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a b s t r a c t

In order to minimize the generalization error in neural networks, a novel technique to identify
overfitting phenomena when training the learner is formally introduced. This enables support of a
reliable and trustworthy early stopping condition, thus improving the predictive power of that type
of modeling. Our proposal exploits the correlation over time in a collection of online indicators,
namely characteristic functions for indicating if a set of hypotheses are met, associated with a range of
independent stopping conditions built from a canary judgment to evaluate the presence of overfitting.
That way, we provide a formal basis for decision making in terms of interrupting the learning process.

As opposed to previous approaches focused on a single criterion, we take advantage of subsidiarities
between independent assessments, thus seeking both a wider operating range and greater diagnostic
reliability. With a view to illustrating the effectiveness of the halting condition described, we choose
to work in the sphere of natural language processing, an operational continuum increasingly based on
machine learning. As a case study, we focus on parser generation, one of the most demanding and
complex tasks in the domain. The selection of cross-validation as a canary function enables an actual
comparison with the most representative early stopping conditions based on overfitting identification,
pointing to a promising start toward an optimal bias and variance control.

© 2022 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

A neural network (nn) (Hinton, 1989; Nilsson, 1990; Rumelhart
t al., 1986) is a machine learning (ml) system that mimics the
ehavior of the human brain (McCulloch & Pitts, 1988) for cap-
uring underlying relationships in a set of data from a collection
f training examples. Referred to as generalization, this ability
o correctly apply the knowledge gained to new situations is a
ommon reference of how accurately a ml algorithm is capable
f interacting in practice, and is usually measured by the gener-
lization error. Looking for a suitable representation and better
se of data, a nn can integrate multiple layers to progressively
xtract higher-level features from the raw input. We then talk
bout deep learning (dl) architectures (Bengio et al., 2013; LeCun
t al., 2015; Schmidhuber, 2015), an evolution from the shallow
ne with profound implications for the expressiveness of the
odels generated (Bianchini & Scarselli, 2014), but that, in any
ase, requires generalization errors to be minimized if we want
o exploit their potential to the full. At this point, a key factor to
onsider is the avoidance of overfitting phenomena. Also known
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as overlearning or overtraining, this concept refers to the produc-
tion of an analysis by a learner that corresponds too closely to the
training set. When that happens, the resulting model may fail to
reliably predict future observations.

Overfitting arises in models with low bias and high variance,
i.e., when the learner focuses on the detail and/or noise in the
training data, often as a result of its structural complexity. That
way, in generating large parameter spaces of possibly billions
of trainable items (Goodfellow et al., 2016), nns are prone to
overfitting behavior (Geman et al., 1992). Since neither bias nor
variance are monotonic even in simple cases (Baldi & Chauvin,
1991), it is not always possible to establish when an increase
in generalization error signals true overfitting, which explains
both the need to simplify the hypotheses for the generated mod-
els and to have robust diagnostic strategies. Following Prechelt
(1997), we then talk about regularization in the first case and early
stopping in the second one.

There are basically two ways of applying regularization: re-
ducing the number of dimensions of the parameter space – usu-
ally the connection weights in the network – or reducing the
effective size of each dimension. In the latter case, weight de-
cay (Krogh & Hertz, 1992) has become a reference method, while
in the first one a number of different approaches have been pro-
posed, including greedy constructive learning (Fahlman & Lebiere,
1990), weight sharing (Nowlan & Hinton, 1992), pruning (Hassibi
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Stork, 1993) and noise injection (Holmstrom & Koistinen, 1992).
n contrast to this kind of techniques, early stopping (Morgan &
ourlard, 1990) does not aim to directly eliminate overfitting, but
ather to stop training when there are reasons to suspect it is
ccurring. While on paper one might think that this is not the best
ay to deal with the problem, (Bishop, 1995) proves that it leads

to similar solutions to regularization and, in fact, it can be viewed
as regularization over time (Sjöberg & Ljung, 1995). Moreover,
its potential as a complement to classic regularization routines
and its conceptual simplicity implies lower computational com-
plexity and greater effectiveness (Finnoff et al., 1993; Raskutti
t al., 2014), making this a particularly interesting strategy from
practical point of view. This, the design of early stopping con-
itions, sets the context within which we approach the study
f regularization in dl-based learning environments. With that
n mind, we first review in Section 2 the methodologies that
erved as inspiration, as well as our contributions. Next, Section 3
eviews the formal basis supporting the proposal described in
ull in Section 4. In Section 5, we introduce the testing frame,
ncluding both the monitoring structure and a quality metric,
or the experiments described and analyzed in Section 6. Finally,
ection 7 presents our conclusions.

. Related work and contribution

Early stopping strategies for nns can be roughly classified
ccording to whether or not a validation set, different from the
raining set, is considered to monitor learning performance using
ome kind of quality metric. However, because this latter is
ostly based on cross-validation, as is the case for the mean

quared error distance, differentiation is often done by the use or
on-use of such criteria.

.1. Early stopping without cross-validation

While the simplest approach is to set the number of epochs
sed to generate the model, this is not, strictly speaking, a stop-
ing condition because it is unrelated to the level of overfitting
n learning. In fact, some authors (Lodwich et al., 2009) pre-
er the term primary rule, in the sense that the condition is
et a fortiori at some point, thus providing a frame to evaluate
ther secondary rules that cannot be guaranteed to trigger. More
ormally, Cataltepe et al. (1999) show that, in the absence of
nformation other than the training examples, the generalization
rror is an increasing function of the training one. Thus, an
ptimal choice for an early stopping solution should probably be
ny one associated with the minimum in this latter, although no
ethod has been described to compute it. For their part, Liu et al.

2008) define a signal-to-noise-ratio figure (snrf) to measure the
oodness-of-fit using the training error, which enables the detec-
ion of overfitting without the use of a separate validation set.
owever, there are two problems with this criterion (Piotrowski
Napiorkowski, 2013) that make its application problematic.

irst of all, it depends only on sample size, and so fails to take
nto account the nature and quality of real-world data. Secondly,
t may produce negative values for multidimensional nns, thus
esulting in immediate stopping.

Other works address the question from a statistical perspec-
ive, seeking a trade-off between nn complexity and training
rror. For linear systems, Wang et al. (1994) analyze the aver-
ge optimal stopping time from the probability density error in
raining data. Unfortunately, this approach is only useful for nns
here output weights are being trained and there is no hidden

ayer training. From a more operational perspective, substantial
esearch focuses on boosting ml, which produces accurate predic-

ion criteria by minimizing a loss function that combines rough

110
nd moderately inaccurate rules-of-thumb. For early stopping,
uhlmann and Yu (2003) prove optimality in the case of fixed
esign regression, although with a rule that is not computable
rom the data. More generally, Zhang and Yu (2005) establish
niversal consistency and convergence upper bounds for convex
oss regularizers.

To facilitate practically useful outcomes, subsequent works
implify the hypotheses for overfitting estimators, assuming that,
nstead of convex or linear combinations of functions, the under-
ying loss function belong to a reproducing kernel Hilbert space1
rkhs). So, Yao et al. (2007) report faster and optimal conver-
ence rates, but do not analyze lower bounds. More recent works
vercome this drawback when the upper bounds are improved
y studying the eigenvalues of the kernel matrix, thus yield-
ng minimax optimal rates of estimation for a broad class of
oss functions and various kernel functions. This is, for exam-
le, the case of conjugate gradient (Blanchard & Krämer, 2010),
oosting (Raskutti et al., 2014) or gradient descent (Blanchard
Mücke, 2018) algorithms. Unfortunately, such proposals re-

uire an unnaturally large – asymptotic – sample size, which not
nly comes with a considerable computational overhead, but also
ends to be suboptimal in practice. Wei et al. (2017), on the other
and, provide similar guarantees without having to calculate all
he eigenvalues, although the procedure is unimplementable in
ractice.

.2. Early stopping with cross-validation

The idea here is to use the accuracy reached by a model on the
alidation dataset as an indicator of its generalization error (Mor-
an & Bourlard, 1990). As the goal is to minimize the error,
earning is stopped when deteriorating performance is inter-
reted as a sign of overfitting. This poses a non-obvious question,
s the error in a validation set often has more than one local min-
mum, so the problem is solvable only when the initial weights
f the nn are small enough (Baldi & Chauvin, 1991). Otherwise,
nd by fixing training collection and initial weights, Dodier (1996)
roves that for finite validation sets there is a dispersion of
topping points around the best one, i.e., the most probable with
he least generalization error, which increases the expected gen-
ralization error. Then, Amari et al. (1997) statistically estimate
he optimal split proportion between validation and training data
o obtain optimum performance, although the proposal holds
symptotically and is not practical. Such a lack of simple formal
olutions to address the halting issue has supported the imple-
entation of a wide variety of naïve strategies, all of which are

argely unreliable. Typically they involve stopping the first time a
iven accuracy value is attained or after a number of iterations is
erformed without measurable improvement (Shao et al., 2011).
t may also be plausible to stop when performance begins to
ecome erratic or the curves that reflect its evolution in training
nd validation sets begin to cross (Lodwich et al., 2009).
It is within this frame that Prechelt (1997) empirically reports

hree families of stopping criteria, indexed by a tuning parameter
α) to permit small excursions in the validation error: general-
zation loss (glα), productivity quotient (pqα) and uninterrupted
rogress (upα). The first of these criteria stops learning as soon
s the relative increase in the validation error exceeds α. To
void stopping when the training error drops rapidly, because this
ould give the generalization losses a chance to be repaired, the
econd condition waits until the ratio of gl to training progress
n a strip of epochs is greater than α. The third criterion, up,
uggests stopping when the validation error keeps increasing for
successive strips.

1 The family characterized by polynomial decreasing rates of step sizes.



M. Vilares Ferro, Y. Doval Mosquera, F.J. Ribadas Pena et al. Neural Networks 159 (2023) 109–124

s
a
w
e

2

s
o
m
t
t
p
h
a
o
c
b
o
o
h
b
t

a
o
i

c
h
i
a
2
a
r
a
b
i
f
a
s
p
t
b

3

t
t
a
t
c

3
t

c
i
f
S
b
l
c
t
o
m
s
i
d
f
a
s
c
e
i
t
s

t
t
t
r
b
t

Although Prechelt’s metrics should allow us to make a choice
based on efficiency, effectiveness or robustness concerns, no met-
ric seems to predominate in terms of average generalization
performance. So, while longer training time appears to improve
generalization performance in all cases, the pq proves to be
most cost-effective only for sufficiently small nns. Either way,
Prechelt’s proposal has inspired a good part of further work in
practical early stopping in dl, and also in evolutionary algorithms,
typically through genetic programming (gp) techniques in which
the counterpart of the loss function is identified with the fit-
ness function. Specifically, Foreman and Evett (2005) study the
use of online indicators from the Prechelt’s metrics with cross-
validation as canary function, and as also done in a later work
by Vanneschi et al. (2010), they raise the interest of exploring the
correlation between fitness in the training set and the validation
one. Alas, to the latter possibility, Vanneschi et al. (2010) merely
apply the concept from a visual point of view, with no formal
basis. Turning to Foreman and Evett (2005), they limit themselves
to a brief discussion without including technical details, which
concludes by proposing the combination of a correlation coeffi-
cient – which they do not even identify – as the primary condition
and pq as the complementary one. Tuite et al. (2011), however,
disagree with this approach and report the pq to be less effective
in gp, a behavior that Nguyen et al. (2012) associate with the use
of excessively small values for the α tuning parameter. This lack
of consensus is also reflected in the nn sphere, where Piotrowski
and Napiorkowski (2013) adopt the simplest gl and terminate
training when the validation error exceeds its previously noted
minimum by 20%. More recently, Wang and Yan (2017) have ex-
tended Prechelt’s approach by combining the probability density
function error of the unlabeled sample data and the validation
error of the labeled ones, although the impact on the reduction
of the generalization error seems limited.

A different view of the issue is to seek to improve efficiency by
selecting the validation series on the basis of its mean dynamic
correlation with forecast performances, in the complete train-
ing data (Michalak & Raciborski, 2005). However, the validation
set needs to be sufficiently large, even when the observed en-
hancement is statistically significant. Nonetheless, those authors
implicitly suggest the grouping of single conditions to generate a
compound rule that stops when one of those so determines, an
approach later explored by Lodwich et al. (2009) for six families of
ingle criteria, including Prechelt’s ones. Their tests confirm the
pparent superiority of pq over the rest of the individual rules,
hile the top results seem to require criteria to be coupled, with
nsembles based on pq3 performing best.

.3. Our contribution

Against this backdrop, we formally describe and test an early
topping procedure – which we have called coi, for correlation
f online indicators – with a view to reducing the risk of a
isguided early stopping, but also to improving the trade-off be-

ween training effort and generalization error. In order to provide
he adaptability to each learning process that this requires, our
roposal exploits the properties of potentially complementary
alting rules, with the sole condition that the latter are organized
s a repository of indicators for some canary function regarding
verfitting phenomena. The technique takes a correlation coeffi-
ient as a measure of the degree of agreement in the diagnosis
y the individual rules, which are assumed to be defined by sets
f variables that are mutually independent. This allows us to put
urselves in a context in which the principle of the common cause
olds, thus supporting the correctness of a stopping criterion
ased on sufficiently broad agreement between at least two of
he diagnoses. Thus, once the user has set a correlation coefficient
111
nd a confidence threshold for it, the halting decision is made
ver time according to the highest alignment between a pair of
ndividual indicators.

We choose the natural language processing (nlp), a set of
omputational methods aimed at processing and understanding
uman languages, as test environment. This domain, increas-
ngly linked to data-driven models (Jones, 1994), is featured by
growing interest in using dl techniques (Goldberg & Hirst,

017; Young et al., 2018). The main reason is the ability to
utomatically generate multilevel features to produce distributed
epresentations from texts at both word (Mikolov et al., 2010)
nd syntactic (Collobert et al., 2011) levels. Also known as em-
eddings, these features can be used as a first processing layer
n dl-based nlp models.2 This brings a revolution because, apart
rom minimizing the need for time-intensive engineering work
nd hand-designed resources, the latter are often incomplete or
parse. It is therefore expected that advances in computational
ower and parallelization (Coates et al., 2013; Raina et al., 2009),
ogether with the availability of large training datasets, offer a
right future for these methods, which justifies our choice.

. Formal framework

Below we review the fundamentals of the abstract model
hat will be introduced later, namely the use of online indica-
ors for canary functions as an early warning mechanism for
ssessing the risk of overfitting in nns, and the definition of a
rusted decision-making scenario from the correlation of different
riteria.

.1. Canary functions and online indicators for overfitting identifica-
ion

To recognize when overfitting may be starting to occur, precise
haracterization is required to capture the operational mean-
ng behind this idea. A close reference is the notion of canary
unction, introduced to solve the issue in gp (Evett et al., 1998).
uch functions differ from the fitness ones in that their value
egins to degrade at about the same time overfitting starts. Fol-
owing this path, Foreman and Evett (2005) take advantage of
ross-validation approaches, using performance divergence be-
ween training and validation sets to determine when overfitting
ccurs. Unfortunately, a problem arises with practical imple-
entations, since it is difficult to estimate the actual scale of
uch deviation from the local perspective of an iterative learn-
ng scheme. Drawing inspiration from the stopping conditions
escribed by Prechelt (1997) for nns, the authors use Boolean
unctions – called online indicators – to evaluate from data avail-
ble at each generation of a gp run whether that disparity is
ignificant. In addition, they hypothesize that the correlation
oefficient between the fitness of the best individual of the gen-
ration with respect to the training set, and the fitness of the best
ndividual of the generation with respect to the validation one at
he end of each generation should also be a strong divergence
ignal.
Following this path, we adapt the concept of a canary func-

ion to nns by using a loss function instead of a fitness one, as
hat permits us to reflect performance discrepancy between the
raining and validation sets. The notion of online indicator is then
eadjusted accordingly, allowing Prechelt’s stopping criteria to
e applied to the task, as well as any correlation coefficient for
raining and validation set performance.

2 While most of the recent work in nns applied to nlp relies on end-to-end
training without resorting to extra linguistic resources (Manning, 2015), evidence
suggests that integrating symbolic knowledge into models aids learning (Faruqui
et al., 2015; Plank & Klerke, 2019).
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.2. An explanatory basis for correlating criteria

The core of our work rests on the idea that the stopping
ecisions for several indicators using the same canary function
an yield complementary insights and thus increasing the re-
iability of individual criteria, i.e. predictive power can be en-
anced through an appropriate combination of such criteria. It
s therefore necessary to determine the conditions under which a
olution of this type is applicable. This means, first and foremost,
stablishing a theoretical framework for their analysis, on which
o then define a well-founded reasoning scheme to ensure the
orrectness of our approach.

.2.1. The principle of the common cause
In essence, our initial argument relies on a metaphysical claim

hat refers to similar state-of-the-art interpretations in the phi-
osophy of causation (Mill, 1868; Russell, 1948), stating that:

‘‘if an improbable coincidence has occurred, there must exist a
ommon cause’’
However, since this says nothing about how to characterize

ause/effect relationships, it is not helpful for implementation
urposes, although it does give our proposal meaning. Reichen-
ach (1956) fills this gap by a methodological claim based on
probabilistic criterion. Suppose events A and B are positively
orrelated, namely

(A & B) > p(A) p(B) (1)

nd assume that neither A nor B is a cause of the other. Then
eichenbach maintains that there is a common cause C , of A and
, meeting the conditions:

(A & B | C) = p(A | C) p(B | C) (2)

(A & B | ¬C) = p(A | ¬C) p(B | ¬C) (3)

(A | C) > p(A | ¬C) (4)

(B | C) > p(B | ¬C) (5)

n particular, Eq. (2) (resp. Eq. (3)) is construed to mean that
(resp. ¬C) screens off the correlation between A and B. This

orrelation disappears when we take into account the common
ause, which is to say that A and B are then probabilistically
ndependent. Meanwhile, Eq. (4) (resp. Eq. (5)) states that C is a
ause for A (resp. B). Altogether, Eqs. (2)–(5) characterize what
s defined as a conjunctive fork ACB, namely a causal structure
← C → B.
According to the state-of-the-art (Reichenbach, 1956; San Pe-

ro & Suárez, 2009), we will refer to the metaphysical claim as
he postulate of the common cause (poscc), to the methodological
laim as the criterion for common causes (critcc) and to the con-
unction of both claims as the principle of the common cause (pcc).
his provides us with a theoretical framework for causation anal-
sis by introducing probabilistic causality, a notion in philosophy
hose main message is that causes change the probabilities of
heir effects (Cartwright, 1979; Eells, 1991; Skyrms, 1981; Suppes,
970).

.2.2. The explanatory power of different causal assumptions
Unfortunately, although Reichenbach’s view confers the pre-

ictibility necessary to give support to our proposal, the pcc
annot be accepted at face value because the critcc may fail. This
ay occur particularly when the correlated events are logically

elated or spatio-temporally overlapping (Hitchcock, 2012), and
lso when there is an attempt to apply it in domains where

lassic causal intuition is no longer valid. The latter scenario is

112
ypically the case of quantum mechanics, whose recent success
as renewed interest in probabilistic causation to the detriment
f deterministic approaches (Hume, 1904) – also called regular
pproaches – according to which causes are invariably followed
y their effects.
It thus becomes evident that critcc is not a sufficient condi-

ion for a conjunctive fork,3 which justifies the formulation of
heories close to pcc but requiring that the likely cause occurs
t an earlier time than the correlated effects (Arntzenius, 1993;
an Fraassen, 1982). Alternatively, Hofer-Szabó et al. (1998, 2013)
eek a screening-off common cause, as described by Reichenbach,
y extending the original probability space to another causally
losed space, while the question remains whether the common
auses thus detected represent anything physically real. Finally,
ther authors (Cartwright, 1988; Salmon, 1984) simply accept the
alidity of pcc, but only under a revision of critcc. In short, there
s no agreement regarding the status of pcc and its relationship
o the notion of common cause (Forster, 2014; Hofer-Szabó et al.,
013).
Thankfully, in deterministic contexts with mutually indepen-

ent events caused by an earlier one, the pcc holds even when
he operational conditions do not allow for trivialization. It can
herefore be interpreted to reflect the imperfect knowledge of the
ausal system, thus justifying its application (Arntzenius, 2010).

. Abstract model

The theoretical foundations of our proposal are explained be-
ow for later interpretation from an operational point of view. We
irst explain the working hypotheses and notational support, and
hen formally describe our abstract model to finally establish its
orrectness.

.1. Working hypotheses and notational support

Let R be the real number line and N the natural number line,
ith 0 ̸∈ N. We are given a fixed sampling database D = Dtr ∪

va ∪ Dte, referring respectively to test, training and validation
ets. Each Dj := {(xij, f

i
j )}

Nj
i=1 includes inputs xij ∈ RL, outputs

i
j ∈ RM and L,M,Nj ∈ N, with j ∈ {tr, va, te}. The outputs are
ssumed to be generated from the inputs in a deterministic causal
ystem according to some unknown distribution f and, hence,
i
j = f (xij),∀i ∈ [1,Nj]. Depending on the ml strategy used, Dte
ay or may not be empty.
A dl-based learning scheme, hereafter a kernel, is denoted by
= N π

[D], with N a nn, D = Dtr∪Dva∪Dte a sampling database
nd π a collection of parameters that includes a propagation
unction, which can add a bias term to its result but also possibly
n activation function. We then use K[e] to refer to the model
enerated at epoch e from such a learning scheme, and EK

j [e] to
efer to the value for it of a loss function –also referred to as an
rror function– E in Dj ⊆ D, j ∈ {tr, va, te}.
Having set Υc := {ci}i∈I a finite family of online indicators on

canary function c and K = N π
[D] a kernel, we then refer to

he value of ci ∈ Υc at epoch e as cKi [e], and the epoch at which
i verifies and the training of K stops as sKci . The model generated
t this latter is labeled as a run R = N π

ci [D], namely R := K[sKci ].
ore intuitively, a run is the result of a specific learning process

rom a kernel K, the completion of which is determined by an
nline indicator ci defined on a given canary function c . We can
hen naturally introduce ER

j as EK
j [s

K
ci ], i.e. the value of the error

3 The relations expressed by Eqs. (4) and (5) are symmetrical. So, for example,
Eq. (4) could be rewritten equivalently as p(C | A) > p(C | ¬A), in which
case critcc also defines the conditions that apply to the linear causal diagram
A→ C → B.
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unction measured for the model associated with the run R when
t applies on a database Dj ⊆ D, j ∈ {tr, va, te}.

Within the context described above, the precision of an indi-
ator ci ∈ Υc in relation to the training procedure represented
by the kernel K will be all the greater the closer the epoch at
which its termination occurs (sKci ) to the one that determines the
ime at which the overfitting actually arises, the latter denoted
y œK. For testing purposes, the exact location of the epoch œK

an be estimated from a sufficiently large number of epochs in
, referred to as its horizon, by selecting the iteration that is
ssociated with the lowest validation error.

.2. Our proposal

Given a kernel K = N π
[D], namely a learning process on a

ampling database D using a learner N according to a setting π ,
e seek to identify the epoch œK in which training should stop

to prevent overfitting. Taking the values provided by a canary
function c as basis for decision making on the diagnosis of this
type of phenomena, and Υc := {ci}i∈I as a finite set of associated
nd pairwise independent online indicators defined on it, the idea
s to provide robustness for early stopping by exploiting their con-
ensus. To this end, we resort to a correlation coefficient ℵ, which
e assume to be compatible with the underlying distribution of
he values generated by such indicators.

Thus, training stops when at least two such indicators so
dvise within a training strip of length k, i.e., a sequence of k
pochs numbered n + 1 · · · n + k where n is divisible by k, in
hich their ℵ-correlation is above a threshold. In particular, the

ndicators do not need to agree on the same epochs, thereby
ntroducing a limited level of asynchronicity in order to make the
ondition more flexible. Against this backdrop, we first capture
hat notion of flexible ℵ-correlation within a training strip of
ength k at epoch e by:

K
coi[ℵ,k][e] := max

ι,ȷ∈I
{0, ℵ

CK
ȷ [k,e]

CK
ι [k,e]

such that

i, j ∈ [k− 1, 0] for which cKı [e− i] and cKȷ [e− j]} (6)

ith CK
ı [k, e] := {c

K
ı [e− k+ 1], . . . , cKı [e]}, ∀ı ∈ I . Having fixed

minimum value αℵ, the corresponding online indicator is then
iven by the Boolean expression:
K
coi[ℵ,k,αℵ][e] := [c

K
coi[ℵ,k][e] > αℵ] (7)

hich is true when the value cKcoi[ℵ,k][e] calculated from Eq. (6) is
reater than αℵ, and false otherwise.

.3. Correctness

Once our working hypotheses have been established, the goal
s to prove that the positive correlation between online indicators
ncreases the reliability of the diagnosis of overfitting phenom-
na. Firstly, this implies verifying the conditions of applicability
or the critcc –the methodological claim of the pcc–, which will
llow us to conclude that there is a common cause behind such a
tatistical relationship and that this is not the result of a depen-
ency link between the indicators. Afterward, it will be sufficient
o identify that such common cause is the degradation of values
rovided by the canary function considered, which we assume to
e at the origin of a generalization loss and, therefore, also of a

otential overfitting of the ml process.
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.3.1. Applicability for the critcc
We are talking in this case about an immediate conclusion

ecause our causal structure is supposedly regular and the ob-
erved variables, namely the online indicators, are also assumed
o be free from causal relationships between them. In other
ords, our working hypotheses ensure that the critcc is in-
erpretable as a necessary and sufficient condition on common
auses (Arntzenius, 2010; San Pedro & Suárez, 2009).

.3.2. Identification of the common cause
In the previously set correctness context, the only remaining

ask is to identify the common cause behind any positive corre-
ation as the increase in the canary function of the performance
iscrepancy between the training sets and the validation ones.
e are again talking about an immediate conclusion, this time
erived from the very notion of an online indicator, which is
ssentially a Boolean that determines whether performance re-
uction is significant enough to suspect that overfitting occurs.
n other words, the common cause is the observed decline in
earning acquisition.

The pcc thus provides, by means of a simple probabilistic
pproach to causation, a way of enhancing reliability in the diag-
osis of overfitting phenomena independent of temporary vari-
tions in the error function over the course of an ml process.
ut another way, decision making based on the correlation of
omplementary stopping criteria diminishes the risk of wrong
ppraisal, often resulting from simple local irregularities in the
alues generated by the canary functions.

. Testing frame

To support our conclusions, we design a categorizing protocol
or early stopping criteria based on a quality metric. In order
o guarantee its reliability, the conditions under which the ex-
eriments take place are normalized by introducing a specific
onitoring architecture for data collection.

.1. Monitoring structure

With the purpose of enabling the monitoring of the trials in
ur testing frame, it is first necessary to design a structure that
llows the online indicators to compete on fair terms. This implies
rganizing our study around a family of local testing frames
hat encapsulate those common assessment conditions according
o different combinations of learners and sampling databases,
.e. different kernels. Against this backdrop, our evaluation basis is
he previously entered run structure N π

ci [D], essentially a model
enerated from a kernel N π

[D], namely a training task on a
ampling database D according to a given learning architecture
for a particular setting π , and a stopping criterion fixed by an

nline indicator ci within a collection Υc in which all have been
efined on the same canary function c .
Obviously, we also need to set a reference base for our re-

earch findings which should be shared by the set of local evalu-
tion settings considered in order to provide a comprehensible
eneral overview of our proposal. We then assume c℘[h] to be
n optimal online indicator for a canary function c , with values
rovided by an omniscient oracle on a horizon h in such a way
hat, whatever the run N π

c℘[h] [D] considered, œ
K
= sKc℘[h] for its

orresponding kernel K = N π
[D]. In other words, the epoch

K in which the overfitting occurs, is the same epoch sKc℘[h] at
hich the online indicator c℘[h] indicates it, thereby justifying its
eferential character.

Once a family I of kernels is fixed, the study of a learning
cheme i ∈ I is formalized around the notion of local testing
rame LΥc

:= {N π
[D], c ∈ Υ ∪ {c }}. We are then talking
i cι ι c ℘[h]
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bout a set of runs defined on the same kernel N π
[D] and only

istinguishable by their online indicator cι taken from a finite set
c related to a canary function c , which also includes N π

c℘[h] [D]

s baseline. That way, the collection L := {LΥc
i }i∈I of local testing

rames becomes naturally our monitoring structure.

.2. Performance metric

According to the principle of maximum expected utility (meu)
Meek et al., 2002), we interpret the performance associated
ith a run as the search for a satisfactory cost/benefit trade-
ff, involving both quantitative and qualitative considerations.
or the quantitative considerations, we take into account the
inal computational cost, which depends on the degree of control
xercised by the user over the ml process. In its absence, as
n our case, those costs are the sum of the data acquisition,
rror and model induction costs (Weiss & Tian, 2008). Since the
ernel N π

[D] is common to all runs in a local testing frame
Υc := {N π

cι [D], cι ∈ Υc ∪ {c℘[h]}}, so too are their acquisition
osts, while error (resp. model induction) costs are proportional
o the cumulative error for each run in the validation dataset
resp. the number of epochs applied). As for the qualitative con-
iderations, baseline runs provide an easy to understand gold
tandard within local testing frames, thereby offering a simple
nd practical framework to assess online indicators.

efinition 1. Let LΥc := {N π
cι [D], cι ∈ Υc ∪ {c℘[h]}} be a

ocal testing frame on a kernel K = N π
[D], with baseline B.

e define the normalized meu signed deviation (nemesid) of a run
:= N π

cι [D] ∈ LΥc as:
ωmi
ωea

(R,LΥc ) :={
cωmi

ωea (R)−cωmi
ωea (B)+mcdbωmi

ωea (LΥc )

mcdbωmi
ωea (LΥc )

− 1 if mcdbωmi
ωea (LΥc ) ̸= 0

0 otherwise
(8)

where

mcdbωmi
ωea

(LΥc ) := max
R∈LΥc

|cωmi
ωea

(R)− cωmi
ωea

(B)| (9)

captures the maximum cost deviation from the baseline in LΥc and

cωmi
ωea

(R) := ωmi ∗ sKcι + ωea ∗ ER
va , such that ωmi, ωea ∈ (0, 1] (10)

is the cost of R ∈ LΥc , expressed as the sum of the model
induction and error acquisition costs, with processing weights for
each epoch and error assumed to be ωmi and ωea, respectively.

As the name implies, nemesid quantifies and normalizes the
signed deviation of a run from its baseline in meu terms. Since
such baselines are always built on the online indicator supported
by the omniscient oracle, this gives us an effective means of esti-
mating the performance of any other indicator through different
local testing frames, something that an absolute measure cannot
do.

More formally, and once a local testing frame is fixed, nemesid
is strictly increasing with respect to the cost of the runs. Since the
minimum (resp. maximum) is reached in runs with the lowest
(resp. highest) cost compared with the baseline, the codomain
is the interval [−1, 1]. In contrast, the modulus of this metric
is strictly decreasing with respect to the utility of the runs, and
because the value is null for the baseline, the codomain is now
the interval [0, 1]. Accordingly, the lower its real and absolute
nemesid values, the better a run performs. In other words, the
most efficient online indicators are those providing rates as close
to zero as possible, preferably negative.
 m
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6. Experimental results

Given a kernel N π
[D] representing an ml process over a series

of epochs, and taking cross-validation as the canary function c ,
the goal is to illustrate how well our online indicator performs in
detecting overfitting.

6.1. Case study

We focus on parser generation in the domain of nlp, not only
because of the complexity of annotation in building training data
and then learning to capture the relationships at training time,
but also because parsers serve as input for other nlp functional-
ities (Jurafsky & Martin, 2009). From a marked-up text provided
by a part-of-speech (pos)4 tagger, a parser identifies which words
modify others and how, resulting in a sentence structure. The
rise of dl technologies has propelled the interest in dependency-
based methods (Tesnière, 1959). In contrast to classic constituency
parses, which hierarchically break text into terminals – words –
and non-terminals – syntagms –, dependency parses look at the
relationships between pairs of words to produce trees of terminal
nodes. The resulting dependency arcs hold between a head, which
determines the behavior of the pair, and a dependent, which acts
as its modifier or complement (Kubler et al., 2009). These arcs are
labeled to supply additional environmental features and are pro-
jected to embeddings, that can be more efficiently exploited by
semantic-based nlp applications5 through nns than using other
type of techniques (Collobert et al., 2011). All of this fully justifies
the appropriateness of our case study.

6.2. Required resources

The objective is to select a set of linguistic and software
resources that guarantee a reliable and trustworthy experimental
evaluation, taking into account that our operational context is
the generation of dl-based dependency parsers. To this end, we
focus our attention on the most representative corpora and parser
generators in the nlp community.

6.2.1. Linguistic resources
In accordance with the representativeness requirement we

have just outlined, these are built from the collection of tree-
banks provided by Universal Dependencies (ud) (de Marneffe et al.,
2014), an international cooperative project that provides con-
sistent annotation of grammar, including syntactic dependencies
and also pos and morphological features, and is freely available
online (https://universaldependencies.org/).

The ud treebanks are a collection of parsing datasets manually
annotated using a revised version of the conll-x format (Buch-
holz & Marsi, 2006) called conll-u (https://universaldependenci
es.org/format.html) and usually partitioned into training, valida-
tion and test sets. Taken as a whole, they are a comprehensive
repository for numerous human languages, which allows our
experimental scope to be broadened beyond the usual resource-
rich languages – Chinese (zh), English (en), Farsi (fa), French (fr),
German (de), Hindi (hi), Japanese (ja), Polish (pl), Portuguese

4 A pos is a category of words which have similar grammatical properties.
ords that are assigned to the same pos generally display similar behavior

n terms of syntax, i.e., they play analogous roles within the grammatical
tructure of sentences. The same applies in terms of morphology, in that words
ndergo inflection for similar properties. Common English pos labels are noun,

verb, adjective, adverb, pronoun, preposition, conjunction, interjection, numeral,
article or determiner.
5 Here we include paraphrase acquisition (Shinyama et al., 2002), knowledge

extraction (Culotta & Sorensen, 2004), discourse understanding (Sagae, 2009) or
achine translation (Ding & Palmer, 2005).
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Table 1
Characteristics of datasets for resource-rich languages.

de en es fr pl pt ru

training
Sentences 166,849 21,253 28,492 18,640 31,496 17,992 54,099
Unique tokens (%) 6.49 7.89 7.92 10.30 17.74 9.55 12.69
Sentence size 18.08 17.65 29.03 23.85 12.27 25.71 17.81

validating

Sentences 19,233 3974 3054 2902 3960 1770 8108
Unique tokens (%) 13.35 16.59 18.56 20.40 32.73 22.65 24.86
Sentence size 17.26 15.76 29.30 19.87 12.07 24.28 17.30
Unknown tokens (%) 5.46 7.51 5.35 6.41 13.12 5.64 11.69
Table 2
Characteristics of datasets for resource-poor languages.

ca eu fa gl hi ja sr zh

training
Sentences 13,123 5396 4798 2872 13,304 7125 3328 3997
Unique tokens (%) 7.40 26.34 10.94 15.18 6.01 14.20 22.29 17.78
Sentence size 31.82 13.52 25.23 33.00 21.13 22.48 22.31 24.67

validating

Sentences 1709 1798 599 1260 1659 511 536 500
Unique tokens (%) 16.40 36.53 24.50 20.85 15.16 31.76 37.40 34.00
Sentence size 33.05 13.40 26.43 31.65 21.23 22.46 22.38 25.33
Unknown tokens (%) 5.78 19.14 10.46 11.05 5.51 6.23 18.58 13.03
c
b

(pt), Russian (ru) and Spanish (es) – to also include resource-
poor languages – Catalan (ca), Basque (eu), Galician (gl) and
Serbian (sr). This also ensures that the corpora selected are rep-
resentative of a wide variety of language families and subfamilies
with very different characteristics, including Indo-European (Ger-
manic, Romance and Slavic), Japonic and Sino-Tibetan, as well as
a language isolate6 (eu). Moreover, each language dataset covers
different knowledge domains (e.g. legal, news, poetry, wiki, etc.),
in which case the corresponding training, validation and test
sets are aggregated into one set. Whenever possible, erroneous
entries are discarded and non-standard data are cleaned. All of
this contributes to the aim of defining a reliable testing space for
ml.

Tables 1 and 2 summarize details of the databases for resource-
rich and resource-poor languages, respectively, differentiating
between partitions; italic characters indicate when a validation
set is not available and the test set is used instead. Details
include the average number of sentences, tokens per sentence
and percentages of unknown tokens and unique tokens.7

6.2.2. Software resources
Analogously to the case of the linguistic resources, we use the

most popular and efficient generators for dl-based dependency
parsers from the neuronlp2 project (Ma & Hovy, 2016). It includes
mplementations for state-of-the-art models for a wide range of
ore tasks, including parsing (Liu et al., 2019; Ma et al., 2018;
Rotman & Reichart, 2019), pos tagging (Tourille et al., 2018)
and named entity recognition (Magnini et al., 2020), all publicly
available online (https://github.com/XuezheMax/NeuroNLP2). Fo-
cusing on parsing, the scope of our case study, we chose to work
with two particular encoders:

• Deep biaffine attention (biaf) (Dozat & Manning, 2017).
• Maximum spanning tree (neuromst) (Ma & Hovy, 2017).

6 A language not demonstrated to have descended from a common ancestor
ith any other language.
7 Unknown tokens are tokens included in the validation set but not in the

raining one, and unique tokens are calculated as the quotient between the
umber of different tokens and the total number of tokens.
 a
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This allows, respectively, coverage of projective and non-
projective capabilities8 when dealing with dependency-based
parsing, precisely the parsing paradigm propelled by the rise of
dl technologies.

Both encoders share a basic architecture, structured as a recur-
rent network using bidirectional long–short term memory (bilstm)
(Ma & Hovy, 2016) to encode inputs. Both also operate at word
level, although neuromst takes the form of a convolutional neural
network (cnn) (LeCun & Bengio, 1998) to exploit information at
the character level. As the main distinctive characteristics of each
encoder, neuromst-based parsers rely on a conditional log-linear
model on top of the neural network to classify dependency labels,
while biaf-based ones do this classification via a modified version
of bilinear attention (Kim et al., 2018). Unlike neuromst, biaf uses
different vectors for different dependency labels to represent each
word, thus performing slightly better in exchange for a greater
memory requirement. The hyperparameter configuration is sim-
ilar for both encoders: word embeddings of 300 – obtained from
https://fasttext.cc/docs/en/crawl-vectors.html – dimensions, 3 re-
current layers of 512 neurons, elu activation units, and a uniform
dropout of 0.3.

6.3. Testing space

To illustrate how our proposal performs, we need to compare
it to other cross-validation-based online indicators. We also need
to ensure an appropriate setting of parameters so as to introduce
the set of local testing frames that define the testing space.

6.3.1. State-of-the-art online indicators
On the basis of the state-of-the-art in both nns and gp, we

describe the online indicators listed below, as referred to a given
kernel K = N π

[D]. In addition to the primary rule cKmne[m], which
fixes the maximum number m of epochs to be executed, the
online indicators and also our proposal, cKcoi[ℵ,k,αℵ], are monitored
against the baseline cK℘[h] provided by an omniscient oracle in a
horizon of h = 103 epochs.

8 The capability to deal with non-projective tree structures, i.e., that include
rossing lines, defines a major qualitative classification criterion for parsing tools
ecause numerous sentences in many languages require it for their syntactic
nalysis.

https://github.com/XuezheMax/NeuroNLP2
https://fasttext.cc/docs/en/crawl-vectors.html
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eneralization loss (cgl). Training stops when the generalization
oss rises above a specific threshold (Prechelt, 1997) relative to
he optimal error Eop[e], i.e., the minimal error observed in epochs
p to the current one e:
K
op[e] := min

ê≤e
EK
va[ê] (11)

e then define (as a percentage) the loss at epoch e by:

K
gl [e] := 100 ∗

(
EK
va[e]

EK
op[e]
− 1

)
(12)

nd, having fixed a maximum value α, the corresponding online
ndicator is given by:
K
gl[α][e] := [c

K
gl [e] > α] (13)

rogress (cp[k]). Training stops when during a training strip of
ength k, improvements in training error stall below a specific
hreshold. Progress is measured as the ratio between the average
raining error during the strip and the minimum one. We then
efine the progress (in parts per thousand) at epoch e by:

K
p[k][e] := 100 ∗

( ∑e
ê=e−k+1 E

K
tr [ê]

k ∗mine
ê=e−k+1 E

K
tr [ê]
− 1

)
(14)

Having fixed a minimum value α, the corresponding online indi-
cator is given by:

cKp[k,α][e] := [c
K
p[k][e] < α] (15)

Comparing with cgl, cp[k] is high for unstable phases of training,
where the training error goes up instead of down. This was
described by Prechelt (1997) and first evaluated by Lodwich et al.
(2009) as low progress.

Productivity quotient (cpq[k]). Training stops when, during a strip
of length k, there is little chance that the generalization loss can
be repaired, which may happen when progress is very rapid.
Evaluation is based on a threshold in the ratio to training progress
(Prechelt, 1997). We then define the productivity quotient at
epoch e as:

cKpq[k][e] :=
cKgl [e]

cKp[k][e]
(16)

aving fixed a maximum value α, the corresponding online indi-
ator is given by:
K
pq[k,α][e] := [c

K
pq[k][e] > α] (17)

omparing with cgl, cpq[k] does not report overfitting until the
training error begins to decrease slowly, which is of interest if we
can assume a higher generalization loss given a greater progress
on the training set.

Uninterrupted progress (cup[s,k]). Training stops when, during a
sequence of s strips of length k, the generalization error in-
creases (Prechelt, 1997). We then assume that overfitting has
begun independently of the size of the increases. Thus, we re-
cursively define uninterrupted progress at epoch e as:

cKup[s,k][e] := [c
K
up[s−1,k][e− k] & EK

va[e] > EK
va[e− k]], ∀s ≥ 2 (18)

with

cKup[1,k][e] := [E
K
va[e] > EK

va[e− k]] (19)

The scope of cup[s,k] with respect to the generalization error (Eva)
is local while that of cgl is global, because the reference up to the
current epoch e is the minimum (Eop). Thus, cup[s,k] can be used
directly in the context of pruning algorithms, where errors are
allowed to remain much higher than previous minima over long
training periods.
116
High noise ratio (chnr[k]). Training stops when, during a strip of
length k, the high noise ratio (hnr) goes above a specific threshold.
This stopping rule is defined (Lodwich et al., 2009) at epoch e as:

cKhnr[k][e] :=

∑e−k
ê=e−1 E

K
tr [ê] − 2 ∗ EK

tr [ê− 1] + EK
tr [ê− 2]∑e−k

ê=e−1 E
K
tr [ê]

(20)

Having fixed a ceiling for α, the corresponding online indicator is
given by:

cKhnr[k,α][e] := [c
K
hnr[k][e] > α] (21)

verfitting gain (cog ). Training stops when the gain in overfitting,
ith respect to the minimal gain observed in epochs up to the
urrent epoch, rises above a specific threshold. In accordance
ith the measurement of overfitting in gp from Vanneschi et al.
2010), this gain is interpreted as the distance between training
nd validation errors. Formally, we define the overfitting gain at
poch e as:

gK
[e] := |EK

tr [e] − EK
va[e]| (22)

from which its optimal value in epochs up to e is given by:

OgK
op[e] := min

ê≤e
OgK
[ê] (23)

We can define the stopping criterion for this epoch as:

cKog [e] := |Og
K
[e]| − |OgK

op[e]| (24)

Having fixed a ceiling for α, the corresponding online indicator is
given by:

cKog[α][e] := [c
K
og [e] > α] (25)

6.3.2. Parameter tuning
The performance of online indicators relies heavily on a study

of the ml process, especially when they include parameters that
need to be tuned in order to obtain the best results and thus
ensure reliable evaluation, which in turn requires properly setting
the quality metrics. In our case, the latter refers to the parameter
fitting stage in nemesid, through the functions used to estimate
the cost and error of the runs.

Setting the nemesid metric. Given a run R = N π
cι [D] for a

sampling database D = Dte ∪Dtr ∪Dva and an online indicator cι,
we first define the loss function E to be used to measure the error
in one of the sets Dj ⊆ D, j ∈ {te, tr, va}. To facilitate interpreta-
tion of the results, we opt for conceptual transparency, with the
error measured as the simple counterpart of the accuracy (accRj )
achieved by the run for the set, as follows:

ER
j := 100− accRj (26)

For its part, accuracy is interpreted in the more usual sense of the
state-of-the-art (Sampson & McCarthy, 2004), i.e., as the number
of correctly identified parse trees divided by the total number
of parse trees (expressed as a percentage), calculated following a
standard procedure. So, all parses in the database Dj are counted
and it is assumed that only a single parse per sentence is pro-
ided. Considering that we are working with dependency parsers,
e can formalize this procedure as:

ccRj := 100 ∗
|heads− predRj ∩ headsj|

|headsj|
(27)

here headsj is the set of heads, i.e., the words starting a syntactic
dependency, in database Dj, and heads− predRj is the set of heads
predicted by the model R for the same database.

Regarding the cost function, depending on the neural architec-
ture and sampling database D associated with run R, it may be
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onvenient to increase or decrease the weighting factors ωmi and
ea, referring to the costs of executing and validating errors in
he model, respectively. However, when linguistic and software
esources of a very different nature are involved, as in our case,
e cannot standardize them through a collection of local testing

rames. We therefore work with ωmi = ωea = 0.5, a couple
f intermediate values in the range of possible ones. In practice,
his avoids extreme weights and, therefore, any misconceptions
r inaccurate conclusions regarding the tests.

etting the online indicators. The aim is to identify the best per-
ormance setting for each online indicator in each particular run.
epending on the case, this means calculating three types of
alues: upper/lower threshold α, training strip length k and strip
equence length s. To do this, we tune those values on the horizon
= 103 of the kernel considered K = N π

[D], taking the score
f the nemesid metric for the optimal online indicator cK℘[h] as
benchmark and increasing values in intervals proposed by the
tate-of-the-art. Thus:

• For the rule of fixing a maximum number of epochs, we tune
m in the condition cKmne[m] in increments of 10 over the
interval [10, 100] proposed by both Vanneschi et al. (2010)
and Rosasco and Villa (2015).
Since the horizon h considered for the oracle far exceeds
this interval, this tuning does not guarantee optimal perfor-
mance, but only allows us to approximate the best possible
one in the range of epochs usually considered. Note that if
we were to complete the estimation at [0, h], we would vir-
tually reproduce the behavior of the oracle, thus eliminating
the practical interest of a comparison.
• For the generalization loss, we tune α for the online indicator

cKgl[α] in increments of 0.5 over the interval [1, 5] proposed
by Prechelt (1997).
• For progress, we take k = 5 and tune α for the online

indicator cKp[k,α] in increments of 0.5 over the interval [1, 5]
proposed by Lodwich et al. (2009).
• For the productivity quotient, we take k = 5 and tune α

for the online indicator cKpq[k,α] in increments of 0.5 over the
interval [1, 5] proposed by Prechelt (1997).
• For uninterrupted progress, we take k = s = 5 for the online

indicator cRup[k,s], as proposed by Prechelt (1997).
• For the high noise ratio, we take k = 5 and tune α for

the online indicator cKhnr[k,α] in increments of 0.5 over the
interval [5, 25] proposed by Lodwich et al. (2009).
• For the overfitting gain, we tune α for the online indicator

cKog[α] in increments of 0.5 over the interval [0.5, 5] proposed
by Vanneschi et al. (2010).

For our own proposal cKcoi[ℵ,k,αℵ] and regarding the training
strip length k, we make the same choice (k = 5) as for the
other indicators using that parameter. Turning to the value for
the lower threshold αℵ, it is tuned in increments of 0.1 over the
interval [0.5, 1], which also relates to a selection procedure anal-
ogous to the one applied for the rest of the stopping conditions
depending of this kind of setting (α). When it comes to the corre-
lation coefficient ℵ, it is a parameter specific to the new indicator.
Consequently, our decision is only conditioned by the nature of
the values to be related, finally falling to the Pearson’s ρ (Pearson,
1895), the popular method to measure the linear correlation
between two sets of normally distributed data. To justify it, one
need only recall the Central Limit Theorem (Pólya, 1920), which
proves that a stochastic variable depending on a large number
of small effects, tends to approximate a normal distribution. This
is typically the case for observation error calculations and, in
particular, for the online indicators whose correlation underpins
our proposal, thus giving formal support to our choice. In any
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case, and to give a broader view of the impact of this choice,
we have performed the same tests using the Spearman’s rank
order (Spearman, 1904), a general correlation coefficient that
evaluates monotonic relationships, whether linear or non-linear.
The results obtained from these alternative correlation values
have not differed from those associated with Pearson’s ρ, which
is why we do not make an express distinction between the two
coefficients.

On the whole, the settings applied do not, therefore, represent
in any way an advantage over our competitors in the design of
the testing space, which is a major factor in the credibility of any
positive evaluation of the new stopping condition described.

6.3.3. Local testing frames
Once the cross-validation has been set as canary function c

around which to define our testing frame, the correlation co-
efficient ℵ selected, and the settings for the collection Υc of
most representative associated indicators have been optimized,
we can formally introduce our experimental space. This involves
characterizing our collection of local testing frames, whose aim is
to categorize the runs to be studied, using the concept of a kernel,
i.e. a learning task involving a sampling database and a learner.
Thus, the family Υc of online indicators to be considered is:

{ccoi[ℵ,k,αℵ], cgl[α], chnr[k,α], cmne[m], cog[α], cp[k,α], cpq[k,α], cup[s,k]}

(28)

All of these, except for cmne[m], will operate in association with a
primary rule cmne[h], which guarantees that all runs stop at some
point within the limits of the horizon h set for the oracle. With
this aim, we will say that a run is out-of-range when the stop is
produced by activation of that primary rule.

The dl encoders biaf and neuromst and the collection of ud
treebanks of resource-rich (resp. resource-poor) languages are:

R := {zh, en, fa, fr, de, hi, ja, pl, pt, ru, es}

(resp. P := {ca, eu, gl, sr}) (29)

The local testing frame families to be considered are therefore the
following ones:

{LΥc
R,d}d∈D (resp. {LΥc

P,d}d∈D), with D := {biaf,neuromst} (30)

one per combination of corpus in R (resp. P) and encoder d ∈
D set, applying in all its runs the parameter range estimated
above. These four sets, {LΥc

R,d}d∈D and {LΥc
P,d}d∈D , together with the

nemesid quality metric make up our testing frame.

6.4. Results analysis

The rows in Tables 3 and 5 (resp. Tables 4 and 6) show
monitoring details for each local testing frame in {LΥc

R,d}d∈D (resp.
{LΥc

P,d}d∈D). The entries describe the runs associated with online
indicators ci in the considered collection Υc , referring to the
parameter setting for ci. This latter includes the epoch sci at which
possible overfitting occurs when the indicator is applied in the
corresponding corpus, and the value computed by the nemesid
function Φ

ωmi
ωea . Within a local testing frame, italics indicates the

baseline results and bold indicates the best performance with
respect to the baseline, always without taking out-of-range runs
into account. In order to simplify their interpretation, these tables
are analyzed with the aid of classic bar charts in Figs. 1 and 2,
and also by means of box plots when it comes to comparing
distributions across different datasets in Figs. 3 and 4. To improve
the understanding of these box plots, we show not only outliers
(•) and extreme values (✴) but also the rest of the observations
(▲), including now those corresponding to out-of-range runs, for
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Table 3
biaf encoder monitoring of local testing frames for resource-rich languages.

c
℘[103] ccoi[ℵ, 5, αℵ]

cgl[α] chnr[5, 5.0] cmne[m] cog[α] cp[5, 1.0] cpq[5, α] cup[5, 5]

sc
℘[103]

Φ0.5
0.5 αℵ sccoi[ℵ, 5, αℵ]

Φ0.5
0.5 α scgl[α] Φ0.5

0.5 schnr[5, 5.0] Φ0.5
0.5 m scmne[m] Φ0.5

0.5 α scog[α] Φ0.5
0.5 scp[5, 1.0] Φ0.5

0.5 α scpq[5, α] Φ0.5
0.5 scup[5, 5] Φ0.5

0.5

de 206 0.00 0.5 88 −0.15 1.0 5 −0.25 103 1.00 90 90 −0.15 0.5 8 −0.25 284 0.10 1.0 284 0.10 103 1.00
en 41 0.00 0.5 41 0.00 1.0 4 −0.03 226 0.19 40 40 −0.00 4.5 32 −0.01 67 0.03 1.0 67 0.03 103 1.00
es 42 0.00 0.5 42 0.00 1.0 6 −0.04 135 0.10 40 40 −0.00 3.0 39 −0.00 96 0.06 1.0 96 0.06 109 0.07
fr 4 0.00 0.5 5 0.00 1.0 1 0.00 168 0.17 10 10 0.01 0.5 1 0.00 45 0.04 1.0 45 0.04 208 0.21
pl 22 0.00 0.5 21 −0.00 1.0 2 −0.02 111 0.09 20 20 −0.00 1.0 11 −0.01 37 0.02 1.0 37 0.02 103 1.00
pt 27 0.00 0.7 29 0.00 1.0 7 −0.02 92 0.07 30 30 0.00 0.5 2 −0.02 103 1.00 1.0 103 1.00 103 1.00
ru 14 0.00 0.5 16 0.00 1.0 6 −0.01 60 0.05 10 10 −0.00 3.0 13 −0.00 40 0.03 1.0 40 0.03 103 1.00
Table 4
biaf encoder monitoring of local testing frames for resource-poor languages.

c
℘[103] ccoi[ℵ, 5, αℵ]

cgl[α] chnr[5, 5.0] cmne[m] cog[α] cp[5, 1.0] cpq[5, α] cup[5, 5]

sc
℘[103]

Φ0.5
0.5 αℵ sccoi[ℵ, 5, αℵ]

Φ0.5
0.5 α scgl[α] Φ0.5

0.5 schnr[5, 5.0] Φ0.5
0.5 m scmne[m] Φ0.5

0.5 α scog[α] Φ0.5
0.5 scp[5, 1.0] Φ0.5

0.5 α scpq[5, α] Φ0.5
0.5 scup[5, 5] Φ0.5

0.5

ca 64 0.00 0.7 55 −0.01 2.5 3 −0.06 101 0.04 60 60 −0.00 2.0 69 0.01 103 1.00 1.0 103 1.00 103 1.00
eu 572 0.00 1.0 103 0.76 1.0 2 −1.00 86 −0.86 90 90 −0.85 3.0 6 −0.99 103 0.76 1.0 103 0.76 194 −0.67
fa 864 0.00 1.0 103 0.16 1.0 6 −1.00 75 −0.92 90 90 −0.90 5.0 27 −0.98 103 0.16 1.5 103 0.16 103 0.16
gl 20 0.00 0.5 19 0.00 1.0 5 −0.01 95 0.08 20 20 0.00 4.5 19 0.00 81 0.06 1.0 81 0.06 103 1.00
hi 18 0.00 0.5 13 −0.00 1.0 6 −0.01 59 0.04 20 20 0.00 1.0 22 0.00 103 1.00 1.0 103 1.00 103 1.00
ja 4 0.00 1.0 103 1.00 1.0 2 −0.00 15 0.01 10 10 0.01 0.5 103 1.00 8 0.00 1.0 5 0.00 103 1.00
sr 284 0.00 0.5 92 −0.27 1.0 2 −0.38 59 −0.31 90 90 −0.27 4.5 23 −0.36 103 1.00 1.0 103 1.00 103 1.00
zh 5 0.00 0.5 5 0.00 1.0 3 0.01 64 0.07 10 10 0.01 4.0 4 0.01 103 1.00 1.0 42 0.05 524 0.53
Table 5
neuromst encoder monitoring of local testing frames for resource-rich languages.

c
℘[103] ccoi[ℵ, 5, αℵ]

cgl[α] chnr[5, 5.0] cmne[m] cog[α] cp[5, 1.0] cpq[5, α] cup[5, 5]

sc
℘[103]

Φ0.5
0.5 αℵ sccoi[ℵ, 5, αℵ]

Φ0.5
0.5 α scgl[α] Φ0.5

0.5 schnr[5, 5.0] Φ0.5
0.5 m scmne[m] Φ0.5

0.5 α scog[α] Φ0.5
0.5 scp[5, 1.0] Φ0.5

0.5 α scpq[5, α] Φ0.5
0.5 scup[5, 5] Φ0.5

0.5

de 66 0.00 0.5 61 −0.01 2.0 4 −0.06 103 1.00 70 70 0.00 0.5 4 −0.06 215 0.16 1.0 215 0.16 103 1.00
en 334 0.00 5.0 345 0.02 1.0 5 −0.49 202 −0.20 90 90 −0.37 5.0 19 −0.47 114 −0.33 1.0 114 −0.33 72 −0.39
es 71 0.00 0.5 70 −0.00 3.5 19 −0.05 101 0.03 70 70 −0.00 3.0 58 −0.01 103 1.00 1.0 103 1.00 873 0.86
fr 230 0.00 1.0 208 −0.03 3.5 12 −0.28 113 −0.15 90 90 −0.18 2.0 90 −0.18 191 −0.05 1.0 191 −0.05 255 0.03
pl 103 0.00 1.0 85 −0.02 3.5 9 −0.10 183 0.09 90 90 −0.01 2.0 84 −0.02 82 −0.02 1.0 82 −0.02 103 1.00
pt 121 0.00 1.0 88 −0.04 1.5 9 −0.13 205 0.10 90 90 −0.03 2.5 73 −0.05 87 −0.04 1.0 87 −0.04 103 1.00
ru 156 0.00 0.5 70 −0.10 5.0 22 −0.16 72 −0.10 90 90 −0.08 5.0 21 −0.16 103 1.00 1.0 103 1.00 103 1.00
Table 6
neuromst encoder monitoring of local testing frames for resource-poor languages.

c
℘[103] ccoi[ℵ, 5, αℵ]

cgl[α] chnr[5, 5.0] cmne[m] cog[α] cp[5, 1.0] cpq[5, α] cup[5, 5]

sc
℘[103]

Φ0.5
0.5 αℵ sccoi[ℵ, 5, αℵ]

Φ0.5
0.5 α scgl[α] Φ0.5

0.5 schnr[5, 5.0] Φ0.5
0.5 m scmne[m] Φ0.5

0.5 α scog[α] Φ0.5
0.5 scp[5, 1.0] Φ0.5

0.5 α scpq[5, α] Φ0.5
0.5 scup[5, 5] Φ0.5

0.5

ca 277 0.00 5.0 277 0.00 1.0 8 −0.37 147 −0.18 90 90 −0.26 3.0 84 −0.27 64 −0.29 1.0 64 −0.29 103 1.00
eu 762 0.00 1.0 103 0.32 4.0 13 −0.99 114 −0.87 90 90 −0.90 0.5 2 −0.99 103 0.32 1.0 103 0.32 103 0.32
fa 342 0.00 0.5 94 −0.37 1.0 5 −0.50 100 −0.36 90 90 −0.38 0.5 5 −0.50 103 1.00 1.0 103 1.00 103 1.00
gl 117 0.00 5.0 117 0.00 3.5 15 −0.11 98 −0.02 90 90 −0.03 0.5 2 −0.10 103 1.00 1.0 103 1.00 837 0.82
hi 24 0.00 0.5 28 0.00 1.0 5 −0.02 76 0.05 20 20 −0.00 1.0 17 −0.01 35 0.01 1.0 35 0.01 103 1.00
ja 6 0.00 0.5 5 0.00 1.0 3 −0.00 44 0.04 10 10 0.00 0.5 5 0.00 12 0.01 1.0 7 0.00 103 1.00
sr 649 0.00 0.7 425 −0.35 1.0 8 −1.00 79 −0.89 90 90 −0.88 5.0 46 −0.94 103 0.55 1.0 103 0.55 103 0.55
zh 31 0.00 0.5 24 −0.01 5.0 4 −0.01 115 0.09 30 30 −0.00 0.5 3 −0.01 103 1.00 1.0 103 1.00 142 0.12
h
o
p
a
t

which we use the same symbols in a lighter color (•, ✴, ▲).
urther, we associate the mean (µ) and variance (σ 2) achieved by
ach online indicator for the set of runs considered. All numerical
ata are expressed to two decimal places in order to improve
eadability, while all the calculations have been done to ten
ecimal places of precision.
As pointed out, nemesid is an estimate, in meu terms, of

he signed and normalized cost deviation of a run with respect
o the baseline in its local testing frame. Since it is a metric
hose codomain is [−1, 1] and whose value (resp. modulus) is

(resp. inversely) proportional to computational cost (resp. utility),
we hope to reach rates with the lowest absolute values, and
preferably negative ones in non-null cases.

6.4.1. The quantitative study
We are now interested in analyzing the behavior of our pro-

posal ccoi[ℵ,5,αℵ] from both a relative and an absolute point of view,
i.e., with respect to other online indicators in the state-of-the-art,
but also to the oracle c , h = 103.
℘[h] m

118
Comparison with state-of-the-art online indicators. In this case,
Figs. 1 and 2 show percentages for ranking positions across runs
in local testing frames, for the biaf (left-hand side) and neuromst
(right-hand side) models, when applied to resource-rich and
resource-poor languages, respectively.

Observable at first glance is the impact of both the neural ar-
chitecture and the size of the corpus. As expected, most indicators
perform significantly worse when applied to smaller datasets,
resorting to the primary rule to stop the learning process in
some of the runs studied, a circumstance that is easily identifiable
from Tables 3 to 6 because epoch sci takes the value 103 of the
orizon h set for the oracle. All this corroborates the difficulty
f categorizing the state-of-the-art online indicators according to
erformance (Lodwich et al., 2009; Nguyen et al., 2012), while
lso highlighting the outstanding behavior of ccoi[ℵ,5,αℵ] whatever
he scenario considered.

More specifically, for large enough corpora, the biaf models
onitored by c achieve the top nemesid scores in most
coi[ℵ,5,αℵ]
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l

Fig. 1. biaf and neuromst model ranking percentages across local testing frames for resource-rich languages.
Fig. 2. biaf and neuromst model ranking percentages across local testing frames for resource-poor languages.
Fig. 3. nemesid biaf and neuromst model box plots across local testing frames for resource-rich languages.
ocal testing frames (en, es, pl and pt) reflected in Table 3 but
three, while it ranked second (fr and ru) and third (de) best in
the rest. Regarding the neuromst architecture, the performance
is similar, achieving the top nemesid scores in three local testing
frames (en, es and fr) included in Table 5, while it ranks second
(de, pl and pt) and third (ru) best in the rest.
119
Comparison with the oracle. Focusing on large enough corpora
and using a biaf encoder, ccoi[ℵ,5,αℵ] is as accurate as the oracle
in two of the local testing frames (en and es), although the
difference from the baseline never exceeds two epochs, except for
the corpus de, as shown in Table 3. Specifically, in that latter case
c stops the learning process far in advance (118 epochs)
coi[ℵ,5,αℵ]
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Fig. 4. nemesid biaf and neuromst model box plots across local testing frames for resource-poor languages.
f the oracle, but with an acceptable cost/benefit trade-off, as
s proven by its nemesid score (−0.15). The numbers worsen
lightly for the neuromst models which, although never matching
he diagnosis of the baseline, are a few iterations away from the
racle in two cases (de and es) and provide good nemesid scores
from −0.10 up to 0.02) in all the other ones (en, fr, pl, pt and
u), as can be seen in Table 5. This translates into a reduction
from 1 up to 86 epochs) of model generation costs except in one
ase (en), always in combination with a very good cost/benefit
rade-off.

As for small corpora and excluding out-of-range runs, our
roposal matches the oracle only once when using biaf models
zh), although the difference from the baseline is always negative
nd does not exceed a few epochs (from 1 up to 9) in other
hree cases (ca, gl and hi), which means a slight reduction in
odel generation costs, as shown in Table 4. For the remaining

un (sr), ccoi[ℵ,5,αℵ] stops the learning process far in advance (192
pochs) of the oracle, but with an acceptable cost/benefit trade-
ff, as shown in Table 4 through its nemesid score of−0.27. These

numbers improve slightly for neuromst models, which match the
baseline on two local testing frames (ca and gl) and barely differ
in a few epochs (from 1 up to 6 epochs) in three other ones (hi, ja
and zh). For the remaining two runs (fa and sr), ccoi[ℵ,5,αℵ] stops
the learning process far in advance (248 and 224 epochs) of the
oracle, with an acceptable cost/benefit trade-off, as can be seen
in Table 6 through their nemesid scores (−0.37 and −0.35).

Overview. Overall, we find that the performance of our proposal
not only improves on the state-of-the-art, but also comes very
close to the oracle, regardless of the architecture applied by the
learner or the type of corpus under consideration. All this in oper-
ational conditions that are not particularly advantageous for it as
we sought the best fit for the rest of the online indicators tested,
which is not the case for ccoi[ℵ,k,αℵ], whose parameters ℵ and
k were set for the occasion without an exhaustive prior tuning
process. In particular, the length k of the training strips, used in
our case to delimit the sequence of epochs to be correlated, has
been set to the value recommended for the rest of the indicators
that apply this type of structure.

6.4.2. The qualitative study
Having confirmed the accuracy of our proposal as tested on

a particular configuration, ccoi[ℵ,k,αℵ] with k = 5, we now study

its stability, to check whether the good results observed show

120
uniform behavior independent of the resources used, and can also
be extrapolated without major variations to other settings. This
would allow its use to be simplified, as it would no longer require
a cumbersome prior tuning phase.

Stability with regard to the resources. Concerning this, Fig. 3
shows that the nemesid scores for ccoi[ℵ,5,αℵ] for the resource-rich
languages are the most stable among all the indicators evaluated,
independent of the learning architecture used. More to the point,
it virtually matches the optimal performance when using a biaf
model, excluding the run corresponding to de, which turns out to
be an extreme or even an out-of-range run for most indicators.
In fact, all the stop conditions exhibit such values, along with –
except for ccoi[ℵ,5,αℵ] and cmne[m] – a varying level of asymmetry
both in terms of interquartile range and whisker length, revealing
an increasing dispersion and variability of the nemesid values.

As for neuromst, although slightly different to those of the
oracle, the values for ccoi[ℵ,5,αℵ] are still excellent, and the best
overall. In greater detail, it shows a mean close to the optimum,
with symmetry at the interquartile range and a slight deviation
in the whiskers, which show the smallest range and the shortest
length respectively. The result is the practical absence of biases
in the distribution of nemesid values, with little variability and
a high concentration around those of the oracle. In contrast, the
impact of the neural architecture is high on the rest of the indica-
tors. Thus, both the size and the asymmetry of interquartile boxes
and whiskers increase, while the mean moves away from that of
the oracle. Therefore, accuracy and stability degrade significantly
with out-of-range runs for half of the indicators, although most
of the extreme values have disappeared with respect to the biaf
encoders.

Regarding the nemesid scores for the resource-poor languages,
Fig. 4 shows an increased interquartile range and whisker length
for most of the indicators with a worsening of the asymme-
try in both cases, which implies the presence of biases. In this
respect, ccoi[ℵ,5,αℵ] is associated with the most contained distribu-
tion, while the symmetry is suffering from the impact of the lack
of learning resources, although to a lesser extent than the rest
of the indicators studied. The only exception to this generalized
behavior is (resp. are) cpq[5,α] (resp. cp[5,1.0] and cpq[5,α]) when
using a biaf (resp. neuromst) architecture, but their interquartile
ranges and whisker lengths are the highest, which implies a
significant dispersion and variability in the performance of the
various runs. In contrast to what happened with the sufficiently
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Table 7
biaf encoder monitoring of local testing frames with ccoi[ℵ, k, αℵ] for resource-rich and resource-poor languages.

ccoi[ℵ, 2, αℵ]
ccoi[ℵ, 5, αℵ]

ccoi[ℵ, 8, αℵ]
ccoi[ℵ, 2, αℵ]

ccoi[ℵ, 5, αℵ]
ccoi[ℵ, 8, αℵ]

αℵ sccoi[ℵ, 2, αℵ]
Φ0.5
0.5 αℵ sccoi[ℵ, 5, αℵ]

Φ0.5
0.5 αℵ sccoi[ℵ, 8, αℵ]

Φ0.5
0.5 αℵ sccoi[ℵ, 2, αℵ]

Φ0.5
0.5 αℵ sccoi[ℵ, 5, αℵ]

Φ0.5
0.5 αℵ sccoi[ℵ, 8, αℵ]

Φ0.5
0.5

de 0.5 196 −0.01 0.5 88 −0.15 0.5 92 −0.14 ca 0.5 40 −0.03 0.7 55 −0.01 0.7 58 −0.01
en 0.5 41 0.00 0.5 41 0.00 0.5 46 0.01 eu 0.5 103 0.76 1.0 103 0.76 1.0 103 0.76
es 0.5 42 0.00 0.5 42 0.00 0.5 43 0.00 fa 1.0 103 0.16 1.0 103 0.16 1.0 103 0.16
fr 0.5 4 0.00 0.5 5 0.00 0.5 8 0.01 gl 0.5 19 −0.00 0.5 19 −0.00 0.5 17 −0.00
pl 0.5 20 −0.00 0.5 21 −0.00 0.5 22 0.00 hi 0.5 10 −0.01 0.5 13 −0.00 0.5 16 −0.00
pt 0.5 27 0.00 0.7 29 0.00 0.5 23 −0.00 ja 1.0 103 1.00 1.0 103 1.00 1.0 103 1.00
ru 0.5 14 0.00 0.5 16 0.00 0.5 8 −0.01 sr 0.5 264 −0.03 0.5 92 −0.27 0.5 90 −0.27

zh 0.5 5 0.00 0.5 5 0.00 0.5 8 0.01
Table 8
neuromst encoder monitoring of local testing frames with ccoi[ℵ, k, αℵ] for resource-rich and resource-poor languages.

ccoi[ℵ, 2, αℵ]
ccoi[ℵ, 5, αℵ]

ccoi[ℵ, 8, αℵ]
ccoi[ℵ, 2, αℵ]

ccoi[ℵ, 5, αℵ]
ccoi[ℵ, 8, αℵ]

αℵ sccoi[ℵ, 2, αℵ]
Φ0.5
0.5 αℵ sccoi[ℵ, 5, αℵ]

Φ0.5
0.5 αℵ sccoi[ℵ, 8, αℵ]

Φ0.5
0.5 αℵ sccoi[ℵ, 2, αℵ]

Φ0.5
0.5 αℵ sccoi[ℵ, 5, αℵ]

Φ0.5
0.5 αℵ sccoi[ℵ, 8, αℵ]

Φ0.5
0.5

de 0.5 71 0.01 0.5 61 −0.01 0.5 60 −0.01 ca 0.5 261 −0.02 0.5 277 0.00 1.0 283 0.01
en 0.5 343 0.01 0.5 345 0.02 0.7 319 −0.02 eu 0.5 103 0.32 0.5 103 0.32 0.5 103 0.32
es 0.5 71 0.00 0.5 70 −0.00 0.6 67 −0.00 fa 0.5 91 −0.38 0.5 94 −0.37 1.0 343 0.00
fr 0.5 208 −0.03 0.5 208 −0.03 0.5 261 0.04 gl 0.5 114 −0.00 0.5 117 0.00 0.5 18 −0.11
pl 0.5 85 −0.02 0.5 85 −0.02 0.8 103 0.00 hi 0.5 17 −0.01 0.5 28 0.00 0.8 17 −0.01
pt 0.5 80 −0.05 0.5 88 −0.04 0.5 88 −0.04 ja 0.5 5 −0.00 0.5 5 −0.00 0.5 8 0.00
ru 0.5 90 −0.08 0.5 70 −0.10 0.5 60 −0.11 sr 0.5 103 0.55 0.7 425 −0.35 1.0 439 −0.33
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large corpora, most outliers and extreme values have disappeared
here, although the number of out-of-range runs has increased,
concentrated mainly among the same indicators as for the large
ones.

Stability with regard to the setting. Regarding the stability of
coi[ℵ,k,αℵ] for various settings, we focus on the length k of the
raining strip since the tuning of the threshold αℵ for each lo-
al testing frame had already been described, and we assume
hat the impact of the concrete correlation coefficient ℵ used is
omparatively minor in regulating the learning process. Bearing
n mind that a correct strip must have a length of at least 2,
e compare the nemesid values obtained for k = 2, 5 and 8,
nsuring a symmetric analysis. Once again taking cross-validation
s the canary function c , we introduce the collection Υ coi

c of online
ndicators to be considered as:
coi
c := {ccoi[ℵ,2,αℵ], ccoi[ℵ,5,αℵ], ccoi[ℵ,8,αℵ]} (31)

ogether with the neural architectures (biaf and neuromst) and
he ud treebank collections (R and P) as already identified. We
hen define the local testing frame families as:

LΥ coi
c

R,d }d∈D (resp. {LΥ coi
c

P,d }d∈D), with D := {biaf,neuromst} (32)

ne per combination of corpus in R (resp. P) and encoder d ∈ D.
hose families, together with the nemesid quality metric make

up our new experimental environment.
The rows in Tables 7 and 8 reflect the results for the local

esting frames in {LΥ coi
c

R,d ,LΥ coi
c

P,d }d∈D , and their entries show the runs
ssociated with indicators in the collection Υ coi

c following the
ame pattern applied in previous tests. Meanwhile, Figs. 5 and
summarize the distributions of nemesid values associated with

hose runs, differentiating between the biaf (left-hand side) and
he neuromst (right-hand side) encodings for the resource-rich
nd resource-poor languages, respectively.
Our proposal shows rock-solid stability for resource-rich lan-

uages, with nemesid values ranging over the interval [−0.15,
.01] (resp. [−0.11, 0.04]) for the biaf (resp. neuromst) archi-
ecture, independent of the value k ∈ {2, 5, 8} considered for
he length of the training strip, as reflected in the left-hand-
ide of Table 7 (resp. Table 8), although the best results are
ssociated with k = 2. Thus, the interquartile range, whisker
ength and symmetry have no, or only minor, fluctuations. Only
he neuromst models suffer a slight degradation in the symmetry
 e

121
or the highest values of k, which involves the whisker lengths
or k = 5, and both interquartile range and whisker lengths for
= 8. The presence of one extreme value for the biaf encoders
an be considered to be irrelevant9 and is once again associated
ith the de corpus, as was the case for most of the state-of-
he-art indicators already studied. This suggests that the origin
f the phenomenon may lie to some extent in the nature of the
raining database. Along the same lines, we can also consider the
haracterization as an outlier of the run corresponding to the
orpus ru when using neuromst, for the cases k = 5 and k = 8,
s not very relevant.
Stability parameters worsen slightly for smaller corpora, if

e exclude out-of-range runs, with nemesid values ranging over
he interval [−0.27, 0.01] (resp. [−0.38, 0.01]) for biaf (resp.
euromst) models, independent of the value k considered. On
he other hand, and in contrast to what happened for the larger
orpora, the impact of architecture seems to be decisive here.
s for the distribution parameters, the impact of out-of-range
uns in the biaf architecture is visible, to which must be added
hose associated with outliers and extreme values when using
euromst encoders. For the biaf case, this impact is practically
he same for all the various training strip lengths considered, in
erms of interquartile box, whiskers and symmetry considera-
ions. The only exception to this uniform behavior is the length of
he lower whisker for ccoi[ℵ,2,αℵ], which is more closely matched
o the mean. In contrast, neuromst models show a more con-
ained dispersion at all levels, but are also less uniform, with the
est distribution parameters associated with ccoi[ℵ,8,αℵ], although
he best individual results are now concentrated on indicator
coi[ℵ,5,αℵ].

verview. Overall, the results show a remarkable stability in
he treatment of both resource-intensive and resource-scarce
anguages, the latter being more dependent on the learning archi-
ecture used. The fact that in most cases the behavior improves
or reduced lengths (k = 2) would suggest that the configuration
= 5 used in our previous comparison with the state-of-the-art

s not optimal, thus giving greater value to the results previously
iscussed.

9 Extreme values here reflect scores that deserve this qualification simply
ecause the indicator is absolutely accurate for the rest of the corpora, as
videnced by the variance.
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Fig. 5. nemesid biaf and neuromst model box plots across coi-based local testing frames for resource-rich languages.
Fig. 6. nemesid biaf and neuromst model box plots across coi-based local testing frames for resource-poor languages.
. Conclusions

We have formally described an early stopping technique to an-
icipate overfitting in dl-based learning, exploiting cross-
alidation as the predictive basis. The novelty compared to previ-
us work lies in formally tackling two key issues: the specification
f early stopping criteria and the interpretation of agreement
mong these. In the first case, we have described a well-defined
ramework based on the notion of the canary function from
p, using online indicators to warn of overfitting. In the second
ase, we have analyzed the agreement in the diagnosis from the
erspective of the pcc, thus giving theoretical support to our
ecision-making.
Our case study focused on the particularly complex task of

enerating nlp parsers. The results indicate that our proposal im-
roves generalization capabilities while increasing learning effi-
iency and reducing sensitivity with respect to parameter choice.
his shows the potential of correlating decision criteria as a
122
means of providing stability and preventing overfitting during
model training.
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