particles without any reflection. This loss of ionic particles is compensated by the ionization source term in
the right hand side of (1.2a). For the electrons, it is expected that the most energetic ones are absorbed by
the wall, while the others are confined in the core.
To completely describe the model, we still need to provide boundary conditions for the Poisson problem
(1.2c). A first one is given by the choice of a reference potential in the plasma core (at x = 0)

φ(t, 0) = 0, ∀t ∈ R+. (1.5)

To derive a second boundary condition, we introduce a symmetry assumption.

Symmetries We will look for a symmetric potential

φ(t, x) = φ(t,−x), (t, x) ∈ R+ × [−1, 1]. (1.6)

By derivation with respect to x ∈ (−1, 1), we immediately obtain

∂xφ(t, x) = −∂xφ(t,−x), i.e. E(t, x) = −E(t,−x).

In fact, assuming (1.6), the other quantities of the system also exhibit nice symmetric properties. Let us
notice that the Vlasov equations (1.2a) and (1.2b) are driven by the vector fields

(t, x, v) → (1, v, E(t, x)) =: Vi(t, x, v) and (t, x, v) → (1, v,−E(t, x)/µ) =: Ve(t, x, v).

Both these fields satisfy the radial symmetry Vs(t, x, v) = Vs(t,−x,−v). In consequence, if we assume that
f0
s (x, v) = f0

s (−x,−v), the solutions fs(t, x, v) will be radially symmetric around (t, 0, 0), i.e.

fi(t, x, v) = fi(t,−x,−v) and fe(t, x, v) = fe(t,−x,−v), ∀(t, x, v) ∈ R+ × [−1, 1]× R.

In particular, we have for the densities and currents

ρs(t, x) =

∫
v∈R

fs(t, x, v)dv =

∫
w∈R

fs(t, x,−w)dw =

∫
w∈R

fs(t,−x,w)dw = ρs(t,−x),

Js(t, x) =

∫
v∈R

vfs(t, x, v)dv = −
∫
w∈R

wfs(t, x,−w)dw = −
∫
w∈R

wfs(t,−x,w)dw = −Js(t,−x).

Remark 1.2 (Additional symmetry of fe). Notice that the function f : (t, x, v) 7→ fe(t, x, v) − fe(t, x,−v)
satisfies the linear equation

0 = ∂tf(t, x, v) + v∂xf(t, x, v)−
E(t, x)

µ
∂vf(t, x, v).

The boundary condition (1.4b) gives f(t,±1,±v < 0) = 0. If, in addition, we assume that the initial
condition f0

e satisfies f0
e (x, v)− f0

e (x,−v) = 0, then we obtain

fe(t, x, v) = fe(t, x,−v), ∀(t, x, v) ∈ R+ × [−1, 1]× R. (1.7)
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Boundary conditions If the potential φ is regular, the symmetry assumption gives us E(t, 0) = −E(t, 0),
and we may use the centered Neumann boundary condition

∂xφ(t, 0) = 0 or equivalently E(t, 0) = 0 (1.8)

to close the Poisson equation (1.2c). However, this relies on the assumption that E is continuous at x = 0,
and it is not clear whether any initial condition leads to a stationary state with such a regular electric field.
We may avoid this constraint by deriving another Neumann condition (at x = ±1) on the potential which
seems to us more physical.
First, we derive with respect to time the Poisson equation (1.2c)

−∂t(λ
2∂2

xxφ) = ∂tρ,

and considering the difference between the v-integration of the Vlasov equations (1.2a) and (1.2b) gives
(recalling ρ = ρi − ρe and J = Ji − Je)

∂tρ = νρe − ∂xJ,

leads to (using E = −∂xφ)
∂x(λ

2∂tE + J) = νρe, ∀x ∈ (−1, 1).

Integrating now over x ∈ [−1, 1] leads to

λ2∂tE(t, 1) + J(t, 1) = λ2∂tE(t,−1) + J(t,−1) + ν

∫ 1

−1

ρe(t, x)dx, (1.9)

and using the symmetries E(t, 1) = −E(t,−1) and J(t, 1) = −J(t,−1), it comes

λ2∂tE(t,±1) + J(t,±1) = ±ν

2

∫ 1

−1

ρe(t, x)dx. (1.10)

Time integration gives a condition of the form E(t,±1) = C±(t), where

E(t,±1) = C±(t) := E(0,±1)− 1

λ2

∫ t

0

J(s,±1)ds± ν

2λ2

∫ t

0

∫ 1

−1

ρe(s, x)dxds. (1.11)

This more elaborate boundary condition could allow for discontinuities at x = 0. Notice that the values
E(t,±1) now depends on the initial value E(0,±1), whereas the centered boundary condition (1.8) does not
rely on the initial state.

2 Numerical methods
In this section, the numerical methods used to approximate the system (1.2) are described. First, we focus
on the Poisson equation and then, two numerical methods are presented for the Vlasov part.

2.1 Poisson equation
The Poisson problem (1.2c) is solved with integral representations of the variable E. First, we consider the
centered Neumann boundary condition (1.8). Then, integrating the Poisson equation (1.3) over [0, x] yields

E(t, x) = 0 +
1

λ2

∫ x

0

ρ(t, y)dy =
1

λ2

∫ x

0

∫
v∈R

[fi(t, y, v)− fe(t, y, v)]dvdy. (2.1)

Remark 2.1. Instead of imposing E(t, 0) = 0, we can impose
∫ 1

−1
E(t, x)dx = 0 (coming from the symmetry

of φ (1.6)) or even E(t, 1) = −E(t,−1). Then we compute (2.1) up to a constant and adjust the constant a
posteriori to verify the chosen constraint.
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Let us now consider the boundary condition (1.11). The spatial domain [−1, 1] is split into its positive and
negative parts, and integrating (1.3) gives

E(t, x) =

{
E(t, 1)− 1

λ2

∫ 1

x
ρ(t, y)dy = C+(t)− 1

λ2

∫ 1

x

∫
v∈R[fi(t, y, v)− fe(t, y, v)]dvdy, x ∈ [0, 1],

E(t,−1) + 1
λ2

∫ x

−1
ρ(t, y)dy = C−(t) +

1
λ2

∫ x

−1

∫
v∈R[fi(t, y, v)− fe(t, y, v)]dvdy, x ∈ [−1, 0).

(2.2)

Moreover, C± is computed at the required time by integrating (1.10), between two consecutive time steps. For
the integrals under consideration (in space, velocity and time), we will approximate them by the trapezoidal
method.

2.2 Finite Differences (FD)
Define a numerical computational domain Ω := [−1, 1] × [−V , V ], with a large enough maximum speed V .
Let (xj , vk)

j∈J0,JK
k∈J0,KK be a cartesian grid of Ω of step (∆x,∆v). We discretize the advection equations on the

subgrid (xj , vk)
j∈J1,J−1K
k∈J1,K−1K by an explicit Euler scheme in time, and the upwind scheme in space:

fn+1
s,j,k − fn

s,j,k

∆t
+D−

j,kf
n
s

(
vk

csE
n
j

)
+

+D+
j,kf

n
s

(
vk

csE
n
j

)
−
= Sn

s,j,k, (2.3)

where a+ = max(a, 0) and a− = min(a, 0) are respectively the coordwise positive and negative parts, and
the uncentered finite differences are defined as

D±
j,kf := ±

(
fj±1,k − fj,k

∆x
,
fj,k±1 − fj,k

∆v

)
.

The values of fn
s,j,k on the boundary (j = 0, J and k = 0,K) are taken as follows:

− the boundary condition (1.4b) yields fn
s,j,k = 0 whenever xj = −1, vk > 0 or xj = 1, vk < 0,

− it is considered that V is large enough to take the values on the speed boundary vk = ±V equal to 0,

− the remaining values fn
s,j,k, xj = −1,−V < vk ⩽ 0 or xj = 1, 0 ⩽ vk < V may be computed using the

scheme (2.3), since the sign of the speed allows to use only inner points.

The upwind scheme is known to be diffusive, and stable under the CFL condition

1−max
k

|vk|
∆t

∆x
− |cs|max

j
|En

j |
∆t

∆v
⩾ 0, ∀s ∈ {i, e} and n ∈ J1, NK.

Given ∆x and ∆v, we deduce a sufficiently small value of ∆t with the bound

∆t ⩽ min

(
∆x

V
,min(1, µ)

∆v

Emax

)
, Emax > 0 postulated a priori. (2.4)

2.3 Semi-Lagrangian (SL)
The full model (1.2) nicely lends itself to approximation by time splitting. Indeed, consider the following
Strang splitting decomposition
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∆t

2
:

{
∂tfs + v∂xfs = 0 Linear advection along x,
λ2∂xE = ρi − ρe Poisson problem,

∆t

2
: ∂tfi = νfe Ionization,

∆t : ∂tfs + csE∂vfs = 0 Linear advection along v,
∆t

2
: ∂tfi = νfe Ionization,

∆t

2
:

{
λ2∂xE = ρi − ρe Poisson problem,
∂tfs + v∂xfs = 0 Linear advection along x.

Each of the splitting steps may be solved exactly in time. Indeed, the Poisson problems are solved by the
integral representation (2.1). The ionization steps are pointwise ODE with time-independant source term,
and are exactly solved by the explicit Euler scheme. Finally, notice that each advection is at constant speed
with respect to the advection variable. This allows for the use of elementary 1D solvers.
The use of the decentered boundary condition requires a discretization of (2.2), and may penalize the time
order of the splitting method. In the sequel, we will consider only the symmetric boundary condition (1.8).

Numerical treatment of the boundaries Let us focus on the elementary advection equation with
constant speed a > 0

∂tf(t, x) + a∂xf(t, x) = 0, f(t,−1) = 0, ∀(t, x) ∈ R+
∗ × (−1, 1).

Let (xj)j∈J0,JK be a space mesh of step ∆x := 2/J , and (tn)n∈J0,NK be a time mesh of step ∆t := T/N . We
follow the work of [CL20, BNS+21], and consider a semi-Lagrangian scheme defined as

fn+1
j = Lagrange interpolation (fn, xj − a∆t) :=

d+1∑
k=−d

fn
j0+kLk(α),

with (Lk)k∈J−d,d+1K the Lagrange polynomials of degree (2d+ 1) defined by Lk(z) =
∏d+1

ℓ=−d,ℓ ̸=k
z−k
ℓ−k (which

satisfy Lk(ℓ) = δkℓ for ℓ ∈ J−d, d + 1K), and xj − a∆t = xj0 + α∆x, j0 ∈ Z, α ∈ [0, 1[. The boundaries are
treated as follows:

− the inflow side, corresponding to x = −1, relies on the analytical solution f(t, x) = 0 ∀x ⩽ at.
Whenever the scheme needs a value fn

j with j < 0, it may be exactly taken equal to 0.

− in the case d > 0, the Lagrange stencil may also need outflow values fn
j with j > J . Such values

may be determined by polynomial extrapolation. Let kb ∈ N, and let p be the unique polynomial
of degree kb interpolating (xj , f

n
j ) for j ∈ JJ − kb, JK. The outflow ghost points will be defined by

fn
j := p(−1 + j∆x), ∀j > J . The couple (d, kb) characterizes the chosen scheme.

3 Numerical results
The semi-Lagrangian code is written in C; it uses subroutines (translated from Fortran) of the selalib
library1. The code works in parallel using MPI. The finite difference scheme has been written in Julia.

1https://selalib.github.io/selalib.html
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Figure 1: Malkov solutions (3.4) on [−1.5, 1.5]× [−2, 2]. Left: electric field E. Right: density f .
The electric field is extended outside of [−1, 1] by a constant. The density f is represented in the

domain [−1.5, 1.5]× [−2, 2], and truncated to 10.

3.1 One species validation test case
We rely on the work of [MK20] to provide an analytical solution in a one-species case. Consider the simplified
model describing the density of particles f = f(t, x, v), and the potential φ = φ(t, x):

∂tf + v∂xf − ∂xφ∂vf = 0, (t, x, v) ∈ R+
∗ × (−1, 1)× R,

∂2
xxφ =

∫
v∈R

fdv, (t, x) ∈ R+ × (−1, 1).

(3.1a)

(3.1b)

The initial and boundary conditions are given by{
f(0, x, v) := f0(x, v), f(t, x = ±1,±v < 0) = 0,

φ(t, 0) = ∂xφ(t, 0) = 0.

(3.2a)
(3.2b)

This model may be seen as a particular case of the two-species Vlasov-Poisson (1.2), upon taking the following
parameters:

f0
i ≡ 0, ν = 0, µ = −1, λ = 1, f0

e = f0.

One may verify that (3.1) is solved in R+ × [−1, 1]× R by the following stationary couple:

f(t, x, v) :=

{
1
π

(
1− x2 − v2

)−1/2 if x2 + v2 < 1,

0 otherwise,
and φ(t, x) :=

x2

2
. (3.3)

It is numerically relevant to extend the Malkov solution (3.3) to spatial domains x ∈ [−1− ε, 1 + ε] by

f(t, x, v) :=

{
1
π

(
1− x2 − v2

)−1/2 if x2 + v2 < 1,

0 otherwise
, and φ(t, x) :=

{
x2/2, |x| < 1,
|x| − 1

2 , |x| ≥ 1.
(3.4)

Figure 1 illustrates the stationary solutions.

Validation of the FD scheme This stationary test first let us validate the Finite Difference scheme
presented in Subsection 2.2 associated to the boundary condition (1.8) for the electric field (computed by
(2.1)). Considering (x,v)-domain [−1, 1] × [−2, 2], we compute the L2-errors on electric field at time 0.1.

7



Figure 2: FD code for one species case. L2-errors on electric field at time 0.1, as a function of ∆x (left) or
∆v (right).

Figure 2 presents the error as a function of ∆x for different fixed values of Nv = K + 1 (on the left) and as
a function of ∆v for different fixed values of Nx = J + 1 (on the right). Time step ∆t is computed thanks
to the CFL condition (2.4), K (resp. J) being chosen such that ∆t is fixed along each curve. In both plots
(presented in log-log scale), we recover convergence of rate 1, as expected, until a saturation is reached.
In Figure 3 we aim at comparing the three approaches for the computation of electric field presented in
Subsection 2.1. Imposing E(t, x = 0) = 0 as proposed in (1.8) or

∫
E(t, x)dx = 0 as discussed in Remark 2.1

leads to two similar solutions, that are exact at x = 0 due to the properties of this case. Now, computing E
from (1.11)-(2.2) leads to an exact solution on boundaries x = −1, x = 1 but a jump in x = 0. Even if the
exact solution is continuous in x = 0, it is not always the case in physically relevant applications.

Validation of the SL scheme Results for the semi-Lagrangian code are given on Figure 4. Instead of
evaluating the numerical solution on a point (x, v), we use a quadrature to approximate its average on the
cell of size (∆x,∆v) centered in (x, v). We evaluate the error on the electric field for different values of
Nx = Nv = N . We see on the left figure that the scheme converges when N increases at initial time. Then,
on the right figure, we plot the error on the electric field at T = 1. Dividing the time step by two (resp. by
four), we observe that the error is divided by around 4 (resp. 16), which illustrates the second order in time
of the Strang splitting. The test is quite difficult (the function goes to infinity on one side and then is equal
to zero on the other side) and large values of N have to be used to clearly see the convergence.

3.2 Two species case
In this part, we focus on the two-species model (1.2) and use the following physical parameters:

λ =
1

2
, µ =

1

100
, and ν = 20. (3.5)

The initial conditions are chosen as the thermodynamic equilibrium in an infinite spatial domain, or in a
domain with periodic condition. The densities are then given by

f0
i (x, v) :=

exp
(
−v2

2

)
√
2π

and f0
e (x, v) :=

√
µ
exp

(
−µ v2

2

)
√
2π

.

In order to satisfy the boundary conditions, we multiply fi,e by a mask, defined as

mask(x, v) :=
1

2

(
tanh

(
x− (−0.8)

0.1

)
− tanh

(
x− 0.8

0.1

))
.
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Figure 3: FD code for one species case. Parameters Nx = 2048, Nv = 2049, time 0.1. Computed minus exact
E as a function of x with three approaches (imposing E(t, x = 0) = 0, imposing

∫
E(t, x)dx = 0, computing

E(t, x) from J with (2.2)).

Figure 4: SL code for one species case. Left: Electric field error for x ∈ [−1, 1], at initial time. Right: at
time T = 1, error of electric field for ∆t = 0.1, 4 times error of electric field for ∆t = 0.05, 16 times error of
electric field for ∆t = 0.05. We use N ∈ {16, 32, 64, 128, 256, 512, 1024} cells in each direction. For each cell
we compute the average value of f at initial time using N points in each direction.
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Figure 5: Initial conditions f0
i (left) and f0

e (right).

If the boundary condition is not satisfied, the sharp profile at the boundary may induce spurious oscillations
in the Lagrange interpolation during the first steps of the simulation. Figure 5 illustrates the resulting initial
conditions.
The simulations run over the spatial domain x ∈ [−1, 1]. The semi-Lagrangian (SL) code computes the
electron velocities on ve ∈ [−60, 60], and ion velocities on vi ∈ [−50, 50]. The finite differences (FD) code
uses the same mesh for ions and electrons, chosen as v ∈ [−60, 60]. To simplify the comparison, visualisations
of fi are restricted to the coordinates fi,j,k such that vk ∈ [−5, 5]. For the finite differences code, we use
Nx = 512, Nve = Nvi = 513; the time step is computed in order to satisfy the CFL condition; a further time
step is used for terminating to the final time T . For the semi-Lagrangian code, we will use

Run Nx Nvi Nve ∆t

Run0 512 513 513 0.000250
Run1 256 2049 8193 0.000250
Run2 1024 2049 8193 0.000250
Run3 1024 2049 8793 0.000025

For the SL scheme, we always use d = 8 with periodic boundary conditions for the interpolation in velocity,
and kb = 1 together with d = 2 for the spatial interpolation. Lagrange interpolation of degree 3 (that is,
d = 1) is used for passing from the ion velocity mesh to the electron velocity mesh (which is needed for the
ionization step).
As diagnostics, we represent the electric field E, the charge density ρ = ρi−ρe, the ion distribution function
fi and the electron distribution function fe at different times T ∈ {0.1, 0.2, 1, 2, 5, 20}.

Short time We first look at the results for short times: T = 0.1 (Figure 6) and T = 0.2 (Figure 7). For
the semi-Lagrangian code, we use the parameters of Run2, which gives a reference solution. We see that
the results are very similar with the FD code for T = 0.1, which permits to validate the results by cross
comparisons. For T = 0.2, differences begin to appear; the sharp profile of fe is not well reproduced by the
FD scheme which has also a coarser mesh. We can see also the differences on the charge density.

Long time Now, we turn to the long-term simulations, with T = 20, on Figure 8. The finite difference code
suffers from numerical diffusion, and the approximations of fi and fe are very damped. Electric field and
charge density are really different. On the contrary, the SL scheme gives much better results (in comparison
with refined runs, as we will see later), while it uses the same number of points. We can distinguish a little
degradation of the symmetry, by looking at the charge density.
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(a) Electric field

(b) Density ρ

(c) Ion distribution function

(d) Electron distribution function

Figure 6: Comparison between finite differences (left) and semi-Lagrangian (right) schemes at T = 0.1. The
semi-Lagrangian code uses parameters of Run2.
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(a) Electric field

(b) Density ρ

(c) Ion distribution function

(d) Electron distribution function

Figure 7: Comparison between finite differences (left) and semi-Lagrangian (right) schemes at T = 0.2. The
semi-Lagrangian code uses parameters of Run2.
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(a) Electric field

(b) Density ρ

(c) Ion distribution function

(d) Electron distribution function

Figure 8: Comparison between finite differences (left) and semi-Lagrangian (middle and right) schemes at
T = 20. The semi-Lagrangian code uses parameters of Run0 (middle E(t, 0) = 0, right

∫ 1

−1
E(t, x)dx = 0.)
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Looking for a reference solution It is not easy to find a reference solution, as we look for long time
solution, and the ionization parameter needs to be adjusted to ensure the stationarity of the solution. The
space scale must be able to capture thin structures, as the Vlasov equation is prone to filamentation. We
have here also the problem that electrons and ions have different time scales, which implies that short time
steps have to be used in order to be able to follow the dynamics (even if we use here a semi-Lagrangian
scheme, whose time step is not restricted by the strong CFL condition of the finite difference scheme).
It is interesting to notice that we can have converged solutions in space for a fixed time step, taking for
example ∆t = 0.0025 (or even ∆t = 0.025), but the corresponding solution is then not (at all) converged in
time (results are shown on Figure 9; we can remark that the results on charge density can be quite different;
looking at the electron distribution function, we see some shifting of the solution, and even more changes for
∆t = 0.025).
So we have diminished the time step to ∆t = 0.00025, and the comparison with the same simulations with
∆t = 0.000025 on Figure 10 is now much similar, which indicates that the time step is now fine enough.
Note that for semi-Lagrangian schemes, taking the smallest possible time step does not necessarily lead to
a better result (due to accumulation of errors, as the number of interpolations increases).
We choose to use a very fine discretization in velocity for the electrons by taking Nve = 8193 (some results, not
shown, with Nve = 16385 have lead to indistinguishable results). We then make vary Nx and Nvi ; we remark
that Nx can be quite lower and Nvi a little lower also, as we have similar results taking (Nx, Nvi) = (256, 2049)
and (Nx, Nvi) = (1024, 4097), as we can see on Figure 11 (the first one is more diffusive which is coherent).
We remark also that the spatial interpolation does not lead to unstable results, which can occur sometimes
when extrapolation is used (see [BMN18]). To our understanding, this is due to the fact that interpolation
of nontrivial functions happens only on the outflow boundary, and any oscillation is evacuated immediately
without propagation in the computational domain. We have used an odd number of points in order to
prevent from having 0 as a mesh point, which would lead to increase of the value at constant rate, in the
ionization step.
The study of the numerical equilibrium and the study of the behaviour of the ion density around (0, 0),
which is quite complex at equilibrium, are not tackled here and are out of the scope of this work.
In Figure 12, we compare the solutions given by the semi-Lagrangian code when three different boundary
conditions for the Poisson solver are used. At the numerical level, we see that the first one E(t, 0) = 0 yields
a loss of symmetry in the solution while the two others preserve it. At a physical level, we observe that the
electric field is monotone increasing and consequently low energetic electrons (see Figure (d)) are essentially
confined while ions are prone to be accelerated and lost at the wall (see Figure (c)).

4 Conclusion
This work discussed the development of a semi-Lagrangian scheme for the numerical simulation of a two-
species plasma model involving sheath. Specific treatment of the boundary conditions have been proposed.
For comparison, a 1st-order finite difference scheme has been implemented. Both schemes are first validated
on a one-species test case for which an analytic solution is known. Then we obtained simulations for the full
two-species case.
We obtain first promising results that encourage us to go further in the study of this semi-Lagrangian scheme
coupled with boundary conditions. Long-time behaviour is a difficult question for which it would be very
interesting to have a reference solution, given by the stationary problem. This is however out of the scope
of this work.
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(a) T = 1

(b) T = 2

(c) T = 5

(d) T = 10

Figure 10: Density ρ (left) and electron distribution function (middle and right) for time T ∈ {1, 2, 5, 10};
The semi-Lagrangian code is used with parameters of Run2 (left, middle) and of Run3 (right).
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(a) Electric field

(b) Density ρ

(c) Ion distribution function

(d) Electron distribution function

Figure 11: Comparison of semi-Lagrangian code: parameters of Run1 (left column) and parameters of Run2
(right column).
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(a) Electric field

(b) Density ρ

(c) Ion distribution function

(d) Electron distribution function

Figure 12: Comparison of the numerical approximation of the Poisson equation in the semi-Lagrangian
code: E(t, 0) = 0 (left column), E(t, 1) = −E(t,−1) (middle column) and
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E(t, x)dx = 0 (right column).

∆t = 0.025. Nx = 256, Nve = Nvi = 1023.
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