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Abstract

Efficiently exploiting computational resources in heterogeneous platforms is a real challenge which has motivated the adoption
of the task-based programming paradigm where resource usage is dynamic and adaptive. Unfortunately, classical performance
visualization techniques used in routine performance analysis often fail to provide any insight in this new context, especially when
the application structure is irregular. In this paper, we propose several performance visualization techniques and modeling strategies
motivated by the analysis of task-based multifrontal sparse linear solvers whose structure is particularly complex. We show that by
building on both a performance model of irregular tasks and on structure of the application (in particular the elimination tree), we
can detect and highlight anomalies and understand resource utilization from the application point-of-view in a very insightful way.
We validate these novel performance analysis techniques with the QR_mumps sparse parallel solver by describing a series of case
studies where we identify and address non trivial performance issues thanks to our visualization methodology.
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1. Introduction

High-Performance Computing (HPC) applications rely on
hardware parallelism to accelerate computations. The construc-
tion of efficient parallel programs remains challenging as HPC
embraces hybrid architectures comprising multi-core CPUs,
GPUs, and TPUs. The task-based programming paradigm has
emerged as the easiest and most efficient way for programmers
to develop applications with portable performance over such
systems. Nowadays, it is supported by several libraries such
as OpenMP [47], StarPU [33], OmpSs [34], Kaapi [41], and
OpenCL [39]. This paradigm allows describing the program as
a set of high-level computational tasks handled by a runtime
system that builds on decades of research in scheduling theory.

Yet, due to the complexity of hybrid platforms and paral-
lel applications, the efficiency of task-based applications and
schedulers remain susceptible to many performance degrada-
tion factors. Numerous studies show that different runtimes
achieve significantly different performance for the same appli-
cation in the same environment [16, 12, 7]. This variation can
be due to various factors such as the different overhead costs for
creating and submitting tasks to the runtime system, bad deci-
sions made by the scheduler, poorly implemented applications
or computation kernels, or inadequate application parameters.
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Identifying and optimizing these problems is laborious since
they can occur at many levels. Furthermore, this has become
an increasingly complex effort as applications have to handle
multicore processors with non-uniform memory hierarchies, to-
gether with GPUs, and network communication [25].

Performance visualization tools commonly aid analysts and
developers throughout the performance analysis process by
providing a Gantt chart depicting application states through
time (along the X-axis) using the hierarchy of computational
resources (Y-axis). Although this type of generic visualiza-
tion can pinpoint many performance issues, it misses essential
application-specific aspects. Likewise, most approaches expect
the task cost to be homogeneous, which is well suited for reg-
ular and well-behaved applications like dense linear algebra.
Unfortunately, many real scenarios are not so well behaved.

For example, sparse matrix factorization algorithms, present
in many computer applications [15], are way more complicated
than their dense counterparts. The input problems have to go
through a symbolic analysis phase, before the numerical fac-
torization, to extract the parallelism. A classical approach to
exploit this parallelism is the Multifrontal method [52, 45] that
breaks the whole factorization problem into a heterogeneous
collection of smaller and denser subproblems, called frontal
matrices. A structure called Elimination Tree, which lies at the
heart of the multifrontal method, connects these subproblems
through dependencies. It is crucial to consider these special-
ized structures when analyzing application performance since
they shape and define the application execution behavior.

In this article we propose several new performance visualiza-
tion techniques to exploit the structure of task-based sparse ma-
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trix solvers. These techniques are validated with an extensive
analysis of the multifrontal task-based parallel sparse solver
QR_mumps [17]. Our main contributions are as follows.

(1) We propose a statistical model of the irregular tasks of
QR_mumps to detect tasks with anomalous duration given their
expected floating-point operation count and the computational
resource type (Section 4). We illustrate through four case stud-
ies how this mechanism allows us to uncover and fix simple
to non-trivial issues that would easily go unnoticed. (2) We
propose a visualization of the temporal traversal of the elimina-
tion tree structure, including derived information such as mem-
ory usage and the number of active tree nodes, along with the
computational effort in terms of tree nodes and depth (Section
5). We illustrate through three case studies how this visualiza-
tion enables understanding on how the factorization unfolds, to
identify and address non-trivial scheduling problems that would
be hard to understand solely with generic Gantt chart.

Our contributions benefit both runtime and application de-
velopers by visually highlighting anomalous tasks, malfunc-
tioning application structures (elimination tree), and inefficient
scheduling. We show that these techniques allow the identifi-
cation and the correction of possible performance problems at
various levels, from the tree partitioning and matrix reordering
to runtime scheduler decisions and parameters.

Section 2 presents the fundamental concepts behind parallel
multifrontal sparse matrix factorization and task-based imple-
mentations. This section also covers some related work on per-
formance modeling and performance analysis of task-based ap-
plications. Section 3 describes the computational environment,
workload characterization, and the design of our experiments.
Section 4 is devoted to our contribution on the exploitation of
the task structure while Section 5 is devoted to the exploitation
of the application structure. Section 6 concludes the paper and
presents future directions for this work.

2. Background and Related Work

In this section, we discuss the recent implementations of
high-performance sparse direct solvers (Section 2.1), and the
process of collecting application information, and how to use
this data for in-depth performance analysis (Section 2.2).

2.1. Parallel Sparse Matrix Factorization

In this work, we study a particular set of task-based appli-
cations that arises in many research problems: solving large
and sparse systems of equations. This kind of problem is a
source of extremely irregular workloads, presenting tasks of
different types, computational weights, and variable memory
consumption [27]. We focus on solvers that incorporate par-
allel versions of the multifrontal method for obtaining the di-
rect solution of sparse equation systems [18]. Implementing
these solvers requires us to carefully consider many aspects
that may harm application performance, from the sparse ma-
trix data structure representation to the efficient scheduling and
implementation of the computational kernels in a parallel en-
vironment. Furthermore, the implementation is responsible for

balancing the load over a complex architecture comprising het-
erogeneous compute resources while considering communica-
tion costs and memory management. All those aspects are vi-
tal to building efficient software, which should be portable and
scalable regardless of the diversity of current architectures.

Since dense linear algebra kernels are the core of these
solvers, they systematically rely on the standard set of ba-
sic routines from BLAS [50], their hand-tuned implemen-
tations like OpenBLAS [30], and MKL [26] for CPU, and
CUBLAS [40] and MAGMA BLAS [35] for GPUs. This va-
riety of libraries allows to adapt to the variety of computational
resources and select the implementations which are the best
suited to the platform at hand.

To address the load balancing issue, a traditional approach
among solvers consists in relying on an in-house scheduler
specifically designed for the sparse factorization context[10].
This approach enables the developers to describe the applica-
tion as a Directed Acyclic Graph (DAG), where the DAG nodes
represent the computational tasks and the edges, the data de-
pendencies among them. This approach simplifies program-
ming since it delegates the control flow management and load
balancing to the scheduler. Task-based programming has been
used in this context since the pre-multicore era in MPI-based
implementations such as MUMPS [46] and is still used nowa-
days. These in-house schedulers are lightweight because they
often rely on a specific algorithm’s knowledge. However, such
in-house and application-dependent schedulers commonly have
limited features and fail to scale well on heterogeneous sys-
tems. Therefore, there is a move toward the use of general-
purpose runtime systems such as StarPU, which has proven to
be a well-suited option for the parallelization of sparse factor-
ization methods [27]. In the next sections, we give more de-
tails on the stages and structure of the multifrontal method and
give practical details of the QR_mumps implementation on top
of StarPU but we believe our proposal could be equally applied
to any other sparse solver and runtime.

The Multifrontal Method
The multifrontal method [52] is an extension of the frontal

method [53], focusing on the factorization of symmetric ma-
trices using Cholesky. However, the method provides a struc-
ture that can be adapted to factorize sparse unsymmetric matri-
ces using LU or QR factorization as well. This method breaks
the whole matrix factorization problem into smaller and denser
subproblems, as partial factorization steps. These subproblems
are known as being the frontal matrices or just fronts.

In classical approaches, each frontal matrix represents one
elimination step related to a column j. Now, because of the ma-
trix sparsity, some elimination steps operate in disjoint subsets
of matrix coefficients. Then, multiple fronts can be factorized
in parallel, which gives the name to the method. However, if
the elimination of one column changes the coefficients used in
another step, there is a dependency between these eliminations.
These dependencies are captured by a structure that is the heart
of the multifrontal method: the elimination tree. This tree struc-
ture holds the fronts in its nodes and expresses the dependencies
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between them as a parent and child relation in the tree. A par-
ent node can only be factorized after all its child nodes were
already factorized, and its contribution blocks were assembled
into the parent node. The whole matrix factorization is done by
traversing the tree in the topological order, from bottom to top.

Considering a QR Householder factorization, Figure 1
presents an example of a sparse matrix structure and its elimi-
nation tree with some detail in its the frontal matrices. In the
figure, we can observe the inherent parallelism that arises from
this structure regarding eliminating columns that reside in dif-
ferent branches of the tree simultaneously (e.g., 1, 2, and 5).
This source of parallelism is commonly referred to as the tree
parallelism. We can also notice how the fronts form dense sub-
matrices of the problem by looking at the detailed fronts 1, 2,
and {3,4}. At each column elimination step, one row of the final
factor R is produced, along with a set of coefficients that form
the contribution block that goes in the parent node matrix (the
blue and red dots in the figure). Lastly, the Q factor is implic-
itly represented by the Householder reflector vectors computed
in each frontal matrix. Another thing that can be observed in
the frontal matrix that represents the elimination of columns 3
and 4 is the so-called staircase structure which appears in big-
ger fronts, where we have many zero elements in the bottom
left of the matrix. Note that we have reordered the front rows to
observe this structure better.

Figure 1: Example of a sparse matrix (left) and its elimination tree (right).
Original matrix coefficients are marked as black dots, while fill-in coefficients
are small dots. The gray-shaded area represents the columns that are being
eliminated in that elimination step. Blue and red coefficients represent the con-
tribution blocks in the detailed fronts in the elimination tree. The red dashed
areas mean that those tree nodes were amalgamated to form a supernode.

We can also observe that each column elimination has a de-
pendency on another, representing the above-mentioned classi-
cal approach. However, this classical strategy has the drawback
of generating small fronts, limiting the efficiency that could be
achieved by Level-3 BLAS operations. Other strategies con-
sider the amalgamation of nodes with a similar structure for the
R factor, at the cost of generating some additional fill-in. Fig-
ure 1 represents this strategy through the amalgamation of the
nodes {3,4}, {5,6}, and {7,8,9}, forming what is commonly
called supernodes. This amalgamation of nodes transforms the
elimination tree by creating bigger frontal matrices where the

high efficiency of BLAS-3 routines can be better explored at
the cost of some additional fill-in. However, the efficiency of
BLAS-3 routines pays off this additional cost and improve over-
all performance. Further improvements to this method consist
of exploring an intra-node parallel front factorization technique
such as multithreaded BLAS or tiled factorization algorithms,
enabling even more concurrent work through node parallelism.

The complete matrix factorization and solution is thus orga-
nized in three different phases in the multifrontal method. The
analysis phase handles a major concern in sparse matrix fac-
torization: reducing or keeping the generation of new nonzero
coefficients (fill-in effect) under control. In this phase, software
libraries like COLAMD [43], Scotch [48], and Metis [1] use
matrix reordering algorithms such as Approximate Minimum
Degree, Nested Dissection, and Cuthill-McKee [29] to provide
a matrix permutation that reduces the fill-in during the factor-
ization. Applications also perform a symbolic factorization step
that enables them to preallocate the necessary memory for the
final structure by calculating beforehand the final structure of
the matrix after the factorization. At the end of this phase, we
have the elimination tree structure ready to be computed by the
next phase. In sequence, the factorization phase is responsible
for traversing the elimination tree from the leaves to the root,
computing the partial factorization in each front, and combining
the child node contribution blocks to the parent frontal matrix.
These front factorizations can be done in parallel. For example,
the method can process all the leaves of the tree at the same
time. There is a restriction in starting the parent node factor-
ization because all its child nodes need to be already computed
to assemble their contribution blocks. Then, as the computa-
tions move towards the tree root, the tree parallelism becomes
more scarce, and fronts get bigger, and this is why we should
use some other techniques like tiled factorization to explore the
node parallelism. Finally, in the solve phase has the last tree
traversal to apply forward and backward substitutions, and a
triangular solve operation for each front to group their results.

QR_mumps: A Fine-Grained Task-Based Multifrontal Method
The QR_mumps application [17] is an example of a multi-

frontal sparse direct solver that uses the elimination tree struc-
ture to partition and parallelize the problem. Using a fine-
grained task-based approach relying on the StarPU runtime sys-
tem, it partitions the frontal matrices in tiles on which tasks
will work. This approach allows exploring a new level of par-
allelism called interlevel parallelism [17], which refers to the
limitation of starting a parent node only once all children con-
tribution blocks have been assembled into it. With this finer
partitioning, as soon as a part of the parent node is assem-
bled, the factorization in that region can start, allowing com-
putation overlap between children and parent. The resulting
performance gains comes at the cost of making harder the un-
derstanding of the application execution.

The application relies on four LAPACK kernels for the fac-
torization: geqrt, gemqrt, tpqrt, and tpmqrt. The parti-
tioning of the frontal matrices in QR_mumps follows a 2D block
partitioning, breaking a single front into many smaller blocks
where these tasks operate. The block and task dimensions are
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controlled by the user-defined parameters mb, nb, and an inter-
nal blocking size ib. The first two controls the number of rows
and columns of the block, and the latter is a parameter used in
LAPACK routines to decrease the number of extra flops needed
because of the 2D partitioning, as explained by [36]. Despite
this beneficial effect from the LAPACK ib parameter, the rou-
tines were modified to control fill-in level inside the blocks
where there are zeroes in the bottom left part of the block, form-
ing the staircase structure. The effect of these parameters in the
routines regarding the fill-in and task irregularity is presented
by Figure 2. The figure represents a frontal matrix (dense) with
its rows sorted by the leftmost nonzero to clearly observe the
staircase structure, leading to many zero elements in the bottom
left of the matrix. The dashed lines represent the matrix parti-
tioning following the mb and nb parameters, for which there
is no restriction for its values so that we can have rectangular
blocks. The only restriction is that the value of nb must be a
multiple of ib, which controls the internal blocking effect, il-
lustrated in the left part of Figure 2, where the dark gray squares
represent the fill-in coefficients. This part of the figure shows
the effect of two different values for ib: nb/6, and nb/3. Note
how the fill-in is reduced with smaller ib values, but this comes
at the cost of lower efficiency in the BLAS-3 operations.

Figure 2: Example of a front partitioning using mb and nb, sources of task
irregularity, and the ib size effect in fill-in. Matrix coefficients are represented
as light gray squares and fill-in coefficients as dark gray.

Figure 2 also demonstrates the irregularity sources in the
tasks, as the blocks with the staircase structure will have fewer
coefficients to compute. Furthermore, the frontal matrix parti-
tioning may not result in an exact number of blocks given its
numbers of rows and columns. This way, the blocks residing in
the staircase structure and blocks in the bottom or right borders
of the matrix may have a smaller number of rows and columns,
as can be observed by the mb and nb sizes at the right of the
figure. This irregularity leads to tasks with many different sizes
and computational weights. Moreover, tasks of the same size
can have different computational weights like the ones that re-
side in the staircase structure.

The frontal matrices are very small at the bottom of the tree,
and the number of tree nodes at this level is commonly much
higher than the number of processing units. To avoid creating
too many tasks and limit the overhead of the runtime system,
the QR_mumps application uses a logical pruning technique de-
scribed by [28] to compute entire subtrees within a unique se-
quential task: the do_subtree tasks. This optimization also
makes the operations in those regions of the tree more efficient.

Assuming that there is enough tree parallelism, the pruning al-
gorithm determines a layer in the tree structure such that all sub-
trees rooted at this layer have a computational weight smaller
than a given threshold (e.g., 1% of the total factorization cost).

Another optimization brought by this fine-grained approach
is memory consumption control. The QR_mumps application al-
lows the definition of a memory usage upper bound based on
how much memory the application would use in a sequential
traversal of the elimination tree. Previous experiments demon-
strate that the application can keep performance while saving
memory usage [21].

All these optimizations specified at the application level in
QR_mumps are architecture-independent thanks to flexibility of-
fered by the task-based paradigm which leverages multiple
kernel implementations and handles all the above-mentioned
strategies as a DAG scheduling problem. The DAG is entirely
handled by the StarPU runtime system to ensure data coherence
and dynamic load balancing using one of its many scheduling
policies that take into account task priorities and the compute
and communication costs among the computational resources.

2.2. Task-Based Performance Analysis: Tools and Techniques
Performance analysis is an essential step to understand and

improve any application. Traditional tools like ViTE [31] or
Paraver [49], for instance, depict the behavior of application
traces through Gantt charts. Unfortunately, since the execu-
tion of task-based programs is stochastic, it turns out they are a
much more challenging scenario to analyze than traditional par-
allel applications that have well-identified regular computation
and communication phases. Not only is a Gantt chart very diffi-
cult to read in this context but generally these tools lack impor-
tant features for task-based applications, like task dependencies
and critical path analysis. We revisit performance analysis and
visualization techniques for task-based applications.

There are a few task-oriented performance analysis tools,
such as DAGViz [20] and Temanejo [32]. Even though they
display the application DAG, they either focus on DAG task
debugging or on a timeline with workers and available paral-
lelism. The later idea can be useful to visually represent the tree
and node parallelism in the multifrontal method but this repre-
sentation does not handle well heterogeneous resources. More
recently, StarVZ [11, 6] was developed to build task-based per-
formance visualization for the StarPU library. This tool pro-
vides a multi-level and complete view of the application, run-
time aspects, and DAG analysis.

Other performance analysis techniques focus on the model-
ing of the behavior of individual tasks. From a more low-level
perspective, focusing on individual tasks, TaskInsight [14] im-
plements a technique that allows evaluating the scheduler de-
cisions in terms of data reuse by using task trace information
from hardware counters. Another common approach consists
in developing analytical models of frequently used computation
kernels like the BLAS based ones and many studies detail how
to model the task cost mathematically in the context of sparse
matrix operations [51, 22, 42, 37]. Their most frequent use is
weight partitioning, scheduling hints, and performance predic-
tion of whole execution application either through a regression
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model [8] or through a simulator such as SimGrid [24]. How-
ever, most of the time, these models remain absent from the
visual performance analysis.

Therefore, traditional trace visualization tools lack both
DAG-related and task-related features and rarely exploit
application-specific characteristics (e.g., the tree structure),
which makes them completely unfit to understand how an appli-
cation made of heterogeneous tasks unfolds on a heterogeneous
set of resources.

3. Experimental Design

Hardware and Software Configuration. Table 1 lists the
computational platforms used in our experiments. They provide
contrasting configurations in terms of computational resources
count, implying different elimination trees due to pruning, and
diverse CPU and GPU computing capabilities. All machines
run Debian 10, kernel version 4.19.0-8-amd64 in a controlled
environment with exclusive access during experiments. The
StarPU version used in the experiments comes from the devel-
opment branch [2] linked against CUDA 10.2.89. We have used
Scotch 6.0.8 [9] and Metis 5.1.0 [1] for matrix reordering. The
QR_mumps code was compiled using GCC 8.4.0 [3] and linked
against OpenBlas 0.3.9 [5]. We collect enriched information
using application-injected data registered by StarPU in applica-
tion traces. We convert the binary data towards the visualization
using StarVZ [11, 4].

Table 1: Hardware specification of the three platforms.

Machine CPU Cores GPU Cores

Tupi E52620v4, 1×8 2× GTX 1080Ti, 3584
Hype E52650v3, 2×10 2× Tesla K80, 2496
Draco E52640, 2×8 2× Tesla K20m, 2496

Application Configuration and Workload. The QR_mumps
application is exceptionally configurable. Globally, we used
two different versions of QR_mumps depending on whether we
wanted to use GPUs or not. We use a fixed block size (nb=320)
and internal block size (ib=32) for executions using only CPU
and larger sizes (nb=600, ib=60) when using GPUs. While
these values provide a good task granularity for both CPU and
GPU setups of our experimental platform, they have no influ-
ence in the elimination tree structure.

We also have investigated the impact of the memory con-
straint parameter on performance. This constraint (limited or
unlimited) regulates the total amount of memory that the ap-
plication can use during the factorization. When limited, the
application respects a memory usage constraint defined by its
computed sequential peak. The memory limitation directly im-
pacts the total amount of parallelism available and changes the
elimination tree traversal. Another important parameter for our
experiments is the StarPU’s scheduler algorithm. Among the
many possibilities proposed by [33], we have considered the
lws and prio for CPU executions, and heteroprio, dmda,
and dmdasd schedulers for cases including GPUs (see [33] for
further details about these schedulers) . Finally, we also employ

two ordering algorithms in the application, one based on the
Scotch and another on the Metis library. Both handle matrix
reordering but with different strategies. As consequence, their
elimination tree and floating-point operation cost for the matrix
factorization are different.

Table 2 lists those sparse matrices from real problems (Ma-
trix Market and SuiteSparse Matrix Collection repositories) that
we use in this work. We have many possible combinations
for each workload and application configuration (memory con-
straint, scheduler, and ordering). We avoid exploring all combi-
nations since some schedulers only make sense when we have
GPUs, like heteroprio, dmda, and dmdasd.

Table 2: Matrices used as workload for QR_mumps.

Name Rows Cols NNZ
ch8-8-b3 117.600 18.816 470.400
flower_8_4 55.081 125.361 375.266
e18 24.617 38.602 156.466
degme 185.501 659.415 8.127.528
karted 46.502 133.115 1.770.349
Rucci1 1.977.885 109.900 7.791.168
TF17 38.132 48.630 586.218

Table 3 lists the specific configuration (Scheduler, Ordering,
Machine, Input and other) for every case and figure that we
detail in Sections 4 and 5, for a total of seven case-studies. All
runs use 320 as block size and 32 as internal block size, except
for the case described in Section 5.4, which uses 900/90.

4. Performance Modeling and Abnormality detection of Ir-
regular QR Sparse Tasks

Performance models of compute kernels can be used to im-
prove scheduling and load balancing, predict performance, and
post-mortem performance analysis. For example, StarPU uses
such models to guide task scheduling policies at runtime. Mod-
els can also reveal many possible performance problems and
hint the analyst toward a more in-depth analysis of specific ap-
plication regions where those anomalies occurred. Enriching
space-time visualizations with such information has been suc-
cessfully applied in the context of dense linear algebra [11].
However, the irregularity of the sparse factorization tasks dis-
cussed in the previous section calls for more elaborate tech-
niques. We first detail how three regression strategies can model
the irregular tasks of QR_mumps and how they enrich the Gantt-
chart. Then we present four scenarios that showcase how iden-
tified anomalies allowed us to discover and address simple to
non trivial performance issues.

4.1. Regression Models for the Irregular Tasks of QR_mumps
The duration of a task obviously depends on the kernel type

(geqrt, gemqrt, tpqrt, and tpmqrt) and whether it is exe-
cuted on a CPU or a GPU. A good estimation of the amount
of Flops incurred by these tasks in the dense case can easily be
obtained using the nb, mb, ib geometry and granularity param-
eters [36] and then used as a surrogate for the task duration. For
example, the gemqrt kernel which multiplies an arbitrary real
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Table 3: Specific configurations used for all runs used in the showcase of Sections 4 and 5.

Section Figure Place Scheduler Ordering Machine Input Memory

4.2 5 – lws Scotch Hype flower-8-4 Limited
4.3 6 (A).Left lws Metis Hype flower-8-4 Limited

(A).Right prio Metis Hype flower-8-4 Limited
(B) prio Metis Hype Rucci1 Limited
(C).Left dmdasd Metis Draco Rucci1 Unlimited
(C).Right prio Metis Draco Rucci1 Unlimited

4.4 7 Left lws Scotch Draco ch8-8-b3 Unlimited
Center lws Scotch Draco ch8-8-b3 Unlimited
Right lws Scotch Hype ch8-8-b3 Limited

4.5 8 – lws Scotch Draco flower-8-4 –
9 Top, Up lws Metis Draco flower-8-4 Unlimited

Top, Down lws Metis Draco flower-8-4 Unlimited
Bottom, Up lws Scotch Hype karted Unlimited
Bottom, Down lws Scotch Hype karted Unlimited

5.2 11 – lws Metis Hype e18 Unlimited
12 – lws Metis Hype e18 Limited

5.3 13 Top prio Metis Tupi degme Unlimited
Bottom lws Metis Tupi degme Unlimited

5.4 14 Top heteroprio Scotch Hype TF17 Limited
Bottom dmda Scotch Hype TF17 Limited

m × n matrix C (using block size b) by the real orthogonal ma-
trix Q obtained from a QR factorization and represented by the
product of k elementary reflectors incurs:

gemqrt(m, n, k, b) =
k/b−1∑

j=0

[
4(m − jb)nb − b2n

]
≈ 2nkb(2m −

k
b

) − bnk

In such case, it is natural to assume that the duration of the task
will be proportional to this amount of Flops. However, we deal
with a sparse structure and each front may have a stair struc-
ture (as depicted in Figure 2). QR_mumps wisely considers that
and invoke a dense BLAS call for each stair step. As a con-
sequence, the real amount of Flops does not depend solely on
the geometry and granularity parameters but also on the stair
structure. Figure 3 presents the actual duration of the gemqrt
task versus the prediction obtained using a simple linear model
based on the above Flop estimate (Left) and the prediction using
a full polynomial model with the parameters m, n, k, b (Right),
that generally leads to better estimates as it is more flexible
and may account for memory access and for subtle cost dif-
ferences in arithmetic operations. Unfortunately, in both cases,
the dense estimation is generally very pessimistic and predicts
duration much higher than the actual duration. Fortunately, it is
not too difficult in QR_mumps to combine the above dense model
with the staircase structure and ignore the left-lower zero part
of the block to better estimate the actual computational load (in
GFlops) incurred by each task.

StarPU propagates this theoretical GFlops estimation for
each task to the trace allowing us to relate against the task dura-
tion (in milliseconds), as shown in Figure 4. Unlike what could
be observed in when comparing Figure 3 with the upper left
facet of Figure 4, there is no more gross underestimation. Ex-
cept for a few tasks, the predicted duration (in green) closely
matches the actual duration. As one would expect, the behavior

Figure 3: Task duration in milliseconds against the prediction obtained with a
dense model for gemqrt (BLAS 3.8.0). Point transparency indicates measure-
ment intensity.

is broadly linear and the efficiency (the slope of the regression)
is very different from a compute kernel to another and from a
BLAS implementation to another. Yet, the classical linear re-
gression assumptions do not hold. In particular the variability
is neither normal not constant (duration for larger theoretical
flop counts are more variable and generally positively skewed)
and this assumption is more or less strongly violated depend-
ing on kernels and BLAS versions. Since the duration is al-
ways positive and the variability appears to grow linearly with
the flop count, we handle this heteroscedasticity using a sim-
ple log-log transformation before the linear regression but it re-
mains limited and is generally insufficient to efficiently detect
outliers. Consequently, following an exploratory data analysis
approach, we leave the analyst the choice of the modeling strat-
egy for each compute kernel depending on what appears the
more suited. In our investigation, we propose three: classical
linear regression (for simple well-behaved cases), robust linear
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Figure 4: Task duration in milliseconds as a function of the theoretical GFlop count. The green line and the gray ribbon represent the prediction and prediction
interval derived from the model formula log(Duration) ≈ log(GFlops) fit over the data with different strategies (Classical, Robust) and confidence levels (from 0.65
to 0.95). Red tasks are the ones classified as potential anomalies by the model (those outside the ribbon). Point transparency indicates measurement intensity.

regression (when the noise structure follows a skewed heavy-
tailed distributions) [38], and mixture linear regression (when
the behavior is multi-modal) [44]. Figure 4 depicts the usage
of the classical and robust linear regression, while Section 4.5
presents the usage of the mixture linear regression. Although
even the simple linear models allow for an excellent modeling
of standard BLAS implementations like NetLib BLAS (upper
row of Figure 4), it is interesting to note that optimized BLAS
implementations like OpenBLAS (lower row of Figure 4) ap-
pear to have a much larger variance than the former ones and
may seem more unstable or difficult to model (visually there
are more outliers and more variance), especially for the gemqrt
and geqrt tasks. This is why it is preferable to use the robust
linear regression for the gemqrt and geqrt tasks, and a classi-
cal linear regression for the other tasks. Despite this variability,
such libraries have much better performance than the BLAS
implementation, and are thus heavily used in practice.

By analyzing the model prediction intervals, we can check
the model adequacy in fitting the data and detect outliers within
task and resource types using the prediction upper limit given
a confidence level. By checking whether the observations lie
above this confidence line and, the tasks are classified as a po-
tential anomaly and represented in red in Figure 4. The anoma-
lous task classification can then be used to enrich the space-time
Gantt chart by giving anomalous tasks more intense colors than
those whose duration is near what is expected. As we will show
in the next subsections, unless they appear as being completely
random, the spatial and temporal location of these tasks is gen-
erally a sign of performance issues.

4.2. Case 1: Influence of the Submission Thread

During our investigations it was common for outlier tasks to
appear on a single core and to be rather grouped in time, as if
there was short temporal perturbations. Figure 5 contains a rep-
resentative example of such configuration, combining the task
submission panel, with the number of submitted tasks along

time (top), with the space-time view, enriched with anomaly
detection by our performance model (bottom). We can see that
task anomalies (B.1, B.2, and B.3) coincide with a steep in-
crease of task submissions (A.1, A.2, and A.3). The reason
is that StarPU has a main thread responsible for handling task
submission, which can occur at any moment of the application
execution. In most cases, the thread unrolls the graph of tasks
at the beginning of the execution. Nevertheless, for scenarios
with memory limitations, as the one investigated here, task sub-
mission can be postponed according to memory availability. In
Figure 5, the submission thread, pinned to CPU9, causes com-
putational tasks to have a slightly longer duration because it
competes for the same resources. When binding the submitter
thread to a dedicated core, the anomalous tasks disappear.

Although this scenario clarifies the cause of task anomalies,

A

B

B.1

A.1

B.2

A.2

B.3

A.3

C

Figure 5: Panel A shows the number of tasks submitted over time, while panel
B presents the application workers and the tasks they executed. Anomalies are
associated with the task submissions (A-B 1, 2, and 3 pairs). The submission
thread is fixed in CPU9, where these anomalies occur. A zoom (Panel C) shows
that even small numbers of task submissions can also cause anomalies.
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Figure 6: Six examples demonstrating the presence of task anomalies in the time span of ≈1 second. Case (A) has two different executions for the Hype machine
(with the lws scheduler on the left and with the prio scheduler on the right). Case (B) has two time slices of the same execution in the Hype machine, and case (C)
has two different executions for the Draco machine with GPU (with the dmdasd scheduler on the left and prio scheduler on the right).

it does not characterize a runtime-level performance problem.
Indeed, such overhead is expected albeit rarely visible and our
outlier detection mechanism gracefully revealed it. Task sub-
mission is unavoidable but as our experiments indicate, the ad-
ditional cost of these submissions is negligible and it is gen-
erally better not to dedicate a core for submission. We can
thus simply treat this core separately, having its outliers aligned
with task submissions disregarded, focusing on other poten-
tially anomalous tasks as we see next.

4.3. Case 2: Tracing-related Perturbations
Another common behavior we noticed during our experi-

ments appears as a global idle time spanning all workers. Such
absence of tasks may have several explanations: a natural lack
of parallelism, bad scheduling decisions, data transfers limita-
tion, and so on. Commonly, it remains complex to identify the
reason for each noticeable behavior. Here, we describe another
interesting, albeit more trivial, cause that appeared in many dif-
ferent combinations of workload, machine, and computational
resources and which is illustrated through six instances on Fig-
ure 6 (the six facets). It appears to be a time-dependent phe-
nomenon for some runs, but it looks fairly random for others.
These cases share a common characteristic that, when idling,
workers are in a so-called “overhead” runtime state (among
other states such as scheduling, fetch, sleeping). Sometimes,
only one task continues its execution, while other tasks remain
dormant, as shown by the two (A) graphic cases where out-
lier tasks have very different observed GFlops but with sim-
ilar duration. In other scenarios, other non-anomalous tasks
that have already started are capable of continuing their execu-
tion, as shown by the left-case of the (B) graphic where outlier
tasks have the same observed GFlops but very different dura-
tion. Sometimes, as in the left execution of (C), this idle period
was responsible for up to 14% of the total worker idleness. In-
terestingly, our performance model always identifies an anoma-
lous task which coincides perfectly with the idle period. There
is no reason why a task shortage or a bad scheduling decision
would suddenly cause a task slowdown, which allows to rule
out many possible explanations. Furthermore, as shown in (A)
and (C) the problem is almost reproducible: although the outlier
tasks are different among executions, the perturbation generally
occurs roughly at the same time regardless of the scheduler.

We found out that this anomalous event is related to the trace
dump during the application execution. This occurs when the
trace buffer, limited by the STARPU_TRACE_BUFFER_SIZE vari-
able, gets full. Increasing the buffer size to a huge value actu-
ally removed this phenomenon and allowed us to concentrate
on more intricate performance problems.

4.4. Case 3: Uncovering Numerical Stability Issues

We have also identified some consistent workload-dependent
anomalies that did not correlate with particular moments nor
with particular cores. Figure 7 illustrates an example when
factorizing the ch8-8-b3 matrix in the Hype and Draco ma-
chines, using the lws scheduler. We have confirmed that all
tasks tagged as anomalies by our model were not caused by
tracing or submission perturbations as in our previous analy-
sis. Furthermore, the task’s duration difference magnitude was
enormous, from ≈9ms up to 150ms for gemqrt, and from 7ms
to 65ms for geqrt. The increased cache misses for some tasks
identified as anomalies do often explain a longer duration but
neither cache misses nor other hardware counters like the to-
tal floating-point operations changed for those tasks, yet their
duration always stands out compared to the other tasks.

Still on Figure 7, we noticed that the gemqrt anomalies were
coming from all the same 20 task identifiers, preceded by an
equally anomalous geqrt task, even when we executed with
different schedulers and in different machines. A sequential
execution pointed out to the same 21 anomalous tasks. The
first two images from left to right are executions on the Draco
machine with the lws scheduler. The first does not use GPU,
and the anomalies are spread along with the execution, while
the second figure, with one GPU, depicts the same tasks ex-
ecuted very close to each other. The last figure also presents
the same geqrt and gemqrt tasks classified as anomalies but
for the Hype machine execution. We have also noticed that
many of the tpmqrt anomalies are part of the same elimination
tree node. However, their variability is much smaller than the
other anomalies. Furthermore, the amount of tpmqrt anoma-
lous tasks is different from an execution to an other unlike what
happens for the presented geqrt and gemqrt tasks.

As they consistently occur over the same tasks that work in
the same matrix block, we investigate whether this difference
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Figure 7: The same 20 blue GEMQRT tasks classified as anomalies are dependent from the same orange GEQRT task, identified with 0 in the plots.

comes from the block’s spatial position and its numerical con-
tent, guiding or preventing some architecture-specific optimiza-
tions. Thus, we dumped the binary content of the blocks that
those tasks use to investigate their content. We found that some
of those blocks contain many denormal numbers, which is any
nonzero number smaller than the smaller number in the IEEE
standard for floating-point arithmetic. When present, the Intel
processor executes multiply, divides, and square root operations
with longer latency. If the application does not need denormal
precision, we can improve application performance by enabling
specific control flags. For example, the SSE/AVX floating-point
units of the x86_64 processors architecture have the control
flags flush-to-zero (FTZ) and denormal-as-zero (DNZ) to de-
fine the operations’ behavior when encountering a denormal
number [23]. This way, we recompiled the application using
these flags, and the anomalies disappear. Although such deac-
tivation removes the anomalies, we recommend the adoption of
the Metis ordering in this case to guarantee numerical stability.

4.5. Case 4: Identifying Locality Efficiency Issues

Finally, during our investigation, we stumbled upon situa-
tions where the usage of our model with classical or robust lin-
ear regression (see Section 4.1) did not fit data as appropriately
as it should. Such a case study is depicted in Figure 8 where
variability is much more important and where a more complex
model is needed to describe the data more correctly. This lack
of adequacy of a simple model is easily checked by inspecting
the residuals and is notably interesting as it is generally the sign
of a more profound problem in the execution. In such cases,
we resorted to finite mixture models technique to classify the
data in different clusters (Figure 8) where geqrt and tpqrt
have two regression lines instead of one. We can then investi-
gate where those clusters are located in Gantt chart’s space and
time, checking if the clusterized tasks are time or space-related,
giving us insights about this unexpected behavior.

The top row of Figure 9 depicts the corresponding Gantt
chart for the flower_8_4 matrices where many tasks (without
transparency) are considered as anomalies by our model (see,
in particular, the “slow” tasks). They appear throughout the
execution at moments different from those indicating new task
submission or those aligned with overhead states. A careful

analysis of these anomalous tasks against our model indicates
that the theoretical GFlops provided by the application is no
longer capable to explain the task duration.

We hypothesize that they suffer from an increase in the num-
ber of cache misses, affecting our model’s prediction capabil-
ity. To check if the number of cache misses could explain the
increased duration, we linked StarPU with the PAPI library to
capture the total number of L1, L2, and L3 cache misses for
each application task. We first verified if there was some cor-
relation between the total miss number for caches L1, L2, and
L3 and task duration for other experiments. In general, GFlops,
L1, and L2 misses have a strong positive correlation with task
duration. The L3 cache misses explain less of the variability
for well-behaved tasks. However, in the cases where a mixture
model seems more appropriate, it is the opposite: GFlop, L1,
and L2 misses fail to be a good explanatory variable while the
L3 total cache misses is a better explanatory variable.

Table 4 presents evidence of the enormous difference be-
tween the sequential and the parallel total time per task for the
flower_8_4 input matrix. In the sequential version, tasks have
no interference from other concurrent tasks, allowing us to cap-
ture their expected behavior. We observe that the parallel geqrt
tasks is 3.37× slower than the sequential case. The worst-case
is the do_subtree tasks, 12.8× slower. The slow do_subtree

Figure 8: Using finite mixture models to fit multiple models over the data.
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Figure 9: Anomalous do_subtree, geqrt and tpqrt tasks (marked as slow)
when carrying the factorization of the flower_8_4 (top) and karted (bottom)
matrices using all available workers (top row, parallel); Factorization of the
flower_8_4 and karted matrices when restricting the do_subtree tasks to
run only in three CPU resources (bottom row, throttling). Despite the presence
of remaining anomalous tasks when throttling, this execution is faster than that
of all resources available for all tasks, as shown in the top row.

tasks share the same explanation as for the geqrt and tpqrt
tasks since the do_subtrees have the same kernels. These re-
sults confirm the locality efficiency problem [17].

Table 4: Task time of flower_8_4 factorization in the Draco Machine.

Task Type Total time Total time Total time
sequential parallel throttling

do_subtree 3.89s 49.98s (12.8×) 13.09s (3.36×)

geqrt 4.41s 14.87s (3.37×) 13.86s (3.14×)

tpqrt 11.39s 15.53s (1.36×) 16.81s (1.48×)

gemqrt 26.88s 32.48s (1.21×) 33.02s (1.23×)

tpmqrt 152.21s 171.88s (1.13×) 173.09s (1.14×)

block_copy 1.40s 1.85s (1.32×) 1.83s (1.3×)

A careful observation of the Figure 9 (top row) indicates
that slow tasks concentrate in regions where there are many
do_subtree and other simultaneous geqrt tasks, which sug-
gests they affect cache reuse in two ways: (1) do_subtree use
a significant amount of memory without much reuse as the other
2D tasks do, and (2), geqrt tasks are executed spatially far
from each other. They are either the starting factorization task
of a tree node or its trailing submatrix which does not not share
matrix blocks with other geqrt tasks. Such characteristic can
be the case for the tpqrt tasks too, which traverses the matrix

row by row.
To alleviate this locality efficiency problem, we execute the

application by limiting the execution of do_subtree tasks to
only three CPU cores. The bottom row of Figure 9 depicts the
resulting behavior once again for the flower-8-4 matrix. To
illustrate how this strategy works for other inputs, we show in
the bottom of Figure 9 the same situation for the karted input
matrix. The first three CPUs run all do_subtree tasks while
all cores are responsible to execute remaining task types. By re-
stricting the execution of these memory-bound tasks, we limit
the available parallelism, which creates idle time in the begin-
ning but we also reduce the makespan from 18.5s to 17s (≈8%
reduction) for flower-8-4 and from 2.3s to 1.8s (≈22%) for
karted. Specifically for the flower-8-4 input, Table 4 pro-
vides, in the throttling column, the total time to compute all
tasks of a given type. In this scenario, throttling improves the
efficiency of do_subtree tasks making it closer to the sequen-
tial total time (without any interference), which improves per-
formance overall.

5. Visualizing how the Multifrontal Factorization Unfolds

As explained in Section 2.1, sparse solvers based on the mul-
tifrontal method rely on an elimination tree structure. In this
section, we first provide a set of visualization panels related to
this multifrontal structure to depict application behavior along
time. They include panels that show the tree structure enriched
with application computation, the aggregated resource utiliza-
tion by tree node and tree depth, and memory utilization along
time. The combination of these panels allows to perceive cor-
relations since they are temporally synchronized.

We start by explaining these different panels in details in Sec-
tion 5.1 and then we present three scenarios that showcase how
these panels can be used in practice for the performance analy-
sis of QR_mumps. These panels enable us to carry out interesting
comparisons that are frequently questioned during the evalua-
tion of a sparse task-based solver, such as the effect of memory
limitation, and the adoption of different runtime schedulers.

5.1. Visualization Panels inspired by the Elimination Tree

Main Panel: Elimination Tree Visualization
The Elimination Tree panel provides us a macroscopic view

of the execution guided by the tree structure, as defined by the
experiment’s ordering algorithm and the fronts’ submission or-
der. Figure 10 details the data transformations to obtain the
final visual design. We start with the graph of the elimination
tree as given by QR_mumps application (A). We then position
the elimination tree nodes in the vertical axis according to their
submission order, and prepare the positioning of all events (e.g.,
memory allocation/deallocation) of each node in the time axis
(horizontally) (B), and finally enrich such a view with several
elements from the traces such as main events and resource us-
age (C) and which we detail hereafter.

Figure 11.(A) depicts a representative example of the elim-
ination tree panel, showing for how long the elimination tree
nodes (listed in the Y-axis according to their submission order)
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Figure 10: From the Elimination Tree graph generated by QR_mumps to our elimination tree visualization: an intermediary step rotates the graph and lists nodes by
their submission order (in the vertical axis) and time (horizontal) prior to the enrichment in our view.

exist along time (the X-axis). This representation has two main
elements: the nodes of the tree and their parent-child connec-
tion. Each node of the tree occupies a horizontal coordinate in
the panel. A line for each node starts with the first memory al-
location task (represented by a green rectangle) and ends with
the task that releases the node memory. The lifetime purely
indicates memory footprint, not meaning that there are compu-
tations over this node this whole time. Green and orange arrows
indicate the parent-child connection. The green arrows depart
from the beginning of a node’s line and points to its parent.
The same happens for orange arrows but considering the end
of a node’s line. To represent computations over the structure,
and considering that many resources compute tasks of a given
elimination tree node, we employ the color gradient to repre-
sent the computational load intensity (based only on factoriza-
tion tasks) as a percentage of the total number of computing
resources. For example, nodes 34 and 35 share resources be-
tween 2s and 2.8s (yellow color), but then, the scheduler drives
resources to compute tasks of node 35, as we can see by the red
color from 2.8s until 3.2s. This color gradient representation
suffers temporal aggregation in user-configurable time intervals
(100ms in this case) because there may be too many events per
node. We can alternatively represent other performance met-
rics, like the instantaneous GFlops throughput. For simplifica-
tion, we group the sequential nodes pruned by the application
by their common parent, reusing its Y position, and spatially
aggregating their computations because they generally are nu-
merous. Pruned nodes also share the same color gradient that
represents compute intensity used for intermediary tree nodes.
Thus, to differentiate them, we use half of the height of the non-
pruned nodes for their representation.

Furthermore, we can represent other aspects of the applica-
tion in this tree plot, like the communication tasks between par-
ent and child nodes and the anomalous tasks’ location. The
black rectangles (inset within each tree node line) in Fig-
ure 11.(A) represent the tree’s communication, which comes
from the assembly of the contribution block of a child in its par-
ent front (such situations are not very frequent in this example
but can be more clearly seen in Figure 13 for example). We use
the raw communication tasks duration to represent them with

transparency to know when we have a higher concentration of
these tasks, which also has half of the height of its node rep-
resentation to avoid a complete overlap in the plot. Lastly, the
elimination tree plot uses dots inside the node’s computation
marker to depict the anomalous task space/time location in the
tree, with the same color used in the Gantt to identify their type.

By evidencing where are the computations, initializations,
communications, and anomalies, our elimination tree panel
shows precisely how the scheduler traverses the tree, includ-
ing the prioritized or postponed paths or nodes. This panel also
depicts the three levels of parallelism: the tree parallelism when
representing concurrent nodes in different Y positions, the node
parallelism with the color gradient, and the interlevel paral-
lelism by depicting overlapping computations between parent
and child nodes. We can use this complete elimination tree
view, allied to all the other plots, to identify specific applica-
tion moments and have a clear view of its behavior. Also, one
can promptly see if the tree is tall, short, thin, or wide. The
tree structure impacts the number of available tasks, memory
consumption, and how the scheduler traverses the tree to pro-
vide enough parallelism, serving as a general signature of how
scheduling decisions evolve during the execution.

Auxiliary Panels: Node and Depth Resource Usage
The elimination tree panel is handy to indicate details of how

the multifrontal method evolves, but it lacks an aggregated view
of computational power. In this sense, two additional panels
provide a more succinct view of how much computing power is
dedicated to processing each elimination tree node. The panel
of Figure 11.(B) indicates the tree node parallelism, that is, the
cumulative resource utilization of the computational tasks asso-
ciated with each elimination tree node (colors) as a function of
time. Alternatively, the panel of Figure 11.(C) provides an op-
tion to fill colors of the same plot using the tree node depth (the
tree distance from the root node), illustrating how the sched-
uler traversed the tree concerning this depth property. The node
panel colors purely differentiate one tree node from another, not
identifying each node individually. So the node panel reuses
colors to represent nodes without overlapping task executions.
However, for the depth panel, the color scale has a meaning
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Figure 11: Overview of visualization panels tailored for the elimination tree, using the e18 matrix on Hype as an example. The elimination tree panel (A) shows the
tree structure and the computational signature along time. Panels (B) and (C) depict the resource utilization by the computational tasks highlighting the usage per
tree node and tree depth. For every time interval, the colors indicate an elimination tree node (B) and the depth of the tree (C). Panels (D) and (E) show the number
of parallel and sequential active nodes in memory, and the memory used by these nodes. For reference, we also depict Panel (F), a classical Gantt chart.

that represents the distance from the root, represented with a
darker color. For both panels, we temporally aggregate the time
spent in computational tasks in user-configurable intervals to
define the resource usage of a given elimination tree node or
depth (100ms in this case). When combined with elimination
tree visualization (see Figure 11.(A) for an example), this plot’s
specific shape can be considered a signature of the scheduler
regarding other application properties like task priorities, mem-
ory availability. We can see, for instance, how computing power
tackles the parallelism of the tree structure.

Auxiliary Panels: Active Nodes and Memory Usage
Tree traversal may significantly impact memory consump-

tion, and reversely, any memory restriction can significantly im-
pact tree traversal. Therefore, the visualization of the available
parallelism and tree traversal is relevant to the analysis.

In the multifrontal method, the child nodes need to merge
their contribution blocks to their parent node. This dependency
implies that all nodes involved in this operation must be present
on memory at that moment. Because memory is a finite re-
source, such applications can easily consume a large portion of
the available memory. Panels (D) and (E) of Figure 11 provide

a summary to understand better how the number of in-memory
active nodes and current memory usage evolves through execu-
tion time. Since QR_mumps can work with memory usage con-
straints to keep memory usage under control, these panels help
understand how the application handles memory-related issues
in scenarios with a memory constraint. The two lines in the
in-memory active nodes panel indicate whether nodes are se-
quential (pruned by the application) or parallel tree nodes. De-
pending on the tree traversal, it is normal that sequential nodes
only exist at the beginning of the execution because they are the
leaves of the tree. That is the case shown in Figure 11.(D).

5.2. Case 1: The Influence of the Memory Limitation

For all experiments so far, we have noticed that, except in
cases where the memory peak threshold is particularly limiting,
the QR_mumps application can keep the performance very simi-
lar to cases without memory usage restrictions and even provide
better results sometimes. This effect has been discussed by [21],
but now, we can observe the interplay between the memory lim-
itations and the elimination tree exploration by the scheduler.
Figures 11 and 12 show two different executions with the factor-
ization of the e18 matrix using the Metis reordering in the Hype
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Figure 12: Tree-related plots and the Gantt chart for an execution of matrix e18 in Hype machine.

Machine. The only difference between them is that the former
depicts a case without memory limitation (the peak is 3GBytes),
while the latter depicts the execution when limiting the memory
to the sequential peak (≈1.4GBytes). The makespan compari-
son between the unlimited (Figure 11) and limited (Figure 12)
executions indicates that the latter is insignificantly degraded
but their internal structures are very different. Without limit, we
observe in Figure 11 that the entire tree is allocated early in the
execution. When limiting memory usage, memory allocations
are delayed until the last moments of the factorization (see Fig-
ure 12). This exploration impacts the available tree-parallelism.
In Figure 12.(B), we observe that around 1.5 secs of execution,
half of the tree intermediary nodes were not touched yet by the
execution with memory constraint, while the unlimited case has
started and even finished computing many other nodes.

We can see in Figure 12 (A.1) that in the beginning of the
execution, tree-level parallelism is available, as shown by the
many colors that appear in the resource usage per node plot.
The bottom part of the tree is composed of many small nodes,
indicating a tree that is sufficiently wide to provide enough par-
allel work to application workers. Furthermore, in (A.2), we

observe that the vast majority of the nodes active in memory
are pruned nodes, which is also presented by the number of
do_subtree tasks in (A.3). The (B) and (C) areas point out
to multiple delays in node allocation imposed by the mem-
ory constraint parameter. For example, we can see how the
freeing of the node pointed in (B.1) allows the allocation of
many other nodes. The amount of memory initialization tasks
(init_front and init_block) reduces the compute resource
utilization as shown in (B.2). The memory usage plot in (B.3)
depicts exactly when the memory becomes available. Because
the newly allocated node would use much memory, it had to
wait for some other node to free the needed memory. All these
memory initialization tasks can also be seen in the Gantt chart
in (B.4, yellow color) but would be hard to interpret without
the tree view. A similar case appear in the (C) area, where the
set of nodes (C.1) get delayed because the execution has al-
ready reached the memory limit (C.3). We confirm that most of
the nodes are the leaves of the tree (C.2), as also shown by the
do_subtree tasks in green (C.4). In the last scenario (D), in
(D.1) and (D.2), we can observe how the application can over-
lap computations between the last three dependent nodes of the
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Figure 13: Comparing prio (top, with the elimination tree and gantt-chart) and lws (bottom) schedulers for the degme matrix in the Tupi Machine.

tree. This is possible thanks to the finer-grained tree partition-
ing using a DAG structure as already discussed in Section 2.1.

Interestingly, the memory restriction distributes the execu-
tion of memory-bound operations (such as do_subtree tasks)
throughout the execution, which generally improves the locality
efficiency and could have provided a similar effect as when us-
ing a small number of cores dedicated to memory-bound tasks,
as previously discussed in Section 4.5. Unfortunately, delaying
subtree initialization (the yellow areas) seems to significantly
impact tpmqrt tasks (as indicated by the many outliers simul-
taneous). Relaxing a bit the memory constraint could allow to
spread a bit more these initialization tasks throughout the exe-
cution and to limit their influence on the other tasks.

5.3. Case 2: Identifying Task Priority Issues

The elimination tree panel can be used to compare different
schedulers’ behavior while traversing the tree for diverse hard-
ware and software configurations. In Figure 13, we compare
the performance of two StarPU schedulers: the locality-aware
work stealing (lws) against the heteroprio (prio). Other con-
figurations remains fixed: the same degme matrix as input using

the Metis ordering without memory limitation in the Tupi Ma-
chine using only CPUs. We can observe that the makespan is
lower for the lws scheduler and the bad scheduling decisions
of prio are clear from the Gantt-charts although the reason
why such decisions are taken is not really clear. As shown in
(A), it seems that prio focuses computations on one node at a
time because QR_mumps assigns increasing priorities according
to the tree node submission order and that the prio scheduler
has a single central ready task queue which sorts all tasks ac-
cording to the basic tree node priority. Another prio behavior
appears in (B), where there seems to be a clear communication
pattern. Indeed the block_copy and init_* tasks are consis-
tently scheduled after the final tasks of a tree node as they have
a lower priority, delaying the child and parent communications.

While restricting computations to one or a few tree nodes
at a time may improve spatial data locality, the restriction in
communication reduces the availability of the tree and inter-
level parallelism compared to what is achieved by lws which
efficiently exploits the interlevel parallelism computation of the
last elimination tree nodes in the area highlighted by (C), and
the tree parallelism in (D). The lws scheduler explores more
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tree parallelism and interlevel parallelism, making node com-
putations last longer, which in this specific case is beneficial
because the lack of tree parallelism at the end of the appli-
cation is compensated by the interlevel parallelism and gives
lws a clear advantage over the prio scheduler. This case
provides an excellent example of how the exploitation of the
application data structures with the performance visualization
shows clearly what is happening and can help developers de-
vise smarter scheduling strategies.

5.4. Case 3: Resource Usage of two Runtime Schedulers
We compare the dmda and heteroprio schedulers using

as input the TF17 matrix reordered with Scotch, in a scenario
with memory limitation in the Hype Machine. Figure 14 de-
picts such a comparison between heteroprio (top panels) and
dmda (bottom) with the elimination tree panel, workers, and
ready tasks panels. The Gantt charts allow to readily observe
that the makespan of the dmda is ≈8.5% smaller than that of
heteroprio and suggest that the main flaws of heteroprio
happened in (B.2) and (C.2) where many resources are idling.
Yet, the reason behind this behavior remains unclear and one
may wonder whether dmda can be improved further or not.

The panel on the bottom of the Figure depict the GFlops
throughput difference between the two schedulers, with the red
(resp. blue) color highlighting when heteroprio (resp. dmda)
scheduler has completed more flops. Although heteroprio
has a slightly better start than dmda, as shown with the red
line in the left part of the rectangle (A), the advantage quickly
changes in favor of dmda, slowly and constantly increasing
the difference over time until the moment where heteroprio
leaves many idle resources, which leads to an even steeper in-
crease in the difference for dmda. Since in the first 13 seconds
both schedulers have many available tasks and seem to explore
the tree roughly in the same way, the only reason why dmda
would go faster than heteroprio is that it makes a better use
of available resources. If we first focus on the [2s-5s] time in-
terval where both schedulers seem to keep all resources very
busy, it turns out that heteroprio leaves the CPU idle 2.57%
of the time (compared to 0.3% for dmda) and the GPU idle 9%
of the time (compared to 1.2% for dmda). This is likely to be
explained by the fact that heteroprio does not account well
for transfer times between the CPUs and GPU. Given the speed
difference between the GPU and the CPUs, this resource usage
difference explains most of the throughput difference between
heteroprio and dmda but there is also a more subtle reason.

Although heteroprio tries to put the tasks which are the
better accelerated on the GPUs, it seems to have difficulties
handling the variety of small and large tasks. Similarly to what
was proposed by [11] in the dense case and using our perfor-
mance model for all kernel types, we can write linear program
to compute the optimal allocation of tasks to CPUs and GPUs
when ignoring all dependencies. This absolute lower bound is
depicted with a vertical line Area Bound Estimation (ABE) in
the Gantt chart and allows to see that dmda is quite close to
the optimal and is mostly limited by the lack of parallelism at
the very end of the execution. More interestingly, since the lin-
ear program provides an estimation of the amount of tasks of

each type that should be run on each resource, it can be com-
pared with the actual allocation for both schedulers (rightmost
panel) for the main task types: gemqrt (in blue in the Gantt
chart) and tpmqrt (in brown in the Gantt chart), distinguish-
ing between small and large tasks. In the ideal allocation, only
the costlier tmpqrt tasks (with ≈3GFlops) should be allocated
on GPU resources. The small ones, which are not as well ac-
celerated should rather be executed on the CPUs. Overall, the
heteroprio scheduler does not take into account data local-
ity, uses a very naive cost model and disregards the theoret-
ical GFlops cost of every task, thereby using GPUs even for
tasks with a very low GFlop count for which CPUs are more
suited. The dmda scheduler, on the other hand, is equipped
with our performance model and better differentiates the situ-
ations where CPU contribution is interesting. This is all the
more important for large tasks tpmqrt tasks which represent
the majority of the work. A similar interpretation works for the
gemqrt tasks as well: when dependencies are ignored, no tasks
of this type should ideally be run on the GPUs. However, this
deviation is harmless for dmda as gemqrt (in blue) run on the
GPU only in the very beginning of the execution, when it helps
releasing tasks. Overall, this finer analysis also explains why
dmda manages to move faster along the tree than heteroprio
although it is not directly visible from the Gantt charts.

We can also observe very visible differences at the end, when
both runs are working on the last elimination tree nodes (74
and 75). As shown by the C.1 and C.2 annotations, the slope
of the idle time in the end is much steeper for dmda, indicat-
ing again that it seems to make a better usage of resources than
heteroprio. The Figure also highlights a segment of the crit-
ical path for the last tpmqrt task in both cases (The tasks with
a red border in the end). The critical path in heteroprio oc-
curs mainly on the CPU, where it schedules almost exclusively
tpqrt tasks (in pink). Conversely, dmda manages to accelerate
its critical path by placing more such tasks on the GPU.

Coming back to the more obvious idling situation of
heteroprio in B.2, one can notice that it corresponds to a sit-
uation where there are relatively few ready tasks as only one
node of the elimination tree (74) is active. Yet, a closer in-
spection to the Ready Tasks panel reveals that there are way
enough tasks to keep all CPUs busy in the beginning and that
task shortage only occurs in the end of B.2 (red rectangles in-
dicate whenever there are fewer tasks than the total number of
workers). It means that heteroprio deliberately leaves CPU
idle, which happens again because it uses a naive cost model
and globally considers that CPU are 25× slower than GPUs.

It is interesting to note, by looking for the corresponding part
of the tree, that a similar situation occurs in B.1 for dmda al-
though it is way less visible. This lack of ready tasks perfectly
correlates with the beginning of a new elimination tree node
(75) and to the end of two children nodes (33 and 54). Even
though three nodes are active at the same time, a close inspec-
tion of the GFlops Throughput for these nodes allows to notice
that the throughput is low (blue) for the children nodes while
the throughput is moderate (yellow) for the father. It is very
likely that the two subtrees have a sequence of tasks in the end
on which most tasks of the father node depend, hence a poor
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Figure 14: Left: a comparison of the application behavior when using the heteroprio (top, with the elimination tree, Gantt chart and ready tasks) and dmda
(middle) schedulers, with the GFlops difference between them (bottom); Right: GFlops histograms per resource type (CPU and CUDA) for two task types (gemqrt
and tpmqrt) for the heteroprio (top) and dmda (bottom) schedulers, including the ABE target as points and arrow pointing to them (to indicate departure from
such an ideal case).

pipelining along the tree at this very particular moment. There
is a priori not much the scheduler can do to alleviate this lack
of parallelism in the DAG which acts as a loose synchroniza-
tion point and would be particularly harmful if we had more
or faster computing resources. The fine-grain dependencies be-
tween nodes originate from the inner row/column ordering of
the fronts, which is computed independently for each node so
as to minimize the amount of flops they will incur (Figure 2).
By imposing an ordering for the children closer to the one of
the father nodes, a better pipeline of nodes would be possible
although it would come at the cost of more work.

The comparison illustrated in Figure 14 demonstrates the
usefulness of the elimination tree panel to understand the un-
folding of such complex applications and potential performance
issues. Although it does not play much role in this particular
scenario, it is for example visible that we are dealing with mem-
ory limitation scenarios. Indeed, in both cases, there is a green
arrow standing out from the others and pointing from the begin-
ning of node 33 to the beginning of node 75 and the memory
allocation of node 75 is delayed after the completion of node 54.

It would be tempting to believe that the completion of nodes 33
and 54 explain most of the performance (e.g., the sooner the
completion of nodes 33 and 54, the sooner the completion of
nodes 74 and 75, hence the smaller the makespan). Yet, when
comparing many executions (both for dmda and heteroprio),
although the makespan is very stable (less than 1% of variabil-
ity) and the Gantt charts all appear to be very similar, the com-
pletion of nodes 33 and 54 is very variable from an execution
to an other: sometimes node 33 ends way earlier than node 54,
sometimes it is the other way around, and sometimes, they both
complete quite late (at around 15 seconds). In some executions
the scheduler focuses mostly on one node before working on
the other, and sometimes, it alternates between both. This vari-
ability in the tree traversal comes from the fact that although
QR_mumps assigns increasing priorities to tasks according to the
tree node submission order, these priorities are ignored by dmda
and heteroprio: the scheduling is mostly driven by the order
in which tasks become ready.
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6. Conclusion

This work presents two techniques to better analyze the per-
formance of an irregular application by exploiting its structure.
Our intent is to propose a method to identify problems arising in
complex scenarios. Our contributions include (1) the modeling
of irregular computation kernels to identify tasks with abnor-
mal duration, and (2) to go beyond the Gantt chart by lever-
aging the global structure of the application (in the QR_mumps
case, driven by the elimination tree). The anomalous task de-
tection mechanism for irregular tasks proves its usefulness to
identify performance issues in many levels of the runtime sys-
tem while the representation of the elimination tree from the
multifrontal method provides a deep understanding of how the
application unfolds. We identify perturbations whose origin is
as diverse as the task submission thread (Section 4.2), tracing
overhead (Section 4.3), numerical instability (Section 4.4) and
cache contention (Section 4.5). For all cases, we provide a fix
or an alternate solution. We also demonstrate that our elimi-
nation tree view is paramount to better understand the very so-
phisticated interplay between the application structure and the
runtime scheduler. We illustrate its effectiveness in three case
studies where we compare two executions and explain why they
lead to similar or different performance. In particular, we in-
vestigate the influence of memory limitation (Section 5.2), of
task priorities (Section 5.3), and of task repartition between the
CPUs and the GPU (Section 5.4). With an analysis solely based
on a traditional Gantt chart, none of these situations would be
intelligible. The new resulting performance visualization pan-
els and techniques have been added to the StarVZ tool.

Although we illustrate our proposal with QR_mumps, the in-
formation we rely on (flop estimation of dense kernels and the
elimination tree) can easily be obtained for any other imple-
mentation of the multifrontal methods such as the Cholesky and
LU factorization of PaStiX. Other methods like Fast Multipole
Method (FMM) [19, 13] are also composed by irregular tasks
whose execution is organized around a tree structure and are
thus likely to exhibit similar issues as the ones we found with
QR_mumps and benefit from the techniques presented herein.

As future work, we expect to investigate our method in multi-
node plataforms. Also, there are some opportunities to develop
panels to relate tree computation to NUMA nodes and PAPI
hardware counters. Finally, since scheduling decisions are nat-
urally stochastic, a more challenging path is how the internal
structure of the application (in the QR_mumps and for multi-
frontal methods in general, the elimination tree) could be lever-
aged to compare not just two traces but two sets of executions.
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