

Pharmacometrics modeling coupled with machine learning for early prediction of survival following atezolizumab monotherapy in non-small cell lung cancer

A. El Kaoutari¹ S. Vatakuti² M. Karlsen¹ S. Benzekry¹ P. Curle³ C. Jamois²

¹COMPO, Inria Méditerranée, Centre de Recherche sur le Cancer de Marseille, Inserm, CNRS, IPC, Aix-Marseille University, Marseille, France; ²Safety and Early Development Informatics and ³ Clinical Pharmacometrics, Pharma Research and Early Development, Roche Innovation Center Basel, Switzerland

BACKGROUND

- Treatment of advanced non-small cell lung cancer by atezolizumab-based therapy
- Prediction of survival from baseline or early on-treatment data could
- guide treatment decision during drug development
- inform personalized health care
- Current predictive biomarker: programmed death-ligand 1 (PD-L1)¹
- State of the art from **baseline** clinical and biological data: ROPRO score²
- Predictive value of transcriptomic and mutation data is unclear
- Tumor kinetics (TK) model parameter growth rate (KG) has important predictive power of hazard ratio (HR)³
- Predictive value of kinetics of pharmacodynamic biomarkers is unclear

OBJECTIVE

To provide a digital decision-enabling tool by predicting overall survival based on early tumor size and longitudinal PD biomarker data using the strengths of pharmacometrics (PHMx) and machine learning (ML)

RESULTS MACHINE LEARNING : FULL TIME COURSE

STUDIES, PATIENTS AND DATA

Studies	Study Description	Population	Patients treated with atezolizumab
FIR GO28625	Phase 2 study that evaluated the efficacy and safety of anti- programmed death-ligand 1 (PD-L1) atezolizumab in advanced NSCLC selected by tumor cell (TC) or tumor-infiltrating immune cell (IC) PD-L1 expression	PD-L1 positive locally advanced or metastatic NSCLC (lines 1 and 2+)	133
POPLAR GO28753	Phase 2 randomised controlled trial (RCT) of atezolizumab versus docetaxel for patients with previously treated NSCLC	Locally advanced or metastatic NSCLC who failed platinum therapy	134
BIRCH GO28754	Phase 2 Study of Atezolizumab in participants with PD-L1 positive locally advanced or metastatic NSCLC	Locally advanced or metastatic NSCLC (lines 1, 2 or 3)	595
Total			862

5 sources of data:

Number of patients with data available for each dataset

- Baseline
 - **clinical** and biological characteristics (73 variables)
 - **RNAseq** (~ 58k variables)
 - **FMI** (mutation data on 395 genes)
 - Tumor mutational burden (TMB)
- Longitudinal
 - kinetics of tumor size (TK, sum of largest diameters
 - kinetics of 4 pharmacodynamic markers (PD): albumin, C-reactive protein (CRP), lactate deshydrogenase (LDH), neutrophils

➡ FMI and TMB disregarded because they would have highly reduced the number of patients

Evaluation of all predictive metrics in cross-validation

C-index as a function of feature sets

Positive (1) = death, Negative (0) = aliveAll classification metrics computed for survival at 12 months

RESULTS MACHINE LEARNING : TRUNCATED TIME COURSE

METHODS

- At least 4 completed cycles of treatment (\geq 12 weeks) of data are required to achieve substantial individual predictive power
- PD model derived metrics are more informative of individual survival than TK metrics from 12 weeks onwards
- Best individual kinetic markers : CRP and neutrophils

DISCUSSION

Conclusion

- The combination of NLME and ML allowed to take the best of the two approaches in
- order to predict individual survival =
- NLME for longitudinal TK and PD data

CRP, LDH and neutrophils kinetics were described using the above double-exponential model

- ML to build **multivariable** models from a large number of features
- A model was established based on a 26 features minimal signature: 11 baseline clinical features + longitudinal TK (3 variables) + longitudinal PD (12 variables)
- C-index = 0.818 ± 0.029 , AUC = 0.905 ± 0.0414
- RNAseq data did not yield substantial predictive power

Perspectives

- External validation on the phase 3 OAK trial
- Prediction of study-level overall survival in multiple arms, from early on-study data

1 Shukuya, T. & Carbone, D. P. Predictive Markers for the Efficacy of Anti-PD-1/PD-L1 Antibodies in Lung Cancer. Journal of Thoracic Oncology 11, 976-988 (2016). 2 Becker, T. et al. An enhanced prognostic score for overall survival of patients with cancer derived from a large real-world cohort. Ann Oncol 31, 1561–1568 (2020). 3 Claret, L. et al. A Model of Overall Survival Predicts Treatment Outcomes with Atezolizumab versus Chemotherapy in Non-Small Cell Lung Cancer Based on Early Tumor Kinetics. Clin Cancer Res 24, 3292-3298 (2018).