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Abstract6

Heterogeneous treatment effect estimation is an essential element in the practice7

of tailoring treatment to suit the characteristics of individual patients. Most existing8

methods are not sufficiently robust against data irregularities. To enhance the robust-9

ness of the existing methods, we recently put forward a general estimating equation10

that unifies many existing learners. But the performance of model-based learners de-11

pends heavily on the correctness of the underlying treatment effect model. This paper12

addresses this vulnerability by converting the treatment effect estimation to a weighted13

supervised learning problem. We combine the general estimating equation with super-14

vised learning algorithms, such as the gradient boosting machine, random forest, and15

artificial neural network, with appropriate modifications. This extension retains the es-16

timators’ robustness while enhancing their flexibility and scalability. Simulation shows17

that the algorithm-based estimation methods outperform their model-based counter-18

parts in the presence of nonlinearity and non-additivity. We developed an R package,19

RCATE, for public access to the proposed methods. To illustrate the methods, we20

present a real data example to compare the blood pressure-lowering effects of two21

classes of antihypertensive agents.22
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1 Introduction25

The practice of precision medicine relies on a sound causal understanding of treatment effects26

varying with patient characteristics. Estimating such effects, known as the heterogeneous27

treatment effects, from observational data is typically done within the Neyman-Rubin causal28

framework with appropriate assumptions (Sekhon, 2008). Popular approaches include the29

Quality or Q-learning that directly regresses the outcomes on patient characteristics (Watkins30

and Dayan, 1992; Watkins, 1989) and the Advantage or A-learning that models the contrasts31

among treatments (Murphy, 2003; Robins, 2004).32

Despite the general applicability of these estimation methods, practical challenges abound:33

(1) Few existing estimators are designed to deal with data irregularities and high dimensional-34

ity. (2) Model-based methods remain vulnerable to model misspecification. (3) Few software35

packages are available for practical use in an off-the-shelf fashion and can handle the above36

issues. The lack of ready-made robust analytical tools has hindered the practical use of these37

methods because practitioners are rarely in a position to implement and test sophisticated38

causal inference methods.39

Efforts have been made to alleviate the impact of data irregularities. For example, Xiao40

et al. (2019) extended the L2-based R-learner (Nie and Wager, 2017), a method under the41

general A-learning umbrella, to the pinball loss function. More recently, our research team42

has put forward a general estimating equation for robust estimation of heterogeneous treat-43

ment effects, supported by strong theoretical and empirical evidence (Li et al., 2021). This44

estimating equation unifies many of the existing methods, including the R-learner (Nie and45

Wager, 2017), inverse propensity weighting (Hirano et al., 2003; Horvitz and Thompson,46

2



1952), various modified outcome and covariate methods (with and without efficiency aug-47

mentation) (Chen et al., 2017; Tian et al., 2014), and the augmented inverse propensity48

weighting method (Robins and Rotnitzky, 1995). We showed that under fairly general reg-49

ularity conditions, the robust estimators ascertained from the general estimating equation50

are asymptotic normal to allow for valid inference. Despite its broad coverage and good the-51

oretical properties, the general estimating equation estimators are not robust against model52

misspecifications, nor are they easy to implement in practical data analyses.53

This paper extends our previous work by combining the A-learner from the general esti-54

mating equation with supervised learning algorithms to further enhance its robustness again55

model misspecifications. This modification also frees analysts from the tedious and error-56

prone work of model building. We implement the causal inferences tools in the form of an57

R package - RCATE, short for Robust Estimation of the Conditional Average Treatment58

Effects, for a scalable solution to heterogeneous treatment estimation.59

2 Methods60

2.1 Notation and assumptions61

Let T be a binary variable for treatment assignment: T = 1 if a patient is in the treatment

group, and T = −1 otherwise. We define Y (1) and Y (−1) as the potential outcomes under

treatments T = 1 and T = −1, respectively. Here, Y (1) and Y (−1) are assumed to be

univariate and continuous. Let X be the p-dimensional pre-treatment covariates. In an

observational study, one observes T , X, and Y = I(T = 1)Y (1) + I(T = −1)Y (−1), where

3



I(·) is an indicator function. We assume that the data {(Yi, Ti,Xi)}ni=1 are independent and

identically distributed (i.i.d.). The estimation target is the treatment effect τ0(x), commonly

known as the conditional average treatment effect (CATE)

τ0(x) = E[Y (1) − Y (−1)|X = x] = E[Y |X = x, T = 1]− E[Y |X = x, T = −1],

where the last part follows from the ignorability assumption below. With a binary treatment62

indicator, one can always express the conditional mean outcome as E(Y |X, T ) = b0(X) +63

T
2
τ0(X), with b0(x) = 1

2
(E[Y (1)|X = x]+E[Y (−1)|X = x]). This leads to a general interaction64

model65

Yi = b0(Xi) +
Ti
2
τ0(Xi) + εi. (1)

We further define µ(x) = E[Y |X = x], µ(1)(x) = E[Y |X = x, T = 1], and µ(−1)(x) =66

E[Y |X = x, T = −1].67

To estimate τ0(Xi), we operate under the following assumptions: (1) Ignorability —68

Treatment assignment Ti is independent of the potential outcomes (Y
(1)
i , Y

(−1)
i ) given the69

covariates Xi, i.e., {Y (1)
i , Y

(−1)
i ⊥⊥ Ti|Xi}; (2) Positivity — The propensity score is strictly70

between 0 and 1, i.e., p(x) := P (T = 1|X = x) ∈ (0, 1); (3) Stable Unit Treatment Values71

Assumption (SUTVA) – the potential outcome in one individual is only affected by the72

treatment he receives; (4) Conditional Independence Error – The error is independent of73

the treatment assignment, conditional on the covariates, i.e., {εi ⊥⊥ Ti|Xi}. We further74

assume that the conditional expectation of the error exists. The commonly seen assumption75

of E[ε] = 0 is sufficient but not necessary.76
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2.2 The existing methods77

There is a sizable literature on the estimation of CATE using observational data. Caron78

et al. (2020) and Zhang et al. (2020) provided state-of-the-art reviews of the methods for79

CATE estimation. We summarize the existing methods in Table 1, along with the available80

analytical software. Importantly, most of these methods are based on the L2-loss function,81

whose performance deteriorates with data irregularity.82

(Table 1 goes here)83

The estimating equation that we proposed (Li et al., 2021), while not covering all methods84

in Table 1, does accommodate many loss functions, including the L1-loss, Huber loss, and Bi-85

square loss, and thus greatly enhancing the estimators’ robustness against data irregularities.86

In the next section, we briefly review this formulation and the methods it covers.87

2.3 A unified estimating equation for CATE88

We previously described the general estimating equation that covers many of the existing89

methods for CATE estimation. An important feature of the estimating equation is that it90

readily accommodates the L1 loss function so that robust estimation can be derived; see Li91

et al. (2021) for detailed derivation and theoretical development. Briefly, we consider the92

following estimating equation93

min
τ(·)∈F

1

n

n∑
i=1

w(Xi, Ti)M(Yi − g(Xi)− c(Xi, Ti)τ(Xi)), (2)

where F is the treatment effect function space subject to predefined assumptions such as94

smoothness, M(·) is a user-specified loss function, and the two weight functions w(x, t) and95
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c(x, t) are subject to the following constraints:96

C1. p(x)w(x, 1)c(x, 1) + (1− p(x))w(x,−1)c(x,−1) = 0;97

C2. c(x, 1)− c(x,−1) = 1;98

C3. w(x, t)c(x, t) 6= 0.99

Equation (2) covers many existing popular methods for heterogeneous treatment effect100

estimation, including the modified covariate methods (MCM) (Chen et al., 2017; Tian et al.,101

2014), MCM with efficiency augmentation (MCM-EA) (Chen et al., 2017; Tian et al., 2014),102

inverse propensity score weighting (IPW) (Hirano et al., 2003; Horvitz and Thompson, 1952),103

augmented inverse propensity score weighting (AIPW) (Robins and Rotnitzky, 1995), and104

the R-learner (RL) (Nie and Wager, 2017). In Table 2, we list the functions c, w, and g that105

meet the constraints for popular A-learning methods.106

(Table 2 goes here)107

An important appeal of the general formulation is its flexibility in specifying M , a feature108

that enhances the robustness against various forms of data irregularities through the use of109

L1 and Huber loss functions. Here, we used the L1-loss for illustration purpose. With the110

L1-loss and under the above conditions, we have111

τ0(·) = arg min
τ(·)

E
[
w(Xi, Ti) · |Yi − g(Xi)− c(Xi, Ti)τ(Xi)|

∣∣Xi

]
. (3)

In the present research, we estimate τ(X) using modified supervised learning algorithms,112

which side-step the need to specify τ , and thus enhancing the method’s flexibility and scal-113

ability without sacrificing its robustness against data irregularities.114
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2.4 Supervised learning algorithms for robust CATE Estimation115

Through a transformation, CATE estimation in (3) under the L1-loss function can be seen116

as an optimization problem of ordinary least absolute deviation (LAD),117

τ̂(·) = arg min
τ(·)∈F

1

n

n∑
i=1

w∗i (Xi, Ti)|Y ∗i − τ(Xi))|, (4)

where Y ∗i = Yi−g(Xi)
c(Xi,Ti)

and w∗i (Xi, Ti) = wi(Xi, Ti)|c(Xi, Ti)|. We now show how to adapt three118

supervised learning algorithms for this purpose.119

Depending on the structured assumptions one chooses for F , one can select an appropriate120

learning algorithm for estimation, while taking care of the high dimensionality in X. In121

Section 3, we compare the L1 and L2-based algorithms. For the L2-based methods, the122

transformed weight is w∗i (Xi, Ti) = wi(Xi, Ti)c(Xi, Ti)
2.123

With the objective function in (4), different supervised learning algorithms can be used to124

estimate CATE - the optimization becomes a weighted supervised learning problem, where125

Y ∗i and w∗i are the new outcome and new weight of each sample. The nuisance quantities in126

Y ∗i and w∗i need to be pre-estimated and plugged in. Here we use L1-based gradient boosting127

machine (GBM) with Y |T = −1, Y |T = 1, Y as outcomes to estimate µ(−1)(x), µ(1)(x), and128

µ(x). Note that µ(1)(x) and µ(−1)(x) are only needed for AIPW. And we use L2-based GBM129

with D = (T + 1)/2 to estimate p(x). Any supervised learning algorithm with a weighted130

L1 loss can be used to optimize (4) for robust CATE estimation. In this section, we describe131

three different algorithms for this purpose. The algorithms we describe are based on Random132

Forest (RF), GBM, and artificial neural network (ANN). The common process underlying133

these algorithms is graphically depicted in the following figure.134
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To achieve robust estimates of τ , we modified the existing supervised learning algorithms135

by incorporating the L2-loss function. For example in RF, we used a weighted LAD splitting136

rule and the mean-of-medians to aggregate the trees, as opposed to the L2-loss function137

and mean-of-means in the standard RF. Similarly in GBM, we used the L1-loss to compute138

the working response and we calculated the weighted medians for prediction of the terminal139

nodes. In ANN, we used weighted LAD in back-propagation, and an L1 regularization140

in high-dimensional situations to ascertain the sparse weights; here we used the adaptive141

moment estimation (Adam) to avoid being stuck at a local optimum (Kingma and Ba,142

2014). We describe the algorithmic details in the following subsections.143

2.4.1 A Robust Random Forest Learner144

We first use RF for robust estimation of CATE. The building blocks of random forests145

are regression trees (Breiman et al., 1984). The tree structure comes from the recursively146

partitioning of the sample by covariates to minimize heterogeneity in the outcomes. The147

partition that minimizes the heterogeneity in child nodes is chosen, so that variables reducing148

heterogeneity most have the best chance of being selected than the background noise variables149

(Biau, 2012). Binary splits lead to trees, and then aggregated results within the terminal150

nodes are used for prediction. The random forest creates a more stable structure and reduces151
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the variance by combining a large number of de-correlated regression trees (Breiman, 2001).152

The standard regression trees minimize the mean squared error (MSE) in child nodes153

(i.e., MSE =
∑

i∈Ll
(yi − ȳl)

2 +
∑

i∈Lr
(yi − ȳr)

2, where ȳl and ȳr are the average values154

within the left and right child nodes) (Hastie et al., 2009). And robust random forests155

for regression have been studied to gain robustness against outliers, including using mean-156

of-medians (Meinshausen and Ridgeway, 2006) or median-of-means as estimators, and the157

LAD-based splitting rule (Roy and Larocque, 2012). Empirical studies have demonstrated158

that these modifications offer more protection against outliers than the standard RF.159

The robust RF-based CATE estimation splits the samples by using the weighted LAD160

(WLAD) rule, a variant of the LAD rule. The WLAD rule is161

WLAD =
∑
i∈Ll

w∗i |y∗i − ỹ∗l
′|+

∑
i∈Lr

w∗i |y∗i − ỹ∗r
′|, (5)

where ỹ∗l
′
and ỹ∗r

′
are the leaf node medians to increase robustness and w∗i is the transformed162

weight of each observation. For prediction, we use the mean-of-medians that is consistant163

with the WLAD rule (Meinshausen and Ridgeway, 2006) instead of the median of means as164

advocated by Roy and Larocque (2012).165
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Algorithm 1: Robust RF-based CATE estimating algorithm

Input: Data {(Yi, Ti,Xi)}ni=1, number of trees T , fraction of features used in splitting

pfraction ∈ (0, 1), minimum node size k, and bootstrap sample size N .

Estimate nuisance quantities p(x), µ(x), µ(1)(x), µ(−1)(x) using (robust) GBM;

Calculate w∗i and y∗i according to Table 2 and Formulation (4);

for t in 1,...,T do

a. Randomly select N observations with replacement from the dataset as the

bootstrap sample and randomly select a subset of variables with size pfraction × p;

b. Fit a regression tree by repeating following steps until we reach the minimum node

size k:

b.1 Find the variable and the cutoff value that best split the data into two child

nodes based on (5);

b.2 Split the current node into two child nodes;

c. Calculate the median of the transformed outcomes in each terminal node as CATE

estimator;

end

Output: Mean-of-medians as the final CATE estimation τ̂(x) and splitting criterion of

trees.

166

The tuning parameters T , pfraction, k, and N can be selected by cross validation.167

2.4.2 The robust gradient boosting machine learner168

Gradient boosting machine is a supervised learning technique that produces a prediction169

model f̂(x) in the form of sequential weak-learners, typically regression trees, so that it170

performs better in high-dimensional settings (Friedman et al., 2000; Friedman, 2001, 2002).171

GBM builds the model in a step-wise fashion by allowing optimization of a differentiable loss172

10



function Ψ(y, f). The principle idea behind this algorithm is to construct weak-learners that173

are maximally correlated with the negative gradient of the loss function, associated with the174

whole ensemble.175

Friedman’s GBM algorithm initializes f̂(x) to be a constant. Then, in each iteration, it

computes the negative gradient as the working response

zi = − ∂

∂f(xi)
Ψ(yi, f(xi))

∣∣∣∣
f(xi)=f̂(xi).

A regression model g(x) is fitted to predict z from the covariates x. Finally, it updates the176

estimate of f(x) as f̂(x)← f̂(x) + λg(x), where λ is the step size. Friedman also proposed177

the LAD-TreeBoost algorithm (Friedman, 2001), a variation of GBM, which is highly robust178

against outliers. Ridgeway (2007) later extended the LAD-TreeBoost algorithm to a weighted179

version.180

In the proposed robust GBM for CATE estimation, we further extended Ridgeway’s181

algorithm by combining it with the unified CATE estimation formulation as follows:182

11



Algorithm 2: Robust GBM-based CATE estimating algorithm

Input: Data {(Yi, Ti,Xi)}ni=1, number of trees T , fraction of observations used in splitting

psample ∈ (0, 1), interaction depth c, and step size λ.

Estimate nuisance quantities p(x), µ(x), µ(1)(x), µ(−1)(x) using (robust) GBM;

Calculate w∗i and y∗i according to Table 2 and Formulation (4);

Initialize τ̂(x) to be a constant, τ̂(x) = medianw∗(y∗);

for t in 1,...,T do

a. Compute the negative gradient as the working response zi = −sign(y∗i − τ̂(xi));

b. Randomly select psample × n observations without replacement from the dataset;

c. Fit a regression tree to predict zi using covariates xi with interaction depth c and

the number of leaf nodes K;

d. Compute the optimal predictions for feature x as

ρk(x) = argminρ
∑

xi∈Sk
Ψ(y∗i , τ̂(xi) + ρ, w∗i ), where Ψ(y, x, w) = w|y − x| and k

indicates the index of the terminal node Sk into which an observation with feature x

would fall;

e. Update τ̂(x) as τ̂(x)← τ̂(x) + λρk(x), where λ is step size.

end

Output: Splitting criterion and CATE estimates as the resulted τ̂(x) from the above

iteration.

183

For robust estimation, the terminal node estimate is the weighted median medianw∗(z),184

defined as the solution ρ to the equation
∑
w∗

i I(y
∗
i≤ρ)∑

w∗
i

= 1
2
. Tuning parameters T , λ, c, and K185

can be selected via cross validation.186
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2.4.3 A robust artificial neural network learner187

Artificial neural network (ANN) is a computer program designed to simulate the way the188

human brain processes information (Goodfellow et al., 2016). A no-hidden-layer ANN with189

identity activation function is similar to linear regression in its modeling structure. But an190

ANN with multiple hidden layers offers more enhanced modeling flexibility. A feed-forward191

neural network with two hidden layers can be written as g(x) := f 3(W 3f 2(W 2f 1(W 1x))),192

where W l = (wljk) are the weights between layer l − 1 and l, and wljk is the weight between193

the k-th node in layer l− 1 and the j-th node in layer l, and f l is the activation function at194

layer l.195

Multi-layer networks use a variety of techniques to learn the weights. The most popular196

approach is backpropagation (Rumelhart et al., 1986). In training, the loss of the model is197

defined based on the difference between the outcome y and the predicted output ŷ. The most198

popular loss function is the Root Mean Squared Error (RMSE) (i.e.,
√

1
n

∑n
i=1(yi − ŷi)2).199

However, numerous studies have shown that the presence of outliers poses a serious threat to200

the standard least squares analysis (Liano, 1996). The L1-loss provides an effective remedy201

that can be applied to ANN (i.e., 1
n

∑n
i=1 |yi− ŷi|). An empirical study shows that L1-based202

estimator had an improved performance than that of the L2-based algorithm when outliers203

exist (El-Melegy et al., 2009).204

As typical for CATE estimation, the activation functions of the hidden layers are rectified205

linear activation unis (ReLUs) and the last activation function is the identity function (Nair206

and Hinton, 2010). ReLU is a piecewise linear function that outputs the input directly if it207

is positive; otherwise, it outputs zero. Models that uses ReLUs are easier to train and often208
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have better performance.209

To ensure robustness, we propose to use the weighted Mean Absolute Error (MAE)210

1
n

∑n
i=1w

∗
i |y∗i − ŷ∗i | as the loss function, where w∗ and y∗ are the transformed weight and211

outcome in the unified formulation (4). We use the adaptive moment estimation (Adam),212

a gradient-based optimization algorithm, which runs averages of both the gradients and the213

second moments of the gradients (Kingma and Ba, 2014), to train the ANN. We add an L1214

regularization term λ‖W‖1 to the loss function in high-dimensional settings in the first layer215

to achieve sparsity by driving some weights to zero (Feng and Simon, 2017; Girosi et al.,216

1995), where λ is the tuning parameter.217

The algorithm is as follows:218
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Algorithm 3: Robust ANN-based CATE estimating algorithm

Input: Data {(Yi, Ti,Xi)}ni=1, number of iterations T , batch size B, Adam parameters

β1, β2, η, and ε, and L1 regularization parameter λ in high-dimensional case.

Estimate nuisance quantities p(x), µ(x), µ(1)(x), µ(−1)(x) using (robust) GBM;

Calculate w∗i and y∗i according to Table 2 and Formulation (4);

Initialize an ANN with weights W , the decaying average of past gradients m to a zero

vector, and the decaying average of past squared gradients v to a zero vector;

for t in 1,...,T do

a. Sample a mini-batch of data {y∗i ,xi, w∗i } without replacement with size B;

b. Compute the negative gradients g(t) based on weighted MAE;

c. Update m and v by m(t) = β1m
(t−1) + (1− β1)g(t), v(t) = β2v

(t−1) + (1− β2)g(t)
2
;

d. Compute bias correction terms m̂(t) = m(t)

1−βt
1
, v̂(t) = v(t)

1−βt
2
;

e. Update the weights by W (t) = W (t−1) − η m̂(t)
√
v̂(t)+ε

.

end

Output: Weights W in the ANN and the resulted τ̂(x) represented by the network.

219

Key advantages of the algorithm-based CATE estimators, in comparison with their220

model-based counterparts, are their automated implementation and scalability, as well as221

their accommodation of the non-additive effects and the high-dimensionality of X. For dif-222

ferent algorithm-based CATE learners, we summarize the advantages and disadvantages in223

Table 3. Generally speaking, RF is easier to tune and it performs well in low dimensional224

cases. But a well-tuned GBM tends to outperforms RF in a high-dimensional data situation.225

ANN usually outperforms GBM and RF for image and text data because ANN is more flex-226

ible. For CATE estimation, however, when we have structured non-image or non-text data,227

the representation problem is easier to solve, and ANN might not offer added advantages.228
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(Table 3 goes here)229

2.4.4 An R package for implementation230

To make the proposed algorithms more accessible, we implemented the three CATE-learning231

algorithms in an R package RCATE. Each of the algorithms can be combined with MCM-232

EA, RL, and AIPW to achieve robust CATE estimation. For input data, we only require233

specification of the outcome, treatment assignment, and pre-treatment covariates. There is234

no need for users to estimate the nuisance quantities. A more detailed description of the R235

package RCATE and example code are provided in Appendix A.236

3 Simulation Studies237

3.1 Design and implementation238

We conducted three sets of simulations to evaluate the performance of the proposed methods.239

Simulation Study 1: We compared the additive-model-based and algorithm-based learn-240

ers under both L1 and L2 loss functions when the true treatment effect model involved241

interactions, i.e., non-additive.242

Simulation Study 2: We compared the proposed L1-based algorithms with other machine243

learning algorithms in high-dimensional settings.244

Supplemental Simulation Study (S): We compared the algorithm-based robust estima-245

tors against model-based ones when the true treatment effect models were indeed additive;246

see details in Appendix B.247

The methods considered in each of the three simulation studies are described in Table 4,248
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where the numbers in the parentheses indicate the specific simulation studies.249

(Table 4 goes here)250

We designed the simulation settings followed the structure of the real data in Section 4.251

The binary treatment levels (i.e., T ∈ {−1, 1}) and continuous outcome were used through-252

out. And we set the number of replications to R = 1, 000 and the size of the validation set253

to nν = 1, 000.254

We assessed the performance of these methods using mean squared error (MSE), mean

absolute error (MAE), and coverage probability (CP). The MSE and MAE were defined as

follows:

MAEv =
1

R

R∑
r=1

|τ̂ (r)(xv)− τ0(xv)|, MSEv =
1

R

R∑
r=1

[τ̂ (r)(xv)− τ0(xv)]2,

where xv is the v-th observation from the validation set, τ̂ (r)(x) is the estimator of τ(x)255

based on the r-th data replicate. We summarized the performance over the whole validation256

set by taking the average (i.e.,MSE = 1
nv

∑nv

v=1MSEv). For simplicity, we reported MSE257

and MAE.258

We calculated the CP as the proportion of the times that 95% bootstrap percentile

intervals contained the true value of interest, out of the total number of simulating iterations

(R = 1, 000), i.e.,

CP =
1

R

R∑
i=1

I(C.I. covers the true value),

The tuning parameters were summarized in Appendix B.259
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3.1.1 Simulation 1: ML vs. model-based methods when τ0 is not additive260

We generated the outcome from the following model

Yi = b0(Xi) +
Ti
2
τ0(Xi) + εi, εi ∼ (1− po)N(0, 1) + poP.

We used two different error distributions P = N(0, 100) and P = Laplace(0,
√

50). The

covariates were continuous variables (Xi ∼ N10(0, 1)). The treatment assignment followed a

logistic model

Di|Xi ∼ Bernoulli(p(Xi)), Ti = 2Di − 1, logit(p(Xi)) = Xi1 −Xi2.

Functions b0(Xi) and τ0(Xi) in the response surface were

b0(Xi) = 100 + 4Xi1 +Xi2 − 3Xi3,

τ0(Xi) = 6sin(2Xi1) + 3(Xi2 + 3)Xi3 + 9tanh(0.5Xi4) + 3Xi5(2I(Xi4)− 1),

where the true treatment effect function included an interaction term, and thus violating the261

additive model assumption.262

We compared all methods indicated by “(1)” in Table 4 while altering two design fac-263

tors: The proportions of outliers po and the outlier generating mechanisms: (1) po ∈264

{0, 0.05, 0.1, 0.15, 0.2, 0.3, 0.5}, n = 1000, and P = N(0, 100), and (2) po ∈ {0, 0.05, 0.1, 0.15,265

0.2, 0.3, 0.5}, n = 1000, and P = Laplace(0,
√

50).266

(Figure 1 goes here)267
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We reported the MSE and MAE of the CATE estimators graphically in Figure 1. The268

figure showed that all L1-based algorithms outperformed the L2-based ones. Advantage of269

the robust algorithms, as measured by MSE and MAE, increased with the proportion of270

outliers. Because the true treatment effect function was non-additive, when po < 0.2, the271

proposed machine learning algorithms outperformed additive models in MSE and CP; CPs272

were summarized in tabular form in Appendix Table B.3. The performance of robust GAMs273

was better than robust QL when the proportion of outliers was close to the breakdown point274

of LAD regression, i.e., po = 0.5.275

There were little practical differences among the robust GBM, robust ANN and robust276

RF when combined with MCM-EA and R-learning. But the robust GBM didn’t work well277

together with AIPW transformation because AIPW tended to generate transformed weights278

with a large variability, and GBM was more likely to overfit when the data were noisy (Park279

and Ho, 2019).280

3.1.2 Simulation 2: Performance in high-dimensional settings281

Here, we only considered the methods that performed well in Simulation Study 1, and we282

focused on the methods’ performance in high-dimensional settings and when outliers existed.283

We generated data sets with the same outlier distributions P , baseline function, and284

propensity score function as in Simulation Study 1. And we fixed the proportion of outliers285

at 0.15, sample size at n = 1, 000, and the data dimension at p ∈ {100, 2000}.286
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The true treatment effect functions when p = 100 and p = 2000 were

τ0(Xi) =6sin(2Xi1) + 3(Xi2 + 3)Xi3 + 9tanh(0.5Xi4) + 3Xi5(2I(Xi4)− 1)+

3Xi6 + 2Xi7 +Xi8 − 2Xi9 − 4Xi10,

and

τ0(Xi) =6sin(2Xi1) + 3(Xi2 + 3)Xi3 + 9tanh(0.5Xi4) + 3Xi5(2I(Xi4)− 1)+

50∑
j=6

βjXij, βj ∼ Unif(−2, 2),

.

Figure 2 (A) and (C) showed that when p = 100, the robust GBM and robust ANN287

combined with AIPW and MCM-EA outperformed all other methods when outliers exist.288

Among the existing algorithms, causal MARS had the best performance. The performance289

of robust RF and robust ANN combined with RL tied with that of the causal MARS. The290

boosting algorithms generally performed better than RFs, because a single deep tree tended291

to struggle to reduce bias on high dimensional data, so did the forests. When we increased292

the dimension to p = 2000 Figure 2 (B) and (D) showed that the robust GBMs had the best293

performance when the data dimension was much larger than the sample size.294

(Figure 2 goes here)295

We additionally compared the computational speed of the proposed algorithms and ad-296

ditive models under difference sample sizes and dimensions of data. The robust RF was297

implemented in R, so that the speed was relatively slow and was not included in the com-298

parisons here. The CPU time was collected on a personal computer with Intel Core i7-7700299

CPU @3.60Ghz and 32 GB RAM. Table 5 showed that the robust GBM was the most ef-300
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ficient algorithms among all those considered in the comparison. Its advantage was most301

prominent when the sample size or dimension was high.302

(Table 5 goes here)303

4 Real data application304

To illustrate the use of the proposed algorithms, we assessed the treatment effects of two305

different antihypertensive therapies by analyzing recorded clinical data set from the “All306

of Us” research program. Sponsored by NIH, the program collected research data from307

multiple sources, including health surveys, health records, and digital health technologies308

(All of Us Research Program Investigators, 2019). Research data are publicly accessible at309

https://workbench.researchallofus.org/ through web-based Jupyter Notebook.310

In this analysis, we compared the monotherapeutic effects of angiotensin-converting-311

enzyme inhibitors (ACEI) and thiazide diuretics on systolic blood pressure (SBP). We con-312

sidered those receiving thiazide as in treatment group A (n = 504), and those receiving313

ACEI as in group B (n = 1040). The primary outcome of interest is the clinically recorded314

SBP in response to these therapies. Covariates of interest included the demographic and315

clinical characteristics of the participants; see Table 6.316

We expressed the treatment effect as a function of the patient characteristics x

τ0(x) = E[Y (B) − Y (A)|X = x],

where Y (A) and Y (B) represented the potential outcome of the two treatment groups. Since317
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the treatment effect of a therapy is measured by its ability to lower SBP, a positive τ̂(x)318

indicates a superior effect of the thiazide diuretics, for a given x. An important covariate is319

the baseline SBP.320

In this analysis, we included individuals that were only on thiazide diuretic or ACEI for321

at least a month. Their first SBP within three months after the initiation of thiazide or322

ACEI was used as the outcome. The pre-treatment characteristics were measured within323

three months before the initiation of thiazide or ACEI, and they were presented in Table 6.324

Missing lab values were imputed by multiple imputation (Rubin, 2004).325

(Table 6 goes here)326

Preliminary data examination showed that the observed outcome was right-skewed. See327

Figure 3. The Shapiro–Wilk’s test confirmed that the SBP was not normally distributed328

(thiazide diuretic: W = 0.9739, p = 8.011e − 08; ACEI: W = 0.9763, p = 5.422e − 12).329

We, therefore, used the L1-based algorithms to analyze the data. Here the weighted super-330

vised learning algorithms were used to accommodate the possible complex treatment effect331

function.332

(Figure 3 goes here)333

A closer examination of the patient characteristics revealed that patients on thiazide334

had higher sodium and high density lipid (HDL) levels, lower albumin level and glomerular335

filtration rate (GFR), and more likely to be female. Using GBM, we examined the mean336

function of SBP µ̂(x), µ̂(1)(x), µ̂(−1)(x) and the propensity of patient receiving ACEI p̂(x).337

The estimated propensity score distributions were clearly different for the two treatment338

groups, whereas the mean functions were similar. See Figure 4. The different propensity339

score distributions of the two groups clearly showed the non-random nature of treatment340
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assignment, and that a naive comparison should not be trusted.341

(Figure 4 goes here)342

We then analyzed the data with the proposed algorithms: the robust RF and robust GBM343

combined with MCM-EA and R-learning. We use these four methods to estimate the CATE.344

Estimated treatment effects conditioning on pre-treatment SBP were shown graphically in345

Figure 5. To plot these marginal effects, we fixed the continuous covariates at their mean346

values, and categorical covariates at their mode levels.347

Results showed that the SBP lowering effects of thiazide diuretics and ACEI were similar348

when the pre-treatment SBP were below 160 mmHg. But for individuals with baseline SBP349

greater than 160 mmHg, diuretics tended to have a stronger SBP-lowering effect. This obser-350

vation was largely consistent with the findings of the Antihypertensive and Lipid-Lowering351

Treatment to Prevent Heart Attack Trial (ALLHAT), which showed a comparable effect352

of thiazide-like diuretic chlorthalidone and ACEI lisinopril (The ALLHAT Officers and Co-353

ordinators for the ALLHAT Collaborative Research Group, 2002). Diuretics reduce blood354

pressure through their natriuretic actions – increase urinary excretion of sodium and re-355

duce extracellular fluid volume (ECFV). It works particularly well in patients with greatly356

expanded ECFV, and thus explaining the greater SBP reduction in patients with higher357

pre-treatment SBP (Duarte and Cooper-DeHoff, 2010).358

(Figure 5 goes here)359

To verify the conditional independence error assumption, we performed the invariant360

residual distribution test (IRD-test), invariant environment prediction test (IEP-test), in-361

variant conditional quantile prediction test (ICQP-test), invariant targeted prediction test362

(ITP-test) (Heinze-Deml et al., 2018). The conditional independence error assumption held363
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for both proposed methods at the significant level of 0.05.364

(Table 7 goes here)365

5 Discussion366

The practice of precision medicine relies on a sound understanding of the causal effects of367

specific treatments in patients with different characteristics. By expressing the treatment368

effect as a function of patient characteristics, the heterogeneous treatment effect provides369

a useful quantification of the unknown causal effect. Among the existing methods for esti-370

mating heterogeneous treatment effects, few have considered the conditions of the data from371

which the estimates are derived - outliers and other forms of data irregularities could severely372

undermine the validity of the causal estimation. We described a general estimating equation373

that produces robust estimates against such data irregularities in recent work. However, the374

method requires the correct specification of the treatment effect function. From a practical375

perspective, such a requirement represents a significant constraint. Even when flexible addi-376

tive models are used to accommodate the potential nonlinear effects, there is no assurance377

that such an additive structure would be adequate. To address this issue, we introduced a set378

of modified machine learning algorithms for treatment effect estimation. We also presented379

the necessary computational tools for practical data analysis.380

When implemented within the framework of the previously proposed estimating equation381

for heterogeneous causal effects, we show that supervised learning algorithms could signifi-382

cantly reduce the risk of model misspecification without losing the method’s robustness. In383

a sense, the work presents a data-driven analytical approach that reduces the users’ burden384
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of model specification while retaining good theoretical properties of the general estimating385

equation. A critical ingredient of this approach is the use of machine learning techniques to386

optimize the objective function. Simulation results confirmed that the new procedures’ good387

performance. As a result of this development, we improved the general estimating equation’s388

scalability in real data applications, making the methods more readily usable in practical389

data analysis.390
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Table 1: Summary of existing popular CATE estimation algorithms

Base-learner/
Algorithm

Description Pros(+) and Cons(-)
Available
R packages

The single-learner
(or S-learner)

Fits a single-model for the
outcome with the
covariates and treatment
assignment indicator.

(+) If the treatment effect is
simple, then pooling the data
together will be beneficial.
(–) Performs bad if the treatment
effect is strongly heterogeneous
and the response surfaces of two
groups are very different.

rlearner
causalToolbox

The two-learner (or
T-learner)

Fits two models for the
outcome of two treatment
groups separately
with the covariates.

(+) Performs well if the
treatment effect is strongly
heterogeneous and the response
surfaces of two groups are very
different.
(–) Uses the data inefficiently.

rlearner
causalToolbox

The X-learner
(Künzel et al., 2019)

A three step approach to
crossover the information
in the control and treated
subjects.

(+) Has the advantages of both
S and T-learner.
(–) The three-step estimator
increases the risk of
over-fitting and the difficulty
in tuning parameter.

rlearner
causalToolbox

Inverse propensity
score weighting
(IPW)

Transforms the outcome
by inverse propensity
score weighting, then the
conditional expectation of
the transformed outcome
is the treatment effect.

(+) After transformation, the
IPW provides the flexibility in
choosing off-the-shelf supervised
learning algorithms.
(–) Relies on the accurate
estimation of the propensity
score.

Augmented inverse
propensity score
weighting (AIPW)

Augmented IPW is robust
to mis-specified mean or
propensity score model.

(+) In addition to the advantage
of IPW, AIPW has the property
of double robustness.

RCATE

The R-learner (RL)

Decomposes the outcome
by subtracting the mean
model and gets an
estimating equation.

(+) In addition to the advantage
of IPW, R-learner has quasi-
oracle property.

rlearner
RCATE

The modified
covariate method
with efficiency
augmentation
(MCM-EA)

Transforms the covariates
to get an estimating
equation.

(+) Same as IPW.
(–) Relies on the accurate
estimation of mean and
propensity score.

RCATE

The Q-learner

Fits the interaction
model and the slope is
the treatment effect
function.

(+) No nuisance parameter need
to be estimated.
(–) Lacks of flexibility in
algorithm choosing and sensitive
to model mis-specification.

Causal tree (Athey
and Imbens, 2016)

Uses regression tree that
splits by maximizing the
difference between
treatment effects in child
nodes to fit the outcome.

(+) Easy to interpret and
provides the grouping of
subjects.
(–) Suffers from the problem of
high variance.

causalTree
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Causal forest
(Athey et al., 2019)

Uses randomly selected
subsample and covariates
to build causal trees, then
aggregate the results.

(+) Addresses the high variance
problem.
(–) Lose the interpretability.

grf

Causal boosting
(Powers et al., 2018)

An adaption of gradient
boosting algorithm with
causal trees as weak-
learner.

(+) Well-tuned causal boosting
outperforms the causal forest.
(–) Takes longer to train than
causal forest and could overfit
the training data.

causalLearning

Causal MARS
(Powers et al., 2018)

Fits two multivariate
adaptive regression
spline models in parallel
in two arms of the data.
In each step, it chooses
the same basis function to
add to each model.

(+) Alleviates the bias problem
of tree-based algorithms because
they use the average treatment
effect within each leaf as the
prediction for that leaf.

causalLearning

501

Table 2: Parameters of some popular methods in the framework

Method w(Xi, Ti) g(Xi) c(Xi, Ti)

MCM {Tip(Xi) + (1− Ti)/2}−1 0 Ti

2

MCM-EA {Tip(Xi) + (1− Ti)/2}−1 µ(Xi)
Ti

2

RL 1 µ(Xi) {Ti − 2p(Xi) + 1}/2

IPW
{

Ti−2p(Xi)+1
2p(Xi)(1−p(Xi))

}2

0 2p(Xi)(1−p(Xi))
Ti−2p(Xi)+1

AIPW
{

Ti−2p(Xi)+1
2p(Xi)(1−p(Xi))

}2

(1− p(Xi))µ1(Xi) + p(Xi)µ−1(Xi)
2p(Xi)(1−p(Xi))
Ti−2p(Xi)+1

30



Table 3: Supervised learning algorithms for CATE estimation

Algorithm Advantages Disadvantages Main Hyperparame-
ters

Random Forests Hard to overfit,
easy to tune,
good for parallel
computing

Model can get large Number of trees,
number of features
used in splitting

GBM High-performing in
high-dimensional case

Harder to tune than
RF,
take longer to train
than RF

Number of trees,
depth of trees,
learning rate

Neural Network Can handle extremely
complex task

Hard and slow to train Number of neurons in
the hidden layer,
number of epochs,
learning rate

Table 4: Methods considered in the simulation studies. Numbers in the parentheses indicate
the specific simulation studies in which the methods were assessed.

Methods under the Unified Formulation Other Candidate Methods
MCM-EA RL AIPW Method

Robust RF (1)(2)(S) (1)(2)(S) (1)(2)(S) Robust QL (1)
Robust GBM (1)(2)(S) (1)(2)(S) (1)(2)(S) Causal BART (2)
Robust ANN (1)(2)(S) (1)(2)(S) (1)(2)(S) Causal Boosting (2)
RF (1) (1) (1) Causal Forest (2)
GBM (1) (1) (1) Causal MARS (2)
ANN (1) (1) (1) X-learner+RF (2)
Robust GAM (1)(S) (1)(S) (1)(S)
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Table 5: Comparison of the CPU time (s) of RF/GBM/ANN and additive model

Dimension Algorithm n = 1000 n = 3000 n = 5000 n = 8000

p = 10

Random Forests 0.30 1.67 3.34 7.41
GBM 0.28 0.79 1.29 2.13
Robust GBM 0.29 0.99 1.63 2.58
ANN 4.72 12.87 21.43 35.89
Robust ANN 4.51 12.63 20.90 35.25
Robust GAM 1.65 18.94 38.23 86.18

p = 100

Random Forests 2.54 12.99 28.71 60.51
GBM 2.27 6.64 11.33 18.75
Robust GBM 2.29 7.13 12.13 19.02
ANN 5.24 14.29 25.05 39.13
Robust ANN 5.24 14.22 24.63 42.04
Robust GAM 33.65 243.24 N/A N/A

Table 6: Demographic and Clinical Characteristics of Study Subjects

Variable Thiazide diuretic (n=504) ACEI (n=1040) p-value

mean (sd)
Systolic BP (mmHg) 134.19 (17.22) 133.97 (21.61) 0.838
Pre-treatment Systolic BP (mmHg) 140.17 (18.46) 138.46 (21.96) 0.131
Age (year) 54.10 (12.19) 54.08 (11.94) 0.975
BMI 38.97 (9.26) 37.57 (33.09) 0.350
Potassium (mmol/L) 4.06 (0.45) 4.03 (0.47) 0.375
Sodium (mmol/L) 139.06 (2.78) 138.60 (3.08) 0.005*
Cholesterol in LDL (mg/dL) 111.44 (42.24) 111.15 (53.06) 0.914
Cholesterol in HDL (mg/dL) 47.51 (13.89) 45.32 (16.68) 0.011*
Albumim (g/dL) 11.21 (14.09) 20.00 (17.24) <0.001*
Triglyceride (mg/dL) 171.03 (114.82) 181.31 (188.53) 0.260
Hemoglobin A1c (%) 7.25 (2.03) 7.25 (1.99) 0.993
Glomerular filtration rate (ml/min/1.73m2) 58.49 (18.56) 63.12 (18.04) <0.001*

n (percentage)
Female 324 (64.3) 589 (56.6)
Male 174 (34.5) 425 (40.9) 0.008*
Not answered 6 ( 1.2) 26 ( 2.5)
Black 113 (22.4) 366 (35.2)
White 279 (55.4) 415 (39.9) <0.001*
More than one race or not answered 112 (22.2) 259 (24.9)
Hispanic 91 (18.1) 215 (20.7) 0.254
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Table 7: Conditional independence test results (p-value)

Method IRD-test IEP-test ICQP-test ITP-test

Robust RF + MCM-EA 0.17 0.50 1.00 0.38
Robust RF + RL 0.22 0.54 0.95 0.49
Robust GBM + MCM-EA 0.06 0.57 0.69 0.29
Robust GBM + RL 0.29 0.50 0.32 0.55
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Figure 1: Results of Simulation Study 1 - MSE and MAE of different methods under various
proportions of outliers and error generating mechanisms. The robust GBMs were indicated
by red solid lines, the robust RFs were indicated by blue solid lines, the robust ANNs were
indicated by green solid lines. The GBMs, RFs, and ANNs were indicated by dashed red,
blue, and green lines. The robust GAMs were indicated by blue dotted line, and robust QL
was indicated by brown dotted line.
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Figure 2: Simulation Study 2 - Mean squared error (MSE) of different algorithms
when outliers exist. Figures A and C show the results when p = 100, Figures B
and D show the results when p = 2000.

Figure 3: Heavy-tailed and Skewed Systolic Blood Pressure Distribution.
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Figure 4: Data example: Estimated nuisance parameters by treatment group.
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Figure 5: Data example: Marginal treatment effect of pre-
treatment SBP. If the empirical 95% pointwise C.I. does not cover
zero, the interval segment is colored in orange.
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SUPPLEMENTAL MATERIALS502

Appendix A: Implementation503

Title: RCATE package504

R-package for robust estimation of CATE: R package RCATE containing code for 9 robust estima-505

tion algorithms of CATE described in the article and also the methods based on additive B-spline506

LAD regression in R.Li. The package also contains the dataset used as example in the article.507

Hypertension dataset: Data set used in the illustration of robust estimation of CATE algorithms in508

Section 4.509

Example of usage:510

## I n s t a l l package511

require ( dev too l s )512

devtoo l s : : in s ta l l github ( ” r h l i−Hannah/RCATE” )513

l ibrary (RCATE)514

515

## Data genera t ion516

n <− 1000 ; p <− 3 ; set . seed (2223)517

X <− as . data . frame (matrix ( runif (n∗p ,−3 ,3) ,nrow=n , ncol=p ) )518

tau = 6∗sin (2∗X[ ,1 ] )+3∗ (X[ , 2 ]+3)∗X[ , 3 ]519

p = 1/(1+exp(−X[ ,1 ]+X[ , 2 ] ) )520

d = rbinom(n , 1 , p )521

t = 2∗d−1522

y = 100+4∗X[ ,1 ]+X[ ,2 ]−3∗X[ ,3 ]+ tau∗t/2 + rnorm(n , 0 , 1 )523

set . seed (2223)524

x va l = as . data . frame (matrix (rnorm(200∗3 , 0 , 1 ) ,nrow=200 ,ncol=3))525

tau va l = 6∗sin (2∗x va l [ , 1 ] )+3∗ ( x va l [ , 2 ]+3)∗x va l [ , 3 ]526

527

## Use robus t GBM + R−l e a rn ing to es t imate CATE528

f i t <− r c a t e . ml (X, y , d , method=’RL ’ , a lgor i thm=’GBM’ )529

y pred <− predict ( f i t , x va l )$predict530

plot ( tau val , y pred ) ; abline ( 0 , 1 )531
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532

## Variab l e importance l e v e l533

importance <− importance . r c a t e ( f i t )534

535

## Marginal t reatment e f f e c t p l o t536

marginal . r c a t e ( f i t , ’V1 ’ )537

marginal . r c a t e ( f i t , ’V3 ’ )538
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Appendix B: Supplemental Simulation Study Results539

Supplemental Simulation Study (S): We compared the algorithm-based robust estimators against the540

model-based ones when the true treatment effect models were correctly specified. Here we assumed that the541

true effect effect τ was an additive function of X. In such a situation, robust methods based on generalized542

additive models (GAM) should provide correct estimates. We also included in the simulation an L1-based543

Q-learner (robust QL) for comparison.544

Specifically, we defined the last two methods as follows:

Robust GAM: β̂ = argminβ
1

n

n∑
i=1

w∗
i (Xi, Ti)|Y ∗

i −B(Xi)
Tβ|+ Λn(β),

Robust QL: γ̂, β̂ = argminγ,β
1

n

n∑
i=1

|Yi −B(Xi)
T γ − Ti

2
B(Xi)

Tβ|+ Λn(γ, β),

where Λ is a smoothness-sparsity penalty for group-wise variable selection and for smoothness of the regres-545

sion line.546

Model-based estimators can be more efficient when they depict the treatment effect with the right547

function. We simulated a situation where the true treatment effect τ is an additive function of X. Since548

the model-based estimators used GAM to depict τ(X), we expect them to perform well. Algorithm-based549

estimators, on the other hand, may have reduced efficiency while offering a greater protection against model550

misspecification. Here we used model-based methods as a benchmark, and compared the performance of the551

algorithm-based estimators as sample size increased.552

We compared all methods indicated by “(S)” in Table 4. We considered two scenarios: (1) For the553

robust GAMs, we fixed the sample size at n0 = 200, and for robust GBMs, robust RFs, and robust ANNs,554
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we increased the sample size from 200 to 1000 by an increment of 200; (2) For the robust GAMs, we fixed555

the sample size at n0 = 1000; for the proposed robust algorithms, we increased the sample size from 1000556

to 7000 by an increment of 2000. Specifically, we used two different error distributions P = N(0, 100) and557

P = Laplace(0,
√

50), while fixing the proportion of outliers at po = 0.15. The covariates were continuous558

variables (Xi ∼ N10(0, 1)).559

Functions b0(Xi) and τ0(Xi) in the response surface were

b0(Xi) = 100 + 4Xi1 +Xi2 − 3Xi3,

τ0(Xi) = 6sin(2Xi1) + 3Xi2 +Xi3 + 9tanh(0.5Xi4) + 3Xi5,

where the true treatment effect function was an additive model of covariates. We reported the MSE of the560

CATE estimates graphically in Figure B.1.561

Figure B.1: Simulation results of Simulation S - MSE of different methods under different
sample sizes. The robust GBMs were indicated by red solid line, the robust RFs were
indicated by blue solid line, the robust ANNs were indicated by green solid line. The robust
GAMs were indicated by blue dotted line. In the first and third columns of figures, the
sample size of robust GAMs methods was n0 = 200; in the second the fourth columns of
figures, the sample size of robust GAMs methods was n0 = 1000.

Figure B.1 showed that machine-learning algorithms’ performance improved with the sample size.562
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Table B.1: Simulation Results of Simulation S (n0 = 200)

MCM-EA

Laplace(0,
√

50) N(0, 100)
n 200 400 600 800 1000 200 400 600 800 1000

MSE

robust GBM 3.43 2.28 1.66 1.39 1.14 4.08 2.43 1.80 1.55 1.37
GBM 19.96 13.87 10.95 8.99 7.69 21.64 14.18 11.33 9.36 7.33
robust NN 5.70 2.25 1.54 1.12 1.00 5.84 2.45 1.74 1.21 1.14
NN 6.50 3.95 3.01 2.60 2.17 6.79 4.09 3.01 2.69 2.23
robust RF 2.96 2.10 1.53 1.37 1.24 3.21 2.05 1.55 1.54 1.25
RF 11.12 9.94 8.77 7.94 7.75 10.05 9.37 8.33 8.38 7.23
robust GAM 1.54 2.54
n 200 400 600 800 1000 200 400 600 800 1000

MAE

robust GBM 1.44 1.32 0.99 0.90 0.80 1.57 1.21 1.03 0.94 0.87
GBM 3.40 3.56 2.49 2.23 2.05 3.62 2.91 2.58 2.34 2.06
robust NN 1.86 1.14 0.93 0.80 0.75 1.89 1.19 0.98 0.83 0.79
NN 1.99 1.53 1.33 1.23 1.14 2.04 1.57 1.34 1.26 1.14
robust RF 1.27 0.99 0.90 0.84 0.79 1.32 1.03 0.89 0.89 0.80
RF 2.02 3.56 1.80 1.73 1.70 2.08 4.08 1.89 1.83 1.75
robust GAM 0.83 1.13

RL

Laplace(0,
√

50) N(0, 100)
n 200 400 600 800 1000 200 400 600 800 1000

MSE

robust GBM 4.87 2.88 2.19 1.77 1.52 6.46 3.19 2.36 2.05 1.77
GBM 36.93 22.98 17.28 14.28 11.88 38.67 24.42 17.34 16.77 11.55
robust NN 6.19 2.48 1.48 1.23 1.04 6.28 2.67 1.44 1.33 1.07
NN 6.78 4.28 3.45 2.87 2.60 7.30 4.39 3.51 3.10 2.62
robust RF 3.32 2.24 1.76 1.59 1.39 4.14 2.92 2.20 1.92 1.34
RF 49.57 49.48 9.36 43.16 47.60 133.48 92.12 40.54 68.37 50.74
robust GAM 1.87 3.03
n 200 400 600 800 1000 200 400 600 800 1000

MAE

robust GBM 1.71 1.32 1.07 1.01 0.93 1.95 1.38 1.18 1.08 1.00
GBM 4.56 3.56 2.50 2.73 2.48 4.78 3.71 3.16 2.97 2.53
robust NN 1.94 1.19 0.91 0.83 0.77 1.96 1.23 0.92 0.87 0.78
NN 2.03 1.60 1.43 1.31 1.24 2.12 1.63 1.44 1.36 1.26
robust RF 1.27 0.99 0.86 0.81 0.72 1.36 1.03 0.87 0.85 0.77
RF 3.61 3.56 1.81 3.57 3.67 4.61 4.08 3.64 4.35 3.89
robust GAM 0.79 1.10

AIPW

Laplace(0,
√

50) N(0, 100)
n 200 400 600 800 1000 200 400 600 800 1000

MSE

robust GBM 4.55 3.13 2.09 1.70 1.41 5.23 3.15 2.36 1.87 1.73
GBM 19.10 14.01 11.75 8.61 7.32 20.36 13.40 12.07 9.90 7.52
robust NN 5.12 2.17 1.57 1.18 0.94 5.88 2.48 1.58 1.24 0.99
NN 1.97 3.77 2.91 2.46 2.23 6.86 4.24 3.14 2.57 2.34
robust RF 2.80 1.98 1.36 1.29 1.18 3.25 1.98 1.56 1.37 1.18
RF 10.57 9.66 9.36 8.58 8.33 9.98 8.81 9.21 9.86 8.66
robust GAM 2.52 3.04
n 200 400 600 800 1000 200 400 600 800 1000

MAE

robust GBM 1.65 1.33 1.07 0.94 0.84 1.77 1.33 1.13 0.99 0.92
GBM 3.35 2.78 2.50 2.13 1.98 3.50 2.81 2.59 2.31 2.05
robust NN 1.76 1.11 0.93 0.81 0.73 1.89 1.19 0.96 0.84 0.76
NN 1.97 1.50 1.31 1.20 1.15 2.05 1.59 1.37 1.23 1.17
robust RF 1.21 0.99 0.86 0.82 0.78 1.32 1.01 0.89 0.84 0.77
RF 1.98 1.89 1.81 1.73 1.68 2.09 1.94 1.92 1.87 1.76
robust GAM 0.99 1.11
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Table B.2: Simulation Results of Simulation S (n0 = 1000)

MCM-EA

Laplace(0,
√

50) N(0, 100)
n 1000 3000 5000 7000 1000 3000 5000 7000

MSE

robust GBM 1.85 1.01 0.80 0.80 1.83 0.97 0.83 0.77
GBM 11.22 2.71 1.99 1.55 11.10 2.83 2.03 1.59
robust NN 1.48 1.04 0.84 0.78 1.46 1.03 0.86 0.84
NN 2.76 2.61 2.18 1.88 2.74 2.76 2.20 1.95
robust RF 1.63 1.31 1.01 0.84 1.62 1.17 0.96 0.88
RF 5.12 5.00 4.28 4.13 5.26 4.85 4.11 3.81
robust GAM 0.87 0.88
n 1000 3000 5000 7000 1000 3000 5000 7000

MAE

robust GBM 1.06 0.75 0.67 0.61 1.06 0.74 0.68 0.68
GBM 2.56 1.23 1.05 0.93 2.58 1.28 1.07 0.94
robust NN 0.94 0.77 0.69 0.62 0.93 0.77 0.70 0.72
NN 1.28 1.23 1.13 1.04 1.28 1.27 1.13 1.07
robust RF 0.94 0.84 0.72 0.67 0.92 0.79 0.71 0.68
RF 1.51 1.48 1.40 1.36 1.58 1.53 1.44 1.37
robust GAM 0.60 0.63

RL

Laplace(0,
√

50) N(0, 100)
n 1000 3000 5000 7000 1000 3000 5000 7000

MSE

robust GBM 2.21 0.72 0.45 0.30 2.27 0.72 0.45 0.30
GBM 29.31 4.55 3.01 2.14 27.49 5.02 3.04 1.80
robust NN 1.29 0.77 0.53 0.36 1.36 0.80 0.55 0.37
NN 3.58 3.26 2.58 1.90 3.66 3.51 2.55 1.93
robust RF 0.98 0.73 0.60 0.50 1.09 0.85 0.70 0.62
RF 107.18 91.18 91.12 72.19 127.63 91.68 81.65 70.37
robust GAM 0.64 0.61
n 1000 3000 5000 7000 1000 3000 5000 7000

MAE

robust GBM 1.14 0.64 0.50 0.40 1.15 0.63 0.49 0.40
GBM 3.80 1.51 1.20 0.97 3.75 1.59 1.25 0.96
robust NN 0.88 0.67 0.55 0.46 0.90 0.68 0.56 0.46
NN 1.45 1.37 1.22 1.04 1.47 1.42 1.22 1.06
robust RF 0.71 0.62 0.54 0.46 0.70 0.60 0.51 0.47
RF 5.44 4.89 4.61 4.04 5.73 4.96 4.65 4.19
robust GAM 0.56 0.53

AIPW

Laplace(0,
√

50) N(0, 100)
n 1000 3000 5000 7000 1000 3000 5000 7000

MSE

robust GBM 2.46 1.55 0.82 0.60 2.99 1.29 1.07 0.98
GBM 14.43 3.98 2.47 1.54 15.25 3.51 4.17 1.88
robust NN 1.43 0.94 0.66 0.43 1.46 0.89 0.63 0.43
NN 3.83 3.27 2.54 2.04 3.61 3.15 2.67 2.06
robust RF 1.28 1.00 0.73 0.57 1.35 0.93 0.75 0.63
RF 7.80 7.76 7.51 6.20 7.97 7.39 7.09 6.72
robust GAM 0.63 0.75
n 1000 3000 5000 7000 1000 3000 5000 7000

MAE

robust GBM 1.48 0.77 0.59 0.48 1.15 0.76 0.61 0.48
GBM 2.82 1.37 1.10 0.85 2.87 1.37 1.11 0.85
robust NN 0.92 0.73 0.61 0.49 0.93 0.72 0.60 0.49
NN 1.46 1.35 1.20 1.07 1.46 1.34 1.23 1.07
robust RF 0.81 0.71 0.59 0.47 0.83 0.69 0.60 0.53
RF 1.65 1.64 1.56 1.45 1.69 1.69 1.59 1.55
robust GAM 0.52 0.53
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Table B.3: Simulation Results (Coverage Probabilities) of Simulation 1

MCM-EA

Laplace(0,
√

50) N(0, 100)

po 0.00 0.05 0.10 0.15 0.20 0.30 0.50 0.00 0.05 0.10 0.15 0.20 0.30 0.50

Robust GBM 0.95 0.94 0.91 0.93 0.93 0.95 0.97 0.95 0.94 0.95 0.94 0.94 0.98 0.97

GBM 0.95 0.93 0.96 0.96 0.94 0.97 0.96 0.95 0.96 0.97 0.99 0.99 0.91 0.95

Robust NN 0.95 0.94 0.96 0.92 0.94 0.99 0.98 0.95 0.92 0.98 0.92 0.95 0.98 0.93

NN 0.96 0.76 0.87 0.47 0.83 0.79 0.89 0.96 0.39 0.43 0.27 0.32 0.35 0.29

Robust RF 0.94 0.96 0.97 0.94 0.92 0.93 0.98 0.94 0.95 0.94 0.93 0.92 0.96 0.98

RF 0.96 0.96 0.98 0.97 0.97 0.89 0.96 0.96 0.90 0.92 0.92 0.93 0.89 0.87

Robust GAM 0.23 0.38 0.49 0.54 0.57 0.66 0.74 0.23 0.39 0.48 0.54 0.59 0.66 0.76

Robust QL 0.47 0.49 0.49 0.52 0.53 0.53 0.00 0.47 0.49 0.50 0.51 0.53 0.33 0.00

RL

Laplace(0,
√

50) N(0, 100)

po 0.00 0.05 0.10 0.15 0.20 0.30 0.50 0.00 0.05 0.10 0.15 0.20 0.30 0.50

Robust GBM 0.95 0.94 0.95 0.96 0.95 0.97 0.97 0.95 0.95 0.96 0.94 0.96 0.91 0.98

GBM 0.93 0.97 0.98 0.98 0.97 0.96 0.95 0.93 0.99 0.98 0.99 1.00 1.00 0.99

Robust NN 0.94 0.95 0.93 0.96 0.92 0.93 0.96 0.94 0.95 0.96 0.93 0.97 0.91 0.98

NN 0.96 0.82 0.94 0.95 0.88 0.85 0.91 0.96 0.94 0.93 0.94 0.85 0.82 0.36

Robust RF 0.95 0.96 0.97 0.94 0.98 0.95 0.94 0.95 0.92 0.91 0.90 0.87 0.82 0.72

RF 0.94 0.89 0.98 0.97 0.87 0.93 0.94 0.94 0.82 0.93 0.89 0.95 0.89 0.86

Robust GAM 0.27 0.48 0.57 0.61 0.65 0.71 0.80 0.27 0.49 0.58 0.64 0.65 0.72 0.81

Robust QL 0.47 0.49 0.49 0.52 0.53 0.53 0.00 0.47 0.49 0.50 0.51 0.53 0.33 0.00

AIPW

Laplace(0,
√

50) N(0, 100)

po 0.00 0.05 0.10 0.15 0.20 0.30 0.50 0.00 0.05 0.10 0.15 0.20 0.30 0.50

Robust GBM 0.96 0.93 0.92 0.91 0.90 0.89 0.90 0.96 0.94 0.93 0.92 0.90 0.98 0.93

GBM 0.96 0.92 0.98 0.97 0.95 0.95 0.98 0.96 0.97 0.96 0.99 0.97 0.90 0.91

Robust NN 0.94 0.92 0.95 0.93 0.92 0.96 0.98 0.94 0.98 0.96 0.93 0.95 0.93 0.98

NN 0.95 0.74 0.89 0.96 0.80 0.73 0.88 0.95 0.44 0.88 0.84 0.87 0.83 0.78

Robust RF 0.93 0.94 0.98 0.91 0.97 0.96 0.98 0.93 0.96 0.97 0.94 0.95 0.96 0.95

RF 0.94 0.98 0.97 0.93 0.93 0.82 0.96 0.94 0.94 0.91 0.87 0.95 0.86 0.82

Robust GAM 0.54 0.57 0.59 0.61 0.62 0.64 0.70 0.54 0.58 0.59 0.61 0.64 0.66 0.73

Robust QL 0.47 0.49 0.49 0.52 0.53 0.53 0.00 0.47 0.49 0.50 0.51 0.53 0.33 0.00
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Table B.4: Tuning parameters of considered methods in simulation

Method Parameter Value

RF-based algorithms
Number of trees 50
Fraction of feathers used in splitting 0.8
Minimum node size 3

Boosting-based algorithms
Number of trees 1000
Depth of trees 2
Learning rate 0.1

Robust ANN

Number of hidden layers 2
Number of neurons in hidden layers p and p/2
Adam optimization α = 0.001, β1 = 0.9, β2 = 0.999
L1 regularization (p = 100, 2000) 0.1, if p = 100; 0.02, if p = 2000.
Number of neurons in hidden layers (p = 2000) p/10 and p/40

Robust GAM and QL
Number of knots

√
n/2

Number of degree 3
γ in SCAD 3.7
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