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SEGMENTATION OF THE MELANOMA LESION AND ITS BORDER
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Segmentation of the border of the human pigmented lesions has a direct impact on the diagnosis of malignant melanoma.
In this work, we examine performance of (i) morphological segmentation of a pigmented lesion by region growing with the
adaptive threshold and density-based DBSCAN clustering algorithm, and (ii) morphological segmentation of the pigmented
lesion border by region growing of the lesion and the background skin. Research tasks (i) and (ii) are evaluated by a human
expert and tested on two data sets, A and B, of different origins, resolution, and image quality. The preprocessing step
consists of removing the black frame around the lesion and reducing noise and artifacts. The halo is removed by cutting out
the dark circular region and filling it with an average skin color. Noise is reduced by a family of Gaussian filters 3×3−7×7
to improve the contrast and smooth out possible distortions. Some other filters are also tested. Artifacts like dark thick hair
or ruler/ink markers are removed from the images by using the DullRazor closing images for all RGB colors for a hair
brightness threshold below a value of 25 or, alternatively, by the BTH transform. For the segmentation, JFIF luminance
representation is used. In the analysis (i), out of each dermoscopy image, a lesion segmentation mask is produced. For the
region growing we get a sensitivity of 0.92/0.85, a precision of 0.98/0.91, and a border error of 0.08/0.15 for data sets A/B,
respectively. For the density-based DBSCAN algorithm, we get a sensitivity of 0.91/0.89, a precision of 0.95/0.93, and a
border error of 0.09/0.12 for data sets A/B, respectively. In the analysis (ii), out of each dermoscopy image, a series of
lesion, background, and border segmentation images are derived. We get a sensitivity of about 0.89, a specificity of 0.94
and an accuracy of 0.91 for data set A, and a sensitivity of about 0.85, specificity of 0.91 and an accuracy of 0.89 for data
set B. Our analyses show that the improved methods of region growing and density-based clustering performed after proper
preprocessing may be good tools for the computer-aided melanoma diagnosis.
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1. Introduction
Melanoma is a tumor of the pigment cells in the
epidermis. It is usually acquired during the lifetime
de novo or from malicious transformation of the benign
forms of pigmented lesions called displastic (atypical)
nevi. Although non-melanocytic types of skin cancer are
more common, melanoma is the most malignant human
cancer (it may affect young people), and its mortality is
increasing year by year by 4–6% (ACS, 2020).

The diagnosis of melanoma is based on observations,
first with bare eyes (patient self-examination, family
doctors), then by a dermoscope (dermatologists) (Celebi
et al., 2019). When the lesion expands horizontally
and reveals some distinctive geometric/color features,
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it should be soon excised before it starts vertical
expansion to the dermis. It is essential to resect
the malignant lesion at an early, non-metastatic stage.
Unfortunately, visual examinations at the early stages
of the melanoma process may often lead to a false
diagnosis, even by experienced specialists. Since excision
of the lesion is the ultimate procedure, non-invasive,
computer-based systems supporting medical diagnosis are
of key importance (Vestergaard et al., 2008).

Computer acquisition systems integrated with
dermoscopes can store and compare, exchange
(telemedicine), and attempt to (roughly) analyze
dermoscopic images. Offline computer systems are often
used to help medical doctors to take a decision as to a
biopsy, if clinical (dermoscopy) diagnosis is inefficient
(no visual melanoma features, so-called featureless or
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small melanoma, or lack of experience). The latter is
an example of computer aided diagnosis (CAD) and is
supposed to increase the accuracy of a diagnosis, plus
it may reduce the time and cost of treatment (even if
formally no CAD system is standardized and approved
for use in clinical settings).

Medical doctors diagnose pigmented skin lesions by
means of some descriptive metrics (Celebi et al., 2007).
They include the ABCD(E) rule, the 7-Point Checklist,
Menzies, 7FFM, CASH, etc. (Jensen and Elewski, 2015),
to mention the most common. The ABCD(E) rule is a
semi-quantitative analysis of five criteria: (A)symmetry,
irregular (B)order, variety of (C)olors and (D)ifferential
Structural Components found in the lesion (dots, globules,
pseudopods, a white veil, featureless areas). Sometimes
an extra factor is taken into account, which is the
(E)volutionary change of the lesion. Each criterion is
weighted to contribute to the total dermoscopic score
(TDS) classifying the lesion into benign, suspicious, and
melanoma classes.

The standard melanoma CAD (Masood and
Al-Jumaily, 2013; Oliveira et al., 2018; Mishra and
Celebi, 2016) is based on segmentation methods to reveal
and/or enhance those above-mentioned visual features of
the neoplasm.

In particular, border irregularity is the most
significant factor to discriminate melanoma from benign
pigmented lesions (Keefe et al., 1990). This is due to
the uneven spread of melanocytes and/or the immune
system regression pattern on the lesion surface. The
lesion segmentation itself is a fundamental step before
feature extraction and classification of melanoma. The
development of segmentation methods directly influences
the performance that a CAD system for the automatic
diagnosis of pigmented skin lesions can achieve. It is
relevant for the following reasons:

• it helps directly identify some of the criteria of the
clinical metrics,

• it makes possible to extract some derivative
information on lesion characteristics, e.g., diameter,
skewness, etc. and,

• is the determinant part of the subsequent steps of the
CAD pipeline.

There exist different taxonomies for skin lesion
segmentation methods. According to Celebi et al. (2015),
the segmentation methods can be divided into the three
main groups:

• unsupervised (computer vision) methods that use no
training data,

• supervised (shallow) learning methods that train and
use classifiers,

• supervised deep learning methods.

The unsupervised segmentation methods use
properties of the color space to cluster pixels into
homogenous regions (Møllersen et al., 2010). This
is a broad field divided according to the topological
(similarity) information derived from the pixels.
Pixel-based (local) segmentation methods (e.g.,
thresholding) are based on the intensity of separate
pixels. A threshold value is usually calculated by
analyzing predefined image features, e.g., intensity
histograms. Such methods are simple, robust, and not
computationally intensive, but they only work if there
is enough contrast between the region of interest (ROI)
and the background (BG). They are further limited by
the inhomogenous intensity distribution of the lesion
and may fail if the distribution contains multiple peaks
(Celebi et al., 2013).

Edge-based segmentation methods are aimed at
detecting discontinuities in the pixel intensity. They
make use of differential (gradient) operators (e.g., Sobel,
Prewitt, Canne, Roberts, etc.) to delineate the edge
between ROI and BG (Sadeghi et al., 2011). Pixel-,
and edge-based segmentations are sensitive enough only
if there is a distinct border between ROI and BG. They
are not efficient in the soft/fuzzy transition between ROI
and BG. Image characteristics such as edges, smoothness,
or other statistical distributions may be used in some
energy/cost functions which, when minimized, determine
the boundaries of ROIs.

Contour lines are primarily used in digital elevation
models (DEMs) for determining slopes and generating a
surface. There exists many contour tracing algorithms:
square tracing, Moore neighbor, radial sweep, etc.
(Pradhan et al., 2010). Other examples are active contour
models that may utilize metaheuristics and genetic
algorithms (Zhou et al., 2011). Active contour models
are based on deformable splines (so-called snakes), which
are selected according to the desired contour shape or
learned from a training set. The snake is then matched to
the contour of the object by some ‘energy minimization’
operator. Such a procedure may strongly depend on
interaction with a user, other examples (adjacent in space
or time), or a higher-level knowledge (Mete and Sirakov,
2010).

Region-based (global) segmentation looks for
regions satisfying a given homogeneity criterion (color,
texture, brightness). One can merge small regions into
larger ones (region merging or region growing), or
split the image (step-by-step) into areas with similar
pixel properties (region splitting). The split&merge
methods first split the image into a number of dissimilar
areas, and then merge the most similar ones. Watershed
segmentation methods, on the other hand, interpret the
brightness of pixels as an elevation above the sea level,
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and analyze the slopes to determine the closed ‘water
reservoirs’, i.e., similar regions (Wang et al., 2011).
There are also iterative/statistical region-merging
methods recursively merging pixels or regions in a
hierarchical manner (Celebi et al., 2008).

Recently other unsupervised methods have become
popular: saliency-based segmentation, Delaunay
triangulation (Pennisi et al., 2016), sparse coding
methods (Bozorgtabar et al., 2016), or cellular automata
(Bi et al., 2016), etc. Saliency segmentation (Ahn
et al., 2017) computes the most informative region
in an image (e.g., by color features) based on human
perception. For that task, pixel quality maps are
produced. Such representations are more meaningful and
easier to analyze, but they require high resolution and
computational efficiency. The supervised segmentation
methods segment the skin lesion by training classifiers
(e.g., shallow artificial neural networks, support vector
machines, decision trees, etc.) that separate the skin
lesions from the surrounding healthy skin. For that
purpose, those methods extract features on different
hierarchy levels (pixel, regions, colors and textures)
(Ashour et al., 2018).

Quite new, but promising for skin lesion
segmentation is the paradigm of deep learning (DL)
(Esteva et al., 2017). Current DL-based segmentation
methods (Goyal et al., 2019; Codella et al., 2019)
mainly use different architectures of convolutional neural
networks (CNNs), especially fully convolutional networks
(FCNs). They are able to derive image-wide semantic
information from a full hierarchy of features. Such an
approach is robust and successful in segmentation and/or
classification of dermoscopy images (Bi et al., 2017).
More detailed information on these methods can be found
in the current reviews of segmentation techniques used in
the skin lesions (e.g., Pathan et al., 2018b).

Despite advances in the field and ample literature,
the segmentation step of melanoma lesions in dermoscopy
images is still unsatisfactory and not fully tested. Here
efficiency, complexity and stability (regarding the data
sets and within a given data set) come into play. Efficiency
of segmentation is still subject to noise and artifacts,
conditions for reception of dermoscopy images, and
regression patterns. In this paper we propose a method
for segmentation of the lesion border based on region
growing (RG) with an automatic detection of the seed
points/threshold and a comparative study of segmentation
of the pigmented lesion (location, shape, size) by RG
and a density clustering algorithm (DBSCAN). We
quantitatively evaluate the method on two different data
sets, one publicly available database included.

In the following sections, we present all the steps of
our experimental procedure, show the results, and discuss
their importance in terms of the available literature on the
subject.

2. Materials and methods
In this section, we describe the process of preparation
(with two different procedures for hair removal),
segmentation (by two methods, i.e., a ‘classic’ RG and the
DBSCAN algorithm) and, finally, diagnostic assessment
of the pigmented lesions from dermoscopy images. The
pipeline can be summarized as follows:

1. Preprocessing:

(a) black frame: crop/floodfill,

(b) filtering: median/Gaussian/ADF/Sigma/Bilate-
ral/Non-Local Means,

(c) hair removal: Black Top Hat/DullRazor.

2. Pigmented lesion segmentation (Task 1):

(a) RG,

(b) DBSCAN.

3. Pigmented lesion border segmentation (Task 2):

(a) RG.

4. Assessment.

2.1. Preprocessing. Prior to the segmentation
procedure, the data are preprocessed in three steps: (i)
removing the black frame (halo), (ii) noise reduction, (iii)
removing artifacts in the image.

Not all, but some dermoscopy pictures are taken with
dark corners, where the illumination drops to an arbitrarily
low value. This may produce a significant gradient that
can affect the segmentation results. To automatically
improve such images, two strategies can be applied. The
first, and more common strategy is to remove those rows
and columns of the image whose content exceeds a certain
fraction of the dark pixels. The luminance of the ‘dark’
pixel is determined over the full data set (normalized
luminance is usually less than 20%). Another strategy is to
find a circle that surrounds the bright center of the image
and fill all pixels outside with an ‘average’ skin color. The
latter method is safer for the segmentation result.

In order to improve the image quality and thus the
expected segmentation result, one should reduce the noise.
Noise reduction is performed through image filtering.
This is the key step for the detection of borders in
dermoscopy images, since: (i) it improves the contrast,
(ii) smooths out noise/distortions, and finally, (iii) it
helps remove artifacts like thin or light hairs, droplets of
immersion fluid/sweat/water, glare of light, etc. in the last
stage of preprocessing. Filters can be applied to each RGB
component separately, or on the luminance representation
(see further).

One disadvantage of filtering is the blurring of local
structures, which is especially prominent with a simple
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low-pass filter (such a filter is not used). The most
important aspect of filters in terms of segmentation is the
ability to preserve the edges. Kernel-like, median-like,
anisotropic diffusion filters (ADFs), Sigma, Bilateral and
Non-Local-Means filters may set a trade-off between
the image contrast and the image blur. After some
experiments with the filter masks in the range from 3 × 3
to 9 × 9, we took for the reference data set A a Gaussian
filter (σ = 1) of size 7 × 7 (for data set B the mask
was smaller, 5 × 5 or 3 × 3, proportional to the image
size). The median filter was of the same quality but
introduced distortions in fine-grained objects. The ADFs
were almost of the same quality (for data set A), but more
computationally intensive. The other filters gave worse
results (see Tables 2 and 3).

The last preprocessing step involves removing big
artifacts. Big artifacts that can be found in the dermoscopy
images are hairs and ruler markers (less often ink
markers). Dark, thick hairs (or ruler ticks) covering a part
of each lesion were removed by using either the DullRazor
algorithm (Lee et al., 1997) or the Black Top Hat method
(Jaworek-Korjakowska and Tadeusiewicz, 2013).

The DullRazor algorithm (Lee et al., 1997) derives a
hair mask which is a union of individual masks for three
color bands R, G, B, where each such a color mask is a
generalized (over 0, 45, and 90 degrees) closing image for
a hair brightness threshold (arbitrarily) below a value of
25 (in the range of 0–255).

The alternative algorithm of Jaworek-Korjakowska
and Tadeusiewicz (2013) derives hairmasks (or masks
of other dark elongated objects) with the help of the
Black Top Hat (BTH) transform, BTH(I) = I • b − I ,
where I stands for an image, subject to the transform
(luminance), b stands for a structuring element, • denotes
the morphological closing operation (erosion(dilation)).

One can impose different thresholds analyzing the
image in a finer or a coarser scale. Pixels of the detected
hairs were replaced with a mean value of the surrounding
pixels.

Color features play a crucial role in the analysis of
dermoscopy images for discrimination between benign
and malicious skin lesions (Stanley et al., 2007). For
the segmentation process, we tested luminance-based
color models (Y CrCb, HSL, HSI) and finally used
the normalized Y ′CrCb representation from the JFIF
standard: RGB-elementary colors ∈ [0, . . . , 255], where

Y ′, Cb, Cr ∈ [0, . . . , 255],

Y ′ = 0.299×R+ 0.587×G+ 0.114×B,

Cr = 128 + 0.5×R− 0.418688×G− 0.081312×B,

Cb = 128− 0.168736×R− 0.331264×G+ 0.5×B.

2.2. Region growing. As we pointed out in
Introduction, segmentation of the pigmented skin lesion is

Fig. 1. Preprocessing step: elimination of the black halo. Strat-
egy: draw a circle that cuts off the black region(s).

Fig. 2. Preprocessing step: elimination of artifacts like hairs,
droplets of fluids, rulers, etc. by filtering and the Dull-
Razor/BTH algorithm. Left: input dermoscopy image,
middle: DullRazor, right: BTH mask of the artifacts.

the first, essential step in the pipeline of (computer-aided)
clinical diagnosis of melanoma. The border detection
problem is related to the lesion segmentation but goes
even further. It attempts to derive the lesion border itself
as the feature B of the ABCD rule. Discrimination of
irregular, fuzzy borders that can be a sign of malignancy
or (at least) a sign of suspicious atypical growth, from
regular, ‘sharp’ borders, which are common for benign
lesions, plays a crucial role as a diagnostic factor for
(expected) malignancy. Therefore in this work, we
use (selectively) our segmentation methods both for the
quantitative determination of the lesion in the dermoscopy
image and the lesion border.

The latter is a two-step segmentation: first we
segment the lesion and then the skin (background). As a
result, we get two binary masks. The difference between
the two segmentation masks determines the border and
thus indicates the type of lesion (benign or malicious).

As for the tools, we take advantage of a simple region
growing method and one density-based method. The
segmentation procedure by region growing (RG) can be
described in the following way. Each particular region
is grown from a single starting seed point, which must
definitely belong to the proper class. The region is
iteratively grown by adding unallocated adjacent pixels
that resemble the initial seed point. The procedure
is based on similarity/continuity criteria between the
pixels, and the extent of the changes is controlled by a
structuring element (a set of pixels showing the extent of
the neighborhood).

Only pixels that differ from the region average
intensity less than a specified threshold are allocated to
the respective region. The growth continues until the full
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Algorithm 1. Triangle method.
Require: HL {Histogram of the image luminance}

1: draw a line l1 between the peak and the first nonzero
channel of HL

2: draw a line l2 perpendicularly crossing l1 at a point
S, where the distance from l1 to HL is maximum

3: return S {the cut-off level}

Algorithm 2. RG-A.
Require: I {Image}

1: determine the cut-off level S of I
{from the triangle method}

2: determine the luminance L of I
3: R = 3× 3 square {structuring element}
4: for R ∈ L do
5: calculate Avg(R) =

∑
p∈R Lp/#(p ∈ R)

6: diff = 0
7: while (diff ≤ |Avg(R)− S|) do
8: {region accumulation}
9: for p ∈ R do

10: diff (p,R) = |L(p,R)−Avg(R)|
{p: neighbors in the region}

11: end for
12: seed = argmin(diff (p))
13: R := R \ seed
14: end while
15: end for

homogenous region is determined (no adjacent points can
be attached to the region).

There are three hyperparamaters of the method:

• the seed point that starts the expansion of a region,

• the structuring element,

• the threshold, necessary for the partition of the image
into homogeneous regions.

For regular, well-centered lesions, one can use a ‘naive’
way to fix the seed points for the lesion and the
background region. For the lesion seed point, the center
of the analyzed image can be selected.

If the black frame of the dermoscopy image has
already been removed, the background skin color can be
estimated from the corners of the image. For the moles,
which are completely inside the image, the seed point
can be sets x = 1, y = 1 (or any other corner). If
a lesion is displaced from the center, or is too big (it is
indicated by the fact that there can be no full bounding
circle around it), the background segmentation procedure
can be attempted from any bright corner and then the
resulting ‘background’ region usually consists of several
smaller regions. In such cases, the separate background
masks should be merged together to form a homogenous

region for the final assessment. The ‘naive’ procedure
described above for the lesion and the background seed
point is problematic when dealing with nonstandard (too
big or misplaced) skin lesions in the dermoscopy images.
An automatic and more robust procedure is required.

The choice of the seed points is adapted from Smaoui
and Bessassi (2013). A region of lesion is assumed to be
darker than the surrounding skin (background). Potential
pixels are ordered into a list according to a minimum value
of the gray level. For each pixel from this list, an average
value is calculated in a 3× 3 window. For the seed point,
this pixel is selected, which has the minimum difference
with its neighbors.

For the background, the same algorithm is applied,
except that we now search for the brightest pixels in their
homogeneous neighborhoods.

Our structuring element (neighborhood) is a 3 × 3
square (Smaoui and Bessassi, 2013). As an alternative,
this can also be a 3 × 3 cross of distance of 1 (Kroon,
2004) with a neigborhood matrix to loop for x and y
[−1, 0; 1, 0; 0,−1; 0, 1] (the results from both assumptions
are statistically comparable). Larger structuring elements
are less accurate.

Determination of the threshold and the accumulation
of regions is explained by an algorithm presented herein,
after the idea found in the work of Smaoui and Bessassi
(2013)—we call it RG-A, and alternatively in that of
Kroon (2004) (implemented in Matlab)—we call it RG-B.

At the end, a morphological closing (with the
diameter of 5 pixels) is produced to remove some isolated
pixels.

2.3. Density-based segmentation. Density-based
clustering algorithms respond to the general problem
of segmentation that can be summarized by the four
requirements that we usually have about the data: (i)
no a priori knowledge about the number of clusters,
(ii) clusters with arbitrary shapes, (iii) the presence of
outliers and noise in the data and, (iv) density variation
and scarcity of data. Some popular density-based
algorithms on the market are DBSCAN (Ester et al.,
1996), DENCLUE (Hinneburg and Keim, 1998), OPTICS
(Ankerst et al., 1999), and MDCUT (Louhichi et al.,
2017).

The main idea of pixels in the DBSCAN algorithm
is explained below. The pixels can be classified into three
types (Louhichi et al., 2017):

• a core point is a point whose neighborhood
(radius < eps) includes more than minPts points,

• a border point is a point whose neighborhood
(radius < eps) includes less than minPts points,
but is reachable from a core point,
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Algorithm 3. RG-B.
Require: I {Image}

1: threshold = 0.20
2: determine the luminance L of I
3: R = 3× 3 cross {structuring element}
4: for R ∈ L do
5: calculate Avg(R) =

∑
p∈R Lp/#(p ∈ R)

6: diff = 0
7: while (diff ≤ |Avg(R)− threshold |) do
8: {region accumulation}
9: for p ∈ R do

10: diff (p,R) = |L(p,R)−Avg(R)|
{p: neighbors in the region}

11: end for
12: seed = argmin(diff (p))
13: R := R \ seed
14: end while
15: end for

Algorithm 4. DBSCAN.
Require: I {Image}

1: hyperparameters: eps ,minPts
2: for (all not yet assigned points p ∈ I) do
3: select a point p
4: identify N ∈ neighborhood eps(p)
5: if (size(N) < minPts) then
6: C(N)← p {form a cluster}
7: else
8: N ′ : C′(N ′)← p

{form and identify a new cluster}
9: end if

10: end for

• a noise point (outlier) is neither the core, nor the
border point.

Based on these definitions, two points can be directly
density reachable (when they are within eps , and the other
one is a core point), density reachable (when there exists
a sequence of points between the two points and each pair
of points in the sequence is directly density reachable),
and finally, density connected (when there exists a point
such that the two points are directly density reachable
to it). With the two input parameters, eps and minPts ,
DBSCAN can start clustering from an arbitrary point and
keep looking for other points that are directly density
reachable (Suer et al., 2011). A sparse neighbourhood
(with respect to eps and minPts) cannot develop a cluster
(the points are then labelled as noise points), otherwise a
cluster is initiated and iteratively built up. If the cluster
cannot be expanded any further, another unlabelled point
is taken and is subject to the procedure.

The above mentioned concepts are shown
graphically by, e.g., Kockara et al. (2010) and Suer

et al. (2011). The pseudocode of DBSCAN is presented
by Kockara et al. (2010) and in more detail by Ester
et al. (1996) and Kockara et al. (2010); an efficient
implementation based on kd-trees was first developed by
Bentley (1975).

DBSCAN starts by mapping the data into a kd-tree
data structure and identifying the (Euclidean) distance
between each point and its k-th nearest neighbor (k-dist).
Such queries are stored in a matrix of sorted distances
(the first column contains values of the nearest neighbors,
second is for the second nearest neighbors etc.).

The main steps of DBSCAN (Ester et al., 1996) can
be shown in the following simplified scheme: A data point
can get to a cluster (when below a certain k-distance), start
a new one, or remain as a noise/not classified point. In this
work, we test the DBSCAN algorithm as an extention to
the original region growing segmentation method.

All numerical calculations, i.e., preprocessing
(filtering, BTH, DullRazer), segmentation (RG-A/RG-B,
DBSCAN), and postprocessing (metrics) were performed
in the R environment (Hornik, 2021). Our motivation
for choosing the environment was the choice of a
ready-made and community-recognized implementation
of the density-based algorithms, that is “Density Based
Clustering of Applications with Noise (DBSCAN)
and Related Algorithms—R package” on the GitHub
(Hahsler, 2021). This R package provides a fast,
community-recognized, C++-based implementation of
several density-based algorithms for clustering data
which, last but not least, also includes the fast nearest
neighbor search implementation using kd-trees (Hahsler,
2021).

2.4. Postprocessing. The third step is a quantitative
estimation of compliance between the performed
automatic segmentation methods RG and DBSCAN and
the ground truth.

For data set A, manual borders were obtained by an
expert dermatologist in Matlab/ Image Segmenter (data
set A) and provided by the public repository (data set B).

For the lesion segmentation task, in the case of
a fuzzy, smeared border, the edge was painted to the
maximum lesion extent. For data set B, segmentation
masks were part of the data set.

We divided our research into two tasks discussed
below.

Task 1: Lesion segmentation. To assess the lesion
segmentation process, we should take into account two
factors characterizing the binary mask: location in the
image and extent and orientation.

There exist many metrics characterizing these
aspects in the literature. Before we describe the main
approach, i.e., metrics based on the information retrieval
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Table 1. DBSCAN parameters.
source minPts eps remarks

Ester et al., 1996 ≤ (data dim+1) 5 –
Ester et al., 1996 10 ‘chosen best’ to compare DBSCAN

and MDCUT
Hahsler, 2021 5 – –

Louhichi et al., 2017 10 0.05–17 eps to fit different
data sets

Kockara et al., 2010 60 5 –

terminology, we report on metrics found in the work of
Agarwal et al. (2017).

Agarwal et al. (2017) compare different binary
masks by geometrical features like solidity and extent.
Solidity is defined as (the ratio of the area to the convex
hull area) of the binary mask. The extent, on the other
hand, is defined as (the ratio of the area to the bounding
box area). As the final (best) binary mask to the one with
the largest solidity and extent. The overlap of such a
binary mask with the ground truth marked by a medical
expert is calculated by the so-called overlapping score
(%) as a fraction of the intersection and the union of
the two compared binary masks. They also define a
more precise correlation coefficient taking into account
the exact location of the segmented lesion with respect to
the ground truth lesion. These metrics quantify the first
and second factors in the above list.

We do not use such metrics for two reasons: (i) they
are not popular and therefore not easily comparable with
the results of other segmentation works in the field, ( ii)
rather than making a production system that picks the best
method for each image, we want to test the methods in
general.

The metrics based on the information retrieval
terminology quantify how much the automatic border
(AB) is different from the manual border (MB ), the
ground truth. They define the following basic categories
(Kockara et al., 2010), where all definitions are meant for
the number of pixels in a particular region:

• TP : indicates the intersection between AB and MB,
so a correct lesion region found by AB,

• TN : shows healthy region (background), both AB
and MB agree on,

• FN : shows a region of the missed lesion, i.e.,
MB-AB,

• FP : shows erroneous positive regions, i.e., AB-MB.

Having these definitions, one can build common metrics:

• Sensitivity = TP/(TP + FN ),

• Precision = TP/(TP + FP),

• BorderError = Area(AB ⊕ MB)/Area(MB) =
(FP+FN )/(TP+FN ), where⊕ =XOR; currently
the most important metric for assessing the quality
of any automatic border detection algorithm (Pennisi
et al., 2016; Suer et al., 2011)

Specificity and accuracy are more arbitrary due to the
TN category, which is not well normalized (the area of the
background skin can be unlimited).

• Specificity = TN /(TN + FP),

• Accuracy = (TP +TN )/(TP +FN +FP+TN ).

Using the dermatologist-determined MBs, and AM s
obtained from RG and DBSCAN for each segmented
lesion, we calculate the basic numbers (TP , FN , TN ,
FP ), from which information-retrieval-based definitions
can be calculated, e.g., those listed above: sensitivity,
precision and border error.

Task 2: Lesion border segmentation. For the lesion border
segmentation, the segmented border (AB) is assessed
by an expert dermatologist (MB ) to comply with (a)
the dermoscopy image, (b) with the hist-pat label (those
are different factors as some lesions can visually fake
the hist-pat examination, e.g., a benign lesion can look
like the malignant one and vice versa). In this task
we want to check how efficiently AM can recognize
the fuzziness/regularity of the lesion border, and this
to contribute to the irregular border criterion of the
ABCD(E)’s diagnostic system.

As metrics we use here sensitivity (meaning the
ability of the method to detect the melanoma), specificity
(the ability of the method to detect the benign lesion) and
(overall) accuracy.

3. Results and a discussion
3.1. Results. We did our experiments on two data sets
from different sources. Data set A (Melanoma, ML 2018)
consists of 185 images: 101 malignant melanoma (M) and
84 dysplastic nevus (D) cases. Those are 2272 × 1704
(JPEG) images collected using a Minolta Dimage Z5
digital camera equipped with an epiluminescence lens
with white halogen lighting. This data set is available
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Fig. 3. RG-A determination of the lesion border: the case of a benign skin lesion. Top (from left to right): raw lesion, removal of
hairs/tics and bubbles, lesion segmentation mask (gray). Bottom (from left to right): lesion segmentation superimposed on the
image, background segmentation mask (gray), lesion border as the difference between the background and the lesion mask (the
area between the black and white outline).

Fig. 4. RG-A determination of the lesion border: the case of a malignant skin lesion. Top (from left to right): raw lesion, removal of
hairs/tics and bubbles, lesion segmentation mask (gray). Bottom (from left to right): lesion segmentation superimposed on the
image, background segmentation mask (gray), lesion border as the difference between the background and the lesion mask (the
area between the black and white outline).

online after registration (except for the labels, neither
expert details, nor segmentation masks are available).

Data set B is a public data set PH2 (Mendonça et al.,
2013) developed for research and benchmarking purposes,
which contains 40M and 77D cases (common nevi were
removed from the data set since our discrimination task
only applies to melanoma and displastic moles). Images
B (BMP) were collected using Tuebinger Mole Analyzer
and have a resolution of 768 × 560 and a magnification
of about 20×. There is auxiliary information in this
database provided by expert dermatologists: binary masks
for the lesion and the background of the analyzed

dermoscopy images, plus the class label (from the
hist-pat examination), and other important dermoscopic
structures.

Databases A and B include images of only white
Caucasian skin types. In our research the ground truth
about the class of the lesion is based on the declared
hist-pat examination. For the quality of the lesion
segmentation in data set A, we used our own clinical
expert dermatologist.

The preprocessing step is rather straightforward. In
Fig. 1 we can see a typical black halo around the skin
lesion. In this case (data set B), the lesion is centered
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in the image and covers a large amount of area of the
image. The first strategy to remove the halo described in
Section 2.1 would not be economical in this case. It could
remove too much of the lesion area. Thus, here we draw
a circle surrounding the bright center of the image and fill
all pixels outside with the ‘average’ skin color.

An example of filtering and the DullRazor/BTH
procedure is shown in Fig. 2 for an image from data set
A. In this case we took a Gaussian filter (σ = 1) with
a mask of 7 × 7 to smooth the image (left). The BTH
transform (far right) is apparently better than DullRazor
(middle), hence the BTH masks of artifacts to be removed
were further used for segmentation.

After the preparation of the dermatoscopic images,
we performed segmentation according to the previously
described algorithms. As for the seed points, we did not
follow the ‘naı̈ve’, but adapted the ‘minimum difference’
(Smaoui and Bessassi, 2013) method.

Let us start from the more straightforward RG-B
method. RG-B is rather fast, but it works definitely
good (for numerical results are presented in the remainder
of this section) only for (i) homogenous lesions with a
well-defined border separating the lesion content from
the background healthy skin (i.e., mainly benign lesions)
and, at the same time, (ii) well localized lesions, i.e.,
centered in the dermoscopy image and with a regular,
evenly illuminated background. In this case the growth
of either region does not depend strongly on the choice of
the seed point (because it is always well chosen), nor on
the ‘stability’ of the threshold(s).

For the majority of cases (in both tested data
sets), this approach fails unless we carefully adjust the
procedure to each individual image. However then the
analysis is no longer ‘automatic’, algorithmwise, but
manual.

RG-A is much better (for numerical results, see the
remainder of this section) mainly due to the adaptive
threshold embedded in the algorithm. An example of
how algorithm RG-A works is shown in Figs. 3 and 4
below. What we focus on is the lesion border, which is the
difference between the background and the lesion mask.
In Fig. 4 we can see a case of Malignant Melanoma with
a fuzzy, smeared border, the indicator (B in the ABCD
metric) to diagnose it as a tumor.

Experiments on the density-based algorithm
DBSCAN were performed in the R package. We
took advantage of the full ‘infrastructure’ found in
(Hahsler, 2021), where DBSCAN plus some important
auxiliary procedures (density calculation, kd-tree
structure, k-NN search, etc.) are already implemented.

The local density at each data point was defined
as the number of points within a given neighborhood
of radius eps (including the query point itself). For a
fast, distance-based nearest neighbor search, the kd-tree
structure was used. We took the default values of

Fig. 5. DBSCAN segmentation (left) and its extra binarization
(right). Top: case of a benign lesion, bottom: case of a
malignant lesion.

the parameters: the maximum size of the kd-tree leafs
(bucketSize) as 10, and the split rule (splitTRule) as ‘best
guess’.

DBSCAN, implemented following Hahsler (2021),
Mount and Arya (2010), Hahsler et al. (2019) and
Campello et al. (2013), estimates the density around each
data point in an eps neighborhood and applies a minPts
threshold (the minimum density for nonnoisy areas) to
identify core, border and noisy points. The core points
are joined into a cluster if they are density-reachable (i.e.,
there is a chain of core points where one falls inside the
eps-neighborhood of the next). Finally, border points
are assigned to clusters. Table 1 shows values for the
user-defined parameters minPts and eps of DBSCAN
found in the literature.

Increasing minPts in principle suppresses noise, as
it requires more points to form a cluster. After some
experiments, we fixed minPts = 60 and eps = 5
(Kockara et al., 2010), to be good for both data sets A
and B, where data set A was subject (only for DBSCAN)
to a two-fold reduction in resolution from 2272× 1704 to
568 × 426. The resolution reduction was also beneficial
for the DBSCAN segmentation in data set A.

DBSCAN is very time demanding for region queries
(for comparison, a time of 102 s for a single full-resolution
image of data set A is required). A major drawback
of DBSCAN is that no desired number of clusters can
be set up in the algorithm. As a result, although
the general shape and size of the lesion are detected
(the main cluster), some extra small clusters may, and
usually are, present in the image (as expected, more
for smeared, malignant-like lesions). This is due to the
nonuniformity of color within the lesion and the normal
skin. Although, for a human assessment, the DBSCAN
mask for a lesion is fairly comparable with the ground
truth, the small clusters should be removed for a fully
automatic determination of the lesion mask. This can be
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Table 2. Evaluated lesion segmentation methods on data set A.
Presented metrics are the average metrics calculated for
individual images.

filter: Gaussian (σ = 1) 7×7
method sensitivity precision border error
RG-A 0.92 0.98 0.08

Bin/DBSCAN 0.91 0.95 0.09
filter: median 7×7

method sensitivity precision border error
RG-A 0.92 0.96 0.09

Bin/DBSCAN 0.91 0.96 0.09
filter: AFD exp. minimal 5 iter.

method sensitivity precision border error
RG-A 0.90 0.95 0.11

Bin/DBSCAN 0.89 0.91 0.14
filter: bilateral 2× variance

method sensitivity precision border error
RG-A 0.90 0.89 0.13

Bin/DBSCAN 0.85 0.89 0.15

done (morphological closing + thresholding, see Fig. 5)
with less effort (on a presegmented image) than on a
raw dermoscopy image. Henceforth, we will refer to
this procedure as Bin/DBSCAN. Bin/DBSCAN cannot be
used for segmenting the lesion border itself.

We evaluated the lesion segmentation (RG-A,
Bin/DBSCAN) and border detection (RG-A) errors by
comparing our results with dermatologist-determined
boundaries performed in Matlab/ImageSegmenter (data
set A) and provided by the public repository (data set B).
Those binary masks plus the class label (from the hist-pat
examination) are our ground truth. For data set A, in the
case of non-sharp borders the contour includes the most
outer region of the lesion (where the healthy skin begins),
for data set B no such details are available.

The quality of the methods was assessed as a
joint preprocessing (BTH) and segmentation step (RG-A,
Bin/DBSCAN). We evaluated data set B to make an easier
reference to the literature (PH2 database).

Numerical results are presented in Tables 2 and 3
(Task 1) and Tables 4 and 5 (Task 2). Now we comment
on the results.

The overall accuracy of the pigmented lesion
segmentation methods (both RG-A and Bin/DBSCAN)
may be influenced by the following factors:

• ground truth: the inter-dermatologist agreement on
manual borders is not perfect, especially for lesions
with a broad indefinite border; most dermatologists
draw the largest possible region of influence of the
lesion, but in fact it may not include some tumor area
‘outside’ the arbitrary border;

• the above argument also applies to segmentation: the

Table 3. Evaluated lesion segmentation methods on data set B.
Presented metrics are the average metrics calculated for
individual images.

filter: Gaussian (σ = 1) 3×3
method sensitivity precision border error
RG-A 0.85 0.91 0.15

Bin/DBSCAN 0.89 0.93 0.12
filter: median 5×5

method sensitivity precision border error
RG-A 0.83 0.90 0.16

Bin/DBSCAN 0.88 0.91 0.12
filter: AFD exp. minimal 5 iter.

method sensitivity precision border error
RG-A 0.84 0.90 0.15

Bin/DBSCAN 0.85 0.88 0.16
filter: bilateral 2× variance

method sensitivity precision border error
RG-A 0.79 0.80 0.19

Bin/DBSCAN 0.86 0.90 0.14

threshold between the healthy skin (background) and
the tumor may be by far arbitrary since the border
may be imperceptible;

• ground truth: since MB we compare with (data set
A) is obtained from a human expert, we cannot
quantitatively evaluate how different local structures
recognized in the lesion (dark and light ones) affect
the decision (is it only the border?); if it plays a role,
similar dermoscopy images (in the sense of the lesion
edge) may differ in the extent of the lesion due to the
additional structures (dots and globules, white/blue
veil, pigment mesh, pseudopods, etc.);

• the above argument also applies to segmentation:
(visually) homogeneous regions may obscure
structures that affect the performance of the
segmentation algorithm.

A comparison between RG-A and Bin/DBSCAN
depends on the available data set. RG-A is performed on
the nominal resolutions in both data sets, so the higher
resolution (data set A) seems to better correspond to the
region growing method. This is apparent both in Table 2
(Task 1) and in Tables 4 and 5 (Task 2). Bin/DBSCAN
is applied to approximately similar resolutions of data
sets (resolution of the data set A is reduced twice for
Bin/DBSCAN). This may explain why Bin/DBSCAN in
Table 2 (data set A) and Table 3 (data set B) are relatively
equal (in sensitivity and precision).

For both RG-A and Bin/DBSCAN, data set B has
apparently worse metrics which we think can be due to
many corelevant factors:

If we consider the segmentation methods themselves,
we can see that the detected lesions by RG-A are more
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similar to those delimited by the experts (Task 1). We
think this is mainly due to the adaptive threshold and seed
points embedded in the algorithm, which surpasses the
fixed threshold and seed points. The latter is the main
deficiency of the ‘classic’ region growing methodology.
RG-A is the only one among the tested methods that
allows for border detection by the lesion and background
segmentation.

The efficiency of DBSCAN depends on several
parameters (directly: eps , minPts ; in the sense of
the distance structure: bucketSize , splitTRule) plus no
desired number of clusters can be set up in the algorithm.
All those are probably the reason why this method did not
live up to our expectations. Our working hypothesis was
that DBSCAN, as a density-based segmentation method,
should perform better than region growing. It turned out
that only the use of secondary binarization could preserve
the advantages of the method. Although the general shape
and size of the lesion was detected (the main cluster),
some extra small clusters were present in the image (more
for smeared, malignant-like lesions).

In terms of Task 2 we clearly see that the well-defined
lesions (well-separated from the background) have similar
lesion and background masks, while the ‘smeared’,
worse-defined (fuzzy) lesions differ much in this aspect
(Figs. 1 and 2). The latter case gets complicated in terms
of segmentation when the edge is too ‘smeared.’ Such
cases may decrease the numerical performance; however,
they are still evaluated as ‘suspicious’ by a human expert.
The proper lesion mask should clearly show the shape of
the lesion and allow for further inspection of the local
structures (dots and globules, pigment mesh, streaks).
Separate segmentation of the lesion and the background
makes it possible to observe bright areas within the lesion
(intensity close to the background). Those structures show
regression patterns and/or the blue veil, but artifacts are
also possible. Slightly different scores in reference to the
image or the hist-pat label appear because there are some
malignant melanoma images that look similar to benign
lesions and vice versa.

• Data set B is used “as is”, i.e., its original resolution
is relatively low (about 16 times lower image area
than in Data Set A). In theory, this can have various
meanings, sometimes it can improve the result of
segmentation (fewer pixels/details, a more compact
image), another time it may worsen it (less precise
preprocessing/filtering, tuning of the segmentation
method),

• Data set B ground truth, i.e., the provided
segmentation masks (MB), although generally very
good, are anyway ’arbitrary.’ For quantitative
assessment even minor changes can contribute to
noticeable errors when we ’intersect’ MB and AB,

Table 4. Metrics for border detection by RG-A for the best
Gaussian filter regarding the visual examination of the
dermatologist. Sensitivity (specificity) means the abil-
ity of the method to detect the melanoma (benign) le-
sion.

data set sensitivity specificity accuracy
A 0.8911 0.9405 0.9135
B 0.8500 0.9091 0.8889

Table 5. Metrics for border detection by RG-A for the best
Gaussian filter regarding the hist-pat labels. Sensitivity
(specificity) means the ability of the method to detect
the melanoma (benign) lesion.

data set sensitivity specificity accuracy
A 0.8962 0.9367 0.9135
B 0.8723 0.8714 0.8718

• Examples in data set B are more demanding than in
data set A, both in terms of preprocessing (a lot of
hair, different illumination and magnification of the
lesion) and segmentation.

As an ablation study, we tested how RG-A and
Bin/DBSCAN (Tasks 1 and 2) are affected when the
preprocessing steps are completely removed. For well
centered, denoised and hair-free dermoscopy images it did
not make any measurable difference; however, for most of
the images from both data sets A and B the performance
of RG-A fell down by more than 30%. Although the same
dramatic decrease was observed for DBSCAN (different
small clusters), Bin/DBSCAN weakened the lack of the
preprocessing step. The decrease in efficiency in the latter
case was estimated at 10%.

In what follows, we will compare our numerical
results with the literature of the subject, especially in
terms of data set B. A general comparison is not possible
due to different preprocessing and segmentation methods
and different sources and statistics of the input data.

3.2. Comparison with the literature. In the work of
Ali et al. (2020), a system for classification of border
irregularity is shown through a CNN and Gaussian naive
Bayes ensemble. This approach achieves high results:
Acc = 93.6%, Sens = 100%, and Spec = 92.5%.

Guaragnella and Rizzi (2020) analyze the significant
RGB bits and the histogram representation of the
dermoscopy images to achieve Acc = 95.6%. Rizzi
and Guaragnella (2020) presented SVD-based image
denoising plus a binary orthogonalization-like procedure
for lesion segmentation. They yield Acc = 95.37% on the
PH2 database.

Segmentation of melanoma skin lesions using the
Perceptual Color Difference Saliency (PCDS) algorithm
with morphological analysis plus thresholding applied to
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Table 6. Metrics for border detection by RG-A for the best Gaussian filter regarding the hist-pat labels. Sensitivity (specificity) means
the ability of the method to detect the melanoma (benign) lesion, respectively.

source data set methods sens spec acc
Ali et al., 2020 CNN + Gaussian naı̈ve 1.00 0.925 0.936

Bayes ensemble
Guaragnella and Rizzi, 2020 RGB histogram – – 0.956
Rizzi and Guaragnella, 2020 PH2 SVD denoising + – – 0.954

binary orthogonalization
Olugbara et al., 2018 PH2 PCDS + thresholding – – 0.94–0.98
Pathan et al., 2018a PH2 new hair removal + 0.876 0.953 0.934

deformable model
Aljanabi et al., 2018 PH2 bee colony – – 0.952–0.976
Patiño et al., 2018 PH2 superpixel oversegmenting 0.865–0.921 0.687–0.964 0.752–0.952
Khan et al., 2018 PH2 entropy-based – – 0.975

binary segmentation of the saliency map is proposed by
Olugbara et al. (2018). They report Acc = 94–98% for
the PH2 database.

In the work of Pathan et al. (2018a), a new hair
detection and chroma-based geometric deformable model
is used to effectively differentiate the lesion from the
surrounding skin. On average, Acc = 93.4%, Sens =
87.6%, Spec = 95.3% are achieved for the PH2 dataset.

Aljanabi et al. (2018) report a segmentation method
based on an artificial bee colony. For the melanoma
detection in PH2, the method achieved an average
accuracy and Jaccard’s coefficient in the range of
95.24–97.61%.

Patiño et al. (2018) present a superpixel-based
strategy for (over)segmenting skin lesions on dermoscopic
images to be capable of dealing with problems such as
hairs, oil bubbles, changes in illumination, etc. without
any additional steps. The method was evaluated on data
set B (PH2) yielding Sens = 86.45-92.12%, Spec =
68.70-96.42%, and Acc = 75.19-95.24%.

A novel entropy-based method to derive features for
skin lesion segmentation and classification is reported by
Khan et al. (2018). The proposed method validated on
the PH2 data achieved Acc = 97.5%. These results are
collected in Table 6.

A review of computational methods for the image
segmentation of pigmented skin lesions is compiled by
Oliveira et al. (2016) and Ferreira et al. (2013). Various
forms of region growing and density-based segmentation
(clustering) methods are reported below.

The work of Smaoui and Bessassi (2013) is the
closest to what we have done regarding the segmentation
method, except for only lesion segmentation here, and
double segmentation in our case (lesion, background). Its
preprocessing step consists of three steps. They use a
median 5×5 filter on each RGB component separately and
perform morphological closing to eliminate hair. Finally,
they convert the image to grayscale and do a histogram

adjustment to improve the contrast. The choice for seed
points within the lesion is as follows. A list of points
with a minimum value of the gray level is produced. For
each pixel from this list, an average value is calculated
in a 5 × 5 window of its neighbors. As the seed point,
a pixel is selected, which has the minimum difference
with its neighbors. The threshold is calculated using
a few steps. First, the triangle method is used to find
an ‘optimal’ threshold from the histogram of the image
and for a given region with 3 × 3 pixels, an average
value is calculated. The actual threshold is calculated
by measuring the difference between the average and the
’optimal’ threshold. The region growing process around a
seed point can be described as the following steps:

1. collect a window of neighbors;

2. calculate the difference between the gray level of
each neighbor and the region average;

3. mark a seed pixel in the region as one with the
smallest difference;

4. update the average, threshold and gray level
difference;

5. delete the pixel from the list of neighbors;

6. return to Step 1 each time the difference found in
Step 4 is less than the threshold.

At the end, a morphological closing (with a diameter
of 5 pixels) is produced to remove some isolated pixels.

The result of the segmentation is then used in the
next steps for deriving the ABCD features and then
calculating the TDS (total dermoscopic score) to classify
into melanoma, suspicious, and benign skin lesions. They
report the accuracy, sensitivity, and specificity as 92.5% (4
false diagnoses of the 40 samples), 88.88% and 92.30%,
respectively.

Indraswari et al. (2017) analyze two setups: (i) RG
with automatic seeds and a fixed threshold 0.18, and (ii)
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RG with automatic seeds and threshold from analysis of
the interclass variance.

First, they (Fourier) transform the images to the
frequency domain to apply a Gaussian low-pass filter
(smoothing) and transform back to the spatial domain.
An analysis of the interclass variance of the overall
intensity of the melanoma image is implemented to obtain
the seed point and threshold parameter values that can
provide optimal segmentation results for each image
automatically. The interclass variance analysis is based
on the histogram of the image (in grayscale). Using each
gray level as a threshold, one can calculate the sum of the
lesion class variance and the background class variance.
To determine the gray level intensity of the seeds, two
values must be found: the gray level with the smallest
interclass variance and, the lowest gray level found in the
image (melanoma is ‘darker’ than the background skin).
Then the gray level intensity of the seed is the mean value
between the two. Such pixels are searched for in the
image. The threshold value for the region growing is the
difference between the intensity of the seed and the level
with the smallest interclass variance.

Setup (i) yields average accuracy, sensitivity, and
specificity of 96.2%, 93.8%, and 97.4%, respectively.
Setup (ii) yields average accuracy, sensitivity, and
specificity of 97.6%, 94.8%, and 98.7%, respectively.
The results are high because the threshold value used
is adaptive and the method provides the seed points
automatically.

After segmentation, Indraswari et al. (2017) also
classify the lesions by an SVM according to some features
(area ratio, circumference ratio, color) but this task is out
of our scope of our article.

Agarwal et al. (2017) show a region growing
approach, where for each individual image two arbitrary
thresholds t1 = 0.1, t2 = 0.2 and two characteristics,
‘solidity’ and ‘extent’ of the lesion are used to segment
the lesion border. For solidity, they use a fraction of the
object area to the object convex area. The extent, on the
other hand, is defined as the ratio of the object area to
the object bounding box area. Finally, a threshold wins
that maximizes both the solidity and extent of the lesion.
To prepare the images, they employ a median filter to
remove the hair edges. Two metrics are used to quantify
their procedure against the ground truth: an overlapping
score of 91.13% and an average correlation coefficient of
93.79%.

Kockara et al. (2010) compare two clustering
algorithms DBSCAN and FCM (fuzzy c-means). Each
approach is examined on a set of 100 dermoscopy images
(probably the same as in the work of Suer et al. (2011)).
Both methods are quantitatively analyzed over three
accuracy measures: border error, precision, and recall.
For DBSCAN they show on average 7%, 100%, and
76.66%, respectively, while for FCM 100% (?), 99.26%

and 55%, respectively. Also visually, the DBSCAN
algorithm more effectively delineates the targeted lesions,
and FCM has poor performance, especially regarding the
border error metric.

In the work of Suer et al. (2011) fast density
based lesion detection (FDBLD) with a new elaborated
(normalized) distance measure is shown, which is an
extension to the results of Mete et al. (2011). The
new distance measure not only considers pixel positions,
but also their colors. On a data set with one hundred
dermoscopy images, they show BE = 0.01–0.17 (few
images show a much higher BE), precision = 0.89–1.00,
and sensitivity = 0.70–0.94 (few images show a much
lower sensitivity).

Louhichi et al. (2018) set forth algorithm MDCUT.
It uses most of the concepts utilized in DBCSAN (the
core, border and noise points), but makes the process of
clustering more automatic by visual determination of local
levels of density. MDCUT starts by mapping the data into
a kd-tree data structure and identifying the (Euclidean)
distance between each point and its k-th nearest neighbor
(k-dist). Such queries are stored in a matrix of sorted
distances (the first column contains values of the nearest
neighbors, the second is for the second nearest neighbors
etc.). When we plot all pairs: (order-of-the-point
[=column-of-matrix], k-dist) we can see a scatterplot,
which is then interpolated by an exponential spline to
form a continous function F (interpolation uses a tension
parameter t). This function is monotone by intervals
and shows the distribution of densities among the data.
Points belonging to the same cluster have a very low
variation in density (more or less “horizontal” intervals)
and different clusters are separated by more sparse, nearly
“vertical” (discontinous) regions in the k-NN plot (the
so-called change/inflection points). The change points can
be calculated from the curve as those where the sign of the
curvature changes (a necessary condition, F ′′(x) = 0).
Determination of the change points in the curve means
detection of the core (=seed) pixels for the expansion of
regions. Each such point has a value (localized on the
curve F ) which is a local density threshold. Now the
region expansion occurs (called SBRG, seed-based region
growing).

The algorithm grows different clusters (each with a
range of density) starting from the seed points, directly
localized on the curve F . A data point can get to a cluster
(when below a certain k-distance), start a new one, or
remain as a noise/not classified point.

Louhichi et al. (2018) report the Dice similarity
measure (= F1-score) to be 71%, the total sensitivity of
81% and specificity of 74%.

The above results are collected in Table 7.
An interesting adaptive thresholding (AT) system for

automatic diagnosis of pigmented lesions is presented by
De Vita et al. (2012). Its first stage is devoted to lesion
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Table 7. Skin lesion border detection—RG and/or density based algorithms.
src preprocessing methods metric 1 metric 2 metric 3

Smaoui and Bessassi, 2013 median filter, morph. RG acc=0.925 spec=0.923 sens=0.889
closing, hist. adjust.

Indraswari et al., 2017 Gaussian filter RG: thresh=0.18 acc=0.962 spec=0.974 sens=0.938
(based on Fourier) automatic RG acc=0.976 spec=0.987 sens=0.948

Agarwal et al., 2017 median filter solidity, extent; corr. coeff. overlap. score –
threshold =0.940 =0.911
selection

Kockara et al., 2010 unknown DBSCAN border err. prec=1.00 sens=0.767
=0.07

FCM border err. prec=0.993 sens=0.550
=1.00

Suer et al., 2011 unknown FDBLD border err. prec= sens=
=0.01–0.17 0.89–1.00 0.70–0.94

Louhichi et al., 2018 RGB, HSV, XYZ; MDCUT Dice=0.71 prec=0.74 sens=0.81
median filter

border detection, then feature extraction and, finally,
feature classification according to the 7-point check list.

Extraction of the skin lesion border consists of three
steps: (i) conversion to the separate RGB images, (ii)
binarization using an adaptive threshold, and (iii) border
identification based on a blob-finding algorithm. In stage
(i) histograms of the R, G, and B color components are
analyzed to best derive the two modes: the pigmented
lesion (image foreground) and the surrounding skin (the
image background). The optimum threshold for each
histogram is selected by the Otsu algorithm. The image
foreground threshold defines a binary mask for the next
step. Finally, a modified Moore’s Neighbour Contour
Tracing algorithm is adopted to extract the contour of the
lesion from the binary mask. As an alternative method,
statistical region merging (SRM) is performed.

This border from AT or SRM is superimposed on
the colour dermoscopy image for visible inspection to
the human experts. They independently indicate the
border points which are then connected by a second-order
B-spline. A majority vote is used to select the final
contour of the lesion. A comparison between the manual
and automatic border is quantified by the border error
(Pennisi et al., 2016; Suer et al., 2011) introduced in
Section 2.4. They yield BorderError (AT ) = 8.7±4.8%
and BorderError (SRM ) = 10.8± 6.9%. The automatic
border resulting from AT is better than the result from
SRM. Their results are comparable to ours for the best
filter and for data set A, BorderError (RG-A) = 8.0%,
BorderError (BIN /DBSCAN ) = 9.0%, and surpass
ours for data set B, BorderError (RG-A) = 15.0%,
BorderError (BIN /DBSCAN ) = 12.0%.

4. Conclusion
In this paper, we demonstrated the applicability of region
growing and the density-based clustering algorithm in
the detection of skin lesions and their borders. Our
numerical results are comparable to other methods in
the field (taking into account possible accuracies of the
component methods), but we noticed that the cited works
usually use worse statistics of images.

In fact, due to the different selection of the images
(data set B = PH2) and different methodologies among
the presented research groups, the results cannot be
directly compared.

Although region growing is a well-known and widely
used technique, our method overcomes its limitations by
the automatic search for the seed pixels and threshold
values.

Our procedure is fairly robust to regular and
irregular/fuzzy borders, and after initial adjustments
(different requirements for image preprocessing), it may
be applied to any (standard) data set.

The proposed density-based method DBSCAN
shows less efficiency for the lesion segmentation and has
to be supported by a secondary binarization. The latter
method is capable of correctly segmenting the pigmented
lesion in the dermoscopy images.

Border extraction is only one of several factors
included in the metrics of melanoma (an essential one,
although). The proposed region growing segmentation
method is simple in terms of morphological operations
deployed, but has performance comparable to other
results indicated in the literature. It is also sensitive
to dermoscopy images with fuzzy borders, where
malignancy is more probable.
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Data availability
Data set A (Melanoma ML, 2018) used to support
the findings of this study may be released upon
application to https://easy.dans.knaw.nl/u
i/datasets/id/easy-dataset:114463, which
can be contacted through DOI 10.17026/dans-zue-zz2y.

Data set B (Mendonça et al., 2013) used to
support the findings of this study is available via DOI
10.1109/EMBC.2013.6610779.
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