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Multilevel Fast Multipole Algorithm for Fields 

Abstract: An efficient implementation of the multilevel fast multipole algorithm 

(MLFMA) is herein applied to accelerate the calculation of the electromagnetic 

near- and far-fields after the equivalent surface currents have been obtained. In 

spite of all the research efforts being drawn to the latter, the electric and/or 

magnetic fields (or other parameters derived from these) are ultimately the 

magnitudes of interest in most of the cases. Though straightforward, their 

calculation can be computationally demanding, and hence the importance of 

finding a sped-up accurate representation of the fields via a suitable setup of the 

method. A complete self-contained formulation for both near- and far-fields and 

for problems including multiple penetrable regions is shown in full detail. 

Through numerical examples we show that the efficiency and scalability of the 

implementation leads to a drastic reduction of the computation time. 

Keywords: Numerical integral methods; Method of Moments (MoM); Multilevel 

Fast Multipole Algorithm (MLFMA); Electromagnetic optics; Radiated fields. 

1. Introduction  

The widespread use of the multilevel fast multipole algorithm (MLFMA) [1–4] for the 
achievement of the rigorous solution of large-scale radiation and scattering electromagnetic 
problems is currently undeniable. The approach has been extensively applied to expedite the 
iterative resolution of the large and dense matrix systems resulting from the application of surface 
integral-equation (SIE) formulations and the method of moments (MoM) [5]. The combination with 
the latest advances in computer science has led to efficient parallel implementations that can 
deal with the solution of many real-world challenging problems [6–11]. Hence, the presence of 
MLFMA in very assorted and emerging fields is progressively greater due to the increasing 
scientific and industrial necessities that demand efficient computational solutions to many 
practical applications [12–26]. 

Otherwise, once the application of MLFMA provides the problem solution in the form of  
electric and/or magnetic equivalent currents distributed over the boundary surfaces and 
interfaces of the homogeneous or piece-wise homogeneous materials, a data post-processing is 
usually mandatory to obtain the proper results for each specific study. Remarkably, these 
subsequent computations involving the calculation of far and near field distributions often 
demand time and computational resources in the order of those required to solve the problem, 
or even higher in certain cases. Illustrative examples of highly demanding simulations in terms 
of post-processing computational cost can be found in many applications, from the  



radiofrequency band, as the often requested computation of the bistatic radar cross section or 
the electromagnetic radiation in the vicinity of extremely large targets [10, 11], to 
nanoplasmonic biosensing applications in the optical range [17–26]. In [18, 25, 27], e.g., the 
authors have faced computational challenges related to the post-processing of the results when dealing 
with real-life nanophotonic applications. That post-processing would have been impossible without 
an accelerated computation generalized to multiregion scenarios, such as the implementation 
presented here. 

This work clearly shows that MLFMA can be an efficient tool not only for the problem solving, 
but also to accurately and efficiently handle the computations that follow the equivalent 
currents finding, as it was briefly pointed out in [4]. The idea has also been previously explored in 
works [28, 29] for far- and near- field computations, respectively. Nevertheless, the novelty here lies 
in the fully detailed presentation of a complete self-contained formulation for the expedited 
computation of electromagnetic fields in the post-processing stage for problems including multiple 
penetrable regions. So, the first obvious advantage of our approach is that it is valid for all kind of 
homogeneous or piecewise homogeneous composite bodies with arbitrary materials involving open 
and/or closed surfaces. In [28], for instance, most of the attention is given to the parallelization 
strategy rather than the mathematics of the method itself, which by the way applies to perfect electric 
conductors only. 

 To illustrate the capabilities of the approach, a large-scale example in the emerging 
field of nanoplasmonics, consisting of a large assembly of nanoparticles, is considered in the 
numerical results section. The electric near field distribution, which is required for the 
calculation of the surface enhanced Raman scattering (SERS) [30, 31] is accurately and 
efficiently obtained by means of MLFMA. The SERS enhancement calculation is usually 
employed for the assessment of the sensing capabilities of nanoplasmonic systems. The 
differential scattering cross section of the array [32, 33] is also included for several planes. Both, 
SERS and differential scattering cross section, are challenging problems involving intensive 
near and far field hard computations. The results demonstrate that the use of MLFMA, together 
with an adequate implementation strategy, allows a dramatical reduction of the post-
processing numerical cost. 

 

2. MLFMA for computing radiated fields 

Let us consider one or several homogeneous or piecewise homogeneous objects placed in a 
homogeneous (unbounded) medium. Based on Love's equivalence principle, the original 
problem can be expressed in terms of equivalent electric and magnetic currents placed over the 
boundary surfaces. A set of SIEs can be derived for the equivalent currents by imposing the 
continuity of the tangential components of the fields on the surfaces. The equivalent currents 
are expanded into a sum of known vector basis functions fn in the form: 

  (1) 



 , (2) 

where Jn and Mn are the unknown expansion complex coefficients. The conventional MoM 
formulation can be then applied, yielding  a matrix system that can be solved directly or by 
accelerated techniques such as MLFMA in order to obtain the current coefficients.  

Once the main problem has been solved and the current coefficients Jn and Mn are known, the 
calculation of output results still requires the computation of radiated/scattered electric and 
magnetic fields. Let us consider the calculation of these fields at the observation points r placed 
in region i, and let us denote with Jij and Mij

 
the equivalent currents on the interface surfaces Sij 

between adjacent regions i and j. The radiated/scattered fields can be straightforwardly 
obtained from the Straton-Chu formulas form the equivalent currents as: 

  (3) 

 , (4) 

where Bi are the indexes of the regions adjacent to region i,  is the unit vector normal to Sij 

pointing toward region i and the following integro-differential operators have been defined: 

  (5) 

 ,  (6) 

where ki is the wavenumber in region i,  denotes the divergence in the primed (source) 
coordinates,  and  is the homogeneous Green’s function in region i. PV denotes 

the principal value of the integral in Eq. (6). 

The application of MLFMA to compute electric and magnetic fields starts with the usual 
hierarchical decomposition of the geometry using octrees (for this decomposition we apply the 
highly efficient procedures described in [34]). However, in this case the multilevel octree 
encloses not only the geometry, but also the observation points at which the electromagnetic 
fields will be computed. It must be noted at this point that, in [29], the near-field post-processing 
phase splits the simulation domain, which only involves one scatterer, into two sub-domains: one 
with the scatterer and another with the observation points in the background medium. Our generalized 
approach, on the contrary, implements a hybridized octree addressing cells with either observation 
points, radiating current elements or both, each cell including as many regions as necessary. While of 
subtle nature, the difference in algorithmic structure is important, as the background medium and 
several interior regions from multiple scatterers can be framed within the same octree cell. The 



electric near field for a given observation point rf  belonging to the region i and to the octree 
group p can be then expressed as: 

(7) 

In this expression S2 denotes the unit (Ewald’s) sphere. Bp are the indexes of the nearby groups 
to the observation group p, for which the multipolar expansion cannot be applied. Gp are the 
indexes of all the elements (basis functions, testing functions, observation points) in group p 
(same applies for Gq), and rpq is the vector from the center rq of the source group q to the center 
rp of the observation group p.  defines the radiation pattern of the basis function fn referred 

to the center of group q in region i and in the outgoing directions  defined by the discretization 
of the unit sphere: 

 , (8) 

where ∆n is the spatial subdomain of the n-th basis function fn and . In equation (7),  

is the translation operator defined as: 

 ,  (9) 

where  is the spherical Hankel function of the second kind, Pm denotes the Legendre 
polynomial of degree m and M denotes the number of multipole expansion terms. Regarding 
the sign sij = 1 (i < j); −1 (i > j) in equation (7), it ensures the compliance with the boundary 
conditions at each interface. It is assumed that i = 1 denotes the external region. Similarly, the 
magnetic near field at rf is obtained as: 

(10) 

For the sake of clarity, a one-level MLFMA has been assumed in expressions (7) and (10). The 
multi-level stages will be clearly set out afterwards. 



2.1 Matrix notation   

Let us introduce at this point a more compact matrix notation for the electric field in (7). An 
analogous procedure can be followed to derive the expressions in matrix notation for the 
magnetic field according to (10). Without lack of generality, in the following expressions we 
consider the radiation of just one region j adjacent to region i in order to make the formulation 
clearer, so the summation operator with summation index j can be omitted. Then, the electric 
near field can be written now as: 

(11) 

where  and are matrices whose 

rows yield the contribution to the scattered fields of the Nq basis functions of group q on the 
interface Sij, which radiates to region i through the integro-differential operators  and , 

respectively.  are the aggregation matrices for the  and  

polarizations. The columns of  are the outgoing radiation patterns (plane waves with k-

vectors) of the basis functions belonging to group q pointing to the directions given by the 

discretization of the Ewald’s sphere,
 

 and 

, with  following equation (8), k = 1..K and K denoting the 

number of quadrature points of the Ewald’s sphere discretization. The diagonal matrix 
 is the usual translator operator, which translates the multipolar 

plane wave expansions from the center of the source group q to the center of the observation 
group p. Uθ and Uφ are K × 3 matrices whose rows are the cartesian components of the unitary 
vectors  and  at the quadrature points on the Ewald’s sphere. These matrices perform the 
change from spherical to cartesian coordinates, posing the plane waves on a common reference 
system for integration on the Ewald’s sphere.  is a matrix that 

shifts the incoming radiation pattern from the center rp of the receiving group p to the 

observation point rf , and the row vector  contains the weights 

associated to the quadrature points on the Ewald’s sphere multiplied by a proper leading 
constant.  and  are column vectors with the 

(known) complex coefficients of the equivalent electric and magnetic currents expansions. 



2.2 Far-field computation 

A significant simplification in the obtaining of the electric and magnetic fields with MLFMA can 
also be achieved in far region through the proper exploitation of the far-field conditions in the 
algorithm stages. It is important to remark that the term far-field is not related here to the usual 
far-field condition of electromagnetics, but rather to scenarios where we need to compute the 
electromagnetic fields at observation points that are far-away from the radiating geometry in 
the MLFMA sense, that is, observation points that would be located in octree cells not 
neighboring the single radiating cell of the scatterer. Nevertheless, the recycling method of the 
MLFMA structure employed to compute these far-fields does not make any usual far-field 
assumption that allows for approximations. Under the above assumptions, the multipolar 
expansion of MLFMA can be applied for every observation point. Moreover, when computing 
far field the observation region is always i = 1 since all the observation points belong to the 
external (far) region and, therefore, sij = 1. Conveniently, the radiating geometry is decomposed 
using a conventional multilevel octree, while the observation points where the far-field is to be 
calculated are enclosed into groups. The observation groups have the particular but advisable 
feature of containing only one observation point, which coincides with the center of the group. 
Remarkably, these observation goups do not belong to the geometry octree, but they are 
centered at the observation points. This contrasts with near-field computations, in which a 
conventional octree is built including both the geometry and the observation points. The 
coincidence between center of the group and observation point leads to a simplified relation 
between children and parent observation groups and to a fixed number of groups, regardless 
of what group size is being considered. The simplification of the calculations mentioned above 
is clearly brought to light in the following expression of the electric far field at the observation 
point rf: 

 ,  (12) 

where  and  are the  and  polarizations of the outgoing radiation pattern in group Q, 

which comprises the complete geometry at the topmost (one-cell) level of the octree (level 0). 
This allows profiting from an advantageous translation scheme given by the translator operator 

 between this single box represented by its center and the far 

observation groups p. Since the observation groups are centered at the observation points rf, it 
must be noted that the shift matrices Sfp are not required. Matrices  with the plane wave 

expansions for the complete structure in the k-space are not calculated directly, but rather 
obtained from the finest level L by exponential shifting and interpolation. At level L, the 
outgoing radiation patterns are calculated from the equivalent electric and magnetic currents 
and the aggregation matrices previously defined as , 

. At a given level l-1, the radiation pattern of group q can be obtained by exponential shift and 
interpolation of the outgoing radiation patterns of its children groups c, as follows: 



 ,  (13) 

where Cq are the indexes of the children groups c (level l) of group q (level l−1),  
 is the shifting matrix from the center of the children 

groups c to the center of the parent group q and B(l−1),(l) is the K(l−1) × K(l) interpolation matrix from 
level l to level l−1. One key point of the implementation is that the interpolation matrix between two 
levels is full (global interpolation/anterpolation). Using global interpolation and anterpolation ensures 
the validity of the plane wave expansions in the entire range of spatial directions, enabling the 
application of the algorithm to the calculation of the radiated field at any point, without incurring 
possible losses of precision due to the use of local interpolation/anterpolation algorithms. 
Remarkably, the (full) interpolation matrices are not always explicitly calculated, but the 
interpolation/anterpolation operations are speeded-up for large cells at the coarser levels by 
conveniently reordering operations and applying a Fourier transform, followed by a (low-cost) matrix 
vector product and an inverse Fourier transform [35]. 

At this point, there are two possible ways to proceed prior to the disaggregation process: 

• Doing the anterpolation down to finer levels by simply reducing the group size and, 
consequently, the number of k-space directions that need to be considered for the 
disaggregation of the receiving information. The exponential translation can be left out 
since the lower level groups are referred to the same center points than the higher level 
groups. 

• Omitting the anterpolation and directly deal with the disaggregation at the coarsest level. 

Aside from the option chosen, the disaggregation of the receiving information turns into the 
evaluation of the field expression for each observation point rf , already at the very center of the 
relevant receiving group. After calculation, a transformation from cartesian to spherical coordinates 
can be straightforwardly done to keep the transversal components of the field.  

It is worth mentioning that, at a difference with [29], the above procedure is not restricted to far-field 
conditions, but to observation points that are not neighbors (in terms of MLFMA) of the coarsest 
radiating cells considered. Thereby, it can be applied to expedite the calculation of fields in the 
intermediate radiating near-field (Fresnel) region, which is beyond the reactive near-field region but 
where the far-field conditions are not met. 

3. Numerical results 

To demonstrate the applicability and efficiency of the procedure described, the ordered array 
of 720 silver trigonal prism nanoparticles shown in Figure 1(a), which is similar to that of [35], 
has been analyzed. The nanoparticles are 1.7 nm above the plane XY and the array reaches 6787 
nm along the x-axis and 6496 nm along the y-axis. Each nanoparticle presents rounded tips and 
rounded edges in the upper face, 50 nm-height and 126 nm-side. The trigonal prisms are 
symmetrically grouped together in 400 nm-diameter circumferences. The well-known Rao-
Wilton-Glisson (RWG) [37] vector basis functions have been used to model the surfaces. We 



have taken the optical constant of silver from [37]. 

The equivalent currents over the geometry surfaces have been obtained by applying an 
efficient implementation of MLFMA algorithm adequately combined with MoM [1, 19]. Normal 
incidence of a plane wave with x- and y- polarizations has been considereded. First, the main 
spectra of the arrangement were computed to characterize its frequency response. The average 
of the results corresponding to both polarizations can be observed in Figure 1(b). 

 (Figure 1) 
 

The electric near field over the plane shown in Figure 1(a) has been calculated for the 
wavelength corresponding to the resonance of the scattering cross section, 515 nm. The plane 
is defined by more than 12 million observation points (3501 × 3501), therefore this is an 
illustrative example of a highly demanding calculation in terms of, mainly, time resources. The 
average of the electric field magnitudes for both polarizations is shown in Figure 2(a), being 
Figure 2(b) a zoom of the highlighted corner area. With this result, the generation of the SERS 
electromagnetic enhancement map given by the  approximation (no Raman shift) [30] is 

straightforward (Figure 2(c), showing the same zoom area as in Figure 2(b)). The simulations 
have been performed on a workstation with four 16-core Intel Xeon E7-8867v3, 45 MB Smart-
Cache processors at 2.50GHz. Under this conditions, an execution time of 135 s  has been 
required to obtain the electric near field for one polarization. As far as the MLFMA basic 
configuration parameters are concerned, a group size at the finest level L of 0.0625λ and two 
multilevel steps (three levels) have been used in the simulations. M = 7, 9 and 12 multipole 
terms have been considered in (9) from the finest to the coarsest level, respectively. 

 (Figure 2) 

 
For the sake of illustrating the drastic reduction of the execution time provided by 

MLFMA, the electric near field involved in the result of Figure 2 has been also calculated by 
direct evaluation of the expression in Eq. (3). The near field has been obtained for a manageable 
plane with considerably fewer sample points (321 × 321). Since the accuracy level of the 
accelerated result obtained by MLFMA is also a key point, a measure of the error e of this 
approach with respect to the reference given by the direct evaluation of Eq. (3), has been 
calculated as: 

 ,  (14) 

where EMLFMA and Eref are arrays with the magnitude of the accelerated and reference fields over 
the observation points. This error measure has been carried out for sets with different number 
of multipoles, which is a determining parameter concerning the accuracy of the method. 
Concretely, the number of multipoles considered in each case has been obtained by modifying 
the value of the parameter p in the following expressions according to the data gathered in 
Table 1: 

   (15) 



 ,  (16) 

where  is the integer (floor) part. M(l) and a(l) denote the number of multipoles and the cell 

size at level l, respectively. Table 1 exemplifies the extent of the extreme execution time 
decrease achievable by resorting to MLFMA in comparison with the direct form: approximately 
half a minute versus almost three hours in this example. 

(Table 1) 

The time required for the field calculation over the plane of Figure 2 with 3501×3501 
samples (approximately 119 times the number of points considered in Figure 3(b)-(d)) using 
the direct evaluation and with the same computation resources can be extrapolated from the 
example of Table 1. The extrapolation results in an estimated time of 13.4 days, while the same 
result addressed by MLFMA took 135 seconds, showing that the benefits of a well-designed 
MLFMA parallelization strategy are more visible as the problem size grows. The acceleration 
obtained makes clear that this is an efficient and highly scalable implementation, which takes 
maximum advantage of the available computational resources. Although in this work we had 
access to high-performing computing machines, we herein also considered a typical scenario 
with less powerful resources. In that context, the reduction of the execution time brought about 
by the presented MLFMA implementation for the extraction of near and far fields would become 
crucial. For example, using a more modest workstation with two 8-core Intel(R) Xeon(R) CPU 
E7- 4820 @ 2.00GHz, 500 GB RAM processors, MLFMA would take 256 seconds for the largest 
plane, while the computing time of the direct evaluation would change from the 
aforementioned 13 days to almost 3 months, which could be completely unacceptable 
depending on the circumstances. 

Figure 3 depicts the accuracy of our implementation when dealing with the calculation 
of near fields. Figure 3(a) shows the error versus the parameter p (and, consequently, versus 
M(l)), and Figure 3(b)-(d) allows for a comparison between the reference result and the 
worst/best cases in terms of expected accuracy given by the highest and the lowest value of p 
in Table 1, respectively. Despite the error values of Figure 3(a) being moderate, Figure 3(b) 
shows that the simulation result with the lowest M(l) (the highest p) corresponds, obviously, to 
an inadequate configuration of the method for the pursued result, since the octree tesselations 
can be clearly appreciated. Nevertheless, it can be also observed that the resolution of the field 
representation improves clearly when the number of multipoles is increased. It must be noted 
that MLFMA is error-controllable and, as such, the approximation degree, so vital in near field 
calculations, can be straightforwardly managed through the parameter p; importantly, this can 
be done without a significant impact on the total running time. Our experience points out that 
values of M(l) slightly higher than those typically employed to get the surface currents (p around 
10−8 or 10−10) are enough to obtain a satisfactory near field result. 

(Figure 3) 

  
Finally, as an example of far-field calculations, we obtained, for the same resonant scenario of 
Figure 2 and Figure 3, the differential scattering cross section σd [33] for three planes cuts with 



1441 observation points each. The results for the three cuts have been sequentially obtained in 
a single simulation and they are shown in  Figure 4. σd is defined as the scattering cross section, 
σs, per unit solid angle. It is thus an angular function (θ and φ dependence) with dimensions of 
area per unit solid angle: 

 . (17) 

σs is calculated from the incident and scattered fields, Ei, Hi and Es, Hs, respectively, as: 

 , (18) 

where S0 is an arbitrary closed surface enclosing the array, dS is a vector representing the differential 
surface area directed outward, and * is the complex conjugate. A group size at the finest level L of 
0.125λ and seven multilevel steps (eight levels) have been considered. M(l) has been calculated 
according to (16) with p = 10−3 in (15).  

(Figure 4) 
 

The MLFMA simulation has supplied the results in 8.11 seconds, in contrast with the 
217.56 seconds required for the computation of the electric field following the expression (3). 
The error of Eq. (14) as well as a similar error measure defined for the complex transversal 
components of the electric field are compiled in Table 2. The reference stays the same, the 
electric field evaluated according to (3). As expected, these error values are lower than those 
obtained when computing near field. Near radiation is a more demanding calculation, which 
entails the necessity of a more careful configuration of the method. 

(Table 2) 

4. Summary 

An efficient implementation of MLFMA has been used for the calculation of usually demanded 
post-processing results such as near and far fields, which are time-consuming if direct 
evaluation is used. As it can be extracted from the detailed formulation exposed, the application 
of the method requires an adequate strategy for organizing the computations involved in the 
extraction of the near and far fields. Our implementation has demonstrated to be efficient and 
highly scalable, thereby squeezing the available resources to the maximum extent.  

The numerical results included in this work have distinctly pointed out the drastic speed-up of 
the execution time that can be attained by using MLFMA in the calculation of radiated fields, as 
compared to the direct form given by the Straton-Chu formulas. Indeed, the acceleration in the 
calculation of the electromagnetic fields can turn into a deciding issue throughout the 
development of a project depending on what kind of computational resources are available, 
time constraints, etc. More importantly, this speed-up takes place in an error-controllable 



fashion, and thus sufficiently accurate results can still be rendered by MLFMA as long as its key 
parameters are properly configured.    
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Tables with Captions 

Table 1. Execution time to obtain the electric near field (one polarization) for 321 × 321 

sample observation points when using MLFMA with different number of multipoles and direct 

evaluation of Eq. (3). 

 MLFMA    Direct evaluation 

p M(l) Ex. time (s) Ex. time (s) 

10−14 [8 10 13] 34.2  

9720.3 (∼ 2.7 h) 
 

 

10−12 [7 9 12] 28.6  
10−10 [6 8 11] 25.6  
10−8 [5 7 9] 25.3  
10−6 [4 6 8] 24.8  

 

Table 2. Error in the far field calculation with MLFMA with regard to direct evaluation of Eq. 

(3). 

  x-pol   y-pol 
XY-plane XZ-plane YZ-plane  XY-plane XZ-plane YZ-plane 

 2.22⋅10−3  1.85⋅10−3  1.99⋅10−3  2.36⋅10−3 1.69⋅10−3 1.74⋅10−3 

 1.82⋅10−3 1.70⋅10−3 1.71⋅10−3  1.84⋅10−3 1.79⋅10−3 1.70⋅10−3 

e of Eq. (14) 0.70⋅10−4 0.87⋅10−4 0.38⋅10−4  0.66⋅10−4 0.86⋅10−4 0.79⋅10−4 
  



Figure Captions 

Figure 1. (a) Geometry used in the simulations and plane used for the subsequent calculation 

of the electric near field. The nanoparticles are 1.7 nm above the XY-plane and the plane for 

computing the near field is placed at z = 25 nm. A zoom of one nanoparticle is shown in the 

inset: each nanoparticle presents rounded tips and rounded edges in the upper face, 50 nm-

height and 126 nm-side. (b) Cross sections (nm2) of the arrangement of Figure1(a). 

Figure 2. Electric near field computations at λ = 515 nm over the red plane of 3501×3501 

points shown in Figure1(a). (a) Average of  the electric field magnitudes corresponding to x- 

and y- polarizations. (b) Zoom of Figure2(a). (c) SERS enhancement map given by the  

approximation corresponding to the arrangement of Figure 1. 

Figure 3. (a) Normalized error of the electric near field computed by MLFMA with respect to 

the electric near field given by the direct evaluation of Eq. (3). (b)-(d) Magnitude of the 

electric near field (average of x- and y- polarizations) in the vicinity of one nanoparticle 

calculated by (b) MLFMA with p = 10−6, (c) MLFMA with p = 10−14 and (d) direct evaluation of 

Eq. (3). 

Figure 4. (a) Direction and polarization of the plane wave inciding on the nanoparticles array. 

(b)-(d) Differential scattering cross section (dBnm2/sr) of the arrangement for x- and y- 

polarizations and for: (b) XY-plane, (c) XZ-plane and (d) YZ-plane. 



 

 

Figure 1. (a) Geometry used in the simulations and plane used for the subsequent calculation of 
the electric near field. The nanoparticles are 1.7 nm above the XY-plane and the plane for 
computing the near field is placed at z = 25 nm. A zoom of one nanoparticle is shown in the inset: 
each nanoparticle presents rounded tips and rounded edges in the upper face, 50 nm-height 
and 126 nm-side. (b) Cross sections (nm2 ) of the arrangement of Figure 1(a) 

 

 

Figure 2. Electric near field computations at λ = 515 nm over the red plane of 3501 × 3501 points 
shown in Figure 1(a). (a) Average of the electric field magnitudes corresponding to x- and y- 

polarizations. (b) Zoom of Figure 2(a). (c) SERS enhancement map given by the |E|4  
approximation corresponding to the arrangement of Figure 1. 



 

Figure 3. (a) Normalized error of the electric near field computed by MLFMA with respect to the 
electric near field given by the direct evaluation of Equation (3). (b)–(d) Magnitude of the electric 
near field (average of x- and y- polarizations) in the vicinity of one nanoparticle calculated by (b) 
MLFMA with p = 10−6, (c) MLFMA with p = 10−14, and (d) direct evaluation of Equation (3). 



 

Figure 4. (a) Direction and polarization of the plane wave inciding on the nanoparticles array. 
(b)–(d) Differential scattering cross section (dBnm2 /sr) of the arrangement for x- and y- 
polarizations and for: (b) XY-plane, (c) XZ-plane, and (d) YZ-plane. 
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