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Asrah Heintzelman 

ANALYSING URBAN AIR POLLUTION USING LOW-COST METHODS AND 

COMMUNITY SCIENCE 

Rise in air pollution resulting in negative health externalities for humans has created 

an urgent need for cities and communities to monitor it regularly. At present we have 

insufficient ground passive and active monitoring networks in place which presents a huge 

challenge. Satellite imagery has been used extensively for such analysis, but its resolution 

and methodology present other challenges in estimating pollution burden. The objective of 

this study was to propose three low-cost methods to fill in the gaps that exist currently. 

First, EPA grade sensors were used in 11 cities across the U.S. to examine NO2. This is a 

simplistic way to assess the burden of air pollution in a region. However, this technique 

cannot be applied to fine scale analysis, which resulted in the next two components of this 

research study. Second, a citizen science network was established on the east side of 

Indianapolis, IN who hosted 32 Ogawa passive sensors to examine NO2 and O3 at a finer 

scale. These low-cost passive sensors, not requiring power, and very little maintenance, 

have historically tracked very closely with Federal Reference Monitors. Third, a low-cost 

PurpleAir PA-II-SD active sensors measuring PM2.5 were housed with the citizen scientists 

identified above. This data was uploaded via Wi-Fi and available via a crowd sourced site 

established by PurpleAir. These data sets were analyzed to examine the burden of air 

pollution. The second and third research studies enabled granular analyses utilizing citizen 

science, tree canopy data, and traffic data, thus accommodating some of the present 

limitations. Advancement in low-cost sensor technology, along with ease of use and 

maintenance, presents an opportunity for not just communities, but cities to take charge of 
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some of these analyses to help them examine health equity impacts on their citizens 

because of air pollution.      
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CHAPTER 1: INTRODUCTION 

1.1 Motivation 

Increased anthropogenic activities and urbanization have resulted in increased 

pollutants emitted into the atmosphere, which has shown to directly tie into negative health 

impacts (Nowak & Greenfield, 2018; Nowak & Walton, 2005; Szyszkowicz et al., 2022). 

On June 22, 2022, a search in PubMed in the last 10 years on “urban pollution and health” 

resulted in 4,785 results, “NO2 and health” resulted in 1,787 results and “PM2.5 and health” 

resulted in 2,026 results. Nitrogen dioxide, PM2.5 and O3 are among the six commonly 

known “criteria air pollutants” that are regulated by the Environmental Protection Agency  

(US EPA, 2014). NO2, a highly reactive gas, is primarily formed from vehicular emissions 

(Patil et al., 2015) and can result in respiratory diseases, cardiovascular diseases, and birth 

defects, among others. This gas has a short lifespan of between 5-10 days and chemically 

converts to nitric acid before eventually precipitating out of the atmosphere. NO2 and NOx 

react to chemicals in the atmosphere to form O3 and PM2.5. Particulate matter with an 

aerodynamic diameter <= 2.5 microns, termed PM2.5, is 30 times smaller than human air. 

can stay in the air for several days, and is a risk factor for death (US EPA, 2014).  

1.2 Rationale 

The EPA’s current network of Federal Reference Monitors, designed to protect the 

health of the populace, has many gaps.  For example, Marion County, Indiana, which is 

incorporated as the City of Indianapolis and has a population of almost one million people, 

has only five Federal Reference Monitors, and only two that record continuous data. The 

entire state of Indiana has only 24 monitors, many of which do not provide continuous data. 
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Cost and maintenance alone result in a huge void in the state of Indiana’s air pollution 

examination which presents a significant knowledge gap in the state.   

A study in Seoul covering 4,017 days and 80,634 admissions in the emergency room, 

showed a direct connection with increased admissions due to mental health diseases, which 

was heightened in warmer seasons. Additionally, a short-term low dose of PM2.5 between 

0-30 µg/m3 resulted in a steep dose-response association, making PM2.5 toxicologically

relevant in the environment (Lee et al., 2019). In 2021, WHO agreed that lower 

concentrations of air pollution can also impact our health. They identify air pollution as the 

largest threat to the health of humans with increased mortality and morbidity that results 

from diseases (respiratory disease, cardiovascular disease, and lung cancer) and also 

negatively impacts other organs (WHO Global Air Quality Guidelines, 2021). Air pollution 

also poses psychosocial stressors that are present at individual as well as the neighborhood 

level (Hazlehurst et al., 2018).  

The urban built environment is changing rapidly, with an increase in impervious 

surfaces and reduction in tree cover that have also contributed to a decrease in health 

benefits (Nowak & Greenfield, 2018, 2020). With 99% of the global population breathing 

air that has pollutants in excess of WHO guidelines (WHO Urges Accelerated Action to 

Protect Human Health and Combat the Climate Crisis at a Time of Heightened Conflict 

and Fragility, 2022), we need to monitor and examine the burden of air pollution regularly 

in transformative ways spatially and temporally to not just get granular information to 

inform the citizens but also assist policy makers in enhancing legislation to address the 

current conditions. We cannot only rely on expensive stationary equipment which are not 

able to capture the heterogeneity in air quality at the hyperlocal level, which is important 
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for developing and implementing land use policy decisions. This need has resulted in 

increase in the usage of low-cost sensors in several studies (Kortoçi et al., 2022).  

Some of the low-cost (ranging from $70 - $7,800) air pollution sensors have been 

evaluated by the South Coast Air Quality Sensor Performance Evaluation Center. When 

testing PurpleAir PA-II (~$200 at the time of the test) against two Federal Equivalent 

Method (FEM) devices, the center concluded that the correlation between PurpleAir 

devices and FEM GRIMM (optical particle counters) and FEM Beta-attenuation monitors 

BAM had R-square > 0.93 and R-square > 0.86, respectively.  These values were higher 

than some of the costliest low-cost sensors.  They did report that chamber testing should 

be recommended for more extreme weather conditions. (Evaluations, 2022). PurpleAir 

sensors were addressed in an EPA webinar on low-cost sensors in 2019. Most low-cost 

sensors range between $100 - $2,500 with PM sensors having a lifespan of 1-3 years. Even 

though there are limitations in low-cost sensors, with data validation being one, with proper 

handling such data should not be discarded (US EPA, 2019). 

Various techniques have been used independently or for calibrating low-cost monitors 

from adjustments based on mobile monitoring stations or other equipment (Apte et al., 

2017; Cui et al., 2021; Zaldei et al., 2017). These methods provide us more spatial temporal 

data than the FEMs in place currently. However, even though these methods may be 

cheaper than the cost of maintained a Federal Reference Monitor, they are still cost 

prohibitive for most communities. 

With this growing concern, researchers have been turning to citizen scientists to engage 

communities and to educate people at the same time (Grootjans et al., 2022). In this study 

preparation, for example, we were at times met with trepidation by potential participants, 
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but soon after making a connection the citizen scientists took ownership of the study. We 

were in constant contact, and they were educating themselves when to not go outside, 

especially when they saw high air pollution numbers on the PurpleAir crowd sourced data 

website. Additionally, engaging citizen scientist with low-cost sensors can fill the spatial 

and temporal void in measuring air pollution variability in the built environments. This can 

aid in incorporating land use in understanding pollution exposures (Zimmerman et al., 

2020). 

1.3 Objectives of dissertation 

The primary objective of this dissertation was to utilize low-cost methods to examine 

urban air pollution. Online air pollution data was used for cities and for fine scale analysis 

low-cost active PurpleAir and low-cost passive Ogawa sensors (the latter capture data on 

criteria gasses) were utilized. Fine scale analysis objective was accomplished by 

establishing a citizen science network which was then used as both active and passive air 

pollution sensor networks. The PurpleAir sensor data required a minor humidity correction 

in the study, whereas no adjustment was required of the Ogawa sensor data as it has 

historically tracked well with FEM. In addition to the low-cost sensor data, land use data, 

tree canopy coverage data, and census data were also incorporated in the fine scale analysis. 

Additionally, as a novel introduction, accurate traffic data based on active traffic from a 

platform called StreetLight was incorporated to examine the variation and potential 

connections in the space.   
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1.4 Organization of dissertation 

This dissertation consists of three manuscripts: Chapter 2) Substantial decreases in U.S. 

cities’ ground-based NO2 concentrations during COVID-19 from reduced transportation; 

Chapter 3) Efficacy of low-cost sensor networks at detecting fine-scale variations in 

particulate matter in urban environments; and Chapter 4) The role of local vehicular type 

and green density in controlling ground-level NO2 in the urban environment  

Chapter 2 examines changes in NO2 in 11 cities in the U.S. and explores its connection 

to vehicular traffic in Indianapolis, Indiana, during the natural experiment with the onset 

of COVID-19 lockdown in March through April 2020. Chapter 2 provides an air quality 

assessment during COVID-19 based on data from continuous monitors managed by states 

hosting the 11 cities. Chapter 3 incorporates low-cost passive NO2 Ogawa sensors placed 

on a citizen science network in Indianapolis. It examines 3 cycles of deployment and 

incorporates tree canopy, land-use, census data, and Streetlight platform, a transportation-

based platform that reports real-time traffic data. Chapter 4 explores almost a year of 

continuous data from 32 active PM2.5 PurpleAir PA-II SD sensors placed on the established 

citizen science network in Indianapolis.     

1.5 References 
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High-Resolution Air Pollution Mapping with Google Street View Cars: 
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CHAPTER 2: SUBSTANTIAL DECREASES IN U.S. CITIES’ GROUND-BASED 

NO2 CONCENTRATIONS DURING COVID-19 FROM REDUCED 

TRANSPORTATION 

2.1 Introduction 

Due to a 13-fold increase in Coronavirus disease 2019 (COVID-19) cases outside 

of China on 11 March 2020, the World Health Organizations Director General 

characterized it as a pandemic (WHO Director-General’s Opening Remarks at the Media 

Briefing on COVID-19 - 11 March 2020, 2020). At the time of this writing, on 5 August 

2021, the Centers for Disease Control reported that there were over 35 million cases of 

COVID-19 in the U.S., with the total deaths exceeding 600,000 (CDC COVID Data 

Tracker, 2020). This pandemic has resulted in stay-at-home orders being instituted around 

the world, which has many negative externalities associated with it, but one positive one 

has been a marked decrease in many criteria air pollutants due to decreases in transportation 

volumes and industrial production (Nakada & Urban, 2020; Sharma et al., 2020), including 

reduced concentrations of nitrogen dioxide (NO2) (Baldasano, 2020; Şahin, 2020; Tanzer-

Gruener et al., 2020; Wu et al., 2021). This change has also been quantified via satellite 

imagery, which indicates a substantial drop in NO2 tropospheric column of over 20% from 

January to April 2020 versus the same time frame in 2019 over parts of China, Western 

Europe, and the United States (Bauwens et al., 2020) and similarly in 20 North American 

cities. Goldberg et al. (2020) calculated decreases in NO2 during this similar timeframe; 

when adjusted for seasonality and meteorology in a North American city study, they were 

between 9% and 43%. It is important to note that satellite data, due to its analysis being 
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based on the entire tropospheric column and its spatial and temporal coverage limitations, 

can misreport on the ground-pollutant measurements. Additionally, urban regions versus 

remote regions can have daily NO2 retrievals varying up to 40% (Lamsal et al., 2014). 

As anthropogenic activities of nitrogen oxide (NOx) far surpass natural emissions 

(Walters et al., 2015), they have resulted in a three- to six-fold increase in nitrogen oxide 

(NOx = NO + NO2) emissions since the pre-industrial era (Jaeglé et al., 2005). 

Anthropogenic sources of NOx include fossil fuel/biofuel combustion, industry, and the 

transportation sector, and natural sources of NOx include soil nitrification-denitrification 

processes, wild fires, and lightning (Walters et al., 2015). NO2 from traffic emissions have 

profound and measurable health implications, such as heart disease or upper respiratory 

infections, in populations with increase in nonaccidental mortality (Cesaroni Giulia et al., 

2013; Peel et al., 2005). Besides increasing acidification, exacerbating global climate 

change, decreasing visibility, and increasing ozone and aerosol in the troposphere 

(Bermejo-Orduna et al., 2014), NOx also induces small-particle formation and has shown 

to be positively correlated to adverse health conditions as a result of long-term exposure 

(Galloway et al., 2003; Marco et al., 2002). 

High vehicular emissions can result in corridors of heavy air pollution (Redling et 

al., 2013) in rural and urban regions. NO2 pollution, a tracer for vehicular emissions, has 

been linked to adverse health effects for increased asthma events in predominantly urban 

areas (Achakulwisut et al., 2019). A 20 ppb increase in NO2 has been found to increase 

chronic obstructive pulmonary disease (COPD) hospital visits, cardiovascular disease, lung 

cancer in adults, and respiratory mortality (Cesaroni Giulia et al., 2013; Peel et al., 2005). 
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Recent COVID-19 research has consistently shown reduction of vehicular travel as 

the cause of NO2 decreases; however, the one knowledge gap in this body of research is 

simply that the vehicle type (cars versus multiple-axled vehicles) is nearly as important as 

the vehicle number, and this varies substantially between cities. The onset of COVID-19 

and the stay-at-home orders in March and April have posed a unique opportunity to 

examine these changes in vehicular NO2 emission because of reduction of vehicle volume 

and type in the U.S. To examine changes in NO2 in cities and how that relates to vehicular 

traffic during the COVID-19 lockdown, we examine the impact of stay-at-home orders in 

March through April 2020 versus a five-year average of calibrated high-quality data from 

March–April from 2015–2019. We utilize 2020 daily raw data for NO2 from EPA-grade 

sensors in 11 large cities around the U.S. Additionally, NO2 concentrations in Indianapolis, 

IN, are assessed and compared to vehicle volume broken down by classification with the 

premise that truck-traffic volumes (with varying axles) are a good metric for vehicular 

emissions in cities. 

2.2 Methodology 

2.2.1 NO2 and Vehicle Miles Travelled (VMT) data 

To examine the impact of stay-at-home orders, daily NO2 data from roadside 

continuous ground level sensors from 11 major cities in the U.S. were downloaded from 

the respective state agencies for our study period (Daily Summary Report By Site, 2021; 

GeoTAM, 2021; New York State Air Quality, 2021; Quality Assurance Air Monitoring 

Site Information | California Air Resources Board, 2021). These cities were chosen for 

their population size and the availability of comparable data for air quality. Based on 
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Federal Audits required by the Environmental Protection Agency (EPA), the uncertainty 

associated with the measurement (sum of possible deviations due to the different sources 

of error that may appear) must remain below 15%(Air Sensor Guidebook, 2014). 

Data for NO2 over the months of March and April 2020 were used as lockdown 

reference months, acknowledging that some states were phasing in lockdowns during 

March and that states and cities often had different shutdown policies. This was compared 

to January 2020 data from those same sensors to determine in-year changes. The 2020 data 

are also compared to the mean 5-year sensor data (2015–2019) for March and April to take 

the meteorological conditions into account. We identified two fixed monitors within most 

regions (Cakmak et al., 2016); however, due to excessive number of missing days of data 

for San Antonio and Austin, we utilized data from one sensor each in those locations. 

Additionally, for Queens (at Queens College) and San Francisco, we were able to identify 

only one fixed continuous monitor maintained by the state. For the remaining cities, we 

averaged NO2 data from two fixed sensors each for 2020 and 2015–2019 (Indianapolis—

at Washington Park and I-70 sensor; Los Angeles—at Main Street and VA; San Jose—at 

Jackson Street an K Avenue; San Diego—Rancho and Kearny; Dallas—Cam 63 and Cam 

1067, Fort Worth—Cam 13 and Cam 17; Austin—Cam 1068, San Antonio—Cam 23, 

Houston—Cam 416 and Cam 403; Dallas—Cam 1067 and Cam 63; San Diego—at Rancho 

and Kearny) (Daily Summary Report By Site, 2021; GeoTAM, 2021; New York State Air 

Quality, 2021; Quality Assurance Air Monitoring Site Information | California Air 

Resources Board, 2021). 

Aggregate VMT data, generated at the county level, were accessed from StreetLight 

Data to examine changes in traffic patterns and emissions to obtain a uniform scale of 
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vehicle usage (Jia et al., 2020). Streetlight runs over 100 billion location data points 

gathered from smart phones and navigational devices connected to vehicles (cars and 

trucks) into an algorithm to aggregate and normalize travel patterns by region. Their 

metrics are validated not only against public sources or external sources but also using 

private data in all states except Hawaii and Alaska (StreetLight Volume Methodology & 

Validation White Paper, 2019). The percentage of population in the study area (versus the 

full country population) was used to normalize the VMT data. 

2.2.2 Indianapolis traffic sensor data 

Traffic counts are used in numerous studies to connect urban pollution like NO2 to 

examine regions, their health impacts, and the socio-economic disparities that occur as a 

result of it (Cakmak et al., 2016; Madariaga et al., 2003; Nicolai et al., 2003). For this 

study, we downloaded daily traffic volume and classification data of vehicles from 5 

continuous sensors placed on major roadways in Indianapolis, identification numbers 

990362, 950109, 990309, 990311, and 991392, reported by the Indianapolis Department 

of Transportation (INDOT). These data are publicly available via INDOT’s online Traffic 

Count Database System (TCDS). March and April 2020 daily counts were examined 

against the count and classification data from January 2020 for the referenced continuous 

sensors. INDOT has 15 vehicle classifications; however, we focused on total vehicular 

traffic, total cars, and classification of motorcycle, car, pickup, and bus as a sub-category 

(1–4) and heavy emitters (excluding sub-category 1–4). Classification 5 and above were 

primarily trucks with varying axles (Traffic Count Database System (TCDS), 2020) 
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2.3 Results 

2.3.1 NO2 

The percentage drop in NO2 values when 2020 values are compared to the 5-year 

aver- ages between January and March range from 11–56% and 4–43%, respectively 

(Tables 2.1 and 2.2), while January and April reflect a NO2 drop ranging from 14–65% in 

2020 and a drop of 13–51% in the 5-year averages (Tables 2.1 and 2.2). Between January 

and March, San Antonio was the only location where the 2020 percent change was lower 

than the 5-year average percent change (Figure 2.1). From January to April (Figure 2.1), 

the percent changes in 2020 and the 5-year averages of San Antonio and Austin were 

almost the same, while the other nine locations showed a sharp reduction in NO2 values in 

2020 compared to the same 2-month window from 2015–2019 (Figure 2.1). Excluding the 

cities of Austin and San Antonio from January to April in 2020, Indianapolis had the 

smallest reduction of NO2 at 33%, and San Francisco had the largest reduction of NO2 

values at 65% (Table 2.1). 

Table 2.1 - 2020 NO2 averages and percent changes in 2020. 

Location  
(NO2 Sensors) 

Jan 
(ppb) 

Mar 
(ppb) 

Apr 
(ppb) 

2020 
Change 
(Jan to 
Mar) 

2020 
Change 
(Jan to 
Apr) 

LA 21.40 9.44 8.33 −55.89% −61.08%
Indianapolis 10.54 9.38 7.08 −11.03% −32.90%

San Francisco 13.84 7.81 4.85 −43.59% −64.93%
Ft. Worth 10.15 6.56 5.35 −35.39% −47.32%
Houston 11.70 7.04 7.11 −39.79% −39.25%

San Antonio 8.06 4.96 4.04 −38.39% −49.82%
Austin 12.43 10.26 10.75 −17.42% −13.51%
Dallas 11.38 6.82 6.07 −40.05% −46.67%

San Jose 16.74 9.45 6.07 −43.55% −63.76%
San Diego 14.99 7.83 6.80 −47.76% −54.62%

Queens, NY 20.55 12.04 9.12 −41.39% −55.61%
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Table 2.2 - NO2 averages of January, March, and April from 2015–2019. 

Location    Jan            Mar      Apr         5-yr Change 5-yr Change
(NO2 Sensors)      (ppb) (ppb)    (ppb)  (Jan to Mar) (Jan to Apr) 

LA 22.01 16.60 13.68 −24.57% −37.85%
Indianapolis 13.79 13.23 11.83 −4.00% −14.18%

San Francisco 18.21 11.45 8.88 −37.12% −51.21%
Ft. Worth 10.26 7.69 6.07 −25.09% −40.88%
Houston 15.00 10.42 10.02 −30.54% −33.20%

San Antonio 9.64 5.54 4.71 −42.56% −51.10%
Austin 15.42 13.83 13.35 −10.32% −13.44%
Dallas 12.57 8.73 7.25 −30.61% −42.34%

San Jose 18.11 12.98 10.80 −28.31% −40.38%
San Diego 15.32 12.93 11.41 −15.64% −25.51%

Queens, NY 20.60 17.68 14.35 −14.14% −30.31%
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  Figure 2.1 - January to March and January to April NO2 changes for 2020, the average of the previous 5-years of 

         non-COVID conditions, and the decrease from annual averages. 
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Seasonal changes in NO2 naturally occur and must be considered. In summer, NOx 

and other volatile organic compounds from traffic and other sources result in 

photochemical smog, with December through February having seasonal maximum in the 

U.S. (A et al., 2008). Oxidation by photochemically produced OH in the summer reduces 

NOx, while lower concentrations of OH in the winter months results in an increased 

lifetime of NOx (Shah et al., 2020). Extrapolating further from Table 2.1, we see this in 

our multi-city data, with an average decrease in 2020 NO2 values in March and April 

ranging from −40% to −50% compared to their respective average January values. In April 

2020, Austin had the smallest reduction of −13.51%, with San Francisco having the largest 

reduction of −64.93% (Table 2.1). These decreases constitute seasonal changes plus any 

change related to COVID lockdown policies in the various cities. 

To determine the typical seasonal decrease in NO2 values and thus remove this from 

the COVID-related signals, we calculated the 5-year averages for each city to normalize 

for weather-related variations year-on-year. We found that the typical seasonal decreases 

were significantly less than the COVID-impacted 2020 decreases (Figure 2.1). Apart from 

Ft. Worth, San Antonio, and Dallas, rest of the cities had a greater than 20% drop in March–

April averages in 2020 versus the 5-year averages (Figure 2.2). On average, between 

January and March and January and April in 2020, NO2 values decreased by 14% when 

compared to their respective 5-year averages from 2015–2019 (Tables 2.1 and 2.2), 

indicating the significant impact of lockdowns and agreeing with the more regional results 

obtained by satellite analysis (Goldberg et al., 2020). We can visualize such impacts from 

the free use of tropospheric NO2 monthly mean averages from GOME-2 sensor from 



18 

www.temis.nl over the U.S. from April 2019 when compared to April 2020 (Figure 2.3) 

(Boersma et al., 2004). 

 

Figure 2.2 - March and April combined NO2 averages in parts per billion (ppb) from 

2020 versus 5 -year (2015-2019). 

Figure 2.3 - Tropospheric NO2 column averages from April in 2019 and 2020. 
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2.3.2 VMT and NO2 

Similar to the NO2 trends between January, March, and April in 2020 (Figure 2.4), 

VMT in all the locations significantly dropped with the implementation of stay-at-home 

orders (Figure 2.5). March showed a significant reduction in VMT between 11–51%, with 

NO2 reduction being between 11–56% (Table 2.3). April in comparison to January showed 

a much higher reduction of VMT between 62–89% (Table 2.3), with NO2 reduction being 

between 14–65% (Table 2.3, Figure 2.6) 
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Figure 2.4 - NO2 averages from January, March, and April in 2020. 
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 Figure 2.5 - Vehicle miles travelled (VMT) for 11 cities from January, March, and April of 2020. 
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Table 2.3 - NO2 and VMT changes between January to March and January to April 2020. 

Location NO2  
Jan to Mar 

VMT  
Jan to Mar 

NO2  
Jan to Apr 

VMT  
Jan to Apr 

LA −55.89% −40.11% −61.08% −75.97% 
Indianapolis −11.03% −23.95% −32.90% −61.87% 

San Francisco −43.59% −49.12% −64.93% −89.07% 
Ft. Worth −35.39% −13.57% −47.32% −66.50% 
Houston −39.79% −19.38% −39.25% −65.29% 

San Antonio −38.39% −10.73% −49.82% −65.29% 
Austin −17.42% −30.97% −13.51% −78.88% 
Dallas −40.05% −21.63% −46.67% −64.91% 

San Jose −43.55% −50.62% −63.76% −86.35% 
San Diego −47.76% −40.69% −54.62% −78.99% 

Queens, NY −41.39% −40.29% −55.61% −82.66% 
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Figure 2.6 - VMT changes between January to March and January to April in 2020.  
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Comparing the trends of NO2 and VMT from January to March 2020, the 

percentage changes of NO2 of Indianapolis, San Francisco, Austin, and San Jose are higher 

than the VMT percent changes in the same time frame. For LA, Ft Worth, Houston, San 

Antonio, Dallas, and San Diego, VMT percent changes, causes of which were not 

investigated, are lower than the NO2 percent changes, with Queens being about the same 

(Figure 2.7). For April, a month into the shutdown period in most states, NO2 changes are 

consistently higher than the VMT percent changes in that time (Figure 2.8). 
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   Figure 2.7 - NO2 and VMT percent changes between January and March in 2020. 
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Figure 2.8 - NO2 and VMT percent changes between January and April 2020 
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Spearman rank-correlation statistics was calculated between NO2 and VMT, with 

alpha level set at 0.05 to examine the strength of their relationship. It ranges between −1 

to +1, with zero indicating no association between two variables; −1 indicating a perfectly 

inverse strength of relationship; and a +1 indicating a perfect strength of association. This 

analysis revealed that San Diego, San Jose, and Indianapolis have higher significant 

correlation (r = 0.43–0.53) and LA, Houston, San Francisco, and Queens have lower 

significant correlations (r = 0.29–0.39) (Table 2.4). High p-values for the four cities in 

Texas (Ft. Worth, San Antonio, Austin, and Dallas) indicate that, in those locations, we do 

not have strong evidence of a relationship between NO2 and VMT variations, thus 

preventing us from understanding the relationship with this dataset. Examining the ratios 

of NO2 to VMT for January to April 2020 for all 11 cities, we find that, on average, a 

1,000,000 reduction in VMT resulted in a reduction of 0.24 ppb in NO2 for all cities. Austin 

was well below that average, at 0.06 ppb, and San Francisco had the highest impact of the 

decreased VMT (with a reduction of 0.65 ppb) for an average of a 1,000,000 reduction in 

VMT (Table 2.5). 

Table 2.4 - Spearman correlations between NO2 and VMT in March and April of 2020 

(alpha = 0.05). 

 

 

 
 
 
 

 

 

Location X Y Correlation 
Coefficient 

P-Value P-Value < 0.05  

LA NO2 VMT 0.3543 0.0051 X  
Indianapolis NO2 VMT 0.4569 0.0002 X  

San Francisco 
Ft Worth 

NO2 
NO2 

VMT 
VMT 

0.3230 
0.1329 

0.0111 
0.3072 

X  

Houston NO2 VMT 0.2910 0.0229   X 
San Antonio NO2 VMT 0.2225 0.0848  

Austin NO2 VMT 0.0454 0.7285  
Dallas 

San Jose 
NO2 
NO2 

VMT 
VMT 

0.1173 
0.4295 

0.3679 
0.0006 

 
X 

 

San Diego NO2 VMT 0.5320 0.0000 X  
Queens NO2 VMT 0.3916 0.0028 X  
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Table 2.5 - NO2 and VMT ratios from January to April 2020 for cities 

Location VMT Avg 
Chg (Jan–
Apr) = [B] 

NO2 Avg 
Chg in ppb 
(Jan–Apr) = 
[A] 

NO2/VMT 
= A/B 
(all Cities) 

LA −70,802,793.41 −13.07 0.18 × 10−6 
Indianapolis −22,364,196.21 −3.47 0.16 × 10−6 

San Francisco −13,824,506.67 −8.99 0.65 × 10−6 
Ft. Worth −31,308,793.60 −4.80 0.15 × 10−6 
Houston −67,843,483.92 −4.59 0.07 × 10−6 

San Antonio −45,369,086.33 −4.01 0.09 × 10−6 
Austin −30,210,481.83 −1.68 0.06 × 10−6 
Dallas −36,617,918.66 −5.31 0.15 × 10−6 

San Jose −21,531,553.94 −10.67 0.50 × 10−6 
San Diego −33,359,270.66 −8.19 0.25 × 10−6 

Queens −33,089,110.33 −11.43 0.35 × 10−6 
Average   0.24 × 10−6 

 

2.3.3 Indianapolis road sensor data 

Given that the Spearman correlation between NO2 and VMT in Indianapolis is 

significant, we examined the city further. An expanded Spearman correlation test indicates 

that the correlation between VMT, NO2, and vehicle counts in March and April 2020 are 

all highly significant, with moderate correlations between VMT and NO2 and high 

correlations between total vehicles and VMT, as expected (Table 2.6). 

Table 2.6 - Spearman correlation between vehicles and VMT and NO2 in Indianapolis, 

March–April 2020. 

Location X Y Correlation 
Coefficient 

p-Value 

Indianapolis Avg Total Vehicles VMT 0.90 <0.005 
Indianapolis Avg Total Vehicles NO2 0.54 <0.005 
Indianapolis VMT NO2 0.46 <0.006 

 

Average counts of total vehicles, vehicle classification excluding categories 1–4 

(excluding motorcycle, car, pickup, and bus-proxy for trucks), NO2, and VMT show a 

decline in all categories in March and April when compared to January 2020 (Table 2.7). 
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VMT percentage reduction in April versus January is almost two times that of the average 

total vehicles in Indianapolis and of the NO2 percentage reduction in that time period 

(Table 2.8), indicating that a percentage reduction in the average total vehicles results in 

almost an equivalent percentage reduction in NO2 in the city in that month. Extrapolating 

from Table 2.8, we can make the following observation regarding the change from January 

to April. 

An average of 1,876 (38,494–36,618)-unit reduction in average total vehicles, 

excluding motorcycle, car, pickup, and bus, is equivalent to a 32% (Matthes et al., 2007) 

or an 1.11 ppb (0.32 × 3.46) average burden reduction of NO2 in Indianapolis. 

Table 2.7 - Indianapolis vehicle count, NO2, and VMT in 2020 

 Avg 
Total 

Avg 
Total 

Avg 
Vehicles 

Avg 
Vehicles 

Avg NO2 

2020 (ppb) 
Avg VMT 

2020 
Month Vehicles Cars (1 to 4) (Excl 1  

to 4) 
  

Jan 336,971 239,289 298,476 38,494 10.54 36,147,631 
Mar 310,327 210,699 268,216 42,111 9.38 27,490,875 
Apr 220,784 137,125 184,166 36,618 7.08 13,783,435 

 
Table 2.8 - Percentage and unit change of vehicles, VMT, and NO2 from January to April 

of 2020. 

Variable January April Unit_Chg 
 (Jan–April) 

Pct_Chg  
(Jan–Apr) 

Avg_VMT 36,147,631 13,783,435 −22,364,196 −61.87% 
Avg_NO2(ppb) 1 10.54 7.08 −3.46 −32.83% 
Avg_tot_veh 2 336,971 220,784 116,187 −34.48% 
Avg_tot_cars 3 239,289 137,125 102,164 −42.69% 
Avg_veh (1–4) 4 298,476 184,166 114,310 −38.30% 
Avg_veh (excl 1–4) 5 38,494 36,618 1876 −4.87% 
1 NO2 averaged from two sensors in Indianapolis. 2 Total count of vehicles averaged over the 5 sensors in 
Indianapolis. 3 Total count of cars averaged over the 5 sensors in Indianapolis. 4 Total count of vehicle class 
1–4 (motorcycle, car, pickup, and bus) averaged over the 5 sensors in Indianapolis. 5 Total count of a proxy 
for trucks averaged over the 5 sensors in Indianapolis. 
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2.4 Discussion 

The onset of COVID-19 and the stay-at-home orders in March and April have 

presented an opportunity to examine the changes in NO2 concentrations and their 

relationship to VMT in 11 cities in the U.S., with implications for local health outcomes. 

Our analysis of the impacts of stay-at-home orders utilized ground-based sensor 

data from 11 U.S. cities. We found an average reduction of NO2 of 45% measured in March 

and April 2020 when compared with their 5-year averages of 29% (2015–2019) (Tables 

2.1 and 2.2). January to April 2020 resulted in a NO2 drop between 14–65% versus its 

respective 5-year average drop between 13–51%. Four Texas cities had poor correlation 

between VMT and NO2 (Ft. Worth, San Antonio, Austin, and Dallas). This offset compared 

to studies using satellite data is likely due to differences in the air being sampled with each 

approach (i.e., ground-level versus troposphere scale). San Diego, San Jose, and 

Indianapolis had the strongest strength of relationship between VMT and NO2, as is 

illustrated from the correlation analysis. 

The VMT reduction in April 2020 ranged between 62% and 89% (Table 2.3) when 

compared to January 2020. Average ratios of NO2/VMT for the 11 locations indicates that 

for every 1,000,000 less VMT, NO2 decreases by an average of 0.24 ppb (Table 2.5). A 

1,000,000 average VMT drop in San Francisco resulted in the most significant decrease in 

NO2 (0.65 ppb), and Houston resulted in the least significant decrease (0.07 ppb). The 

petrochemical industry in Texas, and particularly in the greater Houston area, probably 

plays a significant role in NO2 production (Jobson et al., 2004), and thus the VMT-NO2 

relationship is not likely the only significant factor influencing the scale of observed 

decreases in NO2. 
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The lack of observed significant correlations between NO2 and VMT for the four 

Texas cities remains unresolved. We suggest two options: (1) the locations of the fixed AQ 

sensors’ locations in relation to emission sources as related to traffic and non-traffic need 

to be identified and incorporated with meteorology, as their absence may not be ideal for 

capturing the more regional emission sources that are better characterized by satellite 

observations (Goldberg et al., 2020) that might be an issue for more sprawling cities, and/or 

(2) VMT along with specific traffic volume and classification analysis from platforms like

StreetLight may be a more robust metric for extrapolating local impacts of NO2 emissions 

from vehicle sources. A much denser array of high-quality, ground-based sensors would 

likely have to be in place to address option (1) above, but with option (2), we can, at least 

for one of the cities (Indianapolis), compare NO2 to actual vehicle count and classification 

data for several locations to address the issue. 

Since VMT may not be the best indicator of pollution impacts, we can use traffic 

counts and vehicle classifications in addition to VMT to create localized indices that can 

assist local governments to plan and/or to adjust traffic flows to address the impacts of high 

NO2 values. In future studies, placement of NO2 sensors in relation to the NO2 sources, 

which would also impact the sensors readings, should be considered. This NO2/VMT ratio 

(Table 2.5) should be tested in other cities in different seasons, which could be then used 

as a proxy in examining NO2 production in different regions while gauging the impact of 

transportation changes. This can assist in classifying the impact of traffic changes in 

regions from the most sensitive to the least. In addition to sensor placement, meteorological 

conditions, like temperature, wind speed, relative humidity, and precipitation, also play a 

role in the transport of atmospheric gases (Tobías et al., 2020), which were also not 
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considered in this analysis. Such conditions are not uniform spatially and have shown to 

cause column NO2 readings to differ by about 15% over monthly timescales (Goldberg et 

al., 2020); high winds in particular can play a role in dispersing NO2 pollutant 

concentrations throughout the year (Arain et al., 2009). 

A deeper look into vehicle counts and classification in Indianapolis indicates that 

the drop in average total vehicles percentage is almost identical to the percentage drop in 

its NO2 values (Table 2.8). An 1,876-unit reduction in proxy truck average in Indianapolis 

results in lowering VMT, which in turn should yield a decrease in average NO2 values by 

1.11 ppb (Table 2.8). Building on this process in time and space, this calculation can be 

useful in examining regions that should be targeted first and would have the biggest impact 

of the reduction in NO2 through traffic manipulation. In places like Houston, where there 

is a presence of other significant industrial emissions of NO2, their emission impacts should 

also be incorporated for a more comprehensive understanding. 

In qualitative terms, the observed substantial reductions in NO2 would, all other things 

being equal, provide some benefits to human health. With the return to business- as-usual 

practices, these health benefits will be transitory. Satellite measurements of NO2 are 

outstanding for capturing regional trends, but the heterogeneity of NO2 at the ground level 

in a given city (Coppalle et al., 2001) is not well-captured and thus pinpointing that 

emission sources that are proximal to population centers at the fine scale should be a high 

priority for city planners and transportation design. This latter point is critical in that the 

highest concentrations of NO2 and many other criteria air pollutants are disproportionately 

located in lower-income communities (Cakmak et al., 2016; Miranda et al., 2011). The 

overlapping issues of poor air quality and particular susceptibility, likely via co-
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morbidities, of these same communities to severe COVID disease (Fattorini & Regoli, 

2020) speaks to the need to better constrain ground-level air pollution levels with an eye 

toward applying health equity solutions in cities. 

 

2.5 Conclusion 

The pandemic-driven shutdown policies instituted in cities across the U.S. substantially 

decreased many harmful air pollutants, including NO2 (Berman & Ebisu, 2020; Goldberg 

et al., 2020). We found this stable reduction within cities using ground-based monitors, and 

it is largely tied to reduced traffic volume, with other factors, such as industrial emissions, 

playing a variable role. Although ground-based monitoring ties the concentration data 

much more closely to com- munities and local health impacts than does more regionally 

comprehensive satellite data, the paucity of monitors and likely disconnects between 

metrics that are meant to capture traffic volume reduces their effectiveness from a public 

health standpoint. 

This observed reduction in urban NO2 concentrations ranging between 11% and 65%, 

a rare silver lining of the devastating pandemic, is likely temporary, but it does point to the 

tight connection between traffic-related pollution sources and local impacts. This 

connection highlights a two-fold issue: that local air-pollution hotspots may exacerbate 

diseases like COVID and are currently under-studied, especially when it comes to 

examining pollutant burden by taking vehicle classifications into account, as we illustrated 

in Indianapolis, where we accounted for an average of 1.11 ppb reduction in NO2. Two 

actions that city planners can take to promote health equity in their communities are to 

implement environmental-monitoring programs that link data points (i.e., monitors) more 
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strategically to population density and to implement local transportation and zoning 

policies that examine and protect community health and build health equity into the system. 
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CHAPTER 3: THE ROLE OF LOCAL VEHICULAR TYPE AND CANOPY 

COVERAGE IN CONTROLLING GROUND-LEVEL NO2 IN THE URBAN 

ENVIRONMENT 

3.1 Introduction 

Nitrogen Oxides (NOx), including nitrogen dioxide (NO2) and nitrogen oxide (NO),

negatively impact biodiversity and human health worldwide (Almaraz et al., 2018). 

Ground-level nitrogen oxide, a reactive nitrogen specie (Nr) is limited by the amount of 

available ozone (O3) as seen in Equations 1-3 (Matthes et al., 2007; Palmgren et al., 1996): 

NO + O3  NO2  +  O2        ( Equation 1) 
NO2  +  Light   NO  +  O        (Equation 2) 
O2   + O         O3                           (Equation 3) 

In vehicles, N2 reacts with O to form NO and N. This is limited by the high amount 

of energy that is required to break the bond of N2 (Heaton, 1990). During daytime 

photolytically produced OH oxidizes NO2 to nitric acid (HNO3). While as at night the 

oxidation of NO2 by O3 produces nitrate radical (NO3
-1) which in a couple of further steps 

forms HNO3 as well (Elliott et al., 2007).     

NO2 concentrations rise in the cooler months not only due to increase of 

anthropogenic contribution sources but also due to its longer residence time due to seasonal 

photochemical and seasonal conditions of the planetary boundary layer. Higher boundary 

layers in spring and summer contribute to increased dispersion during those months and 

thus resulting in lower ground-level concentrations (Kendrick et al., 2015; Voiculescu et 
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al., 2020a). Connection between these pollutants was witnessed globally during COVID 

lockdown due to decreased anthropogenic activities (e.g., Heintzelman et al., 2021). Data 

analyzed from over 10,000 ground-based global monitors, during the lockdown, showed 

that NO2 and PM2.5 had a  marked reduction of 45.8% and 16.1% when it was compared to 

previous five years, whereas O3 increased by 5.4% which could be attributed to reduced 

traffic as well as industrial activities  (He et al., 2021).  

Globally, anthropogenic reactive nitrogen is modeled to increase to approximately 

156-270 Tg N/yr from the early 1990s to 2050 (Galloway et al., 2004). In 2020, the global

contribution to reactive nitrogen from fossil fuel combustion alone was 34 Tg N/year 

(Galloway et al., 2021). Anthropogenic emissions have also resulted in significant negative 

impacts to terrestrial and aquatic ecosystems through wet and dry deposition (Anenberg et 

al., 2018; Díaz-Álvarez et al., 2018; Galloway et al., 2003).  

Nitrogen oxides and ground-level ozone are causing higher incident of asthma, 

upper respiratory disease, cardiovascular disease, birth defects, and sudden infant death 

syndrome (Anenberg et al., 2018; Hazlehurst et al., 2018; Hwang et al., 2019; Meng et al., 

2021; Padula et al., 2021). As NO2 increases, formation of ozone and fine particulate matter 

(PM2.5) also increases, raising respiratory mortality and morbidity (Lamsal et al., 2013; 

Meng et al., 2021; Olaniyan et al., 2020; Rao et al., 2014). An overlap of high atmospheric 

pollution, high population and poor health quality in the Midwestern region of the U.S 

results in highest incident of premature mortality in this area (Fann et al., 2011).  

In 2015 alone, 9-23 million emergency room visits globally were estimated to be 

attributed to ozone exposures. While as between 0.4 – 0.5 million could be attributed to 

exposure to NO2, which was underestimated as near road exposures were not captured in 
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the study. NO2 and PM2.5 was found to have the greatest association, in this 2015 data, 

between it and onset of new asthma cases, with a third of the yearly new pediatric cases 

resulting from it. PM2.5 had limited cases in pediatrics, but NO2 was consistently reported 

as a risk factor in all age groups (Anenberg et al., 2018). Ozone exposure not only results 

in alterations to the central nervous system, but also results in brain responses similar to 

systemic stress (Gackière et al., 2011). 

Due to these serious health impacts and increased risk of mortality, the U.S. 

Environmental Protection Agency (EPA) has set NO2 hourly maximum standards at 100 

ppb and 8-hour O3 standards at 0.070 ppm (70 ppb) (US EPA, 2014a), and requires states 

to monitor these gases. As examined in our previous study, typically, states have very few 

continuous monitors, and even large cities might only have 1 or 2 continuous monitors 

(Heintzelman et al., 2021). This spatially-limited dataset is due to the challenging and cost 

prohibitive nature of conducting such analyses at a finer scale (Jaeglé et al., 2005). Local 

anthropogenic sources like vehicles are some of the primary contributors to these 

pollutants, having local as well as regional impacts. Several of these pollutants decrease 

with decay to background levels on average at 115-300 m (0.12 - 0.3 Km) from road edge 

(Karner et al., 2010). Because of the relatively short residence time of NO2 (~1 day; 

Wallace & Hobbs, 2006), it is typically at its highest concentrations near its source (Lamsal 

et al., 2013), and thus fine spatial and temporal scale analysis are necessary to examine and 

predict the burden and outcomes of human exposure to pollutants. Additionally, we know 

that there are over 45 million individuals in the U.S living in close proximity to busy 

roadways who are exposed to vehicular emission, a threat to human health(US EPA, 

2014b).    
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These health impacts from air pollution (Meo et al., 2022; Olaniyan et al., 2020; 

Roberts et al., 2019) and the nature of the pollutants presents a need to locally monitor 

them in a cost effective way. To fill this gap, there has been a rise in interest and use of low 

cost sensors in air quality studies (English et al., 2017; Knibbs et al., 2016; Mavko et al., 

2008; Pope et al., 2018; Sather et al., 2001; Tanzer-Gruener et al., 2020). In conjunction 

with pollution sources, meteorologic factors are critical for modulating air pollutant 

concentrations at the ground level. For example, seasonal meteorological parameters play 

a role in reducing or increasing air pollution, with lower solar radiation (resulting in lower 

temperatures) and humidity in winter resulting in typically higher levels of NO2 in the 

winter and lower levels in the more intense solar radiation (higher temperature) months 

during summer (Çel, 2007; Cichowicz et al., 2017; Voiculescu et al., 2020a). Additionally, 

the impacts of vehicles on NO2 levels (Harper et al., 2021; Heintzelman et al., 2021) as 

well as vegetations (Harper et al., 2021) role in altering NO2 levels as we move towards 

more urbanization has also been recognized (Nowak et al., 2006; Nowak & Greenfield, 

2018b).  

This study aims to gain insight into spatio-temporal variability of ground-level 

urban air pollution by analyzing data from 32 low-cost Ogawa & Co passive samplers in 

an eastern portion of Marion County, Indianapolis, Indiana. Ogawa samplers have been 

evaluated in several studies of various timespans, ranging from hours to a year, with over 

90% of resulting values consistent with Federal Reference Methods Monitors (FRM) data. 

Not only are these samplers designed to perform like an equivalent method, but they are 

also low-maintenance, convenient to load and transport, don’t require a power source, and 

are cost effective. This prevents loss of data due to any breakdown of equipment making it 
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a very valuable tool in air pollution studies (Korf et al., 2020; Mukerjee et al., 2004; Sather 

et al., 2006, 2007). We used air quality data from Ogawa sensor network along with various 

meteorological, land use, traffic, and census variables (APPENDIX A) in the Pleasant Run 

(PR) airshed to examine the impact of: (1) vehicle count, and medium and heavy truck 

indices on local NO2 concentrations, (2) tree canopy coverage on NO2 concentrations.  

3.2 Methodology 

3.2.1 Passive Sampling of NO2 and O3

Figure 3.1. The spatial distribution of 32 sensors in the study area. 

We recruited 32 citizen scientists in the PR airshed in Indianapolis, Indiana, largely 

in collaboration with Keep Indianapolis Beautiful (KIB), a local community based 

nonprofit organization with a focus on improving the environment. As phase 1 we installed 

PurpleAir PA-II-SD particulate matter sensors, and in phase 2, over several deployment 

Source: Maptitude 
Data: February 8, 2022 
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cycles, we deployed Ogawa passive samplers to capture NO2 and O3 concentrations (Figure 

3.1). Sensors were installed at approximately 4 feet – 8 feet (1.2 meter – 2.4 meter) above 

ground with one sensor placed in a 3-story balcony, for one week each seven times between 

September 2018 and July 2020. Each analysis cycle we also deployed a sensor at one 

control site in the area (KIB headquarters building). Since data from 3 deployments in 2019 

encompassed all 32 sites, the specific time periods used from 2019 in this study covered: 

January 20-27, March 30- April 6, and June 29- July 6.  

Ogawa passive samplers consist of a reusable unit which holds a solid cylindrical 

tube made up of 6 parts. Each end of the tube has a diffuser end cap followed by a stainless-

steel screen, a 14.5 mm collection pad for NO2 or O3, a Teflon ring and a Teflon disk. Prior 

to deployment each unit was rinsed with Milli-Q water and dried before placing the 

collection pad between the 2 stainless steel screens. After loading the units, they were 

placed in a small plastic bag securely placed inside a brown vial with a screw top. To 

streamline deployment and retrieval we designed a contraption shown below that was 

easily hung at each site (Figure 3.2). At the end of each sampling cycle, we retrieved the 

exposed devices as well as the unopened control device from KIB back to the lab. At the 

lab the initial steps were reversed, and the collection pads were placed in separate clear 

shipping vials before mailing them to RTI International in North Carolina, a lab used by 

Ogawa for analysis. RTI extracts the NO2 pads in Deionized (DI) water and analyzes by 

Ion Chromatography (IC). Ozone pads are extracted the same way and analyzed for nitrate 

by IC. For IC analysis the lab calibrates their system daily with standard ranges depending 

on the pollutant. Lastly, to analyze NOx pads they use continuous flow colorimetric 

analyzer (FIA) (PROTOCOLS – OGAWA USA, 2021). 
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Ogawa passive samplers have been used for different sampling periods (Cowie et 

al., 2019; Masey et al., 2017a). For example, Cowie et al., 2019 underestimated 7-day 

exposure concentrations but explained 87% of temporal variation making them a sound 

NO2 sampler. Empirical corrections based on wind speed which impacted their sampler’s 

increased accuracy by only 5%. They found the mean of 947 sites in a land use regression 

model to be between the satellite data mean and a Bayesian model mean. Even without 

correction this is a more robust measurement process than satellite- land use regression 

models which have shown to predict 69% variability at urban sites and an overall prediction 

of 58% at all sites (Knibbs et al., 2016). Even when there are associations and trends 

between in situ and satellite data measurements, one reason for the in situ measurements 

being different than satellite data is due to the fact that the former is fine scale concentration 

versus the latter which is averaged over an area (Kharol et al., 2015). 

      Figure 3.2. Passive sensor contraption designed for this deployment at 32 sites. 

3.2.2 Meteorological data 

A correlation exists between NO2 and O3 (Pancholi et al., 2018; Paraschiv et al., 

2020; Zoran et al., 2020), as well as between NO2 and meteorological variables such as 
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wind speed, temperature, and the composition of vehicle fleet (Karner et al., 2010; Masey 

et al., 2017a; Ngarambe et al., 2021; Voiculescu et al., 2020a). We accessed temperature, 

and wind-speed (January data was from Interstate I-70 monitor only due to missing data 

from the Washington Park monitor) data from the Indiana Department of Environmental 

Management (IDEM) Washington Park continuous flow sensor (WP) and Interstate 70 (I-

70) (Monthly Summary Report, 2021). Due to large gaps in data from the I-70 monitor, we

primarily utilized Washington Park monitor data in this analysis. Even though there can be 

small yet significant temperature variation with green spaces being cooler and impervious 

spaces being warmer (Scott et al., 2017), we are assuming here that the predominant 

temperature variation is temporal rather than spatial. 

3.2.3 Tree canopy data 

Estimates of tree canopy cover (TC) in the study region were based on 1-meter 

resolution land cover raster produced by our partner KIB and the University of Vermont 

Spatial Analysis Laboratory. The land cover data were derived from classification of 

National Agricultural Imagery Program (NAIP) data acquired in 2013 and LiDAR data 

acquired in 2009. This dataset was used to quantify tree canopy (TC) in the study region 

census tracts and within buffers at varying distances from the sensor locations. We ran our 

analysis in this study of tree canopy coverage in a 1 km buffer to capture the immediate 

impacts of the sensor locations (Mullen et al., 2022). TC is constituted by layers of 

branches, stems, and leaves on trees that cover the ground when it is viewed from above. 

ArcMap 10.8.1 ® was used to access and extract these values at varying length from the 

sensors. At the census tract level tree canopy coverage ranged between 17-46%, with an 

average of 29%.  
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We know that urban Heat Islands (UHI) are a product of the built environment 

(Speak et al., 2020). Additionally, tree canopies play a role in the thermal energy balance, 

and canopy traits like Leaf Area Index and crown widths have been found be the most 

impactful on temperature variations within the UHI (Scott et al., 2017). Urban greening 

initiatives, as discussed in our PM2.5 study in this same study area, have positive impacts 

on air quality (Heintzelman, 2019). There we found that increases in percent of tree canopy 

cover at the census tract level were negatively associated with PM2.5 concentration. Trees 

also uptake NO2 at varying rates, also referred to as dry deposition, based on species, 

stomatal apertures and light (Chaparro-Suarez et al., 2011), thus impacting the amount of 

pollutants present. Downward flux of the pollutant has been calculated as a product of the 

deposition velocity of the pollutant and the pollutant concentration in the atmosphere. The 

deposition velocity, which can be challenging to calculate, takes into account the boundary 

layer and the resistances by the canopy (Baldocchi et al., 1987; Nowak et al., 2006). 

Canopy stomatal resistance can be affected by a magnitude of four which is based on the 

species, and the plants physiological and environmental conditions (Baldocchi et al., 1987), 

3.2.4 Land use data 

The distribution of three types of land use within the study region (‘Heavy 

Industrial’, ‘Heavy Commercial’, and ‘Light Industrial’) were examined, but only Heavy 

Industry due to its potential emissions was modeled using a vector-based GIS dataset from 

the City of Indianapolis’s data portal (Open Indy Data Portal, 2021). This data was further 

processed using mapping software Maptitude 2020 by Caliper ® and was used to capture 

local impacts on the census tracts (Harper et al., 2021).  
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3.2.5 American Community Survey 

The most recent American Community Survey (ACS) 5-year estimates (2014 - 

2018) was used for socio-economic and demographic variables (Explore Census Data, 

2021). Statistical analysis incorporating these variables was conducted using open-source 

software RStudio version 4.0.3. Census tract level variables of race and education were 

used as a proxy for neighborhood characteristics to examine socio economic bias in air 

pollution exposures in PR (Li et al., 2022; Mullen et al., 2022).   

3.2.6 GIS based measurements and StreetLight data 

Proximity to gasoline stations (Huppé et al., 2013) and traffic has also been associated 

with increased negative health impacts in children and adults (Alemany et al., 2018; 

Bowatte et al., 2017; Kreis et al., 2022; Wang et al., 2019). Furthermore, proximity to 

major highways and traffic information has also been used to assess local impacts of air 

pollution (Filigrana et al., 2020). Therefore, gas stations in a radius of 10 km, distance to 

highways, and road and highway lengths in the census tracts were utilized in this analysis. 

Additionally, we utilized StreetLight (SL) platform, which uses smart phones and 

navigational units to measure various modes of traffic in the U.S. in this analysis. This 

platform has several output options; however, we utilized three output measures namely 

StreetLight Volume and StreetLight Index (for heavy and medium trucks). After setting up 

42 pass-through zones at street segments in front of each sensor location, StreetLight 

volume was used to examine estimated vehicle trips. SL data is based on an algorithm that 

utilizes real-world data and seasonal factors to calculate an estimated count for each zone. 

They consider this the best output to compare data across time. Even though this is not 

estimated on real-world counts, this normalized relative volume considers space and time 
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when calculating sample size variations and is a good method to compare values in the 

analysis across time, thus it is used as a traffic proxy in PR (Filigrana et al., 2020). 

StreetLight Index is based on medium-duty commercial vehicles are those that fall between 

14,000 – 26,000 lbs. and heavy-duty commercial vehicles are those that are over 26,000 

lbs.  

3.2.7 Statistical analysis 

Initially correlations between NO2 and the significant variables from the regression 

were examined before comparing NO2 and O3 averages between the WP monitor and its 

three closest passive sensors. As the next step, regression analysis was run on the categories 

of data listed in Table 3.1(APPENDIX A). To address multicollinearity represented by the 

variance inflation factor (VIF) there were a total of 5 models run (APPENDIX B) to capture 

the local impacts. Lastly, a stepwise regression model was run which produced our final 

model.  

Table 3.1 - Data. 

Data Categories 

StreetLight:   vehicle data 
ACS 5-year 2018 estimates:            population-based census bureau data 
City of Indianapolis Portal:           land use parcel data 
High resolution Imagery:                tree canopy coverage data 
Washington Park IDEM monitor:   meteorological data* 
GIS data:  spatial measurement data 

*For January this measurement was from I-70 monitor
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3.3 Results 

Examining the averages of the two pollutants from Ogawa sensors we found that the 

overall trend of NO2 decreases as the months progress while as O3 concentrations 

increased. There was a substantial increase in the Heavy truck index from January to June 

in 2019, an increase that is not consistent with the medium truck index across the sensor 

networks (Table 3.2). 

Table 3.2 - Ogawa and StreetLight platform averages in the study area. 

            Averages 

Jan Mar Jun 
NO2 Averages(ppb) 9.5 8.8 6.0 
O3 Averages(ppb) 21.5 25.9 33.5 
All Vehicle count 2,063 2,215 2,716 
Medium Truck Daily Index 431 515 513 
Heavy Truck Daily Index 481 620 643 

3.3.1 Regression 

Significant correlations of the variables used in the regression model was run in R-

studio and the results are reported in Table 3.3 (APPENDIX B). NO2 was found to be 

negatively correlated with O3 (r = -0.75, Table 3.3), consistent with other studies (Matthes 

et al., 2007; Palmgren et al., 1996). Additionally, NO2 was also negatively correlated with 

tree canopy cover (r = -0.38), and as distance to highway from each sensor location 

increased. While as NO2 was positively correlated to increase in windspeed, heavy truck 

index increases, population with less than high school increases, and heavy industry 

percentage in the census tract increases. The positive correlation between NO2 

concentrations and windspeed as we have here has been examined in a Ogawa sampler 
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study, and can be attributed to turbulence in the shelter that is induced when wind speed 

increases (Masey et al., 2017b).   

Table 3.3 - Significant Correlation output of variables with NO2. 

Correlations with NO2 Type Corr P-value
Tree canopy-1 km Pearson -0.37900 0.000179 ** 
Windspeed kmh Pearson 0.69800 0.000000 ** 
O3 (ppb) Spearman -0.74820 0.000000 ** 
Heavy Truck Index Spearman 0.24700 0.016600 * 
Pop25+LT high school % Spearman 0.25200 0.014400 * 
Heavy Industry % Spearman 0.27990 0.006570 ** 
Distance to hwy  Spearman -0.23500 0.023080 * 

  * Correlation coefficient significance at P <0.05;  
  **Correlation coefficient significance at P <0.01. 

In total there were 5 regression models run with a stepwise regression model at the end. 

Output from Model 1, Model 4, and the stepwise regression analysis are listed in Table 3.4. 

In Model 1 Temp C resulted in high collinearity with a variance inflation factor (VIF) of 

67.09. This was removed in Model 2, where Medium Truck Index resulted in high 

collinearity with a VIF of 20.90. Model 3, where this variable was also removed, resulted 

in Road Length-10 km reporting a high VIF of 10.95. Once this variable was also removed 

Model 4, reported all VIF values under 10. Lastly, a stepwise regression model was run on 

Model 4. Adjusted R-square decreases from Model 1 to Model 4 from 79.1% to 73.84%, 

however, from Model 4 to the stepwise model it increases and explains 75.29% variation 

in the data. In Model 1, the negative relationship of temperature, a product of solar 

radiation, and NO2 is probably due to its transformation into its secondary pollutants (Korf 

et al., 2020). Comparing the results of Model 4 and the stepwise model we see that the 

same 6 variables (O3, All Vehicle Count, Tree Canopy – 1 km, Windspeed kmh, Distance 

to Hwy, and Gas Station-10 km) are significant in both models.    
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Table 3.4. Three regression models including a stepwise regression model output of 

coefficients and significance for NO2. 

Model 1 
(Adj-R2 
=79.1) 

Model 4 
(Adj-R= 

=73.84) 

Stepwise 
(Adj-R2 =75.29) 

(Intercept) 17.2700 ** 5.6490 5.7370   . 
O3 (ppb) -0.1434 ** -0.2094 ** -0.2093 **
All Vehicle Count 0.0001 0.0001  * 0.0001  *
Medium Truck Index -1.5430
Heavy Truck Index -2.1350 -2.1710 -2.1150
Hispanic Latino % -0.0229 -0.0154
White only % 0.0106 -0.0025
Pop25+LT high school % 18.0300 5.7100
Pop25+bachelors % -15.8800 -5.9020
Heavy Industry % 0.0173 0.0185 
Tree Canopy-1 km -1.7470 . -2.1920 * -2.4060 **
Windspeed kmh -1.1450 ** 0.1694  * 0.1686  *
Temp C -0.2678 **
Hwy Length-10 km -0.0027 0.0026 
Road Length-10 km 0.0011
Distance to Hwy -0.3744 -0.4471  . -0.4155 *
Gas Station-10 km 0.0185 0.0546  * 0.0562  **

 . p-value 0.1 
* Significance at P <0.05.
**Significance at P <0.01.
All models are significant at p-value < 0.05.

Ozone formation is impacted by complex dynamics in the atmosphere, (Korf et al., 

2020), is negatively correlated with NO2 in the stepwise regression model. Based on the 

highly significant variables of the stepwise regression model a 1 ppb increase in ozone 

results in a decrease in NO2 of 0.21 ppb. Second, a 1 km2 increase in tree canopy coverage 

(in a circle with a radius of 1 km from each sensor) results in a decrease in NO2 of 2.41 

ppb which is highly significant. A study between 2009-2014 showed that U.S had a 

reduction of 175,000 acres per year of tree canopy area in urban/community areas, which 
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is equivalent to approximately 36 million trees/year, resulting in a loss of benefits estimated 

at $96 million a year. This decrease in tree cover was accompanied with increase in 

impervious surface in urban areas by 1 percent in the 5 years (Nowak & Greenfield, 2018b). 

We also find that gas stations play a very significant role in our study, with one additional 

gas station within 10 km radius results in increasing NO2 by 0.06 ppb.  

Stepwise model, like Model 4, also shows that only all vehicles count data, from the 

StreetLight platform, plays a role in increasing NO2 values, and truck indices do not., A 

1,000-count increase in all vehicles increases NO2 by approximately 0.1 ppb. The 

reasoning for the medium sized trucks or the heavy trucks not being significant could be a 

factor of the short time this data was collected.  

Land cover, not significant in Model 1-4, is removed in the stepwise model, while as 

wind speed is significant at p-value < 0.05. As wind speed increases by 1 kmh it increases 

NO2 concentrations by 0.17 ppb. The positive relationship between windspeed and NO2 is 

once again witnessed here due to internal turbulence created in the shelter resulting in an 

increased pollutant load on the sensor pads (Masey et al., 2017b). Lastly, distance to 

highway in the stepwise model is significant at p-value <0.05. As the sensor location moves 

further away from the highway by 1 km NO2 decreases by 0.42 ppb.

3.3.2 Three passive sensors and Washington Park (WP) continuous regulatory monitor 

data  

The three passive sensors closest to the WP sensor are sensors 25, 30, and 31 (Figure 

3.3). Four days of data were missing from the January 2019 deployment dates, therefore 

January data from WP was not utilized in comparisons of NO2. June resulted in the lowest 

concentrations for NO2 while January and March had higher concentrations (Table 3.5). In 
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March, WP concentrations were the lowest, and in June they were the highest when 

compared to the three sensors. WP and its three closest passive sensors indicate that NO2 

values are higher in March, a cooler month, when compared to June (Table 3.5). Ozone 

was consistently highest in June when compared to January and March. Due to this 

temporal variation, also reflected in an analysis of variance test (ANOVA), we cannot rely 

on the one WP continuous regulatory monitor data to examine and capture fine scale 

variations which exist in the study area. 

Figure 3.3 - Sensors closest to Indiana Department of Environmental Management 

monitors. 

Table 3.5. 2019 NO2 and O3 data from three closest sensors to Washington Park (WP) 

continuous regulatory monitor data.  

NO2 
(ppb) 

O3 
(ppb) 

Jan Mar Jun Jan Mar Jun 
Sen 30 9.67 9.98 6.58 19.43 24.68 30.27 
Sen 25 9.99 10.45 5.21 20.21 25.62 44.17 
Sen 31 11.2 10.32 7.00 19.90 25.03 32.56 

WP NA 9.61 8.31 27.63 32.63 32.88 
NA (not applicable) 

Source: IDEM, Maptitude, 
Date: February 11, 2022 
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3.3.3 NO2 and O3 for all passive sensors and Washington Park (WP) continuous regulatory 

monitor data 

Seasonal median values for NO2 and O3 display opposite trends with median NO2 

values in June being relatively low and O3 being relatively high. In January, this trend is 

inversed (Table 3.6) with the median NO2 concentration being relatively high and O3

concentration being relatively high low (Table 3.6). The inverse trend of O3, a secondary 

pollutant from NO2, with its highest values in June is due to the photochemical reactions 

that result in its formation in warmer months (Bozkurt et al., 2018). 

During March and June, where we have complete data from the WP sensor, there are 

significant NO2 differences between the fixed sensor and three proximal passive sensors. 

In March, there was an 8% difference in NO2, and June a 28% difference (Table 3.7). For 

O3, this difference is 21% in March and 2% in June (Table 3.8).  

Table 3.6 - 2019 NO2 and O3 descriptive statistics from passive Ogawa samplers.     

NO2 
(ppb) 

O3 
(ppb) 

Jan Mar Jun Jan Mar Jun 
Min 6.95 6.05 3.98 19.43 22.89 25.67 
Max 12.26 11.33 9.04 31.31 30.31 44.17 
Median 9.53 8.77 5.99 21.00 25.59 33.38 
Variance 2.02 1.98 1.12 4.76 3.20 15.87 
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Table 3.7 - March and June 2019, NO2 data comparison across all sensors from passive 

Ogawa samplers and Washington Park (WP) continuous regulatory monitor data.  

March-NO2 Min Max Avg June-NO2 Min Max Avg 

Sensors 6.05 11.33 8.84 3.98 9.04 5.96 
WP 4.10 12.20 9.61 5.60 10.30 8.31 
% diff from WP 47.52% -7.17% -8.05% -28.89% -12.24% -28.29%

Table 3.8 - March and June, 2019 NO2 data comparison across all sensors from passive 

Ogawa samplers and Washington Park (WP) continuous regulatory monitor data. 

March-O3 Min Max Avg June-O3 Min Max Avg 

Sensors 22.89 30.31 25.90 25.67 44.17 33.47 
WP 22.00 41.00 32.63 21.00 41.00 32.88 

% diff from WP 4.03% -26.08% 
-
20.62% 22.25% 7.73% 1.79% 

3.3.4 StreetLight data 

On examining 2018 and 2019 average annual daily traffic (AADT) near the sensor 

locations we found data sets from the two years to be almost identical with majority of the 

estimates displaying less than 5% difference across the locations. Focusing on the three 

weeks when the passive sensors were deployed. StreetLight data indicates that there was 

an upward trend in all vehicles count from January to June 2019. Medium trucks index was 

comparable in March and June while the heavy truck index was highest in June (Figure 

3.4).  
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Figure 3.4. StreetLight data from the three deployments for medium truck, and heavy-duty 

truck index in 2019. 

3.4 Discussion 

This study examines variations in urban ground-level NO2, and its relationship to traffic 

and tree canopy cover. Unlike emissions from power plants and other industries, traffic 

related emissions can contribute as much as 70% of urban air pollution (Palmgren et al., 

1996; Ravina et al., 2021). Traffic related emissions are problematic for human health 

(Sinharay et al., 2018) especially since they occur at the ground level. Due to the production 

cycle of O3 (Equation 1-3), it is not surprising that it is inversely correlated with NO2 and 

positively correlated with temperature. While NO2 and temperature drive O3 

concentrations, NO2 concentrations are driven by many other environmental and built-

environment variables. 
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3.4.1 Regression output 

Our stepwise regression model (Table 3.4) explains ~ 75% of the variability in the study 

which is comparable to a study in Canada that was designed to estimate NO2 and other air 

pollutants at a local scale (Hystad et al., 2011). We find that in the PR airshed, using a 

reference monitor (WP) is inadequate for characterizing the fine scale variation observed 

in the network of low-cost sensors (Table 3.7 and 3.8). 

3.4.2 Trees 

In a stepwise regression model with adjusted R-square of 75%, we find that tree canopy 

coverage in a 1 Km radius is a significant predictor of increased levels of NO2. Our final 

model indicates that as we increase 1 km2 of tree canopy in the 1 Km radius circle we can 

help reduce NO2 by 2.46 ppb, which is consistent with results from previous studies 

(Nowak et al., 2014; Nowak & Greenfield, 2018b).  

Mitigation of pollutants by trees is complex, and is affected by factors such as tree 

cover, leaf seasons length, plants physiology, and ozone concentration in the air, among 

others. Therefore, focused tree plantings contribution to the removal of pollution provides 

a benefit to public health. This can be particularly used as a potential mitigation tool in the 

favor of climate-related changes in air quality. Trees not only help in reducing urban 

pollutants, but they also play a role in reducing urban heat (Renaud et al., 2011) which in 

turn also plays a role in improving human health. It has been found that short term (2-day 

moving average) and long term (1-year moving average) exposure to NO2 and O3 have a 

causal association with increased risk of mortality with ozone exposure risks being 

significant even at lower levels (Wei et al., 2020). 
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A 2006 study encompassing 55 cities in the U.S., using 1994 EPA data and 1990 urban 

boundaries from the census, concluded that for Indianapolis, canopy cover removed a total 

of 2,910 metric tons of pollutants within its urban boundary. The greatest air quality 

improvement from increased canopy coverage were in ozone, particulate matter, and sulfur 

dioxide ( Nowak et al., 2006).  

Since vegetation can serve as a sink for atmospheric NO2 and its by products, it is 

important to target planting trees, plants, and green infrastructure that are fast growing 

resilient to the changing climate, and that don’t have unintended negative environmental 

and public health impacts (e.g., heavy pollen producers could exacerbate asthma 

incidences). Such a planned approach to urban greening can yield both direct UHI 

reductions and also achieve substantial NO2 and ozone mitigation in urban settings 

(Anderson & Gough, 2020; Takahashi et al., 2005; Zhang et al., 2020). A combination of 

these techniques has been shown to successfully reduced ozone an average of 31% and 

NO2 by an average of 65% (Anderson & Gough, 2020). Some of this effect might be that 

neighborhoods with higher green density also are likely to have lower traffic volume and 

perhaps lower medium and heavy truck traffic. Thus, it is not just the effects of trees 

“scrubbing” the air but also local NO2 emissions avoided by other sources. 

3.4.3 Health impacts quantified 

As tree species play a direct role in pollen allergenicity in cities ( Nowak & Ogren, 

2021), care should be taken in researching and encouraging plantings that are beneficial to 

the residents. Nowak and Ogren (2021) found that in a 53-city study, Indiana has 4.3% leaf 

area coverage in low allergy trees and shrubs while as 54% are in medium allergy trees and 

shrubs, and 37.6% in high allergy trees and shrubs. Since it is estimated that 75% of canopy 
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cover in residential areas is a result of on-property plantings, it was suggested that 

managing plantings around personal spaces that are low on the allergy spectrum could 

provide the greatest benefits in terms of pollen exposure to the residents (Nowak, 2012). 

Urban development tends to reduce tree canopy cover, which poses a challenge both locally 

and nationally. For example, urban land in Indiana increased from covering 6.1% of the 

state’s land area to 7% from 2000 to 2010, which is a change in acreage by 205 x 103. This 

is supposed to grow to 17.5% by year 2060. Nationally, urban land in the conterminous 

U.S is projected to increase by 95.5 million acres to 163.1 million acres from 2010 to 2060.

(Nowak & Greenfield, 2018a). Indiana urban forests resulted in pollution removal savings 

of over 432 million/year based on costs associated with illness, loss of life and productivity. 

This was broken down into carbon sequestering, removal of air pollution, avoided energy 

usage, and avoided emissions ( Nowak & Greenfield, 2018a). For the conterminous U.S., 

it was also estimated that trees and forests removed 17.4 million tons (range of 9.0 – 23.2 

million tons) of pollution which equated to a human health benefit of $6.8 billion (range 

of $1.5 -$13.0 billion) with urban removal being significantly less than in rural areas. 

However, the cost saving in urban areas was far greater at $4.7 billion versus $2.2 billion 

in rural areas owing to urban population density. NO2 and O3 pollution were the highest 

removed pollutants in that study. These benefits translated nationally to a decrease of 850 

cases of human mortality (range of 184-1634 in states). Incidence of acute respiratory 

symptoms, exacerbated asthma, and school days lost were 670,000 (range of 221,000-

1,035,000), 430,000 (range of 198,000 – 688,000), and 200,000 (range of 78,000 – 

266,000)(Nowak et al., 2014).  
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3.4.4 Census data 

In Indiana, urban pollution removal was estimated at 12.9 kg ha-1 and valued at $96.9 

ha-1. Average values for pollution removal in urban areas were $436 t-1 for NO2 (Nowak et 

al., 2006, 2014). Extrapolating from Indianapolis pollution removal data (Nowak et al., 

2006) we find that tree canopy cover in our study area results in an estimated removal of 

NO2 of 7 tons for A (ct 18097361400—referred to as “A”), and 0.2273 tons for B (ct 

18097355900—referred to as “B”). If the total pollutant removal in Indianapolis for NO2,

O3, PM10, SO2, and CO was 2,910 tons with a savings of $15,500(x1000), then the 0.2273 

tons for B results in approximately $1211 in savings for B. Thus in the PR area the annual 

average health savings range from approximately $1,211 in B to $37,338 in A (removal of 

NO2 tons based on canopy coverage of ct x $5,326 per ton of all pollutant removal based 

on Table 1 in Nowak et al., 2006) (Nowak et al., 2022). When these census tracts are 

normalized by land area, cost savings in A are 1.2 times higher than in B. Population of A 

is 5.8 times that of B, while as the racial composition of the two are similar. Median age of 

A is 36.9 years, and median household income is $56,250. Median age in B is 32.1 years, 

median household income is $43,083. Additionally, A’s median year of owner and renter 

occupied structure is 1988 with a canopy coverage of 28% while B’s is 1939 with canopy 

coverage at 23%. One reason for reduced canopy coverage in B could be due to the age of 

that neighborhood. In 1934, Dutch Elm Disease appeared in Indianapolis, and may have 

also been a factor in the reduced percentage of canopy coverage in B versus A (Carter & 

Illinois., 1967). Another potential driver of this disparity in tree canopy cover is the legacy 

of historic racist red-lining policies (Nowak et al., 2022) in the 1940s-60s, which resulted 

in far fewer green resources invested in some communities compared to others. Nowak et 
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al., 2022 research highlighted that redline-class A census places (best) had lowest 

impervious cover at 30.6% and highest tree cover at 40.1%, while as Class-D census place 

(hazardous) was at 53% and 20.8% respectively. Regardless, canopy coverage along with 

the make-up of the two census tracts in terms of population, age of the neighborhoods could 

all be playing a role in the difference in health savings. Such calculations could assist in 

identifying and targeting census tracts for further in-depth health analysis and/or additional 

green investments.    

3.4.5 Vehicle and land use data 

While tree canopy cover is associated with net NO2 reductions, only vehicle counts 

play a role in NO2 increases in PR. A 1,000-count increase in the StreetLight all vehicle 

results in an increase of NO2 by 0.10 ppb. Medium and heavy-duty truck indices were not 

significant in this study area as it is largely residential. Perhaps if we analyzed the sensor 

locations in the StreetLight platform for a longer period, with calibrated truck data, we 

could enhance our understanding of the impact of trucks (14,000 lbs and over) on these 

sensors. Such vehicles are primarily fueled by diesel, and have high idle times in 

neighborhoods, two factors that may impact local NO2 emissions over time. 

As mentioned earlier this is primarily a residential area and even though parcels may 

be zoned as heavy industrial, there is not a significant visual presence of such industry there 

at this time. Even though this variable is included in Model 1-4, it is excluded from the 

stepwise regression model and is not significant in making an impact in the study area. 

3.4.6 Meteorology 

Wind speed and temperature were both significant in Model 1, but due to 

multicollinearity temperature was removed from Model 2 and beyond. Wind speed 
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outcome is like that observed by Masey et al., 2017 with Ogawa sensors. They concluded 

that the design of the shelter results in increased uptake rate due to increased turbulence 

and reduced length of the diffusion segment of the pollutants into the shelter (Table 4). 

Typically, we would expect an inverse effect from wind, which does not happen here 

(Voiculescu et al., 2020b). 

3.4.7 Distance to highway and gas stations 

Not only do gas stations result in increased emissions of pollutants which have negative 

health implications, due to their locations result in roads with heavier traffic (Huppé et al., 

2013). We found that gas stations have a positive impact on NO2 concentrations, a factor 

of increased emissions from vehicles. Additionally, the inverse relationship of distance to 

highways and NO2 concentrations can be explained by the presence of higher emission 

vehicles on highways versus in residential spaces. Thus, as the sensors’ locations move 

further away from highways, they are impacted less by NO2 emissions.      

3.5 Conclusion 

Community engagement, a powerful tool links the public with researchers, and creates 

a group of engaged citizenry (About Us, 2022; About Us, 2022; Den Broeder et al., 2018; 

Rosner, 2013). Such citizen science networks, utilizing air pollution sensors, result in well 

informed public that is equipped to actively participate in conversations regarding the 

health of their communities (Snyder et al., 2013). Low-cost Ogawa passive sensors are an 

inexpensive way for communities to use citizen science to participate in examining air 

quality at a fine scale (English et al., 2017). These sensors have been used successfully by 
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other researchers for varying sampling periods over time (Cowie et al., 2019; Masey et al., 

2017a). Passive sampling does not require power supply, making it a useful tool that can 

be easily deployed in multiple sites. Additionally, they can be used repeatedly and thus are 

a cost effective avenue (Korf et al., 2020) to examine and implement solutions to varying 

population exposures. It has been found that these sensors underestimated 7-day exposure 

concentrations but can explain 87% of temporal variation making them a sound NO2

sensor, while a sampler empirical correction based on wind speed only increases its 

accuracy by 5% (Masey et al., 2017a). Therefore, even without wind correction based on 

Masey et al., 2017a, Ogawa samplers can be considered accurate in their reporting. 

In our study in Indianapolis, we use this approach to examine O3 and NO2 as a function 

of land use, leaf canopy cover, traffic type and volume, and meteorological factors. 

Significant O3 relationships were found in this study, and we could quantify that a 1 % 

increase in tree canopy results in a significant decrease of 2.46 ppb in NO2. It is often 

challenging to establish a connection between urban pollution impacts from NO2, therefore, 

adding traffic data from SteetLight’s platform gave us a deeper insight into understanding 

the vehicular emission impacts.  

The approach used here can be utilized as a tool to partner communities with 

government entities to find solutions to create resilient communities. The next steps in this 

study should include calibrated StreetLight truck data for a longer time to re-examine and 

estimated truck counts by category. That could establish ground truth to further improve 

our understanding of the traffic component in this analysis which can be further enhanced 

by conducting a health assessment of the census tracts to identify and address high impact 

regions.  
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CHAPTER 4: EFFICACY OF LOW-COST SENSOR NETWORKS AT 

DETECTING FINE-SCALE VARIATIONS IN PARTICULATE MATTER IN 

URBAN ENVIRONMENTS 

4.1 Introduction 

Particulate Matter 2.5 (PM2.5), defined as particle mass with aerodynamic diameter 

that is less than 2.5 µm, is regulated by the United States Clean Air Act and reported as 

micrograms per meter cubed (µg m-3) which is a mass based concentration (Zimmerman, 

2021). PM2.5 is typically found in higher concentrations in densely populated regions (Ji et 

al., 2018), and in combination with other criteria air pollutants such as nitrogen dioxide 

(NO2), and O3 (Ozone) has been associated with serious health effects and increased risk 

of mortality (Cohen et al., 2017; Kasdagli et al., 2021). A global integrated satellite and 

ground-based measurement of PM2.5 in 2015 attributed 4.2 million deaths to this factor, 

which was a rise from 3.5 million deaths in 1990 and calculated 13.1 million disability-

adjusted life-years (DALY). PM2.5 was ranked #1 as a risk factor for deaths in China and 

#6 as a risk factor for deaths in the U.S. (Cohen et al., 2017). By combining the years lost 

due to premature mortality and years lost as a result of living with a disease, DALY is a 

holistic method to measure the impact of disease (Indicator Metadata Registry Details, 

2021). In 2011, a World Health Organization (WHO) Global Burden of Disease (GBD) 

study estimated that PM2.5 resulted in 28,000 premature mortalities in United States, 

Canada, and Cuba alone. Using an atmospheric chemical transport model, Anenberg et al. 

(2010) estimated that global anthropogenic PM2.5 was associated with 3.5 +/- 0.9 million 

cases of cardiopulmonary mortality and 220,000 +/- 80,000 lung cancer mortalities, but 
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when reduced to a lower concentration of 5.8 µg m-3 mortality estimates were reduced 

approximately by 30% (Anenberg et al., 2010). In a study utilizing monitor data and a 

photochemical Community Multiscale Air Quality (CMAQ) model across USA, Fann et 

al. (2011) estimated that 130,000 deaths and 1.1 million life years were lost due to PM2.5 

exposure during 2005 (Fann et al., 2011). Between 2010-2012, roadway air pollution alone 

in 42 neighborhoods in New York City resulted in 320 deaths and 870 hospitalization and 

emergency room visits due to PM2.5 (Kheirbek et al., 2016). An overlap of high particulate 

matter, high population and poor health quality in the Midwestern region of the U.S results 

in a high incident of premature mortality (Fann et al., 2011).  

Due to serious human health impacts of PM2.5 exposure, the U.S. Environmental 

Protection Agency (EPA) requires states to monitor PM2.5 and other gases. They have set 

exposure limits of PM2.5 at 35 µg/m3 in a 24-hour cycle that is averaged over three years, 

and a 12 µg/m3 annual standard limit. Many studies, however, indicate that chronic human 

exposure to levels of air pollution below the EPA standards show a positive association 

with adverse health effects including shaping DNA methylation through epigenetic 

mechanisms that can have multi-generational effects. It is reported that during pregnancy, 

childhood and the elderly stages of life, humans are most susceptible to DNA methylation 

alteration (Christidis et al., 2019; Chu et al., 2015; Ferrari et al., 2019; Shi Liuhua et al., 

2016; Tan et al., 2020; You et al., 2020). Even though anthropogenic pollution from 

vehicles and industry result in increased PM2.5, there is also a correlation between PM2.5 

and meteorological variables, which can explain up to 50% of the daily variations in some 

regions. For instance, on stagnant days average PM2.5 concentrations tend to be 2.6 µg/m3 

higher (Tai et al., 2010; Wang et al., 2019). Independent of geography, age, or gender, long 
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term exposure for every 10 µg/m3of PM2.5 increases non-accidental mortality by 6% (Chen 

et al., 2008). One serious limitation of studies that use PM2.5 in relation to human health 

outcomes is that due to cost and maintenance limitations, most U.S. cities only have a 

handful of monitors to gauge air quality and health burdens, sometimes for millions of 

people. Enhanced spatial and temporal granularity in monitoring is critical as a host of 

studies show the important role local sources play in driving air pollution (Tai et al., 2010; 

Li et al., 2017; Heintzelman et al., 2021). 

Scarcity of regulatory monitors has led to the use of satellite data to extend coverage 

(Bi et al., 2019; Xiao et al., 2017). Deployment of low cost sensors in air quality studies 

has also increased with the development of more accurate monitoring devices, which has 

contributed to monitoring and examining fine-scale variations (English et al., 2017; Pope 

et al., 2018; Tanzer-Gruener et al., 2020). Although lower cost monitors have their 

analytical drawbacks, they have been used effectively in research (Bi et al., 2020; Snyder 

et al., 2013). Due to low cost and good performance with respect to EPA regulatory 

monitors, PurpleAir (PA) sensors in particular have been used in several air quality studies 

(Mousavi & Wu, 2021) as a cheaper alternative to regulatory monitors to examine indoor 

and outdoor PM2.5 in various regions (Bi et al., 2020; Gupta et al., 2018). Interest in low 

cost sensors grew as the need to assess and evaluate personal exposures to airborne 

pollutants and their impacts on humans and communities became clearer (Koehler & 

Peters, 2015; Liang, 2021; Zimmerman, 2021). PA sensors have been found to have high 

self-consistency, and can be used to fill in the gaps from sparse data coverage of regulatory 

grade data (Malings et al., 2020)  
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The goal of this study was to measure and model spatio-temporal variability of 

outdoor air quality using 25 PA units that record and report real time PM2.5, temperature, 

and humidity. Sensors were deployed from August 2018 through November 2019 and the 

resulting data was used to analyze relationships between PM2.5 and various meteorological, 

land-use and census variables in the Pleasant Run airshed in Indianapolis, Indiana. We 

examined: (1) the driving factors that result in daily averages of PM2.5 values of the sensors 

exceed World Health Organization (WHO) guidelines of 25 µg/m3 (in 2021 this was 

changed to 15 µg/m3) (Krzyzanowski & Cohen, 2008), (2) those locations with the highest 

odds ratio in exceeding the daily average of 25 µg/m3, and (3) the impact of tree canopy 

percentage on PM2.5 averages at the census tract level.  

4.2 Methodology 

4.2.1 Sensor Network 

Figure 4.1 - Locations of 25 PurpleAir sensors in the study area. 

Source: Maptitude, IDEM 
Data: January 27, 2022 
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In collaboration with Keep Indianapolis Beautiful (KIB), a local community based 

nonprofit organization with a focus on improving the environment, we identified a list of 

individual households to contact, and recruited 32 citizen scientists within the study area. 

We installed 32 PurpleAir PA-II-SD sensors, with Wi-Fi capabilities, over a roughly 96 

(12x8) km2 in the eastern part of Indianapolis to collect PM2.5 data (Figure 4.1). Since 

several SD cards in the PA units were corrupted for this study, PM2.5 data was downloaded 

directly from the PA server. One of the sensors was installed in a 3-story balcony. We are 

assuming that at such a height there may only be a small monotonic gradient difference 

between the ground and that level for PM2.5 (Zauli Sajani et al., 2018). All the sensors, per 

the recommendation of the manufacturer, were installed under at least an overhang to 

provide some protection against the weather. Installation height of all but one sensor ranged 

from approximately 4–8 feet (1.2-2.4 meters) above ground, based on the availability of 

power outlets and overhead coverage at each location.  

PurpleAir sensors are designed with a fan that draws a sample of air past its two 

independent laser counters labeled ‘Channel A’ and ‘Channel B’. Light from a particle is 

reflected to a detection plate where it is measured by a pulse. Particle size is determined by 

the length of each pulse, and particle count is determined by the number of pulses. Airborne 

particulate matter can include organic particles, inorganic particles, smoke, or dust. Particle 

sizes of 0.3, 0.5, 1, 2.5, 5, and 10µm are counted which are used to calculate mass 

concentrations (µg/m3) of PM1.0, PM2.5, and PM10 using an algorithm that was developed 

by Plantower for the PMS5003 sensor, a factory-calibrated instrument that estimates the 

number of suspended air particles based on the method outlined above. This compensates 

for the varying densities of various sources of PM2.5. PM2.5 readings are averaged and 
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reported every 120 seconds on an interactive website. These readings are also stored on the 

PA website and can be downloaded as needed. This technology, which uses a 5v USB 

power source, offers a cheaper option than federal reference monitors to report PM2.5. (Map 

- PurpleAir, 2021; PurpleAir | Real Time Air Quality Monitoring, 2021).

4.2.2 Processing PM2.5 data 

PurpleAir sensor were deployed from August 2018 through November 2019. 

However, due to gaps in data, 25 of the total 32 sensors, covering 20 census tracts and 

spanning 11 months from November 2018 to October 2019, were used in this study (a 

recall of power cords by the company in February 2019 resulted in about one lost data 

month as the sensors were disconnected and new cords were delivered and installed in all 

units). Once the hourly data was downloaded from the PA website, we utilized Base-R in 

R-Studio version 4.0.3, an open-sourced statistical computing software, for data processing

and analysis. 

PurpleAir Sensors have been evaluated by South Coast AQMD, who found that 

laser b (Channel B) reported 11-37% higher PM2.5 mass concentration, however, the two 

independent laser counters had a coefficient of determination of 0.99 (R-square) tested over 

a range from 0-250 µg/m3. Due to a much higher number of rows of data missing (9,197) 

we used output from Channel B instead of Channel A in this study (PurpleAir PA-II, 2021). 

PurpleAir units do not adjust for humidity which impacts hygroscopic growth of 

particles and particle count (Crilley et al., 2018; Malings et al., 2020). To reduce this 

humidity effect and account for the hygroscopic growth, PM2.5 data was corrected using 

the formula in Equation 1 (Tryner et al., 2020): 

C-PM2.5 =
𝑃𝑃𝑀𝑀2⋅5

1+0⋅25𝑅𝑅𝐻𝐻
2

(1−𝑅𝑅𝐻𝐻)

(Equation 1) 
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In Equation 1, C-PM2.5 is the corrected PM2.5 that is reported by PA in µg/m3, PM2.5 is the 

raw PM2.5 value reported by PA (µg/m3), and RH is relative humidity retrieved from 

Indiana Department of Environmental Management’s (IDEM) regulatory air quality 

monitor at Washington Park in Indianapolis. After this adjustment, correlation between the 

data of the three closest sensors (Sensor 25, Sensor 30, and Sensor 31) to the two IDEM 

monitors (Washington Park monitor and I-70 monitor) was also examined. The 

Washington Park (WP) location is the only location that has a Photochemical Assessment 

Monitoring Station (PAMS), providing hourly samples of data which is available via the 

IDEM website from 1999 to present day (Monitoring, 2021). 

4.2.3 Meteorological data 

Some abnormal fluctuations in temperature and humidity data were detected in the 

PA sensors in our study area. A study in Pittsburg (USA) concluded that due to the shape 

of the PA units, they can trap heat and increase the inside temperature by an average of 

2.7º C (36.86º F), and lower the humidity by an average of 9.7% versus outside the unit 

(Malings et al., 2020). This necessitated downloading meteorological data (temperature, 

relative humidity, wind-speed) from the IDEM air quality monitor at WP. Meteorological 

factors such as relative humidity, windspeed and drought conditions play a role in PM2.5 

concentrations (Chaloulakou et al., 2003; Hart et al., 2020; Tai et al., 2010; Zhang et al., 

2017).  

4.2.4 Land use and land cover 

Estimates of tree canopy cover (TC) in the study region was based on 1-meter 

resolution land cover raster produced by our partner KIB and the University of Vermont 

Spatial Analysis Laboratory. The land cover data were derived from classification of 
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National Agricultural Imagery Program (NAIP) data acquired in 2013 and LiDAR data 

acquired in 2009. This dataset was used to quantify tree canopy (TC) in the study region 

census tracts and within buffers at varying distances from the PA sensor locations.  

Additionally, the distribution of “Heavy Industrial” land use was modeled using a 

vector-based GIS dataset from the City of Indianapolis’s data portal (Open Indy Data 

Portal, 2021) and processed using mapping software Maptitude 2020 by Caliper ®. This 

variable was incorporated in the analysis to capture its impact on this study area (Harper et 

al., 2021). 

4.2.5 American Community Survey 

The most recent American Community Survey (ACS) 5-year estimates (2014 - 

2018), at the census tract level, were used for socio-economic and demographic variables 

(Explore Census Data, 2021). Census tract data has been used in the past in conjunction 

with PurpleAir to examine environmental justice implications (Mullen et al., 2022). 

Statistical analysis incorporating all these variables (Appendix C) was conducted using 

open-source software RStudio version 4.0.3. 

4.3 Results 

Sparse networks of regulatory monitors established by states are inadequate in 

providing us local information, limiting the use of this data to make informed decisions on 

zoning and infrastructure required to build robust communities. A dense network of 

sensors, as established in this study, enables us to quantify local impacts which can then be 

utilized to make future informed decisions. The temporal array for each sensor spans 

thousands of data points, but the spatial array is limited. Two analyses were conducted to 
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assess spatial patterns in the PM2.5 data (kriging and Inverse Distance Weighting (IDW)) - 

both are included in Appendix C, but neither approach the sample size to be considered 

statistically valid (C1-C2).  

One clear example of local monitoring to assess event-based air quality variations 

involves smoke emissions from U.S. Independence Day celebrations during the late 

evening of July 4, 2021 (Figure 4.2). During that celebration several sensors (Sensor 16 

and Sensor 22) revealed higher daily PM2.5 averages due to local fireworks than values 

reported later that month that resulted from massive forest fires in the Pacific Northwest 

and southern Canada (Jaipuriar, 2021; Smoke Across North America, 2021; “Wildfire 

Smoke Pouring into Mid-Atlantic Prompts Air-Quality Alert for D.C. and Baltimore,” 

2021).  

Figure 4.2 - PurpleAir map from the website with daily averages for Sensor 16 and 22, 

highlighting July 4 and 21, 2021. 
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4.3.1 PurpleAir data and portable EPA grade sensor 

To validate the output from PA, at deployment we compared raw PA online 

readings with an EPA-grade portable sensor (Thermo Scientific MIE pDR-1500). On 

average, the values for 21 of the 25 sensors deployed were 13.56% higher than the EPA 

grade sensor, which is within a relative accuracy of +/-20% (Malings et al., 2020). It is 

important to note that PA sensors factory calibration is based on specific ambient aerosol, 

which may not be identical to our study region and could have contributed to the observed 

differences. Calibration of raw data has shown to reduce errors as much as 25% for extreme 

cases and by 10% for typical cases. Additionally, there is a systematic bias between 

instruments which can be compounded with the variation of particle composition and the 

sensors performance in the field, which can be balanced by longer term (one year) 

averaging thus significantly reducing the error (Malings et al., 2020). Our field validation 

was limited with the EPA grade portable sensor, typically lasting just ~1 hour at the 

beginning of deployment. 

4.3.2 Correlation of PurpleAir data against IDEM monitor data 

Figure 4.3 - Sensors nearest to Indiana Department of Environmental Management 

(IDEM) regulatory monitors. 

Source: IDEM, PurpleAir data 
Date: January 26, 2022

IDEM Monitors and Three Closest PurpleAir Sensors 
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Spearman correlation was used to examine the relationship between PM2.5 

measurements collected at the two IDEM monitoring sites and the adjusted PM2.5 data 

collected at the three closest PA sensors (labeled 25, 30 and 31; Figure 4.3). This 

calculation was based on data spanning 11 months with over 300 observations each for the 

three sensors (Table 4.1). 

Table 4.1 - Correlation of sensor 25, 30, and 31 with IDEM monitors and PM2.5 data. 

Sensor 
number 

IDEM 
site 

Correlation 
(Spearman) P-value

25 WP 0.7469891 < 2.2e-16 
30 WP 0.7443245 < 2.2e-16 
31 WP 0.7208154 < 2.2e-16 
25 I-70 0.7219634 < 2.2e-16 
30 I-70 0.7129242 < 2.2e-16 
31 I-70 0.7020652 < 2.2e-16 

The association between PM2.5 readings at the three PA sensors was strongest with 

the IDEM Washington Park sensor. The range of raw PM2.5 was 0.36 -103.80 µg m-3 with 

RH ranging from 44-99%, and the average temperature was between -2.7–85.2 F (-19-30 

C), based on the WP sensor data. After applying the relative humidity correction this range 

adjusted to 0.08 – 80.14 µg m-3, the mean values to 16.22-9.03 µg m-3, and the median to 

14.64 - 8.10 µg m-3. This RH correction underestimation may be more pronounced due to 

higher humidity in Indianapolis most of the year versus a less humid environment like that 

examined in Colorado where median bias was reduced by -15% after the correction (Tryner 

et al., 2020). In a separate study, Malings et al. (2020) found that PA sensors in the short 

term had a mean absolute error of approximately 4 µg m-3 and in the long run (year-long) 

that error went down to under 1 µg m-3.   
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Based on the methodology outlined by Malings et al. (2020), we examined the 

overlap of WP and Sensor 30 data where WP PM2.5 data <=20 µg m-3, with humidity < 

77%. The subset of data <=20 µg m-3 (range 1.82 -19.66 µg m-3) with 146 observations, 

was used to calculate the regression coefficients to correct the raw Sensor 30 observations 

by PA. Initially, we used equation 2 to determine the coefficients of the independent 

variables. In Equation 2-3, T is temperature, DP is dewpoint and RH is relative humidity 

from the WP sensor. Since Equation 2 resulted in high collinearity with DP we removed it 

and used Equation 3 instead to correct Sensor 30 concentrations. In Equation 2 and 3 ‘PA’ 

represents PurpleAir.   

[Corrected PM2.5]PA = β 0 + β 1[PM2.5] PA + β2T + β3RH + β4DP(T, RH) 

if WP PM2.5 <= 20    Equation 2 

[Corrected PM2.5]PA =3.865673 + 0.318848 [PM2.5] PA + 0.041092*T  

+ -0.022493*RH       Equation 3

Table 4.2 - Results from applying Equation 3 to PurpleAir data. 

Var 

Median 
(µg m-3) 

% Diff 
from 
WP PM2.5 

unit diff 
from WP 
PM2.5 

Raw PM2.5 12.874 36.45% 3.439 
WP adjusted PM2.5 (Eq 1)   9.616   1.92% 0.181 
WP PM2.5   9.435   0.00% 0.000 
Sensor30 (predicted-Eq 3)   9.064 -3.93% -0.371

Table 4.2 shows that WP adjusted PM2.5 which is based on Equation 1 correction 

is under 2% different from WP data and the predicted values based on Equation 3 is about 

4% different. This indicates that based on the chemical composition of the pollutants in 
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this region, a RH-based correction (Equation 1) is adequate for calibration and further 

analysis. Mean value of PM2.5 is lower in this network of 25 locations than reported in a 

prior study in Indianapolis (Sullivan & Pryor, 2014).   

4.3.3 Driving factors impacting daily averages of PM2.5 exceeding WHO limits 

A total of 8,124 counts of cumulative data by month were used in the regression 

analysis (Table 4.3). To identify potential factors impacting the days that PM2.5 values 

exceed the WHO threshold of 25 µg/m3, independent variables listed in Table 4.4 

(APPENDIX C -D) were used in setting up a logistic regression equation. The dependent 

binary variable is represented by 1 when the adjusted PM2.5 values are greater than or equal 

to the WHO limit of 25 µg/m3, and 0 when the adjusted PM2.5 values are less than the WHO 

limit of 25 µg/m3.  

Table 4.3 - Logistic regression observation breakdown by month for 25 deployed 

sensors. 

Month Month Group Observations 
2018 
November 1 728 
December 2 769 

2019 
January 2 739 
March 3 753 
April 3 726 
May 3 773 
June 4 702 
July 4 752 
August 4 751 
September 5 733 
October 5 698 
Total 8,124 
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Five significant variables arose from the regression modeling (Table 4.4). The 

logistic regression output is further extrapolated in Table 4.5 into odds ratios which 

represents the strength of the significant variables resulting in a day exceeding WHO 

guidelines for PM2.5. Any ratio under 1 is represented by reduced odds, and over 1 by 

increased odds, of resulting in a high PM2.5 concentration exceeding WHO guidelines per 

day. Increased precipitation, increased windspeed, and Month group 5 (September and 

October) have reduced odds of exceeding WHO guidelines per day (Table 4.5). On 

Saturday the odds of exceeding the WHO limit are sixfold compared to the other days of 

the week, and on Tuesday the odds decrease to threefold.  

Table 4.4 - Logistic regression output. Negative values indicate a decrease, and positive 

values an increase, in the number of days with PM2.5 averages above WHO guidelines.  

Variable Estimate Pr(>|z|) 

(Intercept) -2.05301 0.0014 **
Precip cm -34.137 0.0060 ** 
Windspeed kmh -0.27462 0.0000 **
Temp C -0.02154 0.2569
Month group 2 -0.58128 0.1487
Month group 3 0.10966 0.7550
Month group 4 -1.08057 0.0518 .
Month group 5 -1.1233 0.0214 * 
Day (Mon) 0.5873 0.2822 
Day (Sat) 1.84268 0.0002 ** 
Day (Sun) 1.01762 0.0509 . 
Day (Thur) 0.09561 0.8816 
Day (Tue) 1.17912 0.0184 * 

“.” signifies p-value < 0.1 
“*” signifies p-value < 0.05 
“**” signifies p-value < 0.01 
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Table 4.5 - Odds of the significant coefficients from the regression output. 

Variable Odds Ratio 

Precip cm 0.0000 
Windspeed_kmh 0.7599 
Month group 5 0.3252 
Day (Sat) 6.3134 
Day (Sun) 2.7666 
Day (Tue) 3.2515 

4.3.4 Identify sensors with highest odds ratio of exceeding the WHO daily limit 

Odds ratio calculations were run to identify locations within the study area that 

are likeliest to exceed the WHO daily limit for PM2.5. There were only two sensors out of 

a total of 25 that had significant odds ratios for days that exceed the WHO daily limit of 

25 µg/m3. Odds for sensor 16 is 3.04 times that of other locations to meet or exceed 25 

µg/m3, and for sensor 13 it is 2.37 (Table 4.6). Interestingly, the two sites proximal to 

major interstate freeways in the area (Sensors 32 and 25) had low odds ratios for 

exceeding air quality parameters, perhaps owing to freeway turbulence, lack of idling, 

and modern emission controls for most vehicles. 

Table 4.6 - Odds ratios output from significant sensors. 

Sensor# chi_sq (p-val) Significant Status OR 
13 0.0243 Signif Relationship 2.37 
16 0.0008 Signif Relationship 3.04 

4.3.5 Analysis at the census tract level 

Correlations at the census tract level of PM2.5 data revealed that four variables are 

significant (p-value 0.05) with one being almost significant at that level (Table 4.7). The 

two negative relationships with Tree Canopy % and White Only % indicate that they 

have an inverse relationship with PM2.5 concentrations. The two positive correlations 

were found with ‘Heavy Ind %’ and ‘Hwy Length km’ with PM2.5 concentrations.  
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Table 4.7 - Correlations of average PM2.5 at the census tract level. 

Correlations  
with PM2.5  
Census Tract Level Method Value 
Tree Canopy % Spearman -0.6677 *
Heavy Ind % Spearman 0.6338  * 
Hwy Length km Spearman 0.4964  * 
Road Length km Spearman 0.2887 
Pop25+LT high school % Spearman 0.4376  a 
Pop25+Some College_Assoc % Pearson -0.0955
Pop25+ Graduate_Prof Degree % Spearman -0.2023
Hispanic Latino % Spearman 0.2369 
Black One Race % Spearman 0.2977 
White Only % Spearman -0.4739 *
Median HH Inc Spearman -0.4060
Median Rent Pearson  0.1012 

 ‘ * ’ represents p-value < 0.05 
‘ a  ’ represents almost significant at p-value 0.05 

Regression models were run with all the variables (Table 4.8). Model 1 resulted in 

adjusted r-square of 66.47% with 4 significant variables at p-value < 0.05. However, this 

model resulted in a high variance inflation factor (VIF) of 176.17 for ‘Black One Race %’, 

which led to running Model 2 without this variable. The second model with an adjusted r-

square of 57.94% resulted in a high VIF value of 12.57 for ‘Road Length km’. Model 3 

was run without ‘Road Length km’ which resulted in adjusted r-square of 59.92%, higher 

that Model 2 but lower than Model 1, with all VIF values < 10. Output of Model 3 is 

detailed in Table 4.8, which shows 4 significant variables at p-value < 0.05, and population 

with some college and associates degree at p-value 0.1. As an additional step, stepwise 

regression model was run on Model 3 which resulted in an adjusted r-square of 62.79% 

with 2 significant variables at p-value < 0.01 and 3 variables significant at p-value < 0.05. 

All VIF values for the variables in the final model (Stepwise model) are under 10, 
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indicating that multi-collinearity is not an issue in this model. We can make the following 

observations from the final model for our data points at the census tract level:  

• A 1% increase in canopy coverage deceases average PM2.5 at the census

tract level by 0.12 +/- 0.03 µg/m3 (at the 95% confidence interval).

• A 1% increase of Heavy Industrial area increases PM2.5 by 0.07 µg/m3 +/-

0.02 µg/m3

• As the percentage of population over 25 with some college and associates

degree increases it results in a proportional increase of PM2.5 by 0.08 µg/m3 

+/- 0.03

• Hispanic Latino % has a proportional increase indicating that as this

population increases by one percent it results in an increase of PM2.5 by 0.06

µg/m3 +/- 0.02

• Median Rent has an inverse relationship. An increase of $100 in median

rent results in a decrease of PM2.5 by 0.9 µg/m3 +/- 0.03

Table 4.8 - stepwise regression output. 

Model 1 
(Adj-R2 
=66.47)  

Model 3 
(Adj-R= 

=59.92) 

Stepwise 
(Adj-R2

=62.79) 
(Intercept) 32.1600* 16.0000 ** 16.66913 ** 
Tree Canopy % -0.1840 * -0.1165 * -0.1243 **
Heavy Ind % 0.0796  * 0.0724  * 0.069337 * 
Hwy Length km -0.1284 0.0225 
Road Length km 0.0097
Pop25+LT high school % -0.4331 -0.4173 -0.48426 .
Pop25+Some College_Assoc % 0.1603 * 0.0790 . 0.080368 *
Pop25+ Grad Prof Degree % -0.0131 0.0634 0.044515
Hispanic Latino % -0.0831 0.0590 * 0.060178 *
Black One Race % -0.1201
White Only % -0.0860 0.0167 0.01149 
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Median HH Inc 0.0000 0.0000 
Median Rent -0.0153 * -0.0083 * -0.00873 **

“*” signifies p-value < 0.05 
“**” signifies p-value < 0.01 

4.4 Discussion 

Community engagement may have its earliest examples dating back to 1840’s in 

meteorology (Rosner, 2013). At any level citizen science poses many challenges as well as 

opportunities (Den Broeder et al., 2018; Hayhow et al., 2021). By creating a link between 

researchers and the public such engagement not only benefits the researchers but it also 

creates a group of engaged citizenry (Rosner, 2013). Low-cost sensors like PA are an 

inexpensive way for communities to use citizen science to participate in examining air 

quality at a fine scale (English et al., 2017). 

The South Coast AQMD has tested PurpleAir sensors to evaluate their performance 

and found high field accuracy. Our findings generally corroborate this instrumental fidelity, 

with correlation between the three sensors tested against the Washington Park sensor of > 

0.7. Over time, sensor fidelity does degrade (Masson et al., 2015), along with the added 

confounding effects of temperature and humidity. Thus, low-cost monitor data needs to be 

carefully examined over time to ensure that the calibration equation is adequately 

addressing data deviations. To suppress sensor from humidity (Bi et al., 2020), we 

calibrated the PA sensor output with humidity values (Equation 1) from the Washington 

Park IDEM monitor (Jiao et al., 2016). We also transformed data using Equation 3 for 

assessing reliability but found that in the PR dataset a relative humidity correction alone 

was adequate (Table 4.2).  
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In our study area, weekend days are in the top three days for exceeding WHO PM2.5 

standards. This may be due to a higher volume of vehicle trips during these days on local 

roadways, with an increase in idling time as well as stop and go traffic. This enhanced local 

time that vehicles stay proximal to the sensors would be captured by the hyper-local sensor 

locations, as opposed to standard work commute days when the traffic would be more 

limited to travelling to and from work. A previous study in Indianapolis (Sullivan & Pryor, 

2014) found higher PM2.5 during weekdays, in contrast to our results, but this is likely 

driven by the fact that this study used stationary sites from IDEM monitoring sites that are 

intentionally placed distant from local air pollution sources and transects that largely were 

proximal to freeways and major arterials as opposed to our neighborhood-based sites.  

We expected sensor 32 or sensor 25, both near a major interstate with high traffic 

volumes, to have high odds of exceeding WHO limits, but we find instead that sensors 13 

and 16 are the sensors with significant odds of exceeding those daily limits. We expect that 

the exhaust from traffic on highways creates a temperature gradient between it and the 

ambient air which due to thermal buoyancy results in the plume to rise which is then 

impacted by wind speed and direction. Lower wind speeds versus high wind speed on 

highways result in traffic exhaust plumes to disperse more slowly, thus resulting in higher 

measurements that are detected for longer periods of time (He & Dhaniyala, 2012). 

However, since Sensor 32 is upwind from I-65, it is impacted by local versus highway 

traffic. Sensor 16 on the other hand along with vehicles is also impacted by the frequent 

use of a wood burning stove by its neighbor, thus having a unique local impact resulting in 

consistently higher values at that sensor location. 
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 Urban greening initiatives in canopy-deprived census tracts can positively impact 

air quality and reduce related health disparities. This will be extremely critical, as urban 

land is projected to increase to 8.1% in 2050 versus 3.1% in 2000. Indiana is projected to 

increase its urban landscape to 16.7% by 2050 from 8.8% in 2000, ranking 14 in the lower 

48 states in the USA. In 1990, 2.6% of Indiana’s forestland was in urban areas. This 

percentage increased to 3.6% in 2000 and is expected to increase to a staggering 12.1% by 

2050. By 2050, 8.8% of Indiana’s forestland outside of urban areas in 2000 will be 

subsumed by urban growth. This projection equates to 1,500 km2 of farmland being 

subsumed by urbanization in Indiana from 2000 to 2050. Since forests and trees are critical 

in enhancing human and environmental health, urban canopy cover should be prioritized 

(Nowak & Walton, 2005). Not only does reduced PM2.5 improve air quality it also results 

in reduction in expenses. A 10-city study in the USA found mortality related to PM2.5 to 

range between 1-7.6 people/year, and the average value per mortality incidence to be $7.8 

million. Additionally, average health benefits were $1,600 per hectare of tree cover, with 

an average of $1.6 billion in health benefits per 1µg/m3 reduction (Nowak et al., 2013). 

According to this study, the health savings in our 20 census tracts range approximately 

between $36,300 (census tract 18097355900) – $1,121,585 (census tract 18097361400). 

This was calculated by multiplying the canopy coverage in each census tract by cost 

savings of $1,600 as reported by Nowak et al. (2013). When this calculation is normalized 

by area, health savings in census tract 18097361400 is 1.2 times that of the former. 

 Planting trees in the census tract with lower canopy coverage in conjunction with 

dividing the study area into Low Emission Zones (LEZs), where there are restrictions 

placed on high polluting vehicles from entering against non-LEZ could give us direct 
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control over minimizing the impacts from vehicle pollution (Morfeld et al., 2014) and 

combatting it through nature simultaneously.  

 

4.5 Conclusion 

This air quality study in Indianapolis is a community-based attempt in examining 

local impacts of PM2.5 over a dense network of 25 sensors. This network was established 

by collaborating with local partners through community engagement and enhancing the 

examination of the impacts of canopy coverage along with land use data and other variables 

on PM2.5 in the city.  

We found that the relative humidity correction, as captured in Equation 1, is 

adequate for calibrating raw PM2.5 data which is used in all the analysis. Our most 

significant finding captured at the census tract level was that increased percentage of tree 

canopy coverage at the census tract level produced positive externalities which should then 

be encouraged through collective efforts, especially in regions of higher health issues 

related to PM2.5. A 1 % increase in canopy coverage at the census tract level resulted in 

decreasing PM2.5 by approximately 0.12 µg/m3. Based on research by Nowak et al. (2013), 

we extrapolate further that the canopy coverage in our study region provides between 

$36,000 - $1,121,585 in health savings in the census tracts. Additionally, a 1% increase of 

Heavy Industrial area classification in the census tract resulted in increasing PM2.5 by a 

modest 0.07 µg/m3.  

In our logistic regression analysis, we found that increase in wind speed and 

precipitation result in lowering PM2.5 concentrations. We also found that local impacts, as 

witnessed by the wood burning stove of Sensor 16’s neighbor, trumped location near 
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highways, resulting in higher accumulation of PM2.5. Lastly, being predominantly a 

residential area possibly played a large role on Saturdays resulting in highest accumulations 

of these particles due to potentially robust internal traffic on the weekends.  

Air pollutants like PM2.5 can vary vastly spatially and temporally based on the 

sources its exposed to, atmospheric transformations as well as its built environment 

features (Zimmerman et al., 2020). Such networks as established in our study along with 

enhanced health data can enable us to understand micro impacts from spatial variability of 

air quality and should be utilized as a tool to examine and understand regions and to 

facilitate partnership between the community and government entities to find solutions to 

quantify and then improve their health thus creating resilient communities.  
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CHAPTER 5: DISSERTATION CONCLUSION 

5.1 Air pollution  

There have been multiple studies examining air pollution (Beelen et al., 2013; Gupta 

et al., 2018; Heintzelman et al., 2021) and tying them to health impacts (Cohen et al., 2017; 

Lamsal et al., 2013; Meng et al., 2021; Rao et al., 2014). Studies have ranged in utilizing 

satellite data to low-cost ground level sensor (Bi, Stowell, et al., 2020; Bi, Wildani, et al., 

2020; Lamsal et al., 2013). Stationary and mobile monitoring (Miller et al., 2020; Padilla 

et al., 2022) technology used independently and in conjunction with other methods present 

limitations but are also an avenue to promoting awareness of the environment to not just 

researchers but community members as well.   

Recent research is highlighting the interaction between our environment and our genes, 

referred to as Epigenetics. It is found that environmental stresses like social stresses can 

alter our gene expression, which can span three generations. Several DNA variations that 

resulted from single nucleotide (DNA building block) variants (SNV) have been identified 

that play a role in regulating epigenetics and should be targeted for treatments and future 

research (Chu et al., 2015; Ferrari et al., 2019; Tan et al., 2020; You et al., 2020). In fact 

during pregnancy, in childhood and the elderly are the highest susceptible to negative 

impacts from air pollution (Ferrari et al., 2019). This presents a need for frequent and 

consistent air pollution measurements which can be successfully achieved by low-cost 

sensor studies assessing from local and regional impacts to personal and community based 

impacts from air pollution (Jiao et al., 2016; Kortoçi et al., 2022; Malings et al., 2020).  
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5.2 Contributions of this dissertation 

As highlighted in Chapter 2, sparsely placed sensors are not adequate in examining 

finer scale geographies. We must accept that there are limitations not just in low-cost sensor 

studies, as highlighted in the next section, but also satellite data studies. However, as 

highlighted in this body of work, there is a way to address and mitigate the shortcomings 

of low-cost sensor technology as improvements are made to this technology. COVID-19 

gave us a glimpse into a natural experiment, which was taken advantage of in Chapter 2, 

to assess and quantify the impacts of reduced air pollution.   

Next, to achieve fine scale analysis, a dense network of citizen scientist with low-

cost sensors was established to quantify air pollution impacts while incorporating other 

variables. Passive Ogawa sensors, used in Chapter 3, have historically tracked well with 

EPA grade monitors, therefore that data was not modified. No research study was found 

that not only utilized a citizen scientist network, but also incorporated Ogawa passive 

sensors in conjunction with accurate traffic data, and high-resolution imagery in analyzing 

a region. Incorporating StreetLight platform as done in Chapter 3, provides an opportunity 

to highlight how we can use the two together in evaluating urban spaces.  

Lastly, in Chapter 4, in the Pleasant Run airshed study area, PurpleAir active 

sensors were utilized with an equation-based correction for calibration. It was found that 

this data correction is adequate in Pleasant Run, thus providing a low-cost alternative for 

air quality examination. 
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5.3 Study limitations 

 One of the main limitations of Chapter 2 is the short-time period as well as the 

number of usable data points from cities and sensors. Air pollution data could be accessed 

from only some of the top populated cities in the U.S. Therefore, Chapter 2 analysis is 

limited to 11 cities in the country.  

Chapter 3 utilized low-cost Ogawa, passive sensors, in a fine scale citizen science 

approach to examine pollution in the Pleasant Run airshed in Indianapolis; however, data 

from only 3 deployment cycles could be utilized that spanned over 32 sensors. A larger 

number of sensors and deployment cycles would have enriched the data for analysis. 

Another limitation in Chapter 3 related to the time frame used for traffic data extraction 

from StreetLight. StreetLight data platform is set up to provide greater accuracy when 

examining a longer time frame. To overcome this limitation, future work should extend 

traffic data analysis over several months rather than a week at a time.   

Chapter 4 utilized low-cost active PurpleAir sensors, that have internal limitations 

and have been scrutinized in research. However, a relative humidity correction was 

utilized, which was demonstrated to be adequate in the Pleasant Run airshed. Higher 

quality data and precise instrumentation is always preferred, but we must be careful to not 

paralyze our investigations in the interest of EPA grade results. We need to access the needs 

of the study and proceed with reasonable accommodations. Validating data from low-cost 

ground-based sensors is an ongoing debate, with several methods proposed. A study, based 

on its needs, may not require FRM accuracy and could utilize a unique correction to get 

reasonable accuracy.  
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There was an assumption made in both Chapters 3-4 since meteorological data was 

based on one IDEM monitor near the sensor network. This assumption means that there is 

no variation in these variables in our space, even though we know that built environment 

and tree cover, amongst other factors, do influence their measurements. Future work will 

also benefit from the usage of more recent high resolution tree canopy data.    

 Lastly, we know that humans are not stationary and not incorporating mobility, 

especially of those individuals with long commutes has been shown to underestimate 

human exposure by an average of 13% (Lu, 2021). This study bases its analysis on the 

sensor locations and does not incorporate participants mobility, which should be consider 

in the future. 

 

5.4 Future suggestions 

There are many areas of research as they pertain to air pollution and health that have 

not yet been explored fully, which poses an unknown threat that we cannot quantify 

(Szyszkowicz et al., 2022). Clean Air Act in 1970 initiated legislation being passed to 

protect the public and the nation (US EPA, 2015), which has helped the U.S. at a macro 

level; however we need to examine the current state and incorporate research and new 

methods for combating air pollution and its fallout. Investment needs to be made to address 

and act upon the pollution we suffer, and the very serious ramifications from it.  COVID-

19, a natural experiment, gave us insight into quantifying health impacts of our restricted 

movements on us.  For instance, New York Times reported a reduction in heart attacks in 

early pandemic days (Appelbaum, 2022).   
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We have also come to realize that communities of color have suffered 

disproportionately, and working on improving them directly also benefits the less diverse 

places (Demetillo et al., 2021). Satellite data has its place in research, but to examine air 

pollution burden, in particular that of NO2 and thus its secondary products has to be 

monitored at a much finer resolution than what is readily available (Rao et al., 2014). That 

being the case we need to turn towards low-cost air pollution sensor options not the few 

EPA monitors to keep our eye on pollution to accurately assess its impacts on the humans 

and the environment. Thus, we need to work on modifying and making the validation 

process of low-cost sensors user friendly and not prohibitive in ease of use by researchers, 

keeping the attainable accuracy within a reasonable range.   

Epigenetics research is highlighting the serious impacts from air pollution; therefore, 

the urgency presents opportunities to first examine widely at a finer scale and work with 

the public to make our air cleaner for us and the future generations. Low-cost sensors have 

huge promise especially in regions of low coverage (Gupta et al., 2018), and have to be 

made more acceptable for future research. 
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APPENDICES 

 

APPENDIX A 

This appendix contains variable explanations used in the Ogawa data and the writing. 

Ogawa sensor data in parts per billion (ppb): 

NO2 (ppb) = NO2_ppb_blankcorrected = NO2 concentration (ppb) 

O3 (ppb) = O3_ppb_blankcorrected = O3 concentration (ppb)     

 

StreetLight (SL) platform data excluding the control site: 

All Vehicle Count = AllVehiclesAvgDailyCount = avg daily vehicle count data  

Medium Truck Index = MedTrk_AvgDaily_pct_exclkib = avg daily medium truck index  

Heavy Truck Index = HvyTrk_AvgDaily_pct_exclkib = avg daily heavy truck index  

 

Washington Park (WP) IDEM monitor data: 

Temp C = Avg_Temp_C = average temperature in Celsius  

Solar Energy = WP_avgsolar_rad = avg solar energy in watts per square meter 

Windspeed kmh = Avg_wndspd_kmh = avg wind speed in kilometer per hour 
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American Community Survey 5-year 2018, at census tract level: 

Hispanic Latino % = pop_pct_hispanic_latino = percent of Hispanic and Latino population  

White only % = pop_pct_whitealone = % white only population  

Pop25+LT high school % = plus25LTHS_ovr25pop = % 25+ population with less than 

high school  

Pop25+bachelors % = plus25Bachelors_ovr25pop = % 25+ population with bachelor’s 

degree 

 

Indianapolis land use data from open data portal by census tract: 

Heavy Industry % = HeavyInd_pct = percentage of heavy industrial parcels  

 

Measurements (GIS software): 

Hwy Length-10 km = hwy_length_10km_inKm = highway length in a 10-kilometer radius 

from each sensor in kilometers 

Road Length-10 km =rd_length_10km_inKm = road length in a 10-kilometer radius from 

each sensor in kilometers 

Distance to Hwy =dist_to_hwy_inKm = distance from each sensor to nearest highway in 

kilometers  

Gas Station-10 km = gas_st_10km = gas stations in a 10-kilometer radius 
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Tree Canopy-1 km = tree_canopy_in1km_sqKm = tree canopy coverage in a 1-kilometer 

radius circle from each sensor 
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APPENDIX B 

 

This appendix contains R code with some explanation for the regression models run 

for this study. 

Model 1 

Explanation: Model 1 included all the variables extracted for this study. However, this 

resulted in high collinearity indicated by a high variance inflation factor (VIF) of 67.09 

for ‘Avg_Temp_C’.  

Code for Model 1 below: 

md_1 <- lm(NO2_ppb_blankcorrected ~ O3_ppb_blankcorrected +    
              AllVehiclesAvgDailyCount + MedTrk_AvgDaily_pct_exclkib +    
              HvyTrk_AvgDaily_pct_exclkib  + pop_pct_hispanic_latino +  
              pop_pct_whitealone + plus25LTHS_ovr25pop + plus25Bachelors_ovr25pop +   
              HeavyInd_pct + tree_canopy_in1km_sqKm +      
              Avg_wndspd_kmh + Avg_Temp_C+  
              hwy_length_10km_inKm + rd_length_10km_inKm +   
              dist_to_hwy_inKm + gas_st_10km, data = c4)      

       
summary(md_1) 

       
 

Model 2 

Explanation: Due to high collinearity of ‘Avg_Temp_C ‘ in Model 1, Model 2 was run without 

it. However, this model resulted in high VIF of 20.90 for ‘MedTrk_AvgDaily_pct_exclkib’.  

Code for Model 2 below: 

md_2 <- lm(NO2_ppb_blankcorrected ~ O3_ppb_blankcorrected +   
               AllVehiclesAvgDailyCount + MedTrk_AvgDaily_pct_exclkib +   
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               HvyTrk_AvgDaily_pct_exclkib  + pop_pct_hispanic_latino +   
               pop_pct_whitealone + plus25LTHS_ovr25pop + plus25Bachelors_ovr25pop +  
               HeavyInd_pct + tree_canopy_in1km_sqKm +     
               Avg_wndspd_kmh + hwy_length_10km_inKm + rd_length_10km_inKm +  
               dist_to_hwy_inKm + gas_st_10km, data = c4)    
summary(md_2)       
vif(md_2)       

 

Model 3 

Explanation: Due to high collinearity of ‘MedTrk_AvgDaily_pct_exclkib’’ in Model 2, Model 

3 was run without it. However, this model resulted in high VIF of 10.95 for 

‘rd_length_10km_inKm’.  

Code for Model 3 below: 

md_3 <- lm(NO2_ppb_blankcorrected ~ O3_ppb_blankcorrected +  
 

             AllVehiclesAvgDailyCount  +  
 

   
             HvyTrk_AvgDaily_pct_exclkib  + pop_pct_hispanic_latino +  

 

             pop_pct_whitealone + plus25LTHS_ovr25pop + plus25Bachelors_ovr25pop +  
             HeavyInd_pct + tree_canopy_in1km_sqKm +  

 
  

             Avg_wndspd_kmh + hwy_length_10km_inKm + rd_length_10km_inKm +  
             dist_to_hwy_inKm + gas_st_10km, data = c4) 

 
  

summary(md_3) 
 

     
vif(md_3) 

 
     

 

Model 4 

Explanation: Due to high collinearity of ‘rd_length_10km_inKm’ in Model 3, Model 4 was 

run without it.  

Code for Model 4 below: 
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md_4 <- lm(NO2_ppb_blankcorrected ~ O3_ppb_blankcorrected +  
             AllVehiclesAvgDailyCount  +  
             HvyTrk_AvgDaily_pct_exclkib  + pop_pct_hispanic_latino +  
             pop_pct_whitealone + plus25LTHS_ovr25pop + plus25Bachelors_ovr25pop +  
             HeavyInd_pct + tree_canopy_in1km_sqKm +    
             Avg_wndspd_kmh + hwy_length_10km_inKm  +  
             dist_to_hwy_inKm + gas_st_10km, data = c4)      
  
summary(md_4) 
vif(md_4) 

 

Model 5- Stepwise Regression 

Explanation: Since Model 4 resulted in no multicollinearity in the variables an additional 

step was taken to run a final stepwise regression model.  

Code for Model 5 below: 

 
stepwise.5 <- step(md_4, direction = "both", trace = FALSE) 
summary(stepwise.5)    
vif(stepwise.5)     
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APPENDIX C 

 

This appendix contains spatial patterns and variable explanations used in the PM2.5 data 

and the writing. 

 

 
Figure C.1 - Kriging interpolation in ArcMap for PM2.5 data 
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Figure C.2 - Inverse Distance Weighting interpolation in ArcMap for PM2.5 data 

 

PurpleAir sensor data in micrograms per cubic meter air (µg/m3): 

PM2.5 (µg/m3) = pm25_adj_wp = Relative humidity corrected PM2.5  

 

Washington Park (WP) IDEM monitor data and other data: 

Temp C = wp_avg_Temp_C = Temperature in Celsius 

Precip cm = WP_avg_precip_cum_cm = Precipitation in centimeters 

Windspeed kmh = wp_avg_wndspd_kmh_new = Wind speed in kilometer per hour 

Day = day = consists of 7 categories for the days of the week 

Month group = paper_mth_grp_rank * 
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 * This variable consists of the following groups: 

• Month group 1= Fall 1(Nov2018): paper_mth_grp_rank = "1" 
• Month group 2 =Winter (Dec2018-Jan2019): paper_mth_grp_rank := "2" 
• Month group 3 = Spring (Mar2019-May2019): paper_mth_grp_rank := 

"3" 
• Month group 4 = Summer (June2019-August 2019): paper_mth_grp_rank 

:= "4" 
• Month group 5 = Fall 2 (September 2019-October 2019): 

paper_mth_grp_rank := "5" 
 

American Community Survey 5-year 2018, at census tract level: 

Hispanic Latino % = pop_pct_hispanic_latino = percent of Hispanic and Latino population  

Black One Race % = pop_pct_onerace_black = percent of black one race population 
 
White only % = pop_pct_whitealone = percent white only population  

Median HH Inc = med_hh_inc = median household income 

Median Rent = median_rent = median rent  

Pop25+LT high school % = plus25LTHS_ovr25pop = % 25+ population with less than 
high school  

Pop25+Some College_Assoc % = plus25_somecollege_assoc= % 25+ population with 
some college and an associate’s degree 

Pop25+ Grad_Prof Degree % = plus25_graduate_prof_deg = % 25+ population with a 
graduate or a professional degree 

 

Indianapolis land use data from open data portal by census tract: 

Heavy Industry % = HeavyInd_pct = percentage of heavy industrial parcels    

 

Measurements (GIS software) in the census tract: 

Hwy Length km = hwy_length_km = highway length in kilometers  

Road Length km = rd_length_km = road length in a kilometers  
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Tree Canopy % = canopy_pct_ct_km = tree canopy percentage  
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APPENDIX D 

 

This appendix contains R code with some explanation for the analysis run for this study 

in R-Studio. 

Meteorology Conversions 

d3 <- d1[, `:=` (wp_avg_wndspd_kmh_new=WP_wind_spd*1.6090, 

WP_avg_precip_cum_cm=WP_precip_cum*2.54,wp_avg_Temp_C=((wp_avg_te

mp-32)*5/9))] 

 

Logistic regression Model 

summary (mod20 <- glm(who1_pm25_adj_wp_ge25 ~    

WP_avg_precip_cum_cm+wp_avg_wndspd_kmh_new 

         +wp_avg_Temp_C+paper_mth_grp_rank+day, 

          family=binomial(link="logit"), 

          na.action=na.omit, data=d2)) # in paper 9/22/22 

          exp(mod20$coefficients[-1]) 

 

Table 4.6 

Following is an example of what was run in R-Studio for each of the 25 sensors in the 
study: 

d1[, sen_13 := as.factor(ifelse(Sensor == '13','1', '2'))] 

t_sen13 <- d1[,table(sen_13,who_adj_GE25)] 

colnames(t_sen13)<- c("GE25","Other") 

rownames(t_sen13)<- c("Sen13", "Other") 

chi_13 <- chisq.test(t_sen13) 
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fisher.test(t_sen13, conf.int = T, conf.level = 0.95) 

 

Section 4.3.5 

Code for Correlation: 

cor.test(acs4$pm_adj_25Sen_11mt,acs4$canopy_pct_ct_km, method=c("spearman")) 
cor.test(acs4$pm_adj_25Sen_11mt,acs4$HeavyInd_pct, method=c("spearman")) 
cor.test(acs4$pm_adj_25Sen_11mt,acs4$hwy_length_km, method=c("spearman")) 
cor.test(acs4$pm_adj_25Sen_11mt,acs4$rd_length_km, method=c("spearman")) 
cor.test(acs4$pm_adj_25Sen_11mt,acs4$plus25LTHS_ovr25pop, method=c("spearman")) 
cor.test(acs4$pm_adj_25Sen_11mt,acs4$plus25_somecollege_assoc, method=c("pearson")) 
cor.test(acs4$pm_adj_25Sen_11mt,acs4$plus25_graduate_prof_deg, method=c("spearman")) 
cor.test(acs4$pm_adj_25Sen_11mt,acs4$pop_pct_hispanic_latino, method=c("spearman")) 
cor.test(acs4$pm_adj_25Sen_11mt,acs4$pop_pct_whitealone, method=c("spearman")) 
cor.test(acs4$pm_adj_25Sen_11mt,acs4$med_hh_inc, method=c("spearman")) 
cor.test(acs4$pm_adj_25Sen_11mt,acs4$median_rent, method=c("pearson")) 
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