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Through the Prediction of Probing Rates
Mehdi Zakroum, Member, IEEE, Jérôme François, Member, IEEE,

Isabelle Chrisment, and Mounir Ghogho, Fellow, IEEE

Abstract—Network reconnaissance is the first step preceding
a cyber-attack. Hence, monitoring the probing activities is im-
perative to help security practitioners enhancing their awareness
about Internet’s large-scale events or peculiar events targeting
their network. In this paper, we present a framework for
an improved and efficient monitoring of the probing activi-
ties targeting network telescopes. Particularly, we model the
probing rates which are a good indicator for measuring the
cyber-security risk targeting network services. The approach
consists of first inferring groups of network ports sharing similar
probing characteristics through a new affinity metric capturing
both temporal and semantic similarities between ports. Then,
sequences of probing rates targeting similar ports are used as
inputs to stacked Long Short-Term Memory (LSTM) neural
networks to predict probing rates 1 hour and 1 day in advance.
Finally, we describe two monitoring indicators that use the
prediction models to infer anomalous probing traffic and to
raise early threat warnings. We show that LSTM networks
can accurately predict probing rates, outperforming the non-
stationary autoregressive model, and we demonstrate that the
monitoring indicators are efficient in assessing the cyber-security
risk related to vulnerability disclosure.

Index Terms—network monitoring and measurements, net-
work telescope, threat monitoring, security management, security
situational awareness, artificial intelligence, machine learning,
deep learning, unsupervised learning.

I. INTRODUCTION

Nowadays, cyber-security is a major concern. According to
[1], 68% of business leaders reported that cyber-security risks
have increased. In 2020, the global total cost of data breaches
is estimated to $3.86 million and it takes an average of 280
days to detect and contain a data breach [2]. Also, Cisco
reported that the total number of DDoS attacks worldwide
will reach 15.4 million attacks by 2023 [3]. To fine-tune
their attacks, cyber-attackers conduct network reconnaissance
through probing campaigns in their endeavor of discovering
vulnerable services and security gaps through which they
can infiltrate. Thus, monitoring the probing activities could
help to detect an ongoing attack or to gain insight about
imminent cyber threats. Network telescopes [4], also known as
darknets or black holes, can serve this purpose. They consist
of ranges of unassigned IP addresses that have never been
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declared to be hosting services. Hence, the traffic passively
captured by a network telescope is suspect by nature and
requires further analysis. This traffic is usually part of large-
scale events happening on the Internet such as massive scan
campaigns or back-scatter packets caught as a side-effect
of spoofed denial-of-service attacks [5] [6] [7]. The darknet
traffic may also include probing activities targeting specifically
the organization owning the range of IP addresses used in
the darknet. Therefore, monitoring such traffic is valuable to
assess the attractiveness of network services from the attacker
perspective [8].

In this research work, we present a complete framework to
monitor the probing activities collected by network telescopes
and to infer abnormal traffic targeting network services. This
is done through the modeling of the probing rates - i.e. the
number of received packets by the darknet targeting a network
service during a period of time. First, this can be used to
forecast the probing activity and pro-actively configure or
reconfigure security functions, for example by rate-limiting
given ports or deploying service-specific middleboxes. Second,
wrong predictions can be a sign of a drastic change in the
probing activity due to a new emerging threat, which in that
case requires manual investigations by security experts. Most
of the work in the literature focuses the attention on analyzing
the relationship between the probing activities recorded by
network telescopes and specific cyber incidents such as worms
and vulnerabilities [9] [10] [11], or specific devices like IoTs
[12] [13]. In contrast, our generic framework monitors the
cyber-security risk related to network services by considering
the historical observations of the darknet.

Hence, the goal of this research work is to answer the
following questions:

Q1. How to model the probing traffic at the service level?
Q2. Are the probing rates predictable?
Q3. How to leverage the probing rates predictions to infer

anomalous traffic targeting specific network services?
Q4. To which extent there is a relationship between probing

activities and vulnerability disclosures?

Modeling the probing rates is in fact a challenging problem
because of the diversity of the traffic captured by a network
telescope, as for example misconfiguration packets, backscat-
ter packets related to DoS attacks, worms and vulnerability
probes. These different kinds of events are difficult to predict,
and this is manifested in the probing rates’ time series which
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exhibit non-stationarity in terms of the trend and the variance.
Our contributions and findings are as follows:
1) We design a novel affinity metric to capture temporal and

semantic relationships between TCP/UDP ports based on
the historical records of the probing traffic. Details are
in Section V.

2) We define a method to model and predict the prob-
ing rates targeting the different network services. Our
method uses stacked LSTM neural networks and relies
on port affinities to infer the feature space of these pre-
dictive models through port clustering and port ranking.
This answers question Q1 and details are in Section VI.

3) The performance of the prediction models are evaluated
on the most targeted services using more than 300 days
of probing traffic (more than 1.5 TB of data). We show
that the probing rates are predictable with an average
coefficient of determination R2 ranging between 0.70
and 0.83, surpassing for most of the network services
the performance of autoregressive-based models [14].
Also, we show that the information carried by the
semantic similarity between ports contributes in defining
an improved feature space which positively impacts
the performance of the prediction model. This answers
question Q2 and details about experimental evaluations
are in Section VIII-B.

4) Finally, to address questions Q3 and Q4, the predictive
model is leveraged to design two monitoring indica-
tors that track anomalous traffic at the service level.
We find that time series of the monitoring indicators
and the vulnerabilities show significant relationships for
different network services. To perform this evaluation,
we designed scoring metrics relying on Dynamic Time
Warping (DTW). More information is provided in Sec-
tions VII and VIII-C.

To the best of our knowledge, this research work is the first
to describe a complete framework with new metrics for the
real-time monitoring of large-scale probing activities.

The remainder of this paper is structured as follows. In the
next section, we review the related work. In Section III, we
describe the used data set. Section IV presents an overview of
the proposed approach. In Section V, we describe our method
for inferring the affinities between ports. Section VI presents
the architecture and the hyper-parameters of the predictive
models. In Section VII, we describe how the prediction models
could be used to infer anomalies in the probing traffic. The
evaluation is reported in Section VIII. Finally, we conclude
by the lessons learned, the limitations of this work and future
improvements.

II. RELATED WORK

In the area of situational awareness in cyber-security, many
studies leverage network telescope traffic to monitor large-
scale cyber-security incidents and to model, infer and forecast
cyber-threats. In [15], on a recent traffic captured by 3 typical
darknets, the authors confirmed a known fact that the size of
the darknet as well as the distribution of its IP blocks play a
salient role in reflecting and monitoring cyber-security events.

However, darknets are used to monitor only large-scale events
targeting the entire IP address space or a sufficiently wide
subset of it; they barely provide insight about localized scans
and attack vectors targeting specific networks. To overcome
the latter issue, authors in [8] used as a network telescope
a Content Distribution Network (CDN) distributed over more
than 13000 networks to monitor localized scanning activities.
Even though our framework leverage typical network tele-
scopes to monitor the darknet traffic, it could complementarily
be used to monitor the traffic comprising localized cyber-
attacks as long as the isolation of the probing activities from
legitimate traffic is possible, as shown in [8].

In [16], the authors studied the impact of vulnerabilities on
the volume of scans. They designed machine learning models
to predict the impact of vulnerabilities, and they show that,
by leveraging a set of features characterizing a vulnerability,
they can accurately predict whether or not it will imply an
increase in the volume of scans after its disclosure. However,
vulnerabilities’ descriptions and features are usually disclosed
after the release of security patches and their impact is not
always manifested by an increase in the probing rates. Instead
of considering vulnerabilities as a starting point, our approach
is rather to leverage the internal dynamics of the probing
activities to infer anomalous probing traffic that could be
related to external events, including vulnerabilities.

As for detecting anomalous traffic, in [6], the authors used
darknet data to infer orchestrated probing campaigns, and thus
to raise early warnings about imminent threats. Their approach
relies on the prediction of missing values in probing flow time
series extracted from the darknet traffic. They show that the
latter predictive model is able to infer packets belonging to
orchestrated probing events. In [17], to tackle the same issue,
the authors rely on reducing the dimensionality of the big
darknet data by using methods based on Fourier transforms
and Kalman filtering applied to probing time series. We
also exploit probing time series to reduce the dimensionality
of data, however, our approach uses unsupervised learning
techniques based on a new affinity metric measuring the
temporal and the semantic similarities between ports. Other
approaches of inferring anomalous traffic include the analysis
of the probing behaviors of network probes by modeling
their scanning activities using graphs [18], the clustering of
latent representations of the destination ports present in a
network flow [19], or detecting infected devices serving as
point of cyber-attacks (e.g. botnets) [20]. In this work, instead
of identifying anomalous traffic by analyzing the behavior of
the source of scans, we rather track the probing rates at the
service level at a larger scale. This allows us to measure the
cyber-security risk of emerging cyber-threats by monitoring
the evolution of the large-scale probing activities in time at
the service level.

To find the relationship between ports, the authors in [21]
designed a semantic similarity metric based on the behavioral
patterns of network probers expressed in the form of a
graph. However, an essential aspect in inferring the similarity
between ports is the measure of the temporal correlations
between network services at a higher granularity. In this paper,
the similarity between ports is inferred by leveraging both the
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TABLE I: Descriptive Statistics of the Traffic Captured by our Darknet

Designation Value
Total number of packets ≈ 80 billion
TCP & UDP distribution TCP: 94% / UDP: 5% / 1% Other
Avg. daily packet rate ≈ 60 million packets per day
Avg. daily unique source IP addr. ≈ 620000 IP addr. per day
Avg. daily darknet IP addr. hits 8192 IP addr. per day

temporal and the semantic aspects of the probing activities
targeting ports, resulting in the definition of an improved
feature space of the predictive models.

In relation with predictive models leveraging darknet traffic,
the authors in [14] used the vector autoregressive model to
predict the probing rates at the port level. Their approach for
training the model consists in adapting the learning process to
overcome the issue of the non-stationarity of the autoregressive
model’s parameters over time. To reduce the dimensionality of
the model’s feature space, the authors used recursive feature
elimination to select most correlated ports. Even though the
model produces good predictions, the autoregressive order, the
feature vector and the model parameters are all learned online
at each time step, which requires significant computational
resources. In contrast, we propose to use LSTM recurrent
neural networks, trained only once, with features initially
learned offline (using a pre-clustering), which considerably
reduces the computation complexity.

III. NETWORK TELESCOPE TRAFFIC DATA

A network telescope is a network sensor that consists of
ranges of IP addresses not replying to any incoming traffic.
These IP addresses are never declared to be hosting network
services. Thus, any recorded traffic is considered suspicious
and requires further analysis.

Our data set consists of network traffic collected by two /20
network telescopes (8192 IP addresses) hosted in France and
Japan. The captured traffic includes headers of the incoming
TCP and UDP packets, with no payload. For each packet,
the recorded information are the timestamp, the protocol, the
source and the destination IP addresses, the source and the
destination ports, and the flags in the case of TCP packets.
The probing activities were recorded for a period of 3.5 years
starting from January 2017. Table I summarizes descriptive
statistics of the data set.

Fig. 1 shows the time series of probing rates from January
2017 to September 2020. As shown, the captured traffic is
constantly increasing over time and its variance tends to
increase as well.

Fig. 2 shows the cumulative percentage of the received
traffic by number of ports. We observe that 95% of the traffic
has targeted 49172 ports and 50% of the traffic has targeted
only 1074 ports, whereas the remaining ports have received
negligible amount of probes. To reduce the computation com-
plexity, we consider in this study the 1074 most targeted ports.
In the remaining, D = {p1, p2, . . . , p1074} denotes the set of
the most targeted ports. It is worth mentioning that to evaluate
the predictive models, the probing traffic is split into two
subsets: 75% for the training set, and 25% for the testing set
which is approximately the last 300 days of traffic.
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Fig. 1: Network telescope traffic aggregated in 1 day bins recorded from
Jan. 2017 until Sept. 2020. The blue and the orange time series represent
the traffic recorded by the network telescopes deployed in France and Japan,
respectively. The green line is the sum of both and the red line is the moving
average of the latter sum using a time window of 30 days.
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Fig. 2: Traffic cumulative percentage by number of ports

IV. APPROACH OVERVIEW

Fig. 3 summarizes the approach to model and predict the
probing rates. In the following, we briefly describe each
component of the framework, and more details are provided
in the sections given in the Fig. 3’s annotations.

The input of the framework is the darknet traffic detailed
in Section III. From the latter, we infer the ports sharing
similar probing characteristics. This allows us to refine the
input of the predictive model by considering only ports having
semantically and temporally correlated probing activities. This
is done through the design of a new affinity metric that
captures two salient aspects of relationships between ports:

• The temporal probing similarities expressed as the cross-
correlations between the probing rates’ times series of the
ports. This allows us to infer ensembles of ports targeted
by synchronized probing activities.

• The semantic similarities extrapolated from the probing
activities of network probers that scan ports sequentially.
This reveals if some ports host the same type of service
(e.g. remote access services) or services often co-located
together (e.g. ssh, http and https) [21]. The effectiveness
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Fig. 3: Approach Overview of the Monitoring Framework.
The different components of the framework are annotated with the corresponding sections providing detailed explanations.

of the semantic similarity on the performance of the
predictive models is evaluated in Section VIII.

Next, to reduce the dimensionality of the model’s feature
space and to alleviate the noise introduced by non-informative
features, we leverage and evaluate two approaches:

1) port ranking in which ports are ranked based on their
affinity score with the target port (i.e. the port for which
the time series will be predicted) and the most correlated
ones are selected,

2) port clustering in which spectral clustering is used to
partition a large graph of ports weighted by the affinity
score.

These two approaches are detailed in Section V-D.
Finally, stacked LSTM neural networks are trained to pre-

dict the probing rates. The model takes as input the probing
activities history of the ports in affinity with the target port,
and outputs expected probing rates of the target port.

In the remainder, we present in details the components of
the darknet monitoring framework.

V. NETWORK PORT AFFINITIES

In this section, our goal is to find clusters of ports having
similar probing activities. Finding these groups of ports helps
reducing the dimensionality of the prediction models’ input
space, thus alleviating the noise introduced by uncorrelated
features. The rationale is that attackers usually perform an
orchestrated scan targeting several ports rather than a single
one. Thus, to predict the activity on a given port, it will be
more efficient to focus on these related ports rather than all
existing ports. Another application could be for instance to
dynamically adapt security functions of a set of semantically
similar ports after observing an abnormal traffic received by
any of them.

In order to measure the similarity between ports, we design
an affinity metric that captures two main aspects: the temporal
correlations between port probing rates’ time series and the
semantic relationship between ports.

A. Temporal Probing Similarity
To find the temporal correlations between ports, we use port

probing rates time series extracted from the traffic targeting the
entire darknet IP address space. To reduce the computation
complexity, we consider the probing rates’ time series of the
ports receiving 50% of the cumulative global traffic (cf. Fig. 2),
denoted by X = {X(pi)}pi∈D. Each record of X is a vector of
the number of packets received during the same time interval.
This time interval is user-defined, and in our experiments, we
consider time intervals of 1 hour and 1 day.

To measure the temporal probing similarity between two
ports pi and pj , we compute the correlations between their
probing rates’ time series X(pi) and X(pj), after introducing
lags l ∈ [−L,L]. Then, we consider the maximum correlation
in absolute value. The user-defined time interval [−L,L]
represents the amount of periodic patterns to be captured
in the correlation. For the 1-hour resolution time series, we
set L = 168 which corresponds to 1 week, and for 1-day
resolution time series, we chose L = 31 which corresponds to
1 month. Formally, the temporal probing similarity is defined
by:

Tl(pi, pj) = max
−L≤l≤L

|ρl(pi, pj)| ∈ [0, 1], (1)

where ρl(pi, pj) is the unbiased Pearson correlation coefficient
between the probing rates’ time series of the ports pi and pj
after introducing a lag l, defined by:

ρl(pi, pj) =
1

N − |l|

min(N,N+l)−1∑
k=max(0,l)

X
(pi)
k − µpi

σpi

·
X

(pj)

k−l − µpj

σpj

,

(2)
where N is the length of the time series, X(•)

k is the probing
rate at the kth time step, and µ• and σ• are respectively the
mean and the standard deviation of the time series X(•).

A value of Tl(pi, pj) close to 1 means that, in average,
the probing traffic received by the port pi is highly correlated
with the probing traffic received by the port pj before or after
a delay of l time steps.

B. Semantic Probing Similarity
One of the main purposes of ports is to conventionally

identify network services during a network transport session.
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The Internet Assigned Numbers Authority (IANA) designed a
registry of services and port numbers in which three categories
of ports are distinguished: System Ports assigned to the range
[0, 1023], User Ports assigned to the range [1024, 49151], and
the remaining range [49152, 65535] is reserved for Dynamic
Ports for private usage. Software and service providers usually
choose port numbers from the first two ranges as default
network gates to their deployed services.

To discover vulnerable services, network attackers generally
follow two probing approaches: (i) wide range port probing
which consists of scanning a large range of ports against
a database of vulnerabilities, or (ii) target-specific service
probing which consists of scanning a set of ports against one
or many predetermined vulnerabilities. However, many end-
users tend to use unconventional or alternative ports. This
motivates network attackers to scan ports following strategies
that take into consideration such alteration and obfuscation.
For instance, the end-user may deploy the FTP service in port
22 (the SSH port). A network prober aiming to attack the
insecure FTP service will first start the probing activity by
scanning the port 21. Not receiving a reply, the attacker may
assume that the FTP service (or its variant SFTP) is intention-
ally deployed by the victim in port 22 and subsequently scan
the port 22 as well. In such case, the corresponding traffic
initially intending to probe the FTP service is falsely recorded
by the darknet as an SSH traffic. Hence, if it happens to be
a common practice to scan ports 21 and 22, then they should
be in the same feature space of the prediction model. That is,
they should both contribute in the prediction of the probing
rate of the target network service.

To overcome such issues, similar approach as [21] is
adopted which consists of extracting and analyzing ports that
are scanned consecutively by network probers. Since there
are approximately 750 million source IP addresses (network
probers) in our data set, and to reduce the computation
complexity, we select randomly (uniformly) 5% of the IP
addresses from the pool of the source IP address that sent
at least two packets to at least two destination ports. Besides,
we only take into account the IP addresses having a probing
activity spanning in at most 24 hours, which is a large enough
DHCP lease time [22]. Two ports are considered semantically
similar if there is a significant amount of the IP addresses that
sequentially scanned these two ports.

Formally, we consider the following:

• {D1, D2, . . . , Dm}: the 24 hours traffic subsets of our
data set,

• A: the set of selected source IP addresses as explained
above,

• pi
ip←→ pj : the event representing an IP address ip having

sent a probing packet to port pi followed by a packet to
port pj , or vice-versa.

The semantic similarity between two ports pi and pj is defined
as the average number of IP addresses that scan the pair of
port numbers over time periods {Di}i∈[1,m]:

S(pi, pj) =
1

m

m∑
k=1

∑
ip∈A

s
(Dk)
ip (pi, pj), (3)

where

s
(Dk)
ip (pi, pj) =

{
1 if pi

ip←→ pj in probing traffic Dk

0 otherwise.
(4)

It is noteworthy that this metric is not bound to the interval
[0, 1] like the temporal similarity metric, and it depends on
the number of selected IP addresses. To align it with the scale
of the temporal probing similarity, we address the skewness
of large values by log-scaling them and then by applying a
min-max normalization:

Sl(pi, pj) = log(1 + S(pi, pj)) (5)

Ŝ(pi, pj) =
Sl(pi, pj)− min

pi,pj
Sl(pi, pj)

max
pi,pj
Sl(pi, pj)− min

pi,pj
Sl(pi, pj)

∈ [0, 1] (6)

A score Ŝ(pi, pj) close to 1 means that the port pi and pj are
highly semantically similar, i.e. they are consecutively scanned
by a significant amount of network probers.

C. Probing Affinity Metric

The affinity metric between two ports is defined as the
harmonic mean of the temporal and the semantic probing
similarities:

A(pi, pj) = 2 · T (pi, pj)× Ŝ(pi, pj)
T (pi, pj) + Ŝ(pi, pj)

(7)

In this case, the harmonic mean is preferred over the arithmetic
and the geometric means, because it penalizes port affinities
having either a low temporal or a low semantic similarity
score, and thus we consider affinities having both scores high.
This has the effect to reduce the noise for a better port ranking
and for an enhanced clustering separability.

D. Port Clustering and Ranking

To infer the feature space of the predictive model, we rely on
the defined affinity metric to find groups of similar ports using
two methods: (i) spectral clustering which constructs mutually
exclusive groups of ports, and (ii) port ranking which allows
the reuse of input ports for different target ports.

1) Spectral Clustering: The affinity matrix A ∈ R|D|×|D|
is the input of the clustering algorithm, where the elements
Aij = 1 − A(pi, pj) if i 6= j, and Aii = 0, pi and pj
being two ports belonging to the set of destination ports D.
This matrix is symmetric and represents an undirected graph.
Each vertex of this graph is a port belonging to D and an
edge exists between two ports pi and pj if Aij > 0, and
in such case, its weight is Aij . Therefore, partitioning the
latter graph allows us to identify clusters of ports sharing
similar probing characteristics. There exist many clustering
algorithms to perform graph partitioning. One of the most
robust algorithms is Spectral Clustering [23] widely used for
this type of tasks. An advantage of the spectral clustering
algorithm is that it does not make the strong assumption of
convexity on the form of the clusters. Also, the coordinates of
data points are not required; the distances between them are
sufficient to partition the graph.
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To determine the optimal number of clusters k (i.e. the
optimal graph cuts), we use the silhouette method. This metric
gives an insight about the quality of the clustering separation
by measuring how similar each data point is to its own
cluster comparing to those of the nearest neighboring cluster.
Formally, for a given port pi ∈ D belonging to a cluster Ch,
the silhouette score is defined as follows:

s(pi) =
b(pi)− a(pi)

max(b(pi), a(pi))
, (8)

where a is the average intra-cluster distance:

a(pi) =
1

|Ch| − 1

∑
pj∈Ch,pj 6=pi

A(pi, pj) (9)

and b is the average nearest-cluster distance:

b(pi) = min
l 6=h

1

|Cl|
∑
pj∈Cl

A(pi, pj). (10)

Then, the optimal number of clusters k is the one that
maximizes the average silhouette score:

k = argmax
2≤kn≤ |D|2

1

kn

∑
1≤h≤kn

 1

|Ch|
∑
pi∈Ch

s(pi)

 (11)

2) Port Ranking: As an alternative method for inferring the
feature space of the prediction model for a given target port,
we can simply consider the most similar ports, i.e. having the
affinity score higher than a threshold τ . We choose τ giving
the best coefficient of determination R2 score through cross-
validation by varying it between the mean and the maximum
affinity scores, with steps equal to the standard deviation.

Formally, using port ranking, the port feature space of a
given target port pi ∈ D is:

Cτ (pi) = {pj ∈ D|A(pi, pj) > τ}, (12)

and τ varies in:

{µA, µA + σA, µA + 2× σA, . . . ,max
pj∈D

A(pi, pj)},

where
µA =

1

|D| − 1

∑
pj∈D
pj 6=pi

A(pi, pj) (13)

and

σA =

√√√√√ 1

|D| − 1

∑
pj∈D
pj 6=pi

(A(pi, pj)− µA)2. (14)

VI. PREDICTION OF PORT PROBING RATES

Monitoring the trend of the probing rates could help detect
an ongoing stealth attack, or even predict an imminent threat.
For instance, during the /0 sipscan performed by a large botnet,
records of the UCSD network telescope showed a significant
increase of the probing rates targeting ports 5060 and 80,
during a period of 12 days, aiming to discover running SIP
servers [24].

forget gate Input gate Output gate

Fig. 4: LSTM Cell Architecture

Using the inferred clusters of ports sharing similar temporal
and semantic probing characteristics, the probing rates of a
target port can now be forecast by using the history of the
probing activities of its similar ports, i.e. high ranked ports or
ports belonging to the same cluster. This is carried by using
predictive models capable of handling multivariate sequential
data.

There exist an extensive collection of learning models for
this purpose. For instance, in [14], the authors designed the
non-stationary Vector Autoregressive (VAR) model to address
the issue of non-stationarity of the probing rates time series.
Even though the model showed satisfactory prediction results,
its performance degrades in the case of ports having second
order non-stationary probing time series such as 443 (https)
and 3306 (mysql). Moreover, the autoregressive models are
known for their flaw in capturing long-range dependencies
and non-linear patterns embedded in the sequential data. To
overcome these limitations, we used stacked Long Short-Term
Memory (LSTM) neural networks.

A. LSTM Recurrent Neural Networks
Recurrent neural networks (RNNs) [25] are learning models

used for processing sequential data. Their main characteristic
is their “memory”; they are composed of cells allowing output
values to be used as inputs while maintaining a state of what
has been learned so far. The architecture of most RNN cells
consist of three blocks of learnable parameters: (i) from the
input to the hidden state, (ii) a self-loop hidden state which
represents the memory, and (iii) from the hidden state to
the output. However, the major issue with RNNs in their
naive form is that, during the back-propagation of the errors
in the training process, the gradients of long term signals
become unstable (i.e. of smaller or larger magnitudes) and
tend to vanish or explode [26]. This is why gated RNNs were
introduced.

A widely used gated RNN cell that has proven performance
is the Long Short-Term Memory (LSTM) designed by Hochre-
iter and Schmidhuber [27] as a capstone of their research on
the unstable gradient problem. A LSTM cell, as illustrated in
Fig. 4, is composed of three gates: the input, the forget and
the output gates.

The flow of information throughout the LSTM cell is as
follows. At time step t, the cell state ct−1 holds the memory;
i.e. the information that has been learned so far, and the hidden
state ht−1 carry short-term information.

The forget gate takes as input the previous hidden state ht−1
and the vector of features xt that is part of the input sequence.
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Fig. 5: LSTM neural network architecture

Then, it produces a filtering vector ft through the sigmoid
function (σ(z) = 1

1+e−z ) which controls what information
stored in the cell state ct−1 is to be forgotten:

ft = σ(xt · Uf + ht−1 ·Wf + bf ). (15)

Similar to the forget gate, the input gate generates a filter it
which decides about information to be stored in the cell state:

it = σ(xt · Ui + ht−1 ·Wi + bi). (16)

The input data xt combined with the previous hidden state
ht−1 are squashed with the tanh activation function which
acts as a regularizer and whose derivative is resistant to long
range vanishing gradients.

gt = tanh(xt · Ug + ht−1 ·Wg + bg) (17)

The resultant candidate state gt which holds the new informa-
tion (aggregated from xt and ht−1) is passed through the input
filter it in order to decide what information is to be added to
the memory; the cell state ct:

ct = ftct−1 + itgt. (18)

The output gate controls which information stored in the
cell state memory is to be retained to generate output values,
and the hidden state is updated accordingly.

ot = σ(xt · Uo + ht−1 ·Wo + bo)

ht = ot tanh(ct)
(19)

It is to note that W•, U• and b• are the set of learnable
parameters during the training of the neural network.

B. Model Architecture

The stacked LSTM neural network used for modeling and
predicting the probing rates is illustrated in Fig. 5. The model
takes as input the probing rates’ sequences of the ports be-
longing to the same cluster (or highly ranked) and outputs the
probing rates’ predictions of the ports of interest. The probing
feature space is 3-dimensional (mini-batches of sequences of
probing rates) and the feature values are normalized to zero
mean and unit standard deviation.

Experimental studies strongly suggest to introduce depth by
decomposing RNNs into multiple layers [28], [29]. Therefore,
our architecture consists of 2 stacked LSTM layers having 256
and 128 LSTM cells, as depicted in Fig. 4. In our evaluation,
two LSTM layers were enough to achieve accurate results
while keeping the learning time limited. The LSTM layers
are followed by two fully connected blocks of sizes 128 and

96 hidden units. Each block starts with a batch normaliza-
tion layer which alleviates the problem of internal covariate
shift and allows the use of higher learning rates for faster
training [30]. The block also contains the ReLU activation
(ReLU(x) = max(0, x)) which reduces the likelihood of
vanishing gradients during training. The latter is followed
by dropout regularization which randomly sets a fraction
of hidden units to 0 to prevents overfitting by simulating
different network architectures (i.e. ensemble learning in a
single network architecture) [31]. The output layer returns
the probing rates’ predictions and its size corresponds to the
number of target ports. Finally, the hyperparameters related to
training the model are discussed in the evaluation section.

VII. APPLICATION: INFERRING PROBING TRAFFIC
ANOMALIES

Network telescopes carry anomalous traffic related to a wide
range of events like scans, worms, backscatter packets related
to DoS attacks. Yet, network telescopes may also capture
traffic whose intent is not detrimental, like packets related
to misconfiguration and scans performed by organizations for
statistical purposes. These types of background radiations are
in general regular and easily discernible by rule-based or
machine learning models. However, the risk of exploiting a
new vulnerability, for instance, is rather unpredictable and can
be considered as a traffic anomaly.

We consider a probing traffic targeting a network service as
anomalous when one of the following conditions is verified:
• The prediction error is high: this occurs for instance when

a probing pattern related to a new emerging threat is not
recognized by the model.

• There is an abrupt increase in the probing rates: this
happens when the forecast probing rate using the trained
model does not follow the normal trend of the preceding
probing rates.

These two conditions could be identified using the indicators
introduced in the following sections.

A. Probing Anomaly Inference Indicator

To infer probing anomalies, we introduce an indicator
relying on the model’s prediction error. This error might be
discerned when there is a significant disparity between (i) the
predicted probing rate and (ii) the actual probing rate that
may include irregular and malicious probes (e.g. DDoS attacks
and worms traffic). The rational is, assuming that our model
predicts accurately the probing rates, observing a significant
prediction error could be an indicator of an abnormal traffic
that has not been learned, and thus this error may represent
an imminent threat.

For a given port p at a time step t, we use the following
indicator:

E
(p)
t = max

0,
X

(p)
t − X̂(p)

t

X̂
(p)
t

 , (20)

where X̂
(p)
t is the predicted probing rate using the trained

model and X(p)
t is the probing rate recorded by the darknet.
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difference between the forecast probing rate using the trained model and the
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B. Early Warning Cyber Risk Indicator

To raise early cyber risk warnings, we use a monitoring
indicator relying on the performance of the prediction model to
accurately forecast future probing rates based on the dynamics
incorporated in the past and current probes recorded by the
darknet sensor. Thus, we consider the cyber risk high when
there is a significant difference between (i) the forecast probing
rate using our model and (ii) the probing rate produced using a
simple linear model capturing the trend of the previous probing
rates (fit in a preceding time window). Fig. 6 is an illustrative
example.

Formally, we define the early warning cyber risk indicator
for the network service related to a port p at time step t as
follows:

W
(p)
t = max

0,
X̂

(p)
t+1 − L

(p)
t+1

L
(p)
t+1

 , (21)

where X̂(p)
t+1 the predicted probing rate using our trained model

and L
(p)
t+1 the predicted probing rate using the linear model,

both one step ahead-of-time.
A high value of W (p)

t means that the prediction model may
have recognized a probing pattern in the port feature space and
accordingly had forecast a probing rate that is significantly
greater than the normal trend of probes, which could be an
indicator of an imminent threat.

VIII. RESULTS AND DISCUSSION

In this section, we report the results of port clustering, the
performance of the prediction models, and we evaluate the
performance of the monitoring indicators to infer anomalous
traffic. We used 5 computation servers, each equipped with two
Intel(R) Xeon(R) Silver 4114 CPU and 128 GB of RAM. Most
of the computation tasks were parallelized across the CPU
threads, and when possible, distributed across the computation
servers. Also, the deep learning models for predicting the
ports’ probing rates were trained in a computer with the same
latter configuration and equipped with 2 supplementary Nvidia
GeForce GTX 1080 Ti GPUs. With this configuration, the
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Fig. 8: Examples of port clusters. The text size is proportional to the number
of packets that hit the given port.

data cleaning and preprocessing took approximately 2 months,
and the training of the prediction models takes approximately
between 10 and 20 days per cluster of ports, depending on the
size of the cluster and the tuning of hyperparameters.

A. Port Clustering

For the clustering of ports, the number of clusters k giving
the best average silhouette score is selected from the range
[2, d |D|2 e]. Fig. 7 shows the silhouette scores for different time
resolutions of the temporal probing similarity. The optimal
number of clusters when using probing time series of 1 hour
(resp. 1 day) time resolution is 182 (resp. 102).

Fig. 8 illustrates some examples of identified clusters. Note
that the clusters in this figure does not include all of their ports,
only representative ports are shown. Many clusters actually
group ports that generally come as part of sequential scans like
the cluster {3330, 3335, 3336, 3337, 3338, . . . }. Other clusters
include only one port, however, these ports mostly belong to
the user-defined ports’ range of the IANA port categorization.

B. Prediction of Port Probing Rates

In the following, we evaluate and compare the performances
of the LSTM model presented in Section VI-B and the VAR
model described in [14], using different methods for defining
the models’ feature space that we denote: Rank. (T ), Rank.
(T &S), Clust. (T ) and Clust. (T &S). Table II presents short
descriptions of the evaluated models.

The experiments are conducted on a set of selected ports
among the 30 most targeted ports shown in Fig. 9. The probing
rates time series were split into two subsets: a training set
(75% of the data) and a testing set (the remaining 25%) which
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TABLE II: Description of the Predictive Models

Model Description

LSTM
Rank. (T )

The stacked LSTM neural network described
in Section VI-B. The feature space contains
probing time series of the most similar ports to
the target port (cf. V-D2) in terms of temporal
similarity only.

LSTM
Rank. (T &S)

The stacked LSTM neural network described
in Section VI-B. The feature space contains
probing time series of the most similar ports to
the target port (cf. V-D2) in terms of the tem-
poral and the semantic similarities (cf. V-C).

LSTM
Clust. (T )

The stacked LSTM neural network (cf. VI-B).
The feature space contains probing times series
of the ports belonging to the same cluster
of the target port (cf. V-D1). The clustering
is performed using as an affinity metric the
temporal similarity only.

LSTM
Clust. (T &S)

Same as above. The clustering is performed
using the affinity metric combining the tempo-
ral and the semantic similarities (cf. V-C).

VAR
Feature Selection

The non-stationary Vector Autoregressive
model as described in [14].

VAR
Rank. (T &S)

The Vector Autoregressive model. The feature
vector contains probing rates of ports inferred
using port ranking (cf. V-D2). Unlike the fea-
ture selection method, the feature vector is
fixed in the beginning and not learned online.

VAR
Clust. (T &S)

The Vector Autoregressive model. The feature
vector is inferred using port clustering (cf.
V-D1).
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corresponds to the last 300 days of network telescope records.
The training set has been used to optimize the models and to
find the optimal hyperparameters. The R2 scores in Tables IV
and V are reported on the testing set.

1) LSTM Model Hyperparameters: To find the optimal
hyperparameters reported in Table III, we perform a grid
search with a 7-fold cross-validation.

To train the LSTM model, we optimize the mean absolute
error MAE = 1

m

∑m
i=1 |yi − ŷi|, where m is the size of the

training batch, and yi and ŷi are respectively the observed
and the predicted values of the ith input probing sequence.
Different input sequence lengths are evaluated. For the models
trained using probing times series of 1 hour time resolution,
sequences of 72 values constantly give the best performance.

TABLE III: List of hyperparameters of the LSTM Model

Hyperparameter Values
Sequence length 24, 48, 72, 144 (1 hour time res.)

3, 7, 15 and 30 (1 day time res.)
Training epochs 700 with early stopping
Dropout rate 0.1, 0.3 and 0.5
Optimizer RMSProp and Adam
Learning rate 0.001, 0.01 and 0.1
Batch size 16, 32 and 64

We also noticed that the performance of the model tends
to decrease when choosing larger time steps. For 1 day
forecasting models, the sequence length of 30 days constantly
produces the best scores. For the number of training epochs, an
early stopping strategy was implemented. We found that the
early stopping callback was triggered between 300 and 500
epochs for most of the models, and that there was no need
to go beyond 700 epochs, as the model starts to overfit. As
for the remaining hyperparameters, namely the dropout rate,
the optimizer, the learning rate and the batch size, the optimal
values depend on the training data.

2) LSTM vs. VAR: As shown in Table IV (resp. Table V),
the LSTM Rank. (T & S) model outperforms the other LSTM
and VAR models for 7 (resp. 11) ports out of the 13 ports,
with a mean score R2 of 0.79 (resp. 0.83). This is likely due
to the memory property of the LSTM enabling the learning of
long range dependencies and complex repeated patterns. Also,
because of the non-linearities introduced in its architecture, the
LSTM is able to learn hidden patterns and non-linear mappings
between the probing rates history sequences and the target
probing rates.

However, there are few cases when the VAR shows better
results, for instance the telnet service for 1 hour resolution.
This is due to the low stochasticity of the variance in the cor-
responding time series. Knowing that the VAR does not require
a large autoregressive order [14], the trainable parameters are
few, leading the VAR to produce more stable predictions, in
contrast to the LSTM model which has a considerable amount
of trainable parameters that introduce a noise in the predicted
values.

Figures 10 and 11 show examples of the predicted probing
rates using the “LSTM Rank. (T & S)” model versus the
observed probing rates. We observe that the probing time
series are non-stationary in terms of first and second order
statistics with some extreme probing rate values. It is clear
that the LSTM tend to learn the trend of the time series more
than the variance. This is more visible when comparing for
instance the predictions for port 22 (ssh) 1 hour ahead-of-time
(Fig. 10) and 1 day ahead-of-time (Fig. 11); the aggregation of
the hourly probing rates into daily probing rates creates a trend
in the time series and reduces the local variances, thus leading
the LSTM to perform better for 1 day forecasts (R2 = 0.87).

Finally, it is noteworthy that the VAR model cannot rely
on a feature space defined by the port ranking and the port
clustering methods. The reason is that the feature space is fixed
during the training, unlike the feature selection method which
allows the model to learn features while training.

3) Port Ranking vs. Port Clustering: To define the feature
space of the predictive models, we used the port ranking and
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TABLE IV: R2 Scores of the Probing Rates Prediction Models (1 hour ahead-of-time forecasting). The best scores are in bold text.

LSTM
Rank. (T & S)

LSTM
Rank. (T )

VAR
Feature Selection

LSTM
Clust. (T )

LSTM
Clust. (T & S)

VAR
Rank. (T & S)

VAR
Clust. (T & S)

23 (telnet) 0.94 0.95 0.97 0.86 0.91 0.61 0.34
2323 (telnet alt.) 0.95 0.95 0.96 0.91 0.89 0.43 0.41
22 (ssh) 0.79 0.74 0.73 0.63 0.67 0.55 0.39
2222 (ssh alt.) 0.75 0.73 0.68 0.57 0.67 0.27 0.62
445 (microsoft-ds) 0.92 0.93 0.93 0.86 0.92 0.21 0.35
80 (http) 0.73 0.71 0.57 0.64 0.55 0.49 0.21
443 (https) 0.67 0.62 0.59 0.51 0.64 0.60 0.33
5060 (sip) 0.81 0.78 0.76 0.86 0.92 0.49 0.53
5555 (softether-vpn) 0.59 0.62 0.58 0.66 0.44 0.26 0.43
3306 (mysql) 0.74 0.73 0.65 0.67 0.65 0.55 0.23
1900 (micrsoft-ssdp) 0.78 0.68 0.69 0.84 0.79 0.62 0.63
1433 (mssql) 0.80 0.80 0.67 0.64 0.52 0.35 0.40
1883 (mqtt) 0.83 0.82 0.61 0.63 0.58 0.34 0.21
Mean R2 0.79 0.77 0.72 0.71 0.70 0.44 0.39

TABLE V: R2 Scores of the Probing Rates Prediction Models (1 day ahead-of-time forecasting). The best scores are in bold text.

LSTM
Rank. (T & S)

VAR
Feature Selection

LSTM
Rank. (T )

LSTM
Clust. (T & S)

LSTM
Clust. (T )

VAR
Rank. (T & S)

VAR
Clust. (T & S)

23 (telnet) 0.93 0.91 0.91 0.89 0.86 0.71 0.67
2323 (telnet alt.) 0.92 0.90 0.89 0.87 0.87 0.76 0.66
22 (ssh) 0.87 0.83 0.80 0.77 0.78 0.55 0.61
2222 (ssh alt.) 0.81 0.79 0.77 0.78 0.74 0.43 0.27
445 (microsoft-ds) 0.86 0.87 0.82 0.75 0.72 0.70 0.57
80 (http) 0.71 0.63 0.62 0.61 0.59 0.47 0.31
443 (https) 0.72 0.61 0.68 0.58 0.55 0.23 0.17
5060 (sip) 0.83 0.85 0.84 0.73 0.73 0.51 0.70
5555 (softether-vpn) 0.77 0.69 0.67 0.65 0.67 0.34 0.28
3306 (mysql) 0.81 0.73 0.73 0.71 0.69 0.39 0.41
1900 (micrsoft-ssdp) 0.79 0.80 0.76 0.75 0.73 0.44 0.45
1433 (mssql) 0.87 0.86 0.84 0.82 0.83 0.68 0.61
1883 (mqtt) 0.84 0.77 0.75 0.78 0.76 0.47 0.49
53 (dns) 0.86 0.69 0.72 0.76 0.71 0.50 0.48
Mean R2 0.83 0.79 0.78 0.75 0.73 0.51 0.48

60000

70000

80000

90000

100000

Pr
ob

in
g 

Ra
te

s

Port 23 (telnet) - R2 = 0.94
Observed
Predicted

2500
5000
7500

10000
12500
15000
17500
20000
22500

Port 22 (ssh) - R2 = 0.79
Observed
Predicted

Hours

4000

6000

8000

10000

12000

14000

16000

18000

Pr
ob

in
g 

Ra
te

s

Port 80 (http) - R2 = 0.73
Observed
Predicted

Hours
0

2000

4000

6000

8000

10000

Port 3306 (mysql) - R2 = 0.74
Observed
Predicted

Prediction of Probing Rates

Fig. 10: Prediction of probing rates 1 hour ahead-of-time.

port clustering methods described in Section V-D. The scores
show that the port ranking method produces better results
than port clustering because the spectral clustering assumes
exclusive groups of ports. In such manner, it may exclude
from the feature space a port carrying salient information
that may contribute in the prediction of multiple probing
rates. Contrastingly, port ranking relaxes the latter constraint,
allowing the inclusion of all ports having a high probing
similarity score with the target port.
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4) Contribution of the Probing Semantic Similarity: We
evaluated for both port ranking and port clustering methods
the contribution of the semantic similarity between ports in
the definition of the feature space. Tables IV and V show that
the affinity metric plays an important role in reducing the noise
within the feature space. Specifically, the semantic similarity
combined with the temporal similarity outrun the temporal
similarity when used alone. However, when performing short
term predictions (on 1 hour horizon), and when using port



11

clustering for the inference of the feature space, the contribu-
tion of the semantic similarity is minor.

C. Anomaly Inference

To evaluate the inference of anomalies, we inspect the tem-
poral correspondences between the indicators of anomalous
probing rates introduced in VII-B and VII-A and the published
vulnerabilities. It is noteworthy that the anomalies could be
due to other events like DoS attacks. However, we focus
the attention on the particular case of anomalies related to
vulnerability disclosures because we can rely on a large public
database for validation.

Thanks to the NVD CVE database 1, we extract the set
of vulnerabilities bound to the network stack (i.e. the “attack
vector” set to “network”) for a given network service, using
predefined regular expressions on the “description data” field.
The extraction process does not take into consideration the
version of the service affected by the vulnerability. This is
due to the passive nature of darknets which prevents accurate
service identification.

Also, our approach would omit to identify other possible
correlations (between a port number and the unconventional
service running on it) making our evaluation a worst case
analysis. Instead, the vulnerabilities affecting a same service
are aggregated. The reason is that we aim at assessing the
cyber risk, and not to classify probing anomalies or to detect
vulnerable services. Then, aggregated vulnerabilities related
to a network service are labeled by the conventional port
number (e.g. FTP and its secure variants are labeled by “port
21”). Next, we take as values of the sequence the sum of the
CVSSv3 base scores of the vulnerabilities that are published
in each time interval. The sequences are extracted using a time
resolution of one day. Let’s denote CVE(p) the latter sequence.

There might be a time shift between the publication of the
vulnerability and the corresponding abnormal traffic given by
the monitoring indicator. The reason is that a vulnerability
could be exploited before or after its disclosure. To tackle
this issue, we propose the use of Dynamic Time Warping
(DTW) known for its ability to manage sequences varying in
speed by dynamically realigning them, i.e. finding temporal
correspondences between the data points of the two input
sequences [32].

Particularly, for a given network service represented by a
port p, we calculate the DTW distances between the sequence
of published vulnerabilities CVE(p) = {CVE(p)

1 ,CVE(p)
2 , . . . }

and the sequence of the probing anomaly indicator E(p) =

{E(p)
1 , E

(p)
2 , . . . }. Fig. 12 shows the obtained DTW distances.

It is to note that the DTW similarity is not symmetric. The
scores to focus on are in the diagonal, and the other scores
serve as a validation basis. As the DTW distances show, there
is a stronger relationship between the published vulnerabilities
related to each network service and its corresponding probing
anomaly indicator as proved by the smaller distances in the
diagonal.

In addition, we evaluate the relationship between the prob-
ing anomaly indicator E(p) and the indicator A(p) expressed

1https://nvd.nist.gov/vuln/data-feeds

23 22 80 44
3

50
60

33
06

14
33

18
83

19
00 38
9

44
5 53

Vulnerabilities Sequence - CVE(pi)

23 (telnet)
22 (ssh)

80 (http)
443 (https)
5060 (sip)

3306 (mysql)
1433 (mssql)
1883 (mqtt)

1900 (ms-ssdp)
389 (ldap)

445 (ms-ds)
53 (dns)

Pr
ob

in
g 

Ra
te

s A
no

m
al

y 
In

di
ca

to
r S

eq
ue

nc
e 

- E
(p

j)

0 0.19 0.91 0.8 0.98 0.64 0.24 0.29 1 0.85 0.5 0.84

0.33 0 1 0.76 0.77 0.78 0.26 0.3 0.99 0.94 0.81 0.79

0.88 0.88 0 0.13 0.84 1 0.99 0.95 0.89 0.98 0.42 0.93

0.77 0.84 0.09 0 1 0.09 0.15 0.23 0.73 0.05 0.65 0.8

1 0.01 0.01 0.75 0 0.25 0.12 0.25 0.73 0.42 0.4 0.83

1 0.85 0.86 0.67 0.95 0 0.8 0.88 0.92 0.99 0.33 0.78

0.85 0.8 1 0.61 0.58 0.76 0 0.95 0.79 0.96 0.39 0.8

0.95 0.28 0.89 0.94 0.13 0.87 0.98 0.04 0 0.96 1 0.92

0.77 0.97 0.64 0.94 0.76 0.75 0.86 0.17 0 0.74 0.44 1

0.32 0.95 0.07 0.99 0.44 0.96 1 0.22 0.96 0 0.48 0.95

0.9 0.34 0.99 0.28 0.74 1 0.79 0.99 0.99 0 0.11 0.99

0.74 1 0.71 0.85 0.95 0.8 0.21 0.32 0.9 0.15 0.71 0

Dynamic Time Warping Distances Between
Probing Rates Anomaly Indicator and Vulnerabilities Sequences

0.0

0.2

0.4

0.6

0.8

1.0

Fig. 12: The value in the ith row and the jth column is
DTW(E(pj),CVE(pi)). The DTW distances in the same row are
scaled to values between 0 and 1 because the scale of the distances depends
on the target port. The scores are reported for the period from August
2019 to June 2020 (i.e. testing set). The used time resolution in the input
sequences is 1 day.

in (22). The latter compares the observed (the actual) probing
rate with the moving average of the previous probing rates.
Indeed, the deviation from the moving average is an easy
and common technique to identify outliers and subsequently
anomalous traffic.

A
(p)
t = max

(
0,
X

(p)
t − 1

m

∑m
i=0X

(p)
t−i

1
m

∑m
i=0X

(p)
t−i

)
(22)

In the above expression, m is the number of probing rates
falling in the chosen moving average window. To compare the
performances of the indicators E(p) and A(p) for inferring
the anomalous traffic related to vulnerabilities, we use the
following score:

S
(p)
E = 1− DTW(E(p),CVE(p))

DTW(A(p),CVE(p))
, (23)

We note that S(p) ≤ 1. A value of S(p) close to 1 means
that, by using the monitoring indicator E(p), we can infer
anomalous traffic that is related to vulnerability disclosures
more precisely than using the simpler monitoring indicator
A(p), which considers the darknet traffic as being anomalous
when it diverges from the moving average probing rate. Thus,
monitoring the probing activities using the E(p) indicator
is a more accurate approach to infer anomalies related to
vulnerabilities. In other terms, when the indicator E(p) takes
large values, the cyber-risk related to vulnerability disclosure
is elevated.

Fig. 13 depicts the obtained scores for different network
services. The E(p) indicator outperforms the standard indica-
tor A(p) in inferring anomalous probing activities related to
vulnerabilities with an increase of accuracy ranging between
11% and 71%, depending on the target port.

As for the early warning cyber risk indicator W (p) in-
troduced in Section VII-B, we compare the indicator W (p)

https://nvd.nist.gov/vuln/data-feeds
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Fig. 13: Performance of inferring anomalous traffic related vulnerabilities by
network service. The scores are reported for the period from August 2019 to
June 2020. The moving average window used for A(p) is 7 days.
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Fig. 14: Performance of forecasting anomalous traffic related vulnerabilities
by network service. The scores are reported for the period from August 2019
to June 2020. The moving average window used for A(p) is 7 days.

with the indicator A(p) expressed in Equation 22, using the
following score:

S
(p)
W = 1− DTW(W (p),CVE(p))

DTW(A(p),CVE(p))
, (24)

Fig. 14 shows the obtained scores for different network ser-
vices. Similarly, the W (p) indicator outperforms the standard
indicator A(p) in forecasting anomalous probing activities
related to vulnerabilities with an increase of accuracy ranging
between 9% and 67%. Also, we observe that the early warning
indicator W (p) is able to accurately forecast anomalies 1
hour and 1 day ahead-of-time without a significant loss in
performance when compared to the traffic anomaly indicator
E(p). This may have a practical implication for network
security operators as it allows to assess the cyber-security
risk early and thus proactively implement defense means and
strategies.

IX. CONCLUSION

In this research work, we exploited large scale Internet
traffic captured by two network telescopes to model and
monitor the probing rates at the service level. We designed
a framework inferring the most correlated network services

through clustering and ranking of ports to model and forecast
the probing rates using LSTM neural networks. The designed
affinity metric measuring the temporal and the semantic sim-
ilarities between ports demonstrated its efficacy in reducing
the dimensionality and the noise within the feature space of
the predictive models. Even though the stochasticity and the
non-stationarity of the probing time series, our approach have
proven to produce better predictions than the non-stationary
vector autoregressive model. Also, we described how the prob-
ing rates model could be leveraged to improve the monitoring
of the probing activities recorded by a network telescope. We
proposed new indicators relying on the prediction models, that
are efficient in inferring anomalous traffic related to the exploit
of vulnerabilities and in raising an early warning when the
cyber risk is high.

As a limitation of this work, darknet traffic includes mis-
configuration packets and periodic regular scans performed by
many organizations. It would be beneficial to isolate such non-
malicious traffic to discern malicious probing activities and
assess to which extent these probing activities are predictable.

As for future work, other than addressing the aforemen-
tioned limitation, it is worth investigating to which extent the
attention-based models [33] could improve the predictions of
probing rates, while allowing interpretability of the model.
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