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ABSTRACT: 

Despite recent progress in the development of methods for automated reconstruction of indoor models, a comparative performance 
evaluation of these methods is not available due to the lack of publicly available benchmark datasets and a common evaluation 
framework. The ISPRS Benchmark on Indoor Modelling is an effort to enable comparison and benchmarking of indoor modelling 
methods by providing a benchmark dataset and a comprehensive evaluation framework. In this paper, we propose a framework for the 
evaluation of indoor modelling methods, and discuss various quality aspects of the reconstruction methods as well as the reconstructed 
models. We discuss the challenges in quantitative quality evaluation of indoor models through comparison with a reference model, 
and propose suitable measures and methods for comparing an automatically reconstructed indoor model with a reference. 

1. INTRODUCTION

Up-to-date 3D models of indoor environments play an important 
role in a variety of applications ranging from navigation 
assistance and emergency response to planning structural repairs, 
refurbishment and retrofitting. Manual generation of 3D indoor 
models is a tedious, slow and expensive process. To make this 
process more effective and efficient, a number of methods have 
been developed for automated generation of indoor models from 
raw data such as point clouds and images (Gunduz et al., 2016; 
Pătrăucean et al., 2015; Tang et al., 2010).  

A major issue in the adoption of indoor modelling methods in 
practical applications is the lack of a common evaluation 
framework for the comparison and benchmarking of the 
performance of these methods. In the literature, different methods 
have been evaluated using different datasets and based on 
different evaluation criteria. These criteria focus mainly on the 
quality of the resulting model. Qualitative evaluation by visual 
inspection has been the basis for the evaluation of indoor 
modelling methods in several works (Becker et al., 2015; 
Khoshelham and Díaz-Vilariño, 2014; Mura et al., 2016; 
Ochmann et al., 2016; Tran et al., 2017; Xiao and Furukawa, 
2014). Quantitative measures derived from a comparison of the 
model with the data, e.g. a point cloud, have been used in several 
other works (Macher et al., 2017; Tran et al., 2018; Valero et al., 
2012). Comparison with ground truth or a reference model has 
also been used in a few works for quantitative evaluation of 
automatically generated indoor models (Díaz-Vilariño et al., 
2015; Oesau et al., 2014; Thomson and Boehm, 2015; Xiong et 
al., 2013).  

This heterogeneity in the evaluation methods and criteria makes 
it difficult to compare and benchmark the performance of 

different indoor modelling algorithms. In addition, existing 
evaluation methods usually focus on one quality aspect, e.g., 
geometric accuracy, while ignoring other important aspects such 
as the correctness and completeness of the reconstructed 
elements.  

The ISPRS Benchmark on Indoor Modelling is an effort to enable 
comparison and benchmarking of indoor modelling methods by 
providing a benchmark dataset and a comprehensive evaluation 
framework. In this paper, we focus on the evaluation issue and 
propose a framework, which includes not only the quality of the 
reconstructed model but also the level of automation and the 
computational complexity of the reconstruction method. We 
discuss the challenges in quantitative quality evaluation of indoor 
models through comparison with a reference model, and propose 
suitable measures and methods for comparing an automatically 
reconstructed indoor model with a reference. 

The paper proceeds with a brief introduction of the ISPRS 
Benchmark on Indoor Modelling in Section 2, followed by an 
overview of the proposed framework for the evaluation of indoor 
modelling methods in Section 3. Section 4 presents the method 
for measuring the geometric quality of an indoor model through 
comparison with a reference. Experiments and results are 
presented in Section 5. A summary and concluding remarks are 
given in Section 6.  

2. THE ISPRS BENCHMARK ON INDOOR
MODELLING 

The ISPRS Benchmark on Indoor Modelling was proposed in 
2017 with the aim of stimulating and promoting research on 
automated indoor modelling from point clouds by providing a 
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benchmark dataset and a framework for the evaluation and 
comparison of indoor modelling methods.  
 
The project team collected five point clouds captured by different 
sensors in five indoor environments representing different levels 
of complexity. The dataset was made publicly available via the 
website of the ISPRS Working Group IV/51. From each point 
cloud a 3D model was created manually to serve as reference for 
the evaluation of automatically reconstructed models. Figure 1 
shows the five point clouds and the corresponding reference 
models. A detailed description of the benchmark dataset, sensor 
specifications, and reference models, is provided in (Khoshelham 
et al., 2017). 
  
The ISPRS website for the benchmark dataset was set up in 
September 2017. Since then, the dataset has been downloaded by 
70 researchers from 16 countries. Figure 2 shows the download 
statistics of the benchmark dataset. 
 

3. A FRAMEWORK FOR THE EVALUATION OF 
INDOOR MODELLING METHODS 

We consider three main aspects to be crucially important in the 
evaluation of an indoor modelling method: level of automation, 
computational complexity, and the quality of the generated 
model.  
 
Level of automation describes the amount of manual interaction 
and intervention that is needed from a human expert in the 
automated reconstruction process. It might vary depending on the 
complexity of the dataset, and is therefore difficult to measure 
quantitatively. Hence, we assess the level of automation using the 
following qualitative terms: interactive, semi-automated, and 
fully automated. An interactive method is one that requires a 
significant amount of interaction by a human expert in the 
reconstruction process, whereas semi-automated and fully 
automated methods require little and no interaction respectively.  
 
Computational complexity determines the time efficiency of the 
method for automated generation of an indoor model from a point 
cloud. The computation time of an indoor modelling algorithm 
varies with the size of the point cloud, complexity of the 
environment, and hardware specifications. In computer science 
the Big O notation is used to describe the computation time of an 
algorithm independent of hardware specifications. However, 
indoor modelling methods typically consist of several modules 
with different computational complexities. Therefore, we use 
computation time per million points on a standard CPU to 
measure the computational complexity of indoor modelling 
methods.  
 
The quality of the generated model is perhaps the most important 
indicator for the benchmarking of indoor modelling methods. An 
indoor model consists of three main components: geometric 
elements, semantic attributes, and spaces with topological 
relations between them. For the latter two, we propose a 
qualitative assessment in which a panel of experts inspects the 
indoor model and checks the presence and correctness of 
semantic attributes and topological relations between the spaces. 
For the geometric elements, the evaluation has often been done 
by comparing the model with the input point cloud data. 
Computing the distances between the points and the geometric 
elements of the model provides an indication of the fidelity of the 
model to the data and therefore the accuracy of the model. This 

1 http://www2.isprs.org/commissions/comm4/wg5/benchmark-
on-indoor-modelling.html 

approach is, however, data-dependent, and the quality measure 
might reflect the quality of the data rather than that of the model. 
To overcome this issue, we propose to evaluate the geometric 
quality of an indoor model through a comparison with a reference 
model. The comparison of two indoor models, however, faces a 
few challenges which we will discuss in the following section. 
 

TUB1 

  
TUB2 

  
Fire Brigade 

  
UVigo 

  
UoM 

  
Figure 1. The benchmark point clouds and the corresponding 

reference models. 
 

 
Figure 2. Download statistics of the benchmark dataset. 
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4. MEASURING GEOMETRIC QUALITY OF INDOOR 
MODELS 

Evaluating the geometric quality of an automatically generated 
indoor model, hereafter referred to as source, by comparison with 
a reference model faces the following challenges: 
i) There is no single commonly accepted standard for the 

representation of geometric elements in indoor models. 
While in the IFC standard geometric elements are 
represented as volumetric solids, in the CityGML standard 
these can be modelled as surfaces. Thus, the method for the 
geometric comparison of a source model with a reference 
should be applicable to both surface-based and volumetric 
models. Figure 3 shows an example of a surface-based 
model and a volumetric model of the same environment. 

ii) In any indoor environment there are elements that cannot be 
observed by the sensor and are therefore missing in the data. 
In the model these are often reconstructed based on the 
interpretation of the observed elements in the data. For 
example, when a wall is observed only from one side, the 
thickness of the wall may be interpreted from the other walls 
in the environment, which have been observed from both 
sides. The challenge is that these interpretations might be 
different in the source model and the reference. Thus, a 
reliable geometric quality evaluation requires that such 
interpreted elements are marked and excluded from the 
comparison. Figure 4 shows an example where the 
interpreted elements are different in the source model and 
the reference. 

iii) Measuring the correctness and completeness of geometric 
elements in the source requires a one-to-one correspondence 
between the source and reference elements. Such 
correspondence is generally not available. Figure 5 shows 
an example, where the walls of a room are modelled with 
different solids in the source and the reference. 

 
To overcome the above challenges, we propose a method for 
evaluating the geometric quality of an indoor model, which takes 
into account interpreted surfaces, does not require one-to-one 
correspondence between the elements, and is applicable to both 
surface-based and volumetric models. 
 
The proposed method measures the geometric quality of an 
indoor model based on three criteria: Completeness, Correctness, 
and Accuracy. These measures are computed through a 
comparison of the source model with the reference. The 
following sub-sections describe the method for computing the 
above measures. 
 
4.1 Completeness 

Completeness measures the extent to which the geometric 
elements within the reference are reconstructed in the source. It 
is measured based on the area of intersection between the source 
S and the reference R. Once interpreted surfaces are marked and 
excluded from the reference, a buffer b is created around each 
surface in R, and the area of intersection between the buffer and 
each surface in S is computed. The intersection areas are 
computed and summed over all surfaces Si and Rj, thereby 
providing independence from one-to-one correspondence 
between the source and reference elements. Since the resulting 
completeness value varies with the size of the buffer, we define 
it as a function of the buffer size b: 
 

𝑀𝐶𝑜𝑚𝑝(𝑏) =  
∑  𝑛

𝑖=1 ∑ |𝑆𝑖 ∩ 𝑏(𝑅𝑗)|𝑚
𝑗=1

∑ |𝑅𝑗|𝑚
𝑗=1

 (1) 

 

 
(a)  

(b) 

Figure 3. Different representations of a 3D indoor model: (a) 
surface-based representation; (b) volumetric representation. 

 

 
(a) 

 
(b) 

 
(c) 

Figure 4. Different interpretations of unobservable elements in 
3D indoor models: (a) observed wall surfaces; (b) source 

model with thin interpreted outer walls; (c) reference model 
with thick interpreted outer walls. 

 

 
(a) 

 
(b) 

Figure 5. Example of lack of one-to-one correspondence 
between the source and the reference elements: (a) source 

model with four wall elements; (b) reference model with eight 
wall elements. 

 
where m and n denote the number of surfaces in R and S 
respectively. To avoid the influence of irrelevant surfaces that 
might fall inside a buffer, only surfaces that are parallel up to a 
predefined threshold are used in each instance of intersection 
computation. 
 
4.2 Correctness 

Correctness measures the extent to which the geometric elements 
within the source are present in the reference. Similar to 
completeness, it is measured by computing the area of 
intersection between the source and the reference summed over 
all surfaces Si and Rj. The correctness metric is also defined as a 
function of the buffer size b created around each observable 
reference surface: 
 

𝑀𝐶𝑜𝑟𝑟(𝑏) =  
∑  𝑛

𝑖=1 ∑ |𝑆𝑖 ∩ 𝑏(𝑅𝑗)|𝑚
𝑗=1

∑ |𝑆𝑖|𝑛
𝑖=1

 (2) 

 
Similar to completeness, only surfaces that are parallel up to a 
predefined threshold are used in each instance of intersection 
computation. 
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4.3 Accuracy 

Accuracy is measured based on the geometric distance between 
the source and the reference elements. Specifically, it is defined 
as the median of unsigned distances between the vertices of the 
source and the closest observable surfaces of the reference. 
Following Lehtola et al. (2017), we use a cut-off distance r to 
avoid the influence of incompleteness or incorrectness of the 
source model on the accuracy: 
 

𝑀𝐴𝑐𝑐(𝑟) = 𝑀𝑒𝑑‖𝜋𝑗
𝑇 𝑝𝑖‖, 𝑖𝑓‖𝜋𝑗

𝑇  𝑝𝑖‖ ≤ 𝑟 (3) 
  
where ‖𝜋𝑗

𝑇 𝑝𝑖‖ is the perpendicular distance between a vertex 
point 𝑝𝑖 in the source and the corresponding surface plane 𝜋𝑗  in 
the reference (Khoshelham, 2015, 2016), and r is the cut-off 
value, distances beyond which are excluded from the median 
calculation. The vertex-surface correspondence is established 
based on the smallest distance and the condition that the 
perpendicular projection of the vertex on the surface falls within 
the surface boundary defined by its vertices (Oude Elberink and 
Khoshelham, 2015; Oude Elberink et al., 2013). 
 
The above measures can be computed for different geometric 
elements, e.g., walls, doors, or windows, separately. It is also 
worth noting that these measures are by definition relative. They 
describe the completeness, correctness, and accuracy of a source 
model relative to a reference. For example, a source model with 
a high completeness rate is complete only up to the level of detail 
of the reference model. Therefore, a complete model may not 
necessarily be detailed, if the level of detail of the reference 
model is low. 
 

5. EXPERIMENTS 

The geometric quality measures were computed for a set of 3D 
models reconstructed automatically from the benchmark dataset 
using the shape grammar approach described in (Khoshelham 
and Díaz-Vilariño, 2014) and (Tran et al., 2018). Figure 6 shows 
the reconstructed source models and the corresponding reference 
models in which each surface is marked as either interpreted 
(dark grey) or observed (light grey and yellow). The source 
models contain the main structural elements, i.e., walls, floors 
and ceilings. The reference models were generated manually by 
a human expert and included walls, floors and ceilings, but also 
doors, windows, stairs, and columns. Since the latter elements 
were not reconstructed in the source models, they were excluded 
from the evaluation. 
 
Figure 7 and Figure 8 present respectively the completeness and 
the correctness of the source models plotted against the buffer 
size ranging from 1 cm to 15 cm. All source models seem to have 
higher completeness rates while the correctness values are 
significantly lower. This can be explained by the presence of 
many interpreted surfaces in the source models (e.g., outer walls), 
which are considered as incorrect since in the reference models 
these interpreted surfaces were marked and excluded.  
 
The completeness curves in Figure 7 show an increase of the 
completeness rates with increasing buffer size for all models 
except for UVigo, which has a high completeness rate even at 
small buffer sizes. This is observed also in the correctness curves 
shown in Figure 8, where correctness values increase with the 
buffer size except for the UVigo model. This can be due to the 
high reconstruction accuracy of the UVigo model compared to 
the other models. 
 

Figure 9 shows the accuracy of the source models, and confirms 
that the UVigo model has been reconstructed with the highest 
accuracy indicated by a median vertex-surface distance of 0.5 cm 
for all cut-off distances smaller than 11 cm. At larger cut-off 
distances the accuracy is affected by the incorrect or incomplete 
surfaces.  
 
To compare the geometric quality of different models or the 
performance of different methods one can compare the quality 
measures at a selected buffer size and cut-off distance. Table 1 
shows a comparison of the quality measures for the buffer size 
and cut-off distance of 10 cm. It can be seen that TUB1 is less 
complete than the other models, while all models have a 
relatively low correctness rate. In terms of accuracy, UVigo is the 
most accurately reconstructed model with a median vertex-
surface distance of 0.51 cm. 
 

TUB1 

  
TUB2 

  
Fire Brigate 

 
 

UVigo 

 
 

UoM 

  
Figure 6. The reconstructed source models (left) and the 

corresponding reference models (right). Interpreted surfaces 
in the reference models are marked with dark grey colour, 

while light grey and yellow colours represent observed walls 
and floors respectively. The ceilings are removed for better 

visualization of the interior spaces. 
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Figure 7. The completeness of the source models plotted against 

increasing buffer size. 
 

 
Figure 8. The correctness of the source models plotted against 

increasing buffer size. 
 

 
Figure 9. The accuracy of the source models plotted against 

increasing cut-off distance. 
 

Measure → Completeness 
@ b = 10 cm 

Correctness 
@ b = 10 cm 

Accuracy (cm) 
@ r = 10 cm Model ↓ 

TUB1 0.85 0.30 1.32 
TUB2 0.90 0.35 2.11 
Fire Brigade 0.96 0.29 1.80 
UVigo 0.96 0.33 0.51 
UoM 0.95 0.38 1.68 

Table 1. Geometric quality measures for the five reconstructed 
models at the buffer size and cut-off distance of 10 cm. 

 
6. CONCLUSIONS 

This paper presented an evaluation framework for the 
benchmarking of indoor modelling methods. We discussed 
various quality aspects of indoor models, and challenges in 
measuring the geometric quality of a reconstructed model 
through comparison with a reference model. We proposed a 
method for evaluating the geometric quality of an indoor model, 
which takes into account interpreted surfaces, does not require 
one-to-one correspondence between the source and reference 
elements, and is applicable to both surface-based and volumetric 
models. The results of experiments with models reconstructed 
from the benchmark dataset demonstrated the potential of this 

method for automatic evaluation and comparison of the 
geometric quality of indoor models. 
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