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Abstract

Background and Objective
Estimating the risk of metastatic relapse is a major challenge to decide adjuvant
treatment options in early-stage breast cancer (eBC). To date, distant metastasis-free
survival (DMFS) analysis mainly relies on classical, agnostic, statistical models (e.g., Cox
regression). Instead, we propose here to derive mechanistic models of DMFS.

Methods
The present series consisted of eBC patients who did not receive adjuvant systemic
therapy from three datasets, composed respectively of 692 (Bergonié Institute), 591
(Paoli-Calmettes Institute, IPC), and 163 (Public Hospital Marseille, AP-HM) patients with
routine clinical annotations. The last dataset also contained expression of three
non-routine biomarkers. Using a mechanistic model of DMFS, we define two
mathematical parameters of growth (𝛼) and dissemination (𝜇). We identified their
population distributions using the mixed-effects modeling. Critically, we propose a
novel variable selection procedure allowing to: (i) identify the association of biological
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parameters with either 𝛼, 𝜇 or both and (ii) generate an optimal candidate model for
DMFS prediction.

Results
We found that Ki67 and Thymidine Kinase-1 were associated with 𝛼 and nodal status
and Plasminogen Activator Inhibitor-1 with 𝜇. The predictive performances of the
models were excellent in calibration but moderate in discrimination, with c-indices of
0.71 (95% confidence interval [0.42, 0.99], AP-HM), 0.63 ([0.44, 0.83], Bergonié) and 0.60 (95%
CI [0.54, 0.80]).

Conclusions
Overall, we demonstrate that our novel method combining mechanistic and advanced
statistical modeling is able to unravel the biological roles of clinic-pathological
parameters from DMFS data.

Introduction
Breast cancer is the most common cancer amongst women and has a high survival prob-
ability at 5 years [1]. However, 15% of the patients with early-stage breast cancer (eBC)
will suffer fromdistantmetastatic relapse after surgery, with limited treatment options [2,
3]. Prevention of metastatic relapse is the purpose of adjuvant (post-operative) systemic
therapies designed to eradicate the minimal residual disease. Such therapies, which
include chemotherapy, and/or hormone therapy in hormone receptor-positive tumor
and/or trastuzumab in human epidermal growth factor 2 (HER2)-positive tumors[4], have
substantially improved the metastasis-free and overall survivals[5–7]. Nevertheless, the
clinical outcome of eBC patients is heterogeneous. Current routine prognostic features
are mainly age, lymph node status, tumor size and grade, and HR and HER2 statuses.

However, several critical issues remain such as the identification of patients who
would have been cured by surgery and radiotherapy alone, thus avoiding the use of toxic
chemotherapy[8]. The current relapse risk assessment models are simple regressions
based on the above-cited biological parameters (BP). Examples are the Nottingham Prog-
nostic Index [9] and the PREDICT score [10, 11]. As of today, multiparameter genomic
tests with elaborate gene expression signatures (e.g. MammaPrint [12, 13], Oncotype DX
[14] or Endopredict [15]) can be used in clinical practice for predicting the clinical course.
However, their use remains limited, in part due to their expensive price. More recently,
machine learning algorithms have being developed for prognosis [16], but few of them
focused on the prediction of breast cancer relapse [17]. In addition, these approaches
are agnostic and do not rely on biological knowledge.

In contrast, mechanisticmodels ofmetastatic development have been developed dur-
ing the last decades, integrating the pathophysiology of themetastatic process [18]. They
have been used to estimate the occult metastatic burden at diagnosis after the resection
of the primary tumor [19–21], to predict the impact of individual treatments in pancreatic
cancer [22] or to describe brain metastasis in lung cancer [23]. Following pre-clinical val-
idation [24, 25], we showed in a previous work [26], that a mechanistic approach based
on simulation of themetastatic disease could be used to create a predictive tool of breast
cancer relapse. Building upon this work, we here tested ourmechanisticmodels on three
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datasets of eBC patients who did not receive any adjuvant systemic therapy. This allowed
us to calibrate the models using mixed-effects modeling from data of the natural history
of the disease. We show — through a careful univariate analysis — that our model is
able to describe the biological links between BP and processes of the metastatic disease.
Then we propose a model selection procedure to establish the best covariate structures
to use in prediction. Eventually, we establish the predictive performances of the selected
models for each dataset.

Materials and methods
Patient datasets
The data consisted of distantmetastasis-free survival (DMFS) information andmain prog-
nostic variables for patients with operated eBC from three databases. Inclusion criteria
were: invasive breast carcinoma, early-stage, treated with primary surgery followed or
not by adjuvant radiotherapy, without any adjuvant systemic therapy (hormone therapy,
chemotherapy, trastuzumab), with clinicopathological data and follow-up available for
DMFS. The patients who did not experience distant metastatic relapse were censored at
the time of death or last follow-up.

The first dataset contained data from 591 women who were treated at the Bergonié
institute (Bordeaux, France) between 1989 and 1993. The clinicopathological parameters
were: age at the time of diagnosis, pathological tumor size, axillary lymph node status,
tumor grade, and expression of estrogen (ER) and progesterone (PR) receptors, HER2 and
Ki67, based on immunohistochemistry (IHC) assays. The tumors were considered ER- or
PR-positive when more than 1% of the cells showed expression of the corresponding
receptor in IHC, Ki67 high when 14% or more of the cells expressed the marker (and Ki67
low otherwise), and HER2-positive when the IHC score was 3+ or 2+ with 60% or more of
the cells expressing HER2.

The second dataset included data from 676 patients extracted from our clinically an-
notated database (8, 982 invasive breast cancer samples) made from aggregation of 36
public gene expression datasets [27]. This set included the same clinicopathological an-
notations as the Bergonié set.

The third dataset was composed of 167 patients treated between 1980 and 1990 at
the public hospital of Marseille (AP-HM), France. Information on individual DMFS, age
status, pathological tumor size, axillary lymph node status and grade were available with
the same definition as for the other data sets. Protein dosage information, based on
biochemical assays, was available for ER, PR, Urokinase Plasminogen Activator (UPA) and
Plasminogen Activator Inhibitor-1 (PAI-1) as well as the enzymatic activity for Thymidine
Kinase 1 (TK). Tumors were considered ER- or PR-positive when the quantity of respective
proteins was greater than 15 femtomoles per milligram of protein.

Missing values could not be imputed uniformly across all three datasets and were
thus removed from each dataset: 55 patients were removed from the Bergonié dataset
(646 patients initially), 16 from the IPC dataset (692 patients initially), and 7 from the AP
HM dataset (174 patients initially).
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Mechanistic modeling of the metastatic process
Themodel has been introduced and extensively described previously[26] but we include
here a brief description for self-consistency. We consider a simple description of the
natural history of eBC, starting at time 𝑡 = 0 with one cell. The primary tumor (PT) grows
following a Gompertz law [28]:

𝑉𝑝(𝑡) = exp(
𝛼
𝑏 (1 − 𝑒−𝑏𝑡))

where 𝑉𝑝 is the number of cells in the tumor at time t, 𝛼 is the specific growth rate
(i.e. 𝑉 −1

𝑝 ⋅ 𝑑𝑉𝑝/𝑑𝑡, expressed in d−1) at 1 cell and 𝑏 is the exponential decay parameter
of the initial growth rate (unitless) [29]. These assumptions implicate that the tumor
size converges to a theoretical limit 𝐾 = exp  (𝛼𝑏) cells when 𝑡 → +∞. To avoid over-
parametrization and based on biological evidence[21, 30–32], we fixed 𝐾 to 1012 cells
and considered 𝛼 as the only free parameter for growth (𝑏 being computed using the
previous equation). At the time of diagnosis (𝑡𝑑𝑖𝑎𝑔), the patient undergoes a surgery and
the PT is removed.

During the course of the pre-surgical period, we assume that all cells from the primary
tumor have an instantaneous probability of dissemination of 𝜇 (expressed in cell−1 d−1).
The dissemination rate of the tumor is then:

𝑑(𝑉𝑝) = 𝜇𝑉𝑝,

leading to the following continuous expression for the total number of metastases at
time 𝑡:

𝑁𝑐𝑜𝑛𝑡(𝑡) = ∫
𝑡

0
𝑑 (𝑉𝑝(𝑠)) 𝑑𝑠 = 𝜇 ∫

𝑡

0
𝑉𝑝(𝑠) 𝑑𝑠

To be consistent with the biological reality, the numerical implementation considers that
the number of metastases is an integer, given by:

𝑁(𝑡) = ⌊𝑁𝑐𝑜𝑛𝑡(𝑡)⌋,

where ⌊𝑥⌋ is the integer part of 𝑥. Themetastases are assumed to also follow a Gompertz
growth law with the same parameters as for the PT[25].

To define the time to distant metastatic relapse (TTR), we considered that metastases
are detected as soon as they reach a detectability threshold 𝑉𝑑𝑒𝑡𝑒𝑐𝑡 taken to correspond
to a tumor of 5 mm (detecting limit in imaging) [33, 34]. From the size 𝑉𝑑𝑖𝑎𝑔 of the PT
at diagnosis and the growth parameters, we can compute 𝑡𝑑𝑖𝑎𝑔 , the time between the
initiation of the disease and the diagnosis and 𝜏𝑣𝑖𝑠, the time needed for a metastasis to
reach 𝑉𝑑𝑒𝑡𝑒𝑐𝑡 [26].

Since the first metastasis emitted will be the first to reach the visibility threshold, the
time to relapse is given as a function of 𝑉𝑑𝑖𝑎𝑔 and the two mathematical parameters (MP)
𝛼 and 𝜇 (see Figure A).

𝑇 𝑇 𝑅(𝛼, 𝜇, 𝑉𝑑𝑖𝑎𝑔𝑠) =
⎧⎪
⎨
⎪⎩

𝜏𝑣𝑖𝑠 + argmin𝑡{𝑁(𝑡) ≥ 1} − 𝑡𝑑𝑖𝑎𝑔 , when 𝑁(𝑡𝑑𝑖𝑎𝑔) ≥ 1
+∞, otherwise

Statistical mixed-effects population model
Given individual values 𝛼𝑖 and 𝜇𝑖 for the 𝑖-th patient with observed size of the PT at diag-
nosis 𝑣𝑖

𝑑𝑖𝑎𝑔 , we assumed a log-normal observation error model for the time to metastatic
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relapse 𝑇 𝑖, to ensure positivity,

log(𝑇 𝑖) = log(𝑇 𝑇 𝑅(𝛼𝑖, 𝜇𝑖; 𝑉 𝑖
𝑑𝑖𝑎𝑔)) + 𝜀𝑖,

where 𝜀𝑖 ∼ 𝒩 (0, 𝜎2) is the residual error with standard deviation 𝜎.
We also assumed a log-normal distribution of the individual MPs, in the population,

with a linear effect of the covariates (BP at diagnosis), denoted by the vector 𝐶 𝑖:

{
log 𝛼𝑖 = log 𝛼𝑝𝑜𝑝 + 𝛽𝛼 ⋅ 𝐶 𝑖 + 𝜂𝑖

𝛼

log𝜇𝑖 = log𝜇𝑝𝑜𝑝 + 𝛽𝜇 ⋅ 𝐶 𝑖 + 𝜂𝑖
𝜇

where 𝛼𝑝𝑜𝑝 and 𝜇𝑝𝑜𝑝 are the typical values of 𝛼 and 𝜇 in the population, 𝛽𝛼 and 𝛽𝜇 are the
vectors of the covariate effects, and 𝜂𝑖 = (𝜂𝑖

𝛼 , 𝜂𝑖
𝜇) are the random-effects, i.e., independent

identically distributed random variables with distribution 𝒩2(0, Ω). The latter quantify
inter-individual variability.

From the survival function implicitly defined by the structural error model and using
a likelihood definition compatible with censored data, we defined a maximum likelihood
estimator for the mixed-effect model (see previous work for technical details [26]).

The relative standard-errors of the population-level MPs of the models — 𝛼𝑝𝑜𝑝, 𝜇𝑝𝑜𝑝,
Ω, and 𝜎2 — were obtained by 100-replicates bootstrap and used to assess parametric
identifiability.

Variable selection
The definition of the covariate effects allows for each BP to potentially influence the dis-
tribution of 𝛼, 𝜇, both, or none, depending on the corresponding coefficients 𝛽𝛼 and 𝛽𝜇.
To identify the impact of the BPs on the MPs, we used a two-step approach. First, we
performed a univariate analysis in which we tested for significant effects in either 𝛼 or 𝜇,
using models including only one covariate on one MP. Specifically, for a BP 𝐶𝑘, we tested
for the null hypotheses 𝐻0 ∶ 𝛽𝑘,𝛼 = 0 or 𝛽𝑘,𝜇 = 0. The univariate models were assessed
in 100-samples bootstraps. The standard deviation of the bootstrap distributions was
used to evaluate the precision of the MP estimation. For each covariate, we tested if the
corresponding coefficient was significantly non null with a Wald test using the bootstrap
estimate of the coefficient standard error.

In the second step, the optimal covariate model for each dataset was selected us-
ing a backward elimination procedure based on the Bayesian information criteria (BIC)
adapted for the selection of covariates in mixed-effects models [35]. Specifically, we
started from a model containing all statistically significant covariates for both 𝛼 and 𝜇.
Then we iteratively generated all possible nested models with one covariate less and se-
lected the model with the minimal BIC.

To verify that 𝛽 was correctly identifiable, the significance of each covariate coefficient
in the selected multivariate model was then re-assessed in the multivariate model with
a Wald test, based on 100-samples bootstrap estimation of the standard deviation.

Individual predictions
Individual predictions of survival curves ̂𝑆 𝑖 were obtained by taking the empirical expec-
tation of the survival function with respect to the inter-individual variability over 𝑁𝑠𝑖𝑚
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replicates,

̂𝑆 𝑖(𝑡) = 1
𝑁𝑠𝑖𝑚

𝑁𝑠𝑖𝑚

∑
𝑗=1

𝑆 (𝑡| 𝛼𝑖
𝑗 , 𝜇𝑖

𝑗 ; 𝑉 𝑖
𝑑𝑖𝑎𝑔) ,

with 𝛼𝑖
𝑗 and 𝜇𝑖

𝑗 sampled from the distribution of 𝛼𝑖 and 𝜇𝑖.

Prediction performance metrics
To assess the prediction performance of the models at a fixed time point, we used cali-
bration plots. These were obtained by predicting the survival probabilities at landmark
times 𝑡𝑙 for all patients ̂𝑆 𝑖(𝑡𝑙), binning these into 8 quantiles groups and computing the
median prediction in each bin. For each bin, this predictionwas plotted against the actual
data group DMFS at time 𝑡𝑙 estimated by the Kaplan-Meier method [36, 37].

Performance of the models for prediction was also assessed by the concordance in-
dex using the individual predicted DMFS probability at 5 years to order the comparable
pairs [38].

Numerical implementation of the model
Themechanisticmodel was implemented as an R packagewith high performance simula-
tion code in C++. All model simulations used a time step of 20 days and were performed
with tumor size expressed in number cells. Tumor diameter data were converted into
numbers of cells assuming spherical shape and a cell density of 106 cells per mm3 [32,
39].

Parameter identification was performed using the stochastic approximation of expec-
tationmaximization algorithm [40] implemented in the saemix R package version 3.0 [41].
All computations were performed with R version 4.0.4 [42].

Data availability
The data from Institut Bergonié and AP-HM analyzed in this study are not publicly avail-
able due to patient privacy requirements but are available upon reasonable request from
the corresponding author. The data from IPC is available online and has been previously
described [27].

Results
Biological parameters discrepancies between the datasets
The distributions of the BPs were different in the three datasets (Table 1). There was
significantly more Ki67 high patients in the IPC dataset (chi-squared test, 𝑝 < 0.001) and
more node-positive patients in the Bergonié dataset when compared to the IPC dataset
(𝑝 < 0.001) and the AP-HM dataset (𝑝 < 0.001). The distribution of the grade values was
significatively different between the Bergonié and IPC datasets (𝑝 < 0.001), with more
low-grade tumors in the Bergonié data andmore high-grade tumors in the IPC data. The
proportion of ER-positive and PR-positive patients across the three datasets was also sig-
nificatively different and no statistical difference was found for the distribution of HER2
in the Bergonié and IPC data.

The distribution of primary tumor size appeared log-normal for the three datasets,
with a smaller median in the Bergonié dataset than in the IPC set (𝑝 < 0.001, Brown-Mood

BIGARRÉ et al. 2023 | Mechanistic modeling of metastatic relapse in early breast cancer | 6 of 21



median test) whereas no statistical differences in median could be found between the
IPC and AP-HM datasets (Supplementary Figure ??). The three datasets also exhibited
differences in DMFS (Supplementary Figure ??), with lower DMFS in the IPC dataset than
in the Bergonié dataset (Cox regression hazard ratio 𝐻𝑅 = 2.2, 𝑝 < 0.001) or in the AP-HM
dataset (𝐻𝑅 = 1.8, 𝑝 < 0.001). No significant difference in DMFS was found between the
Bergonié and AP-HM datasets (𝐻𝑅 = 1.3, 𝑝 = 0.157).

Inter-individual variability of themathematical parameters accurately
describes distant metastasis-free survival curves
We first used our mechanistic model without covariates to see if individual variability in
the pathological tumor size at diagnosis (included as a direct parameter of the model),
associated to log-normal inter-individual variability of the MPs 𝛼 and 𝜇, was able to de-
scribe the observed TTR in the three datasets (1). Figures 1B, 1C, 1D show the descriptive
performances of the mechanistic models. For all three models, the model-based popula-
tion survival curves correctly described the observedDMFS data and remainedwithin the
confidence intervals of the Kaplan-Meier estimators, except for a slight underestimation
of the DMFS for small times.

The population values 𝑙𝑜𝑔 𝛼𝑝𝑜𝑝 and 𝑙𝑜𝑔 𝜇𝑝𝑜𝑝 were estimated with good accuracy. The
relative standard error (RSE) was 10.7% on 𝑙𝑜𝑔 𝛼𝑝𝑜𝑝 in the AP-HM dataset and the RSEs for
the remaining parameters were below 10% in all three datasets (Table 2).

Mechanistic modelling yields biological insight on the impact of bio-
logical parameters on metastasis
To study the association of the BPs with either growth or dissemination, we tested all
univariate models with effect of a BP as a covariate on either 𝛼 or 𝜇 (Table 2). On the AP-
HM dataset, the TK concentration had a significant effect on 𝛼 and the concentrations of
PAI 1 and UPA had a significant effect on 𝜇. On the Bergonié and IPC datasets, the ER, PR,
HER2, and Ki67 statuses had a significant effect on 𝛼 and 𝜇, and the lymph node status
had a significant effect on 𝜇. The grade of the tumor was also significantly associated
with both 𝛼 and 𝜇 on the IPC dataset.

For each dataset, an optimal BP set was selected using a backward elimination pro-
cedure starting from the model including all significant BPs (Supplementary Table S1).
Model selection was performed based on the BIC to compromise between model per-
formances and number of covariates. For each dataset, the covariate model with the
lowest BIC amongst the nested models was kept as the best model (Figure 2). Ties on
theminimum (differences on the BIC < 4) were resolved by choosing the larger model, as
the BIC is known to be favor smaller models when compared to other criteria [43]. The
final models contained the ER and Ki67 statuses on 𝛼 for the Bergonié dataset (Figure 2A),
a more complex model with effects of the grade and PR on 𝛼 and the HER2 and nodes
statuses on 𝜇 for the IPC dataset (Figure 2B), and only PAI 1 on 𝜇 for the AP-HM dataset
(Figure 2C).

Estimation of the population parameters for the selectedmodels is presented in Table
3. The effects of PAI 1 on 𝜇 for the AP-HM data and grade 3 for the IPC dataset were
estimated with good precision (𝑅𝑆𝐸 < 30%), whereas the effects of the other variables
were estimated with larger but still acceptable uncertainty (𝑅𝑆𝐸 < 50%). Only the effect
of the ER status on 𝛼 for the Bergonié data was estimated with high RSE (52%). In the
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Figure 1. Mechanistic model of the time metastatic relapse.A. Overview of the mechanistic
model. The model prediction of the time to metastatic relapse (TTR) is computed from the size of
the primary tumor at diagnosis and two mathematical mechanistic parameters, α controlling the
growth rate of the primary tumor and metastases, and μ controlling the seeding of new
metastases. The scheme shows a unitless simulation of the model. B – D. Fits of the mechanistic
model (without covariate effects) on the Bergonié (B), IPC (C) and AP-HM (D) datasets. Each panel
presents for one dataset, the DMFS and the model’s prediction of the survival function in the
population. The model was trained and evaluated on the full dataset.
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Figure 2. Biological parameters selection For each panel, the top line presents the evolution of
the Bayesian information criteria (BIC) as a function of the number of parameters during the
backward elimination procedure. Starting from the model containing all the covariates with a
significant effect in univariate analysis, the selection procedure iteratively tested all models with
one parameter less, keeping at each step the one with minimal BIC. The bottom lines show the
evolution of the covariate model during the selection process. Backward selection on the
Bergonié (A), IPC (B) and AP-HM, (C) data.

final models, all BPs were significant in multivariate analysis as covariates (Wald test).
The coefficients of all BPs were in the same order of magnitude as the corresponding
inter-individual variability standard deviation, confirming that the estimated coefficients
have significant impact on the individual parameter distributions.

Covariate models accurately describe DMFS curves
To assess the ability of the models to describe different subpopulations of patients in
each dataset, we analyzed themodel predicted DMFS for different subgroups of patients
(Figure 3). On the Bergonié dataset, the model captured well the DMFS difference be-
tween the ER-positive and ER-negative patients and between the Ki67 high and Ki67 low
patients (Figure 3A-3B). On the IPC dataset, the model was able to correctly describe the
differences of DMFS when comparing patients with different grades, HER2, based on the
presence of invaded lymph nodes, or between PR-positive and PR-negative patients (Fig-
ure 3C-F). For the AP-HM dataset, the model captured very well the DMFS for patient
in the upper PAI 1 tercile, was adequate for the second tercile but seemed to slightly
overestimate DMFS for larger times, and the DMFS for the lower tercile of PAI 1 was un-
derestimated by the model (Figure 3G).

Predictive performances
Next, we evaluated the prediction performances of the models. Calibration curves in-
dicated excellent individual predictive power for all three models at the 5-, 10- and 15-
years landmark times (Figure 4). Calibrations at 5 years (Figure 4A-C) and 10 years (Figure
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Figure 3. Model predictions in stratified groups. Group-comparison of the distant
metastasis-free survival data (Kaplan-Meier estimate, solid line and 95% confidence interval,
colored band) and the model mean prediction of the metastasis-free survival function. Bergonié
dataset, patients stratified on the ER (A) or Ki67 (B) status. Paoli-Calmettes Institutes (IPC) dataset,
patients stratified by grade (C), HER2 (D) status, invaded lymph nodes (E) or PR (F) status. G.
APHM dataset, patients stratified by PAI-1 tertiles.
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Figure 4. Calibration curves. At a fixed time-point, cross-validations predictions of the distant
metastasis-free survival (DMFS) were binned into 5 quantile groups. The median prediction and
95% confidence interval of each group is compared to the Kaplan-Meier estimate of the group
DMFS at the specified time. The identity (dashed line) is indicated for comparison to perfect
prediction. (A-C): calibration curves at 5 years for the selected model on the respectively the
Bergonié, IPC and AP-HM datasets (D-F): calibration curves at 10 years for the selected models
(G-I), calibration curves at 15 years for the selected models.
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4D-F) were good for all three models and for all DMFS probabilities, with a slight trend
to overestimate DMFS probability at 10 years for the higher probability group. In the
Bergonié dataset, the model slightly underestimated DMFS at 15 years for smaller prob-
abilities while the over-estimation of higher probabilities was more pronounced (Figure
4G). Whereas for the IPC (4H) and AP-HM (Figure 4I) datasets, the calibration at 15 years
was still good.

We then computed Harrell’s concordance index (c-index) as another measure of the
prediction performance [38]. The standard deviation for the c-index was computed in 10-
folds (8-folds for the AP-HM dataset) cross-validation. The performances were modest
with a c-index of 0.63 (95% confidence interval (CI) [0.44−0.83]) in the Bergonié dataset, 0.71
(95% CI [0.42, 0.99]) in the AP-HM dataset and 0.60 (95% CI [0.54, 0.80]) in the IPC dataset.

Discussion
Classical statisticalmodels ofmetastatic risk, although able to detect correlation between
biomarkers and outcome, fail to give causal insights about the mechanisms at stake.
Several genomics-based prognostic tools are commercially available (Oncotype DX Re-
currence Score, Prosigna Risk of Recurrence score, EndoPredict, Breast Cancer Index)
for estimation of the recurrence risk in HR-positive and HER2-negative eBC. However,
the cost of these tests limits their clinical use. Our approach helps to provide mecha-
nistic information from routine clinical markers. We used a simple mechanistic model
of metastatic development based on two processes – growth and dissemination – to an-
alyze DMFS data from three different datasets of eBC patients, two of which contained
only routinely available data, whereas the third contained also non-routinemarkers (UPA,
PAI-1 and TK), known to have biological roles in the metastatic process [44]. We not only
correctly described the DMFS in the three populations, but also showed that our method
could be used to link biological features with specific parts of the metastatic process.

Studying the effect of the biological parameters on the population distribution of the
growth parameter 𝛼 and the dissemination parameter 𝜇 allowed us to associate each pre-
dictive feature with one (or both) aspect(s) of the metastatic process. Specifically, based
on the data from the AP-HM cohort, our model supports the association of protease UPA
and its inhibitor PAI 1 withmetastatic dissemination potential. This is consistent with pre-
vious pre-clinical studies [45]. The association of Thymidine kinase 1, an enzyme involved
in DNA synthesis allowing cell division [46] known to be associated with larger tumors at
diagnosis in eBC [47], was found to impact the growth parameter 𝛼, again consistently
with the biology. On the two other datasets (Bergonié and IPC), the model specifically
associated the presence of invaded lymph nodes with 𝜇. Overall, these findings support
the ability of our mechanistic model to identify the biological role of specific markers.

Based on the first step of our univariate analysis, we proposed a variable selection
method to establish the best combination of biological parameters to include in a predic-
tive model for each dataset. Using the BIC, we selected the best compromise between
goodness-of-fit and the number of biological parameters. The selected models also im-
proved the insights given by the univariate approach. In the Bergonié dataset, themodel
pinpointed the Ki67 marker as an important predictor of the growth parameter 𝛼 and as
the least important predictor of the dissemination parameter 𝜇, in accordance with the
established biological role of Ki67 as amarker of cell division and tumor proliferation [48].
Similarly, in the IPC dataset, the lymph node status was selected in 𝜇 (and was the vari-
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able to be eliminated in 𝜇 in the Bergonié dataset). The hormone receptor statuses were
relevant in 𝛼 for both the IPC (where PR status was selected) and the Bergonié (where ER
statuswas selected) datasets. Their effect on 𝜇 was less clear, since no hormone receptor
status was selected on 𝜇 but PR status persisted in 𝜇 up until late steps of the elimination
process.

The prediction performances of the best model for each dataset were mitigated, with
very good performances in calibration at various time points, but surprisingly low c-index
values. The c-index computation may not be very accurate considering that the cross-
validation sampling was not stratified on the event indicator variable, meaning that the
number of events and thus the number of comparable pairs for the c-index computation
was probably different between the cross-validation folds.

The differences in DMFS within each dataset (Supplementary Figure 2), the measure-
ment methods (IHC staining for Bergonié, mRNA expression for IPC, and protein dosage
for AP-HM) or variable availability prevented the possibility to properly compare the re-
sults across datasets. We chose to study routine clinical and biological data to gather as
many patients as possible and to match as closely as possible the information available
in the clinic.

The prediction at the individual level still needs further investigation to be up-part
with the existing agnostic models. In particular a larger and more homogenous dataset
with more patients and raw values of the markers instead of dichotomized categories
could give better results. The next step of the development of our model should be
to integrate the impact of adjuvant treatment on the individual risk of metastatic recur-
rence. With a better identification of the individual values of the MP in a mechanistic
model of the metastatic process under the course of adjuvant therapies would give a rel-
evant framework to tackle the problem of identifying patients who could avoid cytotoxic
chemotherapy, or limit its extent to a minimal number of cycles.
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Bergonié, N = 591 IPC, N = 676 APHM, N = 167 p-value

Pathological tumor size 15 (12, 20) 20 (15, 25) 20 (15, 26)
Age <0.001

<50 147 (25%) 338 (71%) 35 (21%)
≥50 444 (75%) 138 (29%) 132 (79%)
Unknown 0 200 0

Pathological lymph nodes <0.001
nodes- 364 (62%) 648 (96%) 147 (88%)
nodes+ 227 (38%) 28 (4.1%) 20 (12%)

ER status 0.038
ER- 134 (23%) 140 (21%) 50 (30%)
ER+ 457 (77%) 536 (79%) 117 (70%)

PR status <0.001
PR- 189 (32%) 271 (40%) 80 (48%)
PR+ 402 (68%) 405 (60%) 87 (52%)

HER2 status 0.7
HER2- 523 (88%) 594 (88%)
HER2+ 68 (12%) 82 (12%)

Grade <0.001
1 182 (31%) 131 (19%)
2 267 (45%) 298 (44%)
3 142 (24%) 247 (37%)

Ki67 status <0.001
low 390 (66%) 273 (40%)
high 201 (34%) 403 (60%)

TK 60 (31, 154)
UPA 0.79 (0.38, 1.33)
PAI-1 3.4 (2.0, 5.3)

Table 1. Patient and disease characteristics. For categorical variables (age, presence of invaded lymph nodes, ER, PR , HER2
and Ki67 statuses, grade), number of patients in each dataset (and proportion of the dataset’s values (%)). For continuous
variables (pathological tumor size and PAI-1), median value (first quartile – third quartile) in each dataset. P-values correspond
to the adequate test of identical distributions in all datasets with available information (chi-squared test for categorical variables,
Kruskal-Wallis rank sum test for continuous variables).
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Dataset Base model Full model
estimation (RSE) estimation (RSE)

Bergonié

log 𝛼𝑝𝑜𝑝 -7.12 (8.69%) -5.3 (25.4%)
log𝜇𝑝𝑜𝑝 -26.1 (6.38%) -29.7 (1.77%)

𝜎 1.02 (18.9%) 0.571 (86.4%)
𝜔𝛼 1.96 (13.3%) 1.05 (257%)
𝜔𝜇 2.90 (39.7%) 4.94 (1.69%)

𝛽𝛼,ER -0.99 (53.2%)
𝛽𝛼,Ki67 1.38 (35.8%)

IPC

log 𝛼𝑝𝑜𝑝 -4.43 (4.43%) -5.28 (4.43%)
log𝜇𝑝𝑜𝑝 -29.1 (1.48%) -29.2 (0.637%)

𝜎 0.47 (20.6%) 0.511 (48.6%)
𝜔𝛼 1.03 (14.2%) 0.734 (36.3%)
𝜔𝜇 4.23 (10.0%) 4.2 (9.06%)

𝛽𝛼,PR -0.549 (34%)
𝛽𝛼,grade 2 0.61 (43.7%)
𝛽𝛼,grade 3 1.67 (14.8%)
𝛽𝜇,HER2 1.99 (31.6%)
𝛽𝜇,nodes 2.72 (47.4%)

AP-HM

log 𝛼𝑝𝑜𝑝 -4.4 (10.7%) -4.3 (9.85%)
log𝜇𝑝𝑜𝑝 -30.5 (2.7%) -32 (2.89%)

𝜎 0.754 (16.7%) 0.0364 (251%)
𝜔𝛼 0.0905 (368%) 0.722 (10.8%)
𝜔𝜇 2.97 (21.6%) 3.27 (9.74%)

𝛽𝜇,PAI-1 0.30 (30.2%)

Table 2. Values of the Parameters. The mathematical mechanistic parameters (𝛼 and 𝜇) were
assumed to follow a log-normal distribution such that log  𝛼𝑖 and log  𝜇𝑖 are gaussian with
respective mean log  𝛼𝑝𝑜𝑝 and log  𝜇𝑝𝑜𝑝, and respective standard deviation 𝜔𝛼 and 𝜔𝜇. For each
dataset, the base models correspond to the case with no BP effect (aside from the pathological
tumor size). The full models correspond to the best models from the selection procedure, where
conditionally to the vector of covariates (𝐶 𝑖) included in the model, the mathematical parameters
followed a log-normal distribution such that, log  𝛼𝑖 and log  𝜇𝑖 are gaussian with respective mean
log  𝛼𝑝𝑜𝑝 + 𝛽𝛼 ⋅ 𝐶 𝑖 and log  𝜇𝑝𝑜𝑝 + 𝛽𝜇 ⋅ 𝐶 𝑖 (where 𝛽𝛼 and 𝛽𝜇 are vectors of the BP specific coefficients)
and respective standard deviation 𝜔𝛼 and 𝜔𝜇. For all models, the log-residual error on time to
distant metastatic relapse was assumed to follow a centered gaussian distribution with variance
𝜎2. Estimation was performed using the stochastic approximation of expectation maximization
algorithm. Relative standard errors (RSE) were computed from a 100 replicates bootstrap.
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Appendix 1

Supplementary Tables
The univariate models assumed a log-normal distribution independent of the co-
variate for one of the two computational biomarkers (𝛼 or 𝜇), and a log-normal
conditional distribution with respect for the covariate for the other computational
biomarker, with a median equal to the sum of a typical population value, and of
the weighted covariate value. The estimation of the weight coefficient (beta), the
relative standard error (R.S.E.) obtained by bootstrap with 100 repetitions, as well
as the p-values for the corresponding Wald test, are presented in the table for all
possible univariate models.

Bergonié
𝛽 S.E. p-value

𝛼

Age ≥ 50 −0.02 0.02 0.5
nodes+ −0.5 0.4 0.2
ER+ −2 0.5 0.0002
PR+ −2 0.5 8 × 10−5

HER2+ 2 0.5 0.0009
Grade 2 −0.4 0.4 0.2
Grade 3 0.7 0.4 0.1
Ki67 high 2 0.4 3 × 10−7

𝜇

Age ≥ 50 −0.02 0.02 0.5
nodes+ −2 0.7 0.03
ER+ −4 0.8 2 × 10−6

PR+ −3 0.7 8 × 10−5

HER2+ 4 1 0.0006
Grade 2 −1 0.8 0.08
Grade 3 0.7 0.8 0.4
Ki67 high 3 0.8 2 × 10−5

Appendix 1—table 1. Univariate effects of the BCP, Bergonié dataset.
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IPC
𝛽 S.E. p-value

𝛼

nodes+ 0.4 0.4 0.3
ER+ −0.8 0.2 0.0003
PR+ −1 0.5 0.01
HER2+ 0.9 0.4 0.05
Grade 2 −0.8 0.2 0.001
Grade 3 1 0.2 5 × 10−10

Ki67 high 0.9 0.3 0.006

𝜇

nodes+ 3 1 0.02
ER+ −1 0.5 0.01
PR+ −2 0.4 1 × 10−5

HER2+ 3 0.6 1 × 10−6

Grade 2 −0.9 0.5 0.06
Grade 3 2 0.5 5 × 10−5

Ki67 high 1 0.5 0.007
Appendix 1—table 2. Univariate effects of the BCP, IPC dataset.

APHM
𝛽 S.E. p-value

𝛼

Age ≥ 50 −0.004 0.02 0.8
nodes+ −0.6 0.5 0.3
ER+ −0.6 0.5 0.2
PR+ −0.4 0.7 0.6
TK 0.09 0.009 3 × 10−25

UPA 0.1 0.2 0.4
Pai-1 0.07 0.07 0.3

𝜇

Age ≥ 50 −0.05 0.04 0.1
nodes+ −0.9 1 0.5
ER+ −0.7 0.8 0.4
PR+ −1 0.7 0.07
TK 0.005 0.03 0.9
UPA 0.7 0.3 0.03
Pai-1 0.3 0.1 0.001

Appendix 1—table 3. Univariate effects of the BCP, AP-HM dataset.

BIGARRÉ et al. 2023 | Mechanistic modeling of metastatic relapse in early breast cancer | 20 of 21



Supplementary Figures
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Appendix 1—figure 1. Distribution of the pathological tumor sizes (mm) in each of the
three datasets. Statistical analysis was performed with Brown-Mood Median Test (***
𝑝 < 0.001, n.s. non-significant)
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Appendix 1—figure 2. Kaplan-Meier estimate of the distant metastasis-free survival in
the datasets.
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