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Abstract

Motivation: Dynamic mechanistic modelling in systems biology has been hampered by the complexity and
variability associated with the underlying interactions, and by uncertain and sparse experimental measu-
rements. Ensemble modelling, a concept initially developed in statistical mechanics, has been introduced
in biological applications with the aim of mitigating those issues. Ensemble modelling uses a collection of
different models compatible with the observed data to describe the phenomena of interest. However, since
systems biology models often suffer from lack of identifiability and observability, ensembles of models are
particularly unreliable when predicting non-observable states.
Results: We present a strategy to assess and improve the reliability of a class of model ensembles. In
particular, we consider kinetic models described using ordinary differential equations (ODEs) with a fixed
structure. Our approach builds an ensemble with a selection of the parameter vectors found when per-
forming parameter estimation with a global optimization metaheuristic. This technique enforces diversity
during the sampling of parameter space and it can quantify the uncertainty in the predictions of state tra-
jectories. We couple this strategy with structural identifiability and observability analysis, and when these
tests detect possible prediction issues we obtain model reparameterizations that surmount them. The end
result is an ensemble of models with the ability to predict the internal dynamics of a biological process.
We demonstrate our approach with models of glucose regulation, cell division, circadian oscillations, and
the JAK-STAT signalling pathway.
Availability: The code that implements the methodology and reproduces the results is available at
https://doi.org/10.5281/zenodo.6782638
Contact: j.r.banga@csic.es; afvillaverde@uvigo.gal
Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction
Modelling and analysis of cellular networks under uncertainty remains
a fundamental challenge in systems biology, biotechnology, and bioen-
gineering (Kaltenbach et al., 2009; Mišković and Hatzimanikatis, 2011).
Ensemble modelling, a concept initially developed in statistical mechanics
(Brown and Sethna, 2003) that uses a collection of different models com-
patible with the observed data to describe the phenomena of interest, is a

suitable strategy to handle a model’s parametric and structural uncertainty
(Kuepfer et al., 2007; Kirk et al., 2015; Kremling et al., 2018).

During the last two decades, the use of model ensembles has started to
play an increasingly important role in the study of biological systems (Swi-
gon, 2012), with applications in cell signalling (Brown and Sethna, 2003;
Kuepfer et al., 2007), metabolic networks (Tran et al., 2008; Jia et al.,
2012; Saa and Nielsen, 2017; Hameri et al., 2019), and gene expression
and regulation (Ud-Dean and Gunawan, 2014; Samee et al., 2015). How-
ever, building model ensembles is typically very computationally costly.
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Fig. 1. Illustration of the core idea behind our method. The plots show ensemble predictions
of the time course of insulin concentration, produced by theβIG model of glucose regulation
(for details, see Section 3, Table 1, and the Supplementary Information). The true trajectory
is shown as a red line, the ensemble prediction as a black line, and the darker and lighter blue
shaded areas represent the 40% and 80% confidence percentiles respectively. The left hand
plot shows the ensemble prediction of the original model, in which for the state variable
x1 , corresponding to insulin concentration, is unobservable. This model has three states (of
which only one, glucose, is measured; the two unmeasured states are unobservable) and five
parameters (two of which are unidentifiable). Due to the lack of structural identifiability and
observability, the ensemble prediction does not reproduce the true trajectory. The right hand
plot shows the ensemble prediction of the reparameterized model, which is fully observable.
As a result of insulin becoming observable, the new simulations of its time course are much
closer to the true trajectory, and the confidence intervals are more accurate representations
of the prediction uncertainty. The NRMSE for the original model (unobservable) is 0.8516,
while the NRMSE for the reparameterized model (observable) is 0.1455, a reduction of
82.91%.

Further, recent research has revealed that ensemble modelling can exhi-
bit a number of important pitfalls (Stumpf, 2020), so ensembles must be
carefully constructed in order to avoid them.

Here we present a strategy to assess and improve the reliability of a
class of model ensembles. In particular, we consider kinetic models descri-
bed using ordinary differential equations (ODEs) with a fixed structure. In
previous work (Villaverde et al., 2015) we developed a consensus-based
technique, where the ensemble is built using the sampling from optimi-
zation runs of parameter estimation by means of a global optimization
metaheuristic that enforces diversity during the sampling of parameter
space. This method was successfully used to perform uncertainty quan-
tification of state predictions of large kinetic models (Villaverde et al.,
2022).

Our new contribution is based on the observation that most models
in systems biology suffer from lack of distinguishability, identifiability,
and observability (Szederkényi et al., 2011; Kreutz et al., 2012; Wieland
et al., 2021). As a consequence, we expect ensembles of models to be
particularly unreliable when predicting non-observable states. In order to
surmount these difficulties, we present a new methodology that starts by
analysing structural identifiability and observability. When these analyses
reveal deficiencies in the model structure that could lead to prediction
issues, our method searches for model reformulations that surmount those
difficulties. Once a fully identifiable and observable model structure has
been obtained, we perform parameter estimation and use the results to build
an ensemble of models following a systematic procedure described in this
paper. The resulting ensemble allows making predictions about the time
course of internal (i.e. unmeasured) state variables, as well as quantifying
their uncertainty. Figure 1 illustrates the core idea by means of the glucose
regulation model, where the lack of identifiability and observability is
surmounted by merging some of the non-identifiable parameters into new
variables, yielding a fully observable model.

In summary, in this paper we address three key issues. The first one is
the analysis of the role of structural identifiability and observability in the
context of ensemble modelling, a previously overlooked topic. Second,
the comparison of the uncertainty in the predictions made by ensembles of
observable models versus unobservable models. Third, the development
of a step-by-step procedure following a frequentist approach, where each
step is clearly described and mathematically formulated.

2 Methods
The proposed methodology consists of the six main steps shown in Fig. 2.
We describe them in the following subsections. Furthermore, we provide
their pseudo-code as a Supplementary Information file.

2.1 Model definition

We consider dynamic models described by systems of deterministic
ordinary differential equations (ODEs) of the form:

M =


ẋ(t) = f (x(t), θ, u(t), w(t)) (1)

y(t) = g (x(t), θ, u(t), w(t)) (2)

x0 = x(t0, θ) (3)

where f and g are rational functions of the states, x(t) ∈ Rnx , known
and unknown inputs, u(t) ∈ Rnu and w(t) ∈ Rnw , respectively, and
unknown constant parameters, θ ∈ Rnθ . The output, y(t) ∈ Rny ,
represents the measurements as functions of model variables.

2.2 Structural identifiability and observability: analysis and
reparameterization

Once a dynamic model is available, we analyze its structural identifiabi-
lity and observability. This analysis reveals if it is possible to estimate the
true values of the parameters θ (identifiability), state variables x(t) (obse-
rvability), and unknown inputs w(t) (input observability) from output
measurements, y(t) (Distefano, 2015).

If this analysis yields a positive result, the model is said to have the
FISPO property, which stands for Full Input-State-Parameter Observa-
bility (or Observable, when the acronym is used as an adjective). This
property, along with a method for its analysis and an implementation in the
Matlab toolbox STRIKE-GOLDD (https://github.com/afvillaverde/strike-
goldd), was introduced by Villaverde et al. (2019b). Other tools can be used
to analyse structural identifiability and observability, based on differential
geometry or differential algebra. A critical comparison of the software
tools currently available for this task, which analyses their capabilities and
limitations, can be found in Rey-Barreiro and Villaverde (2022).

If the analysis yields a negative result, the model is unidentifiable
and/or unobservable. This means that its outputs are invariant under cer-
tain modifications of some of its parameters and/or states. This can be
explained mathematically as the existence of Lie symmetries among model
variables (Merkt et al., 2015). If it is possible to find and remove such sym-
metries by reparameterization, a FISPO model can be achieved. To this end
we use AutoRepar (Massonis et al., 2021), a method included in the afo-
rementioned Matlab toolbox STRIKE-GOLDD, which computes model
reformulations that seek to preserve the mechanistic character of selected
model variables.

It should be noted that, even if a model is FISPO, it may still produce
bad parameter estimates if its practical identifiability is poor. Practical
identifiability analysis takes into account the quantity and quality of the
available data (Wieland et al., 2021). It can be performed with a number
of methods, including the Fisher Information Matrix (FIM), profile likeli-
hood, and sampling-based procedures. Practical unidentifiability may be
surmounted by using additional experimental data, ideally obtained from
optimal experimental designs.

Although it is not the focus of the present paper, the methodology could
be extended so as to address practical identifiability issues. To this end,
an additional procedure might be added between Steps 4 and 5. It would
consist of an analysis of practical identifiability, possibly followed by
an improved experiment design to obtain more time-point measurements
and/or data of better quality, and the repetition of the procedure since the
parameter estimation step.
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Fig. 2. Outline of the proposed ensemble modelling methodology.

2.3 Objective function definition

Parameter estimation, also known as model calibration, consists of finding
the set of parameters that provide the optimal fit between model predictions
and experimental data. It is performed by optimising an objective function
that quantifies the distance between data and model output (Villaverde
et al., 2021).

The likelihood of observing the data D given parameters θ, assu-
ming independent, normally distributed additive measurements noise with
standard deviation σi,j , is

P(D|θ) =
tf∏
i=1

ny∏
j=1

1
√
2πσij

exp

(
−
1

2

(
ỹij − yij

σij

)2
)
,

which corresponds to a Gaussian probability function. Maximizing
this expression is equivalent to minimizing the negative log-likelihood:

− log(L(θ)) =
tf∑
i=1

ny∑
j=1

(
log(σij

√
2π) +

1

2

(
ỹij − yij

σij

)2
)

(4)

where ỹ is the measured data, and σij is the standard deviation of output
j at the measurement time point i.

We use simulated data, so that the true solution is known and it is
possible to assess the performance of our method. To this end we generate
synthetic data by adding normally distributed noise to the model outputs:

ỹ = y + σ = y + (σabs + σrel · y) · X , (5)

where X is a normally distributed random number.
If the noise distribution is unknown, the terms σabs and σrel must be inclu-
ded in the set of parameters to be optimized. Otherwise they can be left
out of the optimization.

2.4 Parameter estimation

Next we perform parameter estimation by minimising the objective
function with numerical optimization methods. The goal of this step is
not only to find the optimal solution of the parameter estimation problem
(i.e. the optimal parameter vector and, in some cases, the σrel and σabs),
but also to obtain additional parameter vectors that will be used to build the
ensemble. To this end, it is necessary to store the parameter vectors explo-
red during the optimization procedure along with their objective function
value.

Since we wish to obtain an ensemble whose diversity represents the fea-
sible ranges of parameter values, the optimization method must explore
different regions of the parameter space. Purely local strategies are ill
suited for this task, and global or hybrid optimization strategies should
be used instead. In this work we use an hybrid optimization approach
implemented in the MEIGO Matlab toolbox (Egea et al., 2014). It is a meta-
heuristic called enhanced scatter search (eSS), which is a population-based
evolutionary optimization method that obtains new parameter vectors by
pseudo-randomly exploring the parameter space, launching local searches
from promising starting points, and recombining its members. As local
search methods we used the nonlinear least-squares algorithm NL2SOL
and the direct search method DHC (dynamic hill climbing). This hybrid
approach has been shown to explore parameter spaces with multiple local
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minima in a computationally efficient way (Villaverde et al., 2019a). In
particular, the combination of diversification (global search) with intensi-
fication (local search) ensures a balanced sampling of the parameter space
with results comparable to other sampling techniques such as MCMC (Vil-
laverde et al., 2022), and it avoids the biased sampling found in multi-start
gradient-based methods (Fröhlich et al., 2014). The sampling of (4) obtai-
ned during the optimization is stored for its post-processing in the next
step.

2.5 Ensemble building

From the sampling of parameter vectors obtained during the optimization,
we want to select a representative subset of those producing outputs in
close agreement with the observed data. To this end, we select those that
are inside a predefined admissible range of objective function values.

2.5.1 Obtaining an initial ensemble
The goal of this step is to select parameter vectors with an objective
function value similar to that of the true solution. Much higher values
would indicate underfitting, and lower values overfitting. Since in pra-
ctice the true value is unknown, we need to compute an approximation.
Assuming that the errors are normally (Gaussian) distributed, the sum of
squared residuals follows a χ2 distribution of tf · ny − nθ degrees of
freedom, corresponding to the second term of the objective function (4)
(Geier et al., 2012). To approximate the first term of (4) we use the esti-
mated values of the absolute and relative standard deviations, σabs∗ and
σrel∗ , obtaining

log(L(θnominal)) = −
1

2

tf∑
i=1

ny∑
j=1

(
log(σ2

ij2π) + χ2(tf · ny − nθ)
)
,

(6)
where σij = σrel∗ · yij + σabs∗ . Note that it is not necessary to know
θnominal in order to calculate (6); instead, with this formula we obtain an
approximation of the log likelihood value of the nominal parameter vector.

Next, we define an interval of values around this approximation. We set
as lower bound the confidence region of log(L(θnominal))−∆α, where∆α

is Pr(χ2
1) < 0.05 (i.e. 3.841). The term ∆α is the result of applying the

Likelihood Ratio Test when all the parameters are fixed except σ (Vanlier
et al., 2012; Villaverde et al., 2022). We found empirically that setting
the upper bound at the same distance from log(L(θnominal)) as the lower
bound would lead to narrow confidence intervals, which would not always
include the experimental data. Hence we calculate the upper bound using
a variant of equation (6), in which we modify the standard deviation σ̃ij :

log(L(θ̃nominal)) = −
1

2

tf∑
i=1

ny∑
j=1

(
log(σ̃2

ij2π) + χ2(tf · ny − nθ)
)
,

where
σ̃ij = σrel∗ · yij · max(σ·,j ) + σabs∗ .

Using the notation ∆log(L(θ)) = log(L(θ̃nominal)) − log(L(θnominal)),
we obtain the following interval:

[log(L(θnominal))−3.841, log(L(θnominal))+∆log(L(θ))+3.841] (7)

As a result of this step, every parameter vector that produces an objective
function value in the interval (7) is included in the ensemble. This interval
is an approximation based on a statistical criterion, namely the Likelihood
Ratio Test, as used by e.g. Vanlier et al. (2012) and Villaverde et al. (2022).

2.5.2 Decreasing the ensemble size
There is typically a very large number of parameter vectors within the
range defined by (7). To avoid excessive redundancy while preserving the
desired diversity, we select a representative subset of them as follows.

First we compute, for each parameter, all percentiles from 0 to 100 with
a step of 5 (giving a total of 21 groups). In order to reduce the total number
of vectors while preserving the underlying distribution, we eliminate some
of these groups based on its position inside the percentiles. Specifically,
we keep only those that are in an even position. In this way we discard
the two extremes, leaving out the outliers while keeping values far from
the mean, median and mode, which contain information not provided by
measures of central tendency.

Second, to avoid almost identical vectors, we introduce a minimal
distance criterion. To this end we use the relative Euclidean distance re-
scaled by the best fit (θ∗) between a candidate vector (θi) and all the others
(θj ). We exclude a parameter vector from the ensemble if this distance is
less than a cut-off value. That is, a vector θi is removed from the ensemble
if: √√√√∑((

θi

θ∗
−

θj

θ∗

)2
)

< ϵ (8)

Third, we perform a final reduction by random sampling. We have found
empirically that ensembles of 1000 vectors are representative enough.
Larger ensemble sizes do not increase the predictive power of the ensemble,
as depicted in Fig. 3 and discussed below.

2.6 Ensemble prediction computation and uncertainty
quantification

The ensemble prediction is defined as the median of the simulated model
outputs using all the parameter vectors in the ensemble. The median is
defined as the centrally placed value if these are ordered, or, equivalently,
as the 50th percentile. It is an appropriate metric for unknown or non
Gaussian distributions, since it is less susceptible to outliers (Gneiting,
2011; Rousseeuw, 1990). The main metric for evaluating the quality of
the ensemble predictions will be the normalized root mean square error
(RMSE), defined by the following expression:

NRMSE(y) =
RMSE(yf )

max(ỹ)− min(ỹ)
(9)

where

RMSE(yf ) =

√∑ny

i=1(y
f − ỹ)2

ny
. (10)

denoting yf as the forecast ensemble. It is also possible to compute the
NRMSE of internal states when the nominal parameter vector is known
substituting, in the above expression, y and ỹ for x and x̃, respecti-
vely. Another variant of the above expression can be used to compute the
NRMSE(θ) for the parameters. The NRMSE has the additional advantage
of allowing the comparison of errors when model outputs, or parameters,
have different orders of magnitude.

3 Results
In the present section we demonstrate the proposed methodology by
applying it to the models defined in Table (1), in order to illustrate all
the aspects of the method and show its applicability. Here we show
only selected results of each case study; the accompanying repository
(doi:10.5281/zenodo.6782638) includes the full results, along with Matlab
scripts that apply every step in the methodology.

3.1 Case studies

The models chosen for this study are described in Table 1. Their equations,
as well as additional information about them, can be found in the scripts
provided in the accompanying repository.
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Fig. 3. JAK-STAT: NRMSE (y) depending on the number of vectors considered for the ensemble. The orange line is the NRMSE of the ensemble considering 1000 vectors, while the yellow
lines represents a variation of ±5% of it.
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Fig. 4. Illustration of the ensemble predictions for one output of each case study. The true trajectory is shown as a red line, the ensemble prediction as a black line, and the darker and lighter
blue shaded areas represent the 2.2%, 50% and 97.5% confidence percentiles respectively. Although the prediction accuracy varies among case studies, in all cases it can be noticed that the
uncertainty envelope covers the experimental data.

3.2 Structural identifiability and observability analysis and
reparameterization

The observability and identifiability analyses concluded that none of the
models are observable nor identifiable. For the CELLDIV model it was
not possible to find a fully identifiable and observable reparameterization.

In contrast, for the other three models (βIG, CIRCAD and JAKSTAT) the
reparameterizations were as follows:

• The JAKSTAT model has 3 unidentifiable parameters and one unobse-
rvable state (x1, corresponding to the STAT variable). An identifiable
reparameterization was found by transforming the unobservable vari-
able so that it is multiplied by one of the unidentifiable parameters,
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ID βIG CELLDIV CIRCAD JAKSTAT

Reference Karin et al. (2016) Tyson (1991) Vilar et al. (2002) Vanlier et al. (2012)
Description Glucose regulation Cell division Circadian oscillations Signalling pathway
Parameters 5 8 15 6
Dynamic states 3 6 9 4
Observed states 1 2 3 2
Data points 200 20 30 16
Data type Simulated Simulated Simulated Real
Noise level σabs = 2%, σrel = 2% σabs = 2% σrel = 10% σabs = 2% σrel = 10% Real

Table 1. Main features of the case studies.

p2. As a result, the following transformation was applied to x1:
x∗
1 = x1 · p2.

• The CIRCAD model has 6 unidentifiable parameters and 2 unobse-
rvable states (MA and MR). An identifiable reparameterization was
found by transforming the two unobservable state variables, multipl-
ying each of them by a parameter that is thus removed from the model.
As a result, the following transformation was applied to x5 and x7 :
x∗
5 = x5/αAP and x∗

7 = x7/αAR.
• The βIG model has 2 unobservable states (x2 and x3, corresponding

to the insulin and β cell mass) and 2 unidentifiable parameters. In this
case, an identifiable and observable reparameterization could be found,
which makes the insulin state variable observable without undergoing
any transformation. Instead, the transformations involve the other state
(x3) and the unidentifiable parameters, which are removed from the
model. The following reparameterization has been applied to x3 and
the input u : x∗

3 = x3 ·p and u∗ = u−x3 ·x1(si−x3). As a result,
the unobservable state x2 became observable without undergoing any
transformation.

3.3 Objective function definition

For each model we defined the objective function as in (4), using simulated
data. The values of σabs and σrel can be found in Table 1. Further details
can be found in the accompanying scripts.

3.4 Parameter estimation

We performed parameter estimation for the four original models and the
three reparameterized ones, by minimising the objective function defined
in the previous subsection, using a single-shooting approach (i.e. the dyna-
mic model was simulated for each evaluation of the objective function).
The optimizations were carried out using the eSS metaheuristic, as descri-
bed in Section 2.4. The dynamic model simulations were performed with
the AMICI toolbox (Fröhlich et al., 2021) for all the cases except for the
βIG model, for which the AMIGO2 toolbox (Balsa-Canto et al., 2016)
was used due to the need for estimating an unknown input.

3.5 Ensemble building

Following the procedure described in Section 2.5, we obtained ensembles
of 1000 parameter vectors for each model. It should be noted that, while
the optimizations had a fairly large computational cost – ranging from
minutes for CELLDIV to days for CIRCAD (in this latter case, due to the
challenging nature of parameter estimation in oscillatory models) – the
process of ensemble building and exploitation took only a few minutes.

3.6 Prediction computation and uncertainty quantification:
measured vs unmeasured states

The predictions of the measured state variables – i.e. the fits achieved from
the optimization – obtained with both the original and the reparameterized
model were of similar quality in all cases. For all models and versions the
ensemble trajectories approximated the experimental data, and their enve-
lopes (which represent the prediction uncertainty) matched the standard
deviation of the data.

In contrast, the results for the internal – i.e. not measured – states were
clearly divided in two groups: observable and unobservable. The ensemble
forecasts for the observable states were generally in good agreement with
the true trajectories, i.e. those obtained when simulating the model with
the nominal parameter vector. The uncertainty bounds were also close to
these trajectories. Illustrative examples are shown in the lower row of Fig.
5. For the unobservable states, on the other hand, the predicted trajectories
usually showed large deviations from their true values (see the first rows
of Fig. 5 and 6), and in some cases the prediction envelopes covered
an overly large area (see the JAK-STAT example). For these cases, the
ensemble predictions of the unobservable states were unreliable.

However, this limitation could be overcome by reparameterizing the
models so that the unobservable states became observable (Fig 6, second
row). The ensemble forecasts produced by the reparameterized models
were in better agreement with the true trajectories than the original pre-
dictions, and their NRMSEs decreased significantly. Furthermore, the
reduction of the uncertainty bands in almost all cases is an indication of
increased confidence in the predictions. These results illustrate the benefits
of working with observable models. When ensemble modelling is applied
to non-observable and non-identifiable models, the bounds of the predicti-
ons are only limited by the propagation to the state space of the parameter
bounds set in the parameter estimation step. However, when the models
are fully observable and identifiable, the ensemble forecast will be more
narrowly constrained, as can be seen in Figs. (5-6.

4 Discussion
In this work we have studied the relevance of structural identifiability and
observability for building and exploiting ensembles of dynamic models.
As our results have shown, the lack of these properties can compromise
predictive power. To address this issue we have proposed an ensemble
modelling framework that tests for the existence of such issues and takes
the necessary actions to remedy them.

The procedure starts by analysing structural identifiability and observa-
bility; if the analysis of these properties reveals deficiencies in the model
structure that prevent it from inferring key parameters or state variables, the
method then searches for a suitable reparameterization. Once a fully iden-
tifiable and observable model structure is obtained, it is calibrated using
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and lighter blue shaded areas represent the 40% and 80% confidence percentiles respectively. Although the prediction accuracy varies among case studies, in all cases it can be noticed that
the predictions of unobservable states may be very far from reality, while predictions of observable states are better constrained and more precise.
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Fig. 6. Using reparameterization, we transform an unobservable state variable (upper row) into an observable one (lower row), thus improving the quality of the corresponding ensemble
predictions. Each column corresponds to a case study (for the fourth case study, CELLDIV, no observable reparameterization was found). The true trajectory is shown as a red line, the
ensemble prediction as a black line, and the darker and lighter blue shaded areas represent the 40% and 80% confidence percentiles respectively.

a global optimization procedure, that yields not only an optimal parame-
ter vector but also an ensemble of other possible solutions. Our method
exploits the information in these additional vectors to build an ensemble
of models with different parameterizations. To this end, we have described
how to select parameter vectors with appropriate objective function values,
obtaining an ensemble of moderate size. The hybrid global optimization
approach used here performs a balanced sampling of the parameter space;
as a consequence, the median of the ensemble is a good approximation of
the median of the model given parameter uncertainty. Furthermore, Vil-
laverde et al. (2022) show how a parameter sampling similar to the one
applied here yields good estimates of the uncertainty of the predictions.

The whole procedure can be performed systematically and is compu-
tationally efficient. To demonstrate its application we have used four case
studies based on models of different sizes, all of which have unobserva-
ble parameters and states. For each model we created an ensemble that
explains the available experimental data. However, when the ensembles
are built from the initial models, their predictions of the unobservable
internal states have high uncertainty. In contrast, if the ensembles are built
from the reparameterized models, their predictions are better constrained.
Importantly, in some cases the reparameterization requires transforming
all the unidentifiable parameters and all the unobservable state variables,
while in other cases it is possible for certain variables of interest to become

observable without being transformed. In the latter case the mechanistic
meaning of the untransformed variables is preserved, as was shown for the
variable representing insulin concentration in the βIG model example.

In regard to the scalability of the approach, its main bottleneck is
currently the reparameterization step. It is a task that involves symbolic
computations, and its computational cost increases rapidly with model
complexity. Massonis et al. (2021) applied it to a NF-κB model of 30
variables; applying it to larger and/or more complex models can be chal-
lenging. However, it should be noted that the algorithmic improvements
included in recent versions of the STRIKE-GOLDD toolbox have reduced
its computational cost (Díaz-Seoane et al., 2022). The other steps in our
procedure have better scalability, and they can be applied to models with
hundreds of variables, as shown in Villaverde et al. (2022).
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Mišković, L. and Hatzimanikatis, V. (2011). Modeling of uncertainties in
biochemical reactions. Biotechnol. Bioeng., 108(2), 413–423.

Rey-Barreiro, X. and Villaverde, A. F. (2022). Benchmarking tools for a
priori identifiability analysis. ArXiv, abs/2207.09745.

Rousseeuw, P. J. (1990). Robust estimation and identifying outliers.
Handbook of statistical methods for engineers and scientists, 16, 16–1.

Saa, P. A. and Nielsen, L. K. (2017). Formulation, construction and analy-
sis of kinetic models of metabolism: A review of modelling frameworks.
Biotechnol. Adv., 35(8), 981–1003.

Samee, M. A. H., Lim, B., Samper, N., Lu, H., Rushlow, C. A., Jiménez,
G., Shvartsman, S. Y., and Sinha, S. (2015). A systematic ensemble
approach to thermodynamic modeling of gene expression from sequence
data. Cell Syst, 1(6), 396–407.

Stumpf, M. P. H. (2020). Multi-model and network inference based on
ensemble estimates: avoiding the madness of crowds. J. Roy. Soc.
Interface, 17(171), 20200419.

Swigon, D. (2012). 2.1 Ensemble Modeling of Biological Systems, pages
19–42. De Gruyter.

Szederkényi, G., Banga, J. R., and Alonso, A. A. (2011). Inference of
complex biological networks: distinguishability issues and optimization-
based solutions. BMC Syst. Biol., 5, 177.

Tran, L. M., Rizk, M. L., and Liao, J. C. (2008). Ensemble modeling of
metabolic networks. Biophys. J., 95(12), 5606–5617.

Tyson, J. J. (1991). Modeling the cell division cycle: cdc2 and cyclin
interactions. Proc. Natl. Acad. Sci. USA, 88(16), 7328–7332.

Ud-Dean, S. M. M. and Gunawan, R. (2014). Ensemble inference and
inferability of gene regulatory networks. PLoS One, 9(8), e103812.

Vanlier, J., Tiemann, C., Hilbers, P., and van Riel, N. (2012). An integra-
ted strategy for prediction uncertainty analysis. Bioinformatics, 28(8),
1130–1135.

Vilar, J. M. G., Kueh, H. Y., Barkai, N., and Leibler, S. (2002). Mecha-
nisms of noise-resistance in genetic oscillators. Proc. Natl. Acad. Sci.
USA, 99(9), 5988–5992.

Villaverde, A. F., Bongard, S., Mauch, K., Müller, D., Balsa-Canto, E.,
Schmid, J., and Banga, J. R. (2015). A consensus approach for estimating
the predictive accuracy of dynamic models in biology. Comput. Meth.
Progr. Biomed., 119(1), 17–28.

Villaverde, A. F., Fröhlich, F., Weindl, D., Hasenauer, J., and Banga, J. R.
(2019a). Benchmarking optimization methods for parameter estimation
in large kinetic models. Bioinformatics, 35(5), 830–838.

Villaverde, A. F., Tsiantis, N., and Banga, J. R. (2019b). Full observability
and estimation of unknown inputs, states and parameters of nonlinear
biological models. J. Roy. Soc. Interface, 16(156), 20190043.

Villaverde, A. F., Pathirana, D., Fröhlich, F., Hasenauer, J., and Banga,
J. R. (2021). A protocol for dynamic model calibration. Brief.
Bioinform., 23(1).

Villaverde, A. F., Raimúndez, E., Hasenauer, J., and Banga, J. R. (2022).
Assessment of prediction uncertainty quantification methods in systems
biology. IEEE/ACM Trans. Comput. Biol. Bioinform., pages 1–12.

Wieland, F.-G., Hauber, A. L., Rosenblatt, M., Tönsing, C., and Timmer,
J. (2021). On structural and practical identifiability. Curr. Opin. Syst.
Biol., 25, 60–69.


