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Abstract: Novel environmentally friendly pretreatments have been developed in recent years to
improve biomass fractionation. Solid-state fermentation (SSF) and treatment with ionic liquids show
low environmental impact and can be used in biorefinery of biomass. In this work, these processes
were assessed with brewery spent grain (BSG). First, BSG was used as a substrate to produce cellulases
and xylanases by SSF with the fungi Aspergillus brasiliensis CECT 2700 and Trichoderma reesei CECT
2414. Then, BSG was pretreated with the ionic liquid [N1112OH][Gly] and hydrolyzed with the crude
enzymatic extracts. Results showed that SSF of BSG with A. brasiliensis achieved the highest enzyme
production; meanwhile, the pretreatment with ionic liquids allowed glucan and xylan fractions to
increase and reduce the lignin content. In addition, a mixture of the extracts from both fungi in a
ratio of 2.5:0.5 Aspergillus/Trichoderma (v/v) efficiently hydrolyzed the BSG previously treated with
the ionic liquid [N1112OH][Gly], reaching saccharification percentages of 80.68%, 54.29%, and 19.58%
for glucan, xylan, and arabinan, respectively. In conclusion, the results demonstrated that the BSG
biorefinery process developed in this work is an effective way to obtain fermentable sugar-containing
solutions, which can be used to produce value-added products.

Keywords: biorefinery; brewery spent grain; ionic liquids; Aspergillus brasiliensis; Trichoderma reesei

1. Introduction

Lignocellulosic biomass is the cheapest and most abundant renewable carbon source
that exists. It is generally composed of cellulose (40–50%), hemicellulose (20–30%), and
lignin (10–15%), as well as other minor polymers, proteins, extracts, and inorganic matter.
This composition varies substantially depending on the biomass source and its origin,
climate, harvesting season, processing, and storage conditions to which it has been sub-
jected [1]. These materials have gained importance in the framework of the biorefinery,
which aims to efficiently use biomass to obtain fuels, energy, and other bioproducts with
high added value in a sustainable way [2].

There are several suitable raw materials for these processes, but the residues from
agro-industrial activities are especially interesting because of their appropriate composi-
tion. Furthermore, the valorization of these residues has economic and environmental
advantages, increasing value in agricultural work and the rural environment [3]. The
generation of biomass wastes in the agriculture sector is estimated to be 5 × 109 tons per
year [4]. Most of these wastes are not treated and end up being disposed of by burning or
dumped in landfills, which is harmful to the environment [5]. We highlight brewery spent
grain (BSG), the main byproduct of the brewing industry which, due to its high generation
(39 million tons per year in the world), is usually classified as waste due to the existence
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of an excess with respect to the demand for its main use in animal feed. The possibilities
of valorization of BSG in the field of biotechnology have already been reported, but none
have been implemented at an industrial level [6–8].

Enzymatic hydrolysis is considered a fast, effective, safe, and ecological process
that allows the biochemical conversion of biomass polysaccharides into their constituent
monomers, without generating byproducts. As a result, this process can be integrated
into a biorefinery concept for subsequent microbial fermentation [9]. Cellulose is a linear
and unbranched homopolymer of glucose units linked by (β1→4) glycosidic bonds, while
hemicellulose is a heterogeneous and branched polysaccharide made up mainly of pentoses
(xylose and arabinose) and hexoses (glucose, galactose, and mannose) [10]. To efficiently
decompose these polymers, an enzymatic cocktail containing cellulases, hemicellulases, and
other accessory enzymes is needed [11]. The global rate of the process is influenced by the
structural characteristics of the biomass and the origin of the enzymes [12]. However, this
stage can be a limitation for the biorefinery process given the high cost and thermostability
of enzymes available on the market, as well as the low conversion yields due to the
characteristics of lignocellulosic materials [10,13].

Filamentous fungi are among the most efficient extracellular cellulases producers [14],
mainly those belonging to the Aspergillus and Trichoderma genera. In this sense, solid-state
fermentation (SSF) has proven to be an appropriate technique to produce these enzymes,
since it simulates the natural habitat of these microorganisms. SSF of wastes, such as BSG
used as a source of carbon and energy, can lead to the production of high concentrations of
enzymes with high volumetric productivities at low production costs [10,11,13,15].

Most of the cellulases and hemicellulases used in industrial applications come from
filamentous fungi, capable of secreting enzyme complexes with a high concentration of
these enzymes. Fermentations with fungi of the genera Aspergillus and Trichoderma stand out
in the production of enzymes for the degradation of lignocellulosic biomass [16]. Within the
genus Aspergillus, the use of those that make up the Nigri section are highlighted for their
industrial importance in both food mycology and biotechnology. In this sense, Aspergillus
brasiliensis is an excellent producer of cellulases, xylanases, and accessory enzymes, such as
feruloyl esterases [17–19]. On the other hand, Trichoderma reesei is widely used in biorefinery
processes due to its high cellulases productivity [20].

The complex composition and structure of lignocellulosic materials make them highly
resistant to microbial and enzymatic degradation, so it is necessary to carry out a previous
treatment to facilitate the action of enzymes on the biomass. To solve this problem, various
pretreatments have been studied to remove components that prevent hydrolysis, such as
lignin, and modify the structure of the material, reducing the crystallinity of cellulose and
increasing the contact surface with the creation of pores [21].

In this sense, various physical, chemical, and biological alternatives have been studied.
The most common treatments are based on the use of diluted acids or alkalis and organic
solvents, which imply an extra danger and toxicity [22]. Ionic liquids (IL) appear as an in-
teresting alternative due to their high stability and good capacity to dissolve lignocellulosic
biomass (completely) or its components (selectively). However, some ILs based on the imi-
dazolium cation, which have proven to be very effective in delignification treatments, were
found to be toxic and persistent in the aquatic environment and in the soil [23]. Due to this,
there is a growing interest in using ILs based on amino acids, since they are biodegradable
and nontoxic, and highly effective in the delignification of biomass [24].

Cholinium-based ILs have offered good results in terms of delignification, being able
to cause structural changes, including reduction of crystallinity and formation of pores,
which favor enzymatic hydrolysis. In addition, they have turned out to be recyclable and
can be reused between five and eight times, depending on the IL, the treatment, and the
material to be treated, thus reducing the cost of the process [25,26].

The sugars released after hydrolysis can be used as a carbon source in different
biological processes to produce biomolecules and high value-added products [27].
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The functional foods market has experienced rapid growth in recent years, with
an expected annual increase of 8% [28]. Functional foods are those that have a positive
impact on the health, physical performance, or mood of the individual, in addition to their
nutritional value. Recent research has paid attention to bioactive compounds and their use
to obtain functional foods since these compounds can exhibit antimicrobial, antioxidant,
antimutagenic, antiallergic, and anti-inflammatory activities [29].

Probiotics hold promise in this field; however, the low concentration of biologically
active compounds derived from traditional probiotics (live probiotic microorganisms)
are ineffective under in vivo conditions. Thus, postbiotics, non-viable bacterial products,
or metabolic products of microorganisms that are active in the host are presented to
prepare these foods. The various postbiotic molecules include metabolic byproducts of live
probiotic bacteria, such as cell-free supernatant, vitamins, organic acids, short-chain fatty
acids, secreted proteins/peptides, bacteriocins, neurotransmitters, secreted biosurfactants,
amino acids, flavonoid-derived postbiotics, etc. [28]. These metabolites, despite having
significant potential in the food industry, do not have a wide application in it, due to
problems of uneconomic or non-competitive costs for their production compared to their
counterparts from plants or chemical products. The production of these compounds from
economic and sustainable processes, using agro-industrial residues as in this case, are
presented as an alternative [30].

This study focuses on a biorefinery process with BSG as the basis to obtain sugar
rich solutions that can be used to produce biomolecules of industrial interest. First, the
production of cellulolytic enzymes with Aspergillus brasiliensis CECT 2700 and Trichoderma
reesei CECT 2414 by SSF was studied. Second, the enzymatic hydrolysis of BSG previously
treated with IL [N1112OH][Gly] was assayed. For the latter purpose, enzymatic extracts
previously obtained were used to perform a satisfactory hydrolysis.

2. Materials and Methods
2.1. Materials

Brewery spent grain (BSG), from the artisanal production of beer, was kindly provided
by Letra (Vila Verde, Braga, Portugal). BSG with approximately 80% water content, was
dried at 50 ◦C up to 10% humidity, grinded in an electric shredder MTD 220E (Saarbrücken,
Germany), milled to dust with an IKA® Werke model M 20 mill (Staufen, Germany), sieved
to size below 5 mm, homogenized in a single lot, and stored at 4 ◦C before experimentation.

2.2. Microorganisms

Aspergillus brasiliensis CECT 2700 and Trichoderma reesei CECT 2414 were grown on
potato dextrose agar (PDA) slants at 30 ◦C in a moisture-saturated atmosphere for 7 days
and stored at 4 ◦C before use for enzyme production. Both strains were obtained from the
Spanish Type Culture Collection (CECT, Valencia, Spain).

2.3. Pretreatment with Ionic Liquid

BSG was treated with the ionic liquid (IL) [N1112OH][Gly] as described by
Outeiriño et al. [31]. Briefly, BSG was treated at 90 ◦C, during 16 h, and a solid load-
ing of 5 wt% with the ionic liquid (IL) [N1112OH][Gly]. Then, a water-acetone solution (1:1)
was added which led to the precipitation of a carbohydrate rich material (CRM) with a low
lignin content. The process was repeated for 5 successive cycles and the resulting CRMs
were mixed.

2.4. Solid-State Fermentation (SSF)

The enzymes were produced in 250 mL Erlenmeyer flasks containing 5 g (dry weight)
BSG moistened (1:2.5 w/v) with a solution of mineral salts (1.3 g/L (NH4)2SO4, 5.0 g/L
NaNO3, 4.5 g/L KH2PO4, and 3 g/L yeast extract). The mixture was sterilized in autoclave
(Trade Raypa SL, Terrassa, Barcelona, Spain) at 100 ◦C for 60 min. After cooling, each flask
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was inoculated with a suspension of spores of 1 × 106 spores/g dry BSG by adding 0.1%
peptone water with 0.05% Tween 80 to slant cultures.

SSF was performed at 30 ◦C in a water-saturated atmosphere for 6 days. All experi-
ments were conducted in triplicate.

2.5. Enzymes Extraction

Crude extracts were obtained by adding citrate buffer pH 4.8 to SSF media (10 mL/g
dry BSG) and incubated for 1 h, 200 rpm at 30 ◦C. Solids were separated from the extract
by centrifugation at 2755× g for 15 min (Ortoalresa, Consul 21, EBA 20, Madrid, Spain)
and filtered. Subsequently, the enzymatic extracts were frozen at −20 ◦C to be stored until
further analysis [32].

2.6. Enzymatic Hydrolysis

The enzymatic hydrolysis was carried out on CRMs, with the enzymatic cocktails
from A. brasiliensis and T. reesei obtained after SSF. Enzymatic hydrolysis was performed in
100 mL Erlenmeyer flasks at 50 ◦C and 150 rpm during 144 h to ensure complete reaction. To
obtain the best hydrolysis conditions, samples were withdrawn each 24 h and immediately
centrifuged at 9503× g for 10 min, to remove solids. The liquid phase (hydrolyzate) was
heated for 5 min on a boiling water bath to stop the reaction. Glucose, cellobiose, xylose, and
arabinose in hydrolyzates were quantified by HPLC as described below. All experiments
were conducted in triplicate.

Saccharification percentages were calculated as:

% Sacchari f ication =
Sugar released ∗ Cest

Amount o f sugar in substrate
∗ 100 (1)

where Cest is a stoichiometric correction factor to express the increase in molecular weight
during hydrolysis (0.9 for glucose, 0.95 for cellobiose, and 0.88 for xylose and
arabinose) [32,33].

2.7. Modelling of Enzymatic Hydrolysis

The kinetics of sugars released were modelized by Holtzapple empirical equation:

% CGCt = CGCmax·
t

t + t1/2
(2)

where CGCt is the cellulose to glucose conversion (%) at each time, CGCmax is the maximum
cellulose to glucose conversion predicted by model, t is the enzymatic hydrolysis time (h),
and t1/2 is the time needed to reach the half of CGCmax. The model of xylan and arabinan
conversion were performed with the same equation.

2.8. Analytical Methods
2.8.1. Determination of Enzymatic Activities

Xylanase activity was obtained by determining the released sugars from 1% (w/v)
xylan from beechwood (Sigma Aldrich, Sant Louis, Mo, USA) prepared in 50 mM sodium
citrate buffer pH 4.8, with incubation at 50 ◦C for 15 min [34].

CMCase (endo-β-1,4-glucanase) activity was obtained by determining the released
sugars from 2% (w/v) carboxymethylcellulose (CMC) prepared in 50 mM sodium citrate
buffer pH 4.8, with incubation at 50 ◦C for 30 min [35].

The two enzymatic reactions were stopped by the addition of dinitrosalicylic acid
and boiling 5 min, and then the samples were cooled. The corresponding reducing sugars
released in the reaction mixtures were quantified by absorbance measurements at 540 nm
and further conversion to concentrations by using a standard calibration curve [36].

The β-glucosidase activity was measured using the method described by Leite et al. [19].
β-glucosidase activity was determined using p-nitrophenyl-β-D-glucopyranoside (PNG)
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as a substrate incubated at 50 ◦C for 15 min with a suitable dilution of enzyme in 50 mM
sodium citrate buffer pH 4.8. The reaction was stopped by the addition of 1 M of Na2CO3.
Finally, the absorbance was measured at 400 nm to determine the p-nitrophenol released.

One unit (U) of enzymatic activity corresponds to 1 µmol of xylose/glucose/p-
nitrophenol released per minute, under the assay conditions.

The synergism factor (SF) of the two enzyme extracts used was calculated by the
following equation:

SF =
msj

mCLj
(3)

where msj is the degree of glucan, xylan, or arabinan hydrolysis of mixture j, while mCLj is
given by:

mCLj = ∑
i=1,2

rijmi (4)

where rij is the volume ratio of enzymes i in mixture j and mi is the degree of glucan, xylan,
or arabinan hydrolysis of cellulase i.

2.8.2. Analysis of Sugars

Quantification of sugars (glucose, cellobiose, xylose, and arabinose) was done by
HPLC (Agilent, model 1200, Palo Alto, CA, USA) equipped with a refractive index detector
and an Aminex HPX-87H ion exclusion column (Bio Rad 300 mm × 7.8 mm, 9 m particles).
The elution program was conducted during 23 min at 50 ◦C with a flow rate of 0.6 mL/min
of 3 mM sulfuric acid [34].

2.9. Statistical Analysis

All data were compared by analysis of variance (ANOVA) and principal components
analysis was performed with Statgraphics Centurion XVI.I software using Tukey’s test at a
significance level of p < 0.05 to determine statistically significant differences.

3. Results
3.1. Enzymes Production by SSF

The crude BSG was used as substrate to produce cellulolytic enzymes with Aspergillus
brasiliensis CECT 2700 and Trichoderma reesei CECT 2414 by solid-state fermentation. Time
course of enzymatic production using A. brasiliensis is shown in Figure 1a. The evolution of
enzymatic activity during fermentation follows the trend of the typical profile described
by [37]. The production of enzymes was detected after 2 days of SSF. The maximum xy-
lanases production by A. brasiliensis was achieved between days 3 and 6 (2835.12 U/g).
After 5 days, the production of enzymes decreased significantly (p < 0.05) to 1451.80 U/g.
The maximum CMCase activity was 234.90 U/g on day 4, decreasing slightly in the fol-
lowing days. However, the CMCase concentration obtained on day 5 was not significantly
different (p > 0.05) from that obtained on day 4. Regarding β-glucosidases, the maximum ac-
tivity was obtained on day 5 (227.50 U/g) followed by a non-significant (p > 0.05) decrease
at the end of the incubation.

These values were higher than those reported by Leite et al. [19] when performing SSF
in BSG with related strains such as Aspergillus niger CECT 2088 with 246.41 U/g of xylanase,
51.35 U/g of CMCase, and 93.66 U/g of β-glucosidases or with Aspergillus niger CECT
2915 with 290.55 U/g of xylanase, 57.81 U/g of CMCase, and 3.98 U/g of β-glucosidases,
which supports the suitability of this microorganism. De Souza Falcão et al. [38] concluded
that A. brasiliensis is a good producer of cellulases, reporting a production of 39.85 U/g of
CMCase using cupaçu residue as substrate. Moran-Aguilar et al. [13] reported a xylanase
production of 2279.99 U/g of BSG after 7 days of fermentation using the same strain; this
slightly lower value agrees with these data since we can observe the progressive decrease
in activity of this enzyme from day 4. On the other hand, the xylanase activity was lower
than that previously reported, 3152.39 U/g of BSG, performing the SSF in a 7 L horizontal
drum bioreactor [32]. However, the β-glucosidases activity in this study was considerably



Foods 2022, 11, 3711 6 of 14

higher than those reported by Moran-Aguilar et al. [13] (32.62 U/g) and Outeiriño et al. [32]
(19.02 U/g).
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Figure 1. Time course of enzyme production by A. brasiliensis (a) and T. reesei (b) under solid-state
fermentation.

Regarding the SSF of BSG with T. reesei (Figure 1b), it can be noted that the xylanase
production peaked at 678.83 U/g obtained on day 4 (p < 0.05). The maximum CMCase
activity was detected on day 6 with 153.75 U/g, and this enzyme concentration was not
significantly different (p > 0.05) from the levels obtained on days 4 (131.50 U/g) and 5
(136.71 U/g). T. reesei was a poor β-glucosidases producer because the activity of this
enzyme was only 3.15 U/g.

It is known that T. reesei is a good producer of cellulases but also of xylanases.
Kar et al. [39] found a xylanase production of 219 U/g in SSF of wheat bran with T.
reesei SAF3. A three-fold increase in production was achieved in this study, supporting
the importance of the substrate in SSF. The CMCase activity was much higher compared
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to that reported by Darabzadeh et al. [40] using the same strain grown on rice residues
(0.553 U/g). On the other hand, Ben Taher et al. [41] reported activities of 41.8 U/g and
9.2 U/g for CMCase and β-glucosidases respectively, when performing SSF with T. reesei
on potato peels residues, which shows the influence of the substrate in these processes.

In summary, A. brasiliensis showed the maximum xylanase, CMCase, and β-glucosidases
after 5 days of SSF.

3.2. Composition of Raw and Pretreated Biomass

To facilitate the enzymatic hydrolysis of lignocellulosic materials, it is necessary to
carry out a pretreatment to eliminate the causes of material recalcitrance such as a compact
structure or a high lignin content [42]. For this purpose, in recent years, bioderived ionic
liquids have stood out as a green and effective treatment [23,43].

In this case, BSG was treated with the IL [N1112OH][Gly] as described in a previous
work. Briefly, BSG was treated with the IL at 90 ◦C for 16 h and mixed with a water/acetone
solution, giving rise to a carbohydrate-rich material (CRM). CRM is formed by the combina-
tion of the materials obtained after 5 cycles of IL use, considering that IL can be recovered
and efficiently reused for delignification of BSG during 5 cycles [31].

Table 1 shows the chemical characterization of crude BSG and CRM samples after
pretreatment with IL [N1112OH][Gly]. In this case, the treatment with IL [N1112OH][Gly]
achieved a drastic reduction in lignin (62.50%) in accordance with the data previously
reported by [31] with delignification rates between 71–60%. These data agree with those
published by other authors such as Hou et al., 2012 [44] with a delignification of 59.90%
in rice straw, and Pakdeedachakiat et al. [45] with 60% of lignin reduction in mulberry
stem. Because of this reduction in lignin, there is a considerable increase in carbohydrate
fractions, being 1.6 times for glucan, 1.8 times for xylan, and 1.1 times for arabinan, with
recoveries of these fractions of 52.4, 35.5, and 27.5% respectively.

Table 1. Composition of BSG and CRM expressed as g per 100 g of dry solid.

Component BSG CRM

Moisture 6.82 ± 0.04 6.84 ± 0.35
Ashes 2.87 ± 0.04 3.45 ± 0.02
Klason lignin 11.98 ± 0.02 7.59 ± 0.41
Soluble lignin 7.32 ± 0.03 1.88 ± 0.03
Extracts 14.00 ± 0.33 n.d.
Glucan 27.77 ± 0.35 45.73 ± 0.90
Xylan 16.46 ± 0.51 30.72 ± 0.34
Arabinan 8.44 ± 0.13 9.70 ± 0.11
Acetyl group 3.02 ± 0.04 n.d.

n.d.: not detected; BSG: brewery spent grain; CRM: carbohydrate rich material.

3.3. Enzymatic Hydrolysis of CRM

One of the most ecological and profitable alternatives to obtain fermentable sugars
from biomass is the enzyme-catalyzed hydrolysis of CRMs. The conditions for the sacchari-
fication of the material were selected according to previous works [32,46]. Additionally,
Darabzadeh et al. [38] observed optimal temperatures for enzymatic hydrolysis with the
enzymes of T. reesei CECT 2414 of 50 ◦C and a pH range of 4–5. In former works it was
observed that enzymes produced by A. brasiliensis were suitable for saccharification of this
type of material, despite not operating under optimal conditions [32].

3.3.1. Effect of Solid and Enzyme Load

In a previous work, Paz et al. [10] determined the conditions for the enzymatic hydrol-
ysis of BSG and pretreated BSG with NaOH using the enzymatic extract of A. brasiliensis.
However, when the hydrolysis of BSG pretreated by IL [N112OH][Gly] was catalyzed by
the enzymes produced by A. brasiliensis and conducted with a 1:10 solid–liquid ratio, the



Foods 2022, 11, 3711 8 of 14

saccharification was low, with the formation of a mucilaginous suspension that made the
access of enzymes to the substrate difficult.

Due to this, enzymatic hydrolysis tests were performed with higher solid–liquid ratios
(1:30 and 1:60 w/v) using the previously obtained enzymatic extracts of A. brasiliensis and
T. reesei diluted at different proportions with citrate buffer pH 5. Table 2 shows the results
obtained from the saccharification of CRM with the T. reesei extract.

Table 2. Hydrolysis of CRM catalyzed by the enzymatic extract of T. reesei.

LSR 1:30 (w/v) 1:60 (w/v)

EE
(mL/g BSG) 10 20 30 20 40 60

Glucose (%) 12.75 ± 1.34 23.14 ± 0.19 23.51 ± 0.54 22.09 ± 0.49 42.76 ± 2.30 48.03 ± 2.34
Cellobiose (%) 34.19 ± 2.64 23.62 ± 1.30 37.64 ± 0.44 24.30 ± 0.66 30.09 ± 0.06 30.09 ± 0.06
Glucan (%) * 48.20 ± 3.40 46.76 ± 1.50 61.58 ± 0.12 46.38 ± 0.16 71.47 ± 3.11 78.11 ± 2.28

Xylan (%) 12.51 ± 0.93 23.52 ± 1.28 30.15 ± 0.58 17.94 ± 1.95 34.24 ± 1.43 37.92 ± 2.96
Arabinan (%) 14.49 ± 1.19 18.75 ± 0.65 19.80 ± 0.40 17.90 ± 1.06 25.38 ± 2.19 31.64 ± 1.27

* Glucan (%) corresponds to the sum of Glucose (%) and Cellobiose (%); EE: enzymatic extract;
LSR: liquid-solid ratio.

Generally, when the solid–liquid ratio 1:30 (w/v) was used, the hydrolysis with T. reesei
extract provided poorer results in all fractions compared to the solid–liquid ratio 1:60 (w/v).
This is due to the greater amount of free water improved the diffusion and action of
enzymes in the enzymatic hydrolysis [9].

Regarding enzyme load, the best results were obtained using the higher enzyme load
(60 mL/g BSG). However, it should be noted that glucan was released as cellobiose, as
happens in all cases when using the T. reesei extract, meaning an incomplete saccharification
of glucan into glucose. The remarkable cellulase and CMCase activities of the extract,
which cause high cellulose hydrolysis, can explain this behavior, but lacking adequate
levels of β-glucosidases, the cellobiose bonds are not broken and, therefore, the reaction
does not end in obtaining a solution rich in glucose. Chen et al. [47] obtained a 65.9%
hydrolysis yield of corn straw by applying enzymes from T. reesei, releasing glucose, xylose,
and arabinose, detecting feedback inhibition by the accumulation of cellobiose due to
the scarce β-glucosidases activity. Similarly, Chen et al. [48] obtained a 69.8% hydrolysis
yield in corn cob. Other studies achieved a similar hydrolysis yield of glucose (78%)
with lower solid load (15%, w/s) when BSG was pre-treated by chemical treatments [49].
However, two sequential chemical treatments with sulfuric acid were performed, which
are more polluting than the treatment with ionic liquids [50]. Physical pretreatments with
microwaves achieved a slightly lower yield (70%) of glucose with low solid load (5%,
w/v) [51]. In addition, this thermal treatment may induce inhibitory products such as
phenolic compounds and furfural [50].

When using the extract of A. brasiliensis (Table 3), as in the previous case, it is con-
cluded that a higher solid–liquid ratio (1:60 w/v) led to a more efficient hydrolysis since
the enzymes have greater mobility and easy access to the substrate. The best results were
obtained when using 40 mL of the enzymatic extract. Contrary to the previous case, the hy-
drolysis catalyzed by the extract of A. brasiliensis, no cellobiose residues were obtained and
only glucose was released into the medium caused by the hydrolysis of the glucan fraction.
The better hydrolysis yield obtained when using 40 mL of enzyme extract instead of 60 mL
may be due to the fact that the CMCase–β-glucosidase ratio produces a better synergy.
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Table 3. Hydrolysis of CRM catalyzed by the enzymatic extract of A. brasiliensis.

LSR 1:30 (w/v) 1:60 (w/v)

EE
(mL/g BSG) 10 20 30 20 40 60

Glucose (%) 29.14 ± 1.35 39.74 ± 0.67 33.86 ± 0.97 39.82 ± 0.31 52.73 ± 0.47 42.81 ± 3.28
Cellobiose (%) n.d. n.d. n.d. n.d. n.d. n.d.
Glucan (%) * 29.14 ± 1.35 39.74 ± 0.67 33.86 ± 0.97 39.82 ± 0.31 52.73 ± 0.47 42.81 ± 3.28

Xylan (%) 33.39 ± 0.98 35.53 ± 0.75 30.25 ± 0.85 41.47 ± 0.62 46.23 ± 1.13 37.88 ± 2.42
Arabinan (%) 18.87 ± 0.00 19.42 ± 0.11 14.45 ± 1.04 23.12 ± 0.94 25.61 ± 0.67 20.16 ± 1.15

* Glucan (%) corresponds to the sum of Glucose (%) and Cellobiose (%). n.d.: not detected; EE: enzymatic extract;
LSR: liquid-solid ratio.

Several works have studied the synergy with different proportions of cellobiohydrolase
and endoglucanase, concluding that the characteristics of the enzyme, the assay conditions,
and the characteristics of the substrate influence synergistic actions [52].

Previously, the feasibility of using the enzymatic extract obtained by SSF from
A. brasiliensis on BSG residues after SSF was already demonstrated [32]. It was possible to
hydrolyze 24.12% of glucan, 54.37% of xylan, and 57.04% of arabinan under suboptimal
conditions. Paz et al., 2019 [10] also hydrolyzed BSG treated with [N1112OH][Gly] using
the enzymatic extract of A. brasiliensis, reporting conversions of 29.62% of xylan and 30.83%
of arabinan showing evident signs of an inefficient hydrolysis when it was carried out with
a high-solid load.

Comparing the two best conditions for both extracts, the A. brasiliensis extract led to
better results of sugars released.

3.3.2. Effect of Enzymatic Extracts Mixtures

Although the glucose released was higher with the A. brasiliensis extract than with
T. reesei extract, this increase does not represent a significant improvement (p > 0.05). This
leads to the combined use of the two extracts to solve the deficiencies that they may have
and favor synergistic actions. In this sense, Chen et al. [47,48] obtained better results when
hydrolyzing corn cob by combining enzymes from T. reesei with enzymes from A. niger,
since the latter contains greater amounts of β-glucosidases.

Therefore, the extracts were combined in different Aspergillus/Trichoderma ratios (v/v):
1:1 (denoted as MA), 1:2 (MB), 2:1 (MC), and 2.5:0.5 (MD). The hydrolysis of CRMs was
carried out keeping fixed the solid–liquid ratio of the reaction at 1:60 (w/v). The results of
the hydrolysis of CRMs using these enzymatic cocktails are shown in Table 4.

Table 4. Saccharification of the CRM fractions using the enzyme extract mixtures and a solid–liquid
ratio of 1:60 (w/v).

MA MB MC MD

Glucan (%) 58.89 ± 2.37 a 56.17 ± 4.33 a 60.65 ± 3.16 a 84.67 ± 0.77 b
Xylan (%) 47.40 ± 1.90 a 48.63 ± 0.00 a 50.45 ± 0.05 a 71.21 ± 3.13 b
Arabinan (%) 28.24 ± 0.68 ab 25.87 ± 0.25 a 28.36 ± 1.18 ab 31.39 ± 1.26 b

SF (Glucan) 0.97 0.85 1.11 1.74
SF (Xylan) 1.25 1.28 1.33 1.88
SF (Arabinan) 1.09 0.93 1.19 1.42

Aspergillus/Trichoderma ratios (v/v): 1:1 (denoted as MA), 1:2 (MB), 2:1 (MC), and 2.5:0.5 (MD). SF (synergism
factor). Means within rows followed by the same letter are not significantly different at p > 0.05.

Similar results were obtained with enzymatic cocktails MA, MB, and MC, hydrolyzing
in all cases around 60% and 50% of glucan and xylan, respectively, not showing significant
differences between them (p > 0.05). Only in the fraction arabinan were significant differ-
ences found, showing that MB produced the worse results, and that MA and MC were
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significantly the same in this regard. The results obtained with the MD extract were signifi-
cantly better (p < 0.05) for the saccharification of glucan and xylan with values of 84.67%
and 71.21% respectively, while the hydrolysis of arabinan with MA and MC provided
similar results.

The synergism between two enzymatic extracts was calculated (Table 4). A synergism
effect was observed for all mixtures to hydrolyze glucan, xylan, or arabinan except for
mixtures MA and MB for glucan and mixture MB for arabinan. The highest value of
synergism was achieved with mixture MD for all polysaccharides.

Although the cellulase activity of the MD extract is significantly lower than that of
the MC extract, the improvement in glucan saccharification can be attributed to a higher
β-glucosidase activity in MD. MD also has a slightly higher xylanase activity, which can
cause a synergistic effect, by hydrolyzing the xylan bound to cellulose, thus allowing its
hydrolysis by cellulases [53].

A principal components analysis (PCA) was applied to evaluate the effect of enzymatic
extracts and their mixtures on the saccharification of CRM (Figure 2). The analysis explained
93.7% of the variance of results. As it can be observed, the first component (PC1) positively
characterized the enzyme activities, the GCG (glucan conversion to glucose), and the xylan
conversion, and negatively characterized the arabinan conversion and glucan to cellobiose
conversion. According to the plot, the MD and AB enzymatic extracts were positively
correlated with GCG and xylan conversion, however the other mixtures and TR extract
were not correlated with high GCG and xylan conversion.
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In conclusion, the use of the A. brasiliensis extract with smaller amounts of the T. reesei
extract has a positive effect that leads to more efficient hydrolysis, for which the condition
selected to continue the study was a solid–liquid ratio 1:60 (w/v) using the enzymatic
cocktail MD.

Next, the kinetics of the reaction were studied under the selected conditions to evaluate
the evolution of saccharification. As observed in Figure 3, the saccharification of glucan
increased rapidly to 58.04% during the first 24 h of incubation, but after this time, the
saccharification rate began to decrease until reaching a value of 80.67% at 72 h. In the
following days, the saccharification of the polysaccharide did not show significant changes
(p > 0.05). The xylan was hydrolyzed at a higher rate in the first 24 h, then its hydrolysis
increased almost linearly until reaching a final value of 70.40% at the end of the incubation
(144 h). The hydrolysis of arabinan showed a profile like that observed for xylan, but with
a more moderate increase, reaching a maximum of 28.49% at 144 h.
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Figure 3. Modelling of enzymatic hydrolysis by extract MD. GCexp: glucan experimental conversion;
XCexp: xylan experimental conversion; ACexp: Arabinose experimental conversion.

The release of glucose (R2: 0.9993), xylose (R2: 0.9969), and arabinose (R2: 0.9943)
showed a good fit to the model (Equation (2)). Table 5 summarizes the values of t1/2
and SCmax. The maximum glucose released described by the model was 91.02% (see
Table 5). The t1/2 to release glucose was lower than the t1/2 to hydrolyze xylan and
arabinan. Although the amounts of xylose and arabinose released were greater as time
increased, the release of glucose was considered the most relevant factor to select the most
appropriate hydrolysis time since this sugar is preferentially consumed by the lactic acid
bacteria that will be used to produce bacteriocins and biosurfactants [54,55]. For this reason,
a time of 72 h was selected to perform the hydrolysis of CRM, because at this time the
saccharification percentages of glucan, xylan, and arabinan obtained were 80.68%, 54.29%,
and 19.58%, respectively.

Table 5. Parameters of kinetic enzymatic model using the extract MD.

t1/2 (h) SCmax (%)

Glucan conversion 12.48 91.02
Xylan conversion 22.56 74.92

Arabinan conversion 39.44 32.89
t1/2: time needed to reach the half of CGCmax; SCmax: maximum sugar conversion.

To corroborate this study, a hydrolysis of raw BSG under the same conditions was con-
ducted. After stopping the reaction at 72 h, BSG hydrolysis percentages of 41.63 ± 0.36%,
36.18 ± 1.06%, and 52.11 ± 0.48% were obtained for glucan, xylan, and arabinan, respec-
tively. This means that pretreatment with IL improves the hydrolysis of glucans by 51.59%
and xylan by 66.62%, while the fraction of arabinan released 37.56% more when using
raw BSG.

4. Conclusions

The results obtained in this work indicate that BSG is a suitable material for a biorefin-
ery process. BSG was an appropriate substrate to obtain enzymatic cocktails by Aspergillus
brasiliensis CECT 2700 and Trichoderma reesei CECT 2414 under SSF. A material with a
high carbohydrate content and more easily hydrolyzable was achieved by pretreating the
BSG with the IL [N112OH][Gly]. A mixture of the enzymatic extracts in the ratio 2.5:0.5
Aspergillus/Trichoderma (v/v) achieved an efficient hydrolysis of CRM.
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