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Abstract

We use the complex square root to define a very simple homotopic invariant over the non-
anishing functions defined on the circle. As a consequence we provide easy proofs of the plane
rouwer fixed point theorem and the Fundamental Theorem of Algebra. The relation of this new

nvariant with the winding number and the Brouwer degree will be fully unveiled.
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1. Introduction

In [1] it was given a very simple proof of the no-retraction theorem in the plane based
n the following elementary properties of the complex square root:

(A1) Any continuous f : DR → SR admits a continuous square root in DR ;
(A2) The identity i : SR → SR does not admit a continuous square root on SR ,

where DR ⊂ C is the open disk of center 0 and radius R > 0 and SR its boundary.
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From the two previous claims it is clear that a retraction from DR to SR (that is, a
ontinuous function r : DR → SR such that r (z) = z for all z ∈ SR) cannot exist. More

generally, in this paper we will show that for f : DR → C continuous such that γ := f |SR

does not vanish, whether or not γ admits a continuous square root allows to distinguish
between even and odd Brouwer degree of f .

Further developing this idea, by counting the exact number of times that a continuous
square root for γ ∈ C(SR,C\{0}) can be successively extracted over SR , a more powerful
tool is obtained. Remarkably, this value, ranging from 0 to ∞, shares some of the most
important properties of the Brouwer degree (the existence property, homotopy invariance,
etc.) while it is much easier to establish. In this way we shall obtain elementary proofs
of many important theorems such as the invariance of domain, the Brouwer fixed point
theorem or the Fundamental Theorem of Algebra.

The paper is organized as follows: in Section 2 we prove the main properties of the
“square root counter” without any reference to the argument of a complex number neither
to integration nor differentiation. As a consequence, in Section 3 we obtain a very simple
proof of a common generalization of both the Brouwer fixed point theorem for the plane
and the Fundamental Theorem of Algebra. In Section 4 we show how the square root
can be used to define a continuous nth root over suitable subsets of the complex plane.
Section 5 is more technical and contains a new characterization of the absolute value of
the winding number in terms of the existence of continuous nth roots. In Section 6 we
prove that, for any prime number p, the “pth root counter” provides actually the p-adic
valuation of the winding number. Finally, we end the paper with further comments and
relations in Section 7.

Once the paper was finished an anonymous referee pointed out to us the Ref. [3],
where a similar approach to [1] using the complex square root was introduced by M.
K. Fort, Jr., and applications were given to the fundamental theorem of algebra and
Brouwer’s fixed point theorem. After this we were also able to find an outline of Fort’s
method in K. R. Stromberg’s classic book [10, p. 126, Exercise 20]. Roughly speaking,
the proofs rely on the above property (A1) together with an extension of (A2) for arbitrary
dd mappings, which coincides with Lemma 2.8. As a consequence, the key result [3,
heorem 3] is obtained, stating that if a continuous mapping f : DR → C is odd or a
onzero integer power of the identity over SR , then f has at least one zero. The ideas

in [3] certainly precoursed those in [1] but the main features of the present paper, namely,
the homotopy invariance of the square root counter and its relation to the index, seem
still unnoticed in the literature.

2. How many times does your function admit a continuous square
root?

If A := S1\{−1} then it is satisfied that rA(w) :=
w+1
|w+1| is a continuous square root

over A. Indeed, for each w ∈ A holds that

rA(w)2
=

(w + 1)2

2 =
w + 1

=
w(1 + w)

= w.

|w + 1| w + 1 w + 1
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his allows to define a continuous square root over the set A+
:= C\R≤0 given by

2(z) :=
√
|z|rA (z/|z|), or explicitly

r2 : A+
→ Cℜ(z)>0, z ↦→

√
|z|

z + |z|
|z + |z||

. (1)

We remark that only the real square root and the basic arithmetic operations were used
in this construction. Furthermore, it is clear from the following result that −r2(z) defines
the unique other continuous square root in A+.

Lemma 2.1. Let X a connected topological space and r, r̃ : X → C\{0} two continuous
functions such that r (x)2

= r̃ (x)2 for all x ∈ X. Then r (x) = r̃ (x) for all x ∈ X or
(x) = −r̃ (x) for all x ∈ X.

Proof. Since r (x)2

r̃ (x)2 =

(
r (x)
r̃ (x)

)2
= 1 for all x ∈ X it follows that the continuous function r

r̃
pplies the connected set X into the discrete one {−1, 1}, so it should be constant over

X . □

Finally, setting ±ir2(−z) we obtain the two unique continuous square roots over
A−

:= C\R≥0.

efinition 2.1. Let A := {γ : SR → C\{0} continuous} equipped with the uniform
etric.
For m ∈ N0 = {0, 1, 2, . . .} we say that γ ∈ A admits a continuous 2m-th root if there

xists σ ∈ A such that σ 2m
= γ and we define v2 :A → N0 ∪ {∞} by

v2(γ ) := sup{m ∈ N0 : γ admits a continuous 2m
− th root},

here we understand v2(γ ) = ∞ if the previous set is unbounded.
If f : DR → C is continuous and such that f (z) ̸= 0 for all z ∈ SR we will write

2( f ) with the meaning of v2( f |SR ).

It is clear that if γ ∈ A admits a continuous 2m-th root for some m ∈ N then it admits
a continuous 2m′

-th root for each m ′
∈ N0 with 0 ≤ m ′

≤ m, so v2(γ ) = ∞ means that
admits a continuous 2m-th root for each m ∈ N.
The following are very useful properties of v2.

emma 2.2. For γ, δ ∈ A, it holds that:

1. v2 (1/γ ) = v2(γ ).
2. v2(γ · δ) ≥ min{v2(γ ), v2(δ)}.
3. If v2(γ ) ̸= v2(δ) then v2(γ · δ) = min{v2(γ ), v2(δ)}.
4. If v2(γ · δ) = ∞ then v2(γ ) = v2(δ).
5. If γ ≡ c ∈ C \ {0} then v2(γ ) = ∞.
6. v2(γ 2) = v2(γ ) + 1 (here it is understood that ∞+ 1 = ∞).

roof. The first three properties are straightforward consequences of the definition of
.
2
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4. If v2(γ ) = v2(δ) = ∞, then we are done. Otherwise, v2(γ · δ) > min{v2(γ ), v2(δ)}
nd the result follows from property 3.

5. Each c ∈ C\{0} admits a square root that is again in C\{0}, so the process can be
terated.

6. We may assume that m := v2(γ ) < ∞ since, otherwise, the result is trivial. It is
lear that v2(γ 2) ≥ m + 1. Next, suppose that v2(γ 2) ≥ m + 2, then there exists σ ∈ A
uch that

γ 2
= σ 2m+2

=

(
σ 2m+1

)2
.

rom Lemma 2.1 it follows that γ = σ 2m+1
or γ = −σ 2m+1

, and in both cases
v2(γ ) ≥ m + 1, a contradiction. □

Also, it is easy to see that, under a suitable condition, the existence of a continuous
square root can be iterated as many times as desired.

Lemma 2.3. If γ ∈ A and γ (SR) ⊂ A+ or γ (SR) ⊂ A−, then v2(γ ) = ∞.

Proof. For each m ∈ N the function σ :=

(m)  
r ◦ r ◦ · · · ◦ r ◦γ , where r (z) = r2(z) in case

(SR) ⊂ A+ or r (z) = ir2(−z) in case γ (SR) ⊂ A− and r2 is given by (1), satisfies that
∈ A and σ 2m

= γ . □

orollary 2.1. The following properties hold:

1. If γ ∈ A and ℜ(γ ) ≥ 0, then v2(γ ) = ∞.
2. If f :C\DR0 → C is continuous for some R0 > 0 and there exists lim|z|→+∞ f (z) ∈

C \ {0}, then v2

(
f|SR

)
= ∞ for all large enough R > 0.

roof. The validity of 1 follows directly because in that case γ (SR) ⊂ A+. In case 2 it
s clear that for all large enough R > 0 we have that f|SR

∈ A and f (SR) is contained
in a closed ball that does not contain the origin, so f (SR) ⊂ A+ or f (SR) ⊂ A−. □

Next, we establish a basic version of Rouché’s Theorem in our framework.

emma 2.4. Let γ, δ ∈ A. If |δ − γ | < |γ |, then v2(γ ) = v2(δ).

roof. Because
⏐⏐⏐ δ
γ
− 1

⏐⏐⏐ < 1 and using Corollary 2.1 we have that v2

(
δ
γ

)
= ∞. Then

the result follows from properties 4 and 1 in Lemma 2.2 □

Now, we are in a position to prove the main properties of v2.

Lemma 2.5 (Continuity). v2 :A → N0 ∪ {∞} is continuous (i.e. locally constant).

Proof. Given γ ∈ A, let ε := inf |γ | > 0. Then Lemma 2.4 implies that v2(γ ) = v2(δ)
or |δ − γ | < ε. □
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In other words, Lemma 2.5 says that v2 is constant on each connected component of
A which, in turn, implies the homotopy invariance, namely, if h : SR × [0, 1] → C\{0}
s continuous, then v2(h0) = v2(h1), where hs(z) := h(z, s).

emma 2.6. If f : DR → C\{0} is continuous, then v2 ( f ) = ∞.

roof. Consider the continuous homotopy h : SR × [0, 1] → C\{0} between f (0) and
f |SR given by

h(z, s) = hs(z) := f (sz) .

hen, from Lemma 2.5 and property 5 in Lemma 2.2 it follows that

v2( f ) = v2(h1) = v2(h0) = ∞. □

emma 2.7 (Existence). Assume that f : DR → C is continuous and ε := inf | f ||SR
> 0.

If v2 ( f ) ̸= ∞, then the equation f (z) = w has a solution in DR for each w such that
|w| < ε.

Proof. Let g(z) := f (z) − w, then for z ∈ SR it follows that |g(z) − f (z)| = |w| <

| f (z)|. By Lemma 2.4, it follows that v2(g) ̸= ∞ and the conclusion is deduced from
Lemma 2.6. □

Lemma 2.8 (Borsuk). If γ ∈ A is odd, then v2(γ ) = 0.

Proof. Suppose δ2
= γ , then

δ(−z)2
= γ (−z) = −γ (z) = −δ(z)2

= (iδ(z))2.

From Lemma 2.1 it follows that δ(−z) ≡ iδ(z) or δ(−z) ≡ −iδ(z). In both cases, this
implies

δ(z) = δ(−(−z)) = ±iδ(−z) = (±i)2δ(z) = −δ(z),

a contradiction. □

Remark 2.2. Notice that properties (A1) and (A2) stated in the Introduction trivially
follow from Lemmas 2.6 and 2.8.

Moreover, Lemma 2.8 and property 6 in Lemma 2.2, imply that if γ ∈ A is odd, then
for each m ∈ N0, v2

(
γ 2m )

= m. In particular, for each n ∈ Z we have

v2(zn) = v2(zn) = ν2(n),

here ν2(·) stands for the 2-adic valuation of the integers, that is

ν2(−n) = ν2(n) :=

{
m i f n = 2m

· k ≥ 1 and gcd{2, k} = 1,

∞ i f n = 0.

n particular, the latter property, combined with Lemma 2.7, yields an elementary proof
f the second part of [3, Theorem 3].

This property will be conveniently generalized for any γ ∈ A and any prime number
p in Section 6.
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As a simple consequence of the previous properties we deduce a deep theorem: the
nvariance of domain.

heorem 2.3. Let U ⊂ C be open and f :U → C continuous and injective. Then f (U )
s open and f :U → f (U ) is a homeomorphism.

roof. Let DR(z0) ⊂ U . We want to prove that f (DR(z0)) is a neighborhood of f (z0).
ithout loss of generality, we may assume that z0 = 0 = f (z0). Consider in SR × [0, 1]

he continuous homotopy

h(z, s) = hs(z) := f (z) − f (−sz) ,

hich does not vanish since f is injective. It follows from Lemma 2.5 that v2(hs) is
onstant. Observe, moreover, that h0(z) = f (z) and h1(z) = f (z) − f (−z), which is
dd and, consequently from Lemma 2.8

v2( f ) = v2(h0) = v2(h1) = 0.

o conclude, let ε := inf | f ||SR
, then Dε ⊂ f (DR) from Lemma 2.7. □

. A generalized version of the FTA

In [9] it was presented a version of Bolzano’s theorem for an holomorphic function
f in Ω , and continuous on Ω , assuming the condition

ℜ(z f (z)) > 0 on ∂Ω ,

here Ω ⊂ C is a bounded domain containing the origin.
As noticed by Mawhin in [5], when Ω = DR the previous condition is just the one

sed by Hadamard in his proof of the Brouwer fixed point theorem, namely,

⟨z, f (z)⟩ > 0 for all z ∈ SR ,

here ⟨·, ·⟩ stands for the usual scalar product in R2.
We present here an extension to the continuous case of a result firstly stated in [6,

heorem 3.1] in the holomorphic case and proved using only the mean value property
f holomorphic functions.

heorem 3.1 (n-Hadamard). Let f : DR → C be continuous and assume that for some
∈ N

ℜ(zn f (z)) ≥ 0 f or all z ∈ SR . (2)

hen f has a zero in DR .

Proof. If f vanishes in SR then we are done. If not, from Corollary 2.1 we have

v2(zn f ) = ∞,

nd then by Lemma 2.2, property 4, and Remark 2.2 it follows that

v2( f ) = v2(zn) = ν2(n) ̸= ∞,

o f vanishes in D by Lemma 2.7. □
R
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emark 3.2. Notice that condition (2) can be replaced by

• ℜ(zn f (z)) or ℑ(zn f (z)) does not change sign on SR ,

because of the properties

ℜ(z(−w)) = −ℜ(zw) and ℜ(z(wi)) = −ℑ(zw) f or all z, w ∈ C.

The same strategy used in the proof of Theorem 3.1, but applying instead the second
property in Corollary 2.1, leads to the following variant of the sufficiency part of the
main result in [4].

Theorem 3.3. The continuous function f :C → C has a zero provided that there exists
a continuous function g :C → C such that lim|z|→+∞

g(z)
f (z) ∈ C \ {0} and v2(g) ̸= ∞ on

SRk for a sequence Rk → +∞.

From n-Hadamard it is immediate to deduce the following generalization of the
Brouwer fixed point theorem for the plane.

Theorem 3.4 (n-Rothe). If f : DR → C is continuous and satisfies for some n ∈ N

| f (z)| ≤ |zn
| f or all z ∈ SR, (3)

then there exists z ∈ DR such that zn
= f (z).

roof. Assume that f : DR → C is continuous and satisfies condition (3). Define
g(z) := zn

− f (z) for all z ∈ DR , then for all z ∈ SR

ℜ(zng(z)) = |z|2n
−ℜ(zn f (z)) ≥ |z|2n

− |zn f (z)| ≥ R2n
− R2n

≥ 0.

herefore the conclusion follows from Theorem 3.1 applied to g. □

emark 3.5. A version of Theorem 3.4 for holomorphic functions is given in [7,
orollary 5.3], where a value z satisfying zn

= f (z) is called an n-branch point.
Notice that Theorem 3.4, for n = 1, just asserts that any continuous function f on

DR such that f (SR) ⊂ DR has a fixed point. This result, usually called Rothe’s fixed
oint theorem, is equivalent to the Brouwer fixed point theorem, see [6].

In the same way as Hadamard’s theorem and the Rothe fixed point theorem are
quivalent, [6], we show now that so are n-Hadamard and n-Rothe.

heorem 3.6. Theorems 3.1 and 3.4 are equivalent.

roof. It only remains to prove that Theorem 3.4 implies Theorem 3.1: assume now that
f : DR → C is continuous and satisfies condition (2). Define g(z) := r (z)n

− f (r (z)) for
all z ∈ C where the continuous retraction r : C → DR is defined by r (z) = z if |z| ≤ R
and r (z) := R·z

|z| if |z| > R. Then there exists K > 0 such that |g(z)| ≤ K for all z ∈ C
and from Theorem 3.4 it follows the existence of z ∈ C such that zn

= g(z), that is

zn
= r (z)n

− f (r (z)). (4)
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Now suppose that |z| > R; then r (z) = R
|z| z ∈ SR , f (r (z)) = r (z)n

− zn and

ℜ

(
r (z)

n
f (r (z))

)
= R2n

−
Rn

|z|n
|z|2n

= R2n
− Rn

|z|n < 0,

a contradiction to (2). So, |z| ≤ R and thus r (z) = z and f (z) = 0 by (4). □

Clearly, Theorem 3.4 applied to − f can be reformulated as the following generaliza-
ion of the Fundamental Theorem of Algebra.

orollary 3.1. If f : DR → C is continuous and satisfies (3) for some n ∈ N then
zn

+ f (z) has a root in DR .

emark 3.7. Corollary 3.1 implies the Fundamental Theorem of Algebra because if p
s a complex polynomial of degree n ≥ 1 (we may assume without loss of generality that
ts leading term is zn) then f (z) = p(z) − zn satisfies (3) in SR for large enough R > 0.

Note that Corollary 3.1 also applies if f (z) = q(z, z), where q is any complex
olynomial on two variables of degree at most n − 1, so it is more general than the
TA.

. The square root implies all the others

Let n ∈ N. Because the set of nth roots of 1 is finite, we may fix µ > 0 such that
zn

̸= 1 for all z ∈ Dµ(1)\{1}.

emma 4.1. Assume that δ ∈ (0, 1) satisfies 2δ
1−δ

< µ. Then the mapping g : Dδ(1) → C
given by g(z) = zn is injective.

Proof. Let z, w ∈ Dδ(1) satisfy zn
= wn , then z

w
is an nth root of 1 and⏐⏐⏐ z

w
− 1

⏐⏐⏐ = 1
|w|

|z − w| ≤
2δ

1 − δ
< µ.

e conclude that z
w
= 1. □

Furthermore, a property analogous to the one established in Lemma 2.1 still holds
rue when one considers, instead of z2, any multiplicative function ϕ : C\{0} → C\{0}
uch that ϕ−1(1) is a discrete set. In particular, setting ϕ(z) = zn we obtain the following

extension of Lemma 2.1.

Lemma 4.2. Let X be a connected topological space and r, r̃ : X → C \ {0} two
continuous functions such that r (x)n

= r̃ (x)n for all x ∈ X. Then there exists ξ an nth
root of 1 such that

r (x) = ξ r̃ (x) f or all x ∈ X .

In particular, r (x)
r (y) =

r̃ (x)
r̃ (y) for all x, y ∈ X, and if r (x0) = r̃ (x0) for some x0 ∈ X then

≡ r̃ in X.



1002 P. Amster and J.Á. Cid / Expo. Math. 40 (2022) 994–1013

C

r

r

t
r
C

r

orollary 4.1. There exist ε ∈ (0, 1) and a (unique) continuous mapping rn : Dε(1) →
C such that rn(z)n

= z and rn(1) = 1.

Proof. The existence of rn follows from Lemma 4.1 and the invariance of domain
theorem. Uniqueness is a consequence of Lemma 4.2. □

Corollary 4.2. Let z0 ̸= 0 and let ε̃ := ε|z0|, where ε is defined as in the previous
corollary. For each w0 ∈ C such that wn

0 = z0 there exists a unique continuous function
: Dε̃(z0) → C such that r (z)n

= z and r (z0) = w0.

Proof. It suffices to consider r (z) := w0rn

(
z
z0

)
, with rn as in Corollary 4.1. □

Since in a real interval the intersection of two arbitrary connected subsets is again
connected we obtain the following useful property.

Lemma 4.3. Let I ⊂ R a nonempty interval, α : I → C\ {0} a continuous function and
w0 an nth root of α(x0) for some x0 ∈ I . Then there exists a unique continuous function
ρ : I → C \ {0} such that ρ(x)n

= α(x) for all x ∈ I and ρ(x0) = w0.

Proof. Due to Corollary 4.2, if U and V are open and connected subsets of I containing
x0 in which are defined respective continuous nth roots of α, ρU and ρV , such that
ρU (x0) = w0 = ρV (x0), then ρV ≡ ρU on the connected set U ∩V . This allows to define
the maximal open connected set C as the union of all those U and a unique continuous
nth root of α, ρ : C → C such that ρ(x0) = w0. Using Corollary 4.2, it is readily seen
that the open set C is also nonempty and closed, then C = I since I is connected. □

Lemma 4.3 provides an easy way to extend the previous function rn , defined in
Corollary 4.1, uniquely to A+.

Corollary 4.3. There exists a unique continuous function rn : A+
→ C such that

n(1) = 1 and rn(z)n
= z for all z.

Proof. Consider the sets A := S1\{−1} and B := R>0. Since

h :R → S1\{−1}, t ↦→ h(t) :=
1 + i t
1 − i t

is a homeomorphism, the same conclusion of Lemma 4.3 holds true for S1\{−1}. Then,
here exist (unique) continuous nth roots of the identity function, rA and rB , defined
espectively on A and B such that rA(1) = 1 = rB(1). Then, the function rn defined in
orollary 4.1 is extended to a (unique) continuous nth root in A+ such that rn(1) = 1 by

rn(z) := rB(|z|) rA

(
z
|z|

)
, z ∈ A+. □

We end this section by noticing that, although our definition of the nth roots avoided
completely the use of the polar form of a complex number, a geometric interpretation of

can be straightforwardly given as follows.
n
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Lemma 4.4. Let w ∈ S1\{±1} and set 1 = w0, . . . , wn = w be the vertices of the
shortest regular n-polygonal in S1 joining w and 1. Then w1 = rn(w).

Proof. By definition |w j+1 − w j | = |w1 − 1| for all j = 1, 2, . . . , n − 1. We claim that
wn

1 = w. Indeed, observe that |w2
1 − w1| = |w1 − 1| and, because |w2

1| = 1 and w2
1 ̸= 1

we deduce that w2
1 = w2. The claim follows then by induction.

Furthermore the mapping r (w) = w1 for w ∈ S1\{±1} and r (1) = 1 is continuous.
hen, from Lemma 4.2 we conclude that rn ≡ r on S1\{−1}. □

emark 4.1. The same reasoning as in the proof of Lemma 4.4 shows that if we set
= ξ0, ξ1, . . . , ξn = 1 be the vertices of the regular n-polygon in S1 starting at 1 and

ccording to its positive orientation, then ξ k
1 = ξk , for k = 1, 2, . . . , n. Hence ξ1 is a

rimitive nth root of 1, that is, ξ k
1 ̸= 1 for 1 ≤ k ≤ n − 1 and, because there cannot

e more than n different roots, we conclude that the set of nth roots of 1 is exactly
ξ1, ξ

2
1 , . . . , ξ n

1 = 1}.

emark 4.2. From Lemma 4.2 and Remark 4.1 it is clear that the n continuous nth
roots in A+ are given by z ↦→ ξrn(z), where ξ is an nth root of 1. In the same way, if ξ

is an nth root of −1, then the mapping z ↦→ ξrn(−z) defines a continuous nth root over
the set A−.

5. Counting the number of turns

Now, let c : [0, 1] → SR be a parametrization of SR with c(0) = c(1) and c|[0,1)

injective and define the set of closed continuous curves

C = {γ̃ : [0, 1] → C \ {0} such that γ̃ is continuous and γ̃ (0) = γ̃ (1)}.

It is clear that if γ ∈ A then

γ̃ = γ ◦ c ∈ C.

Conversely, given γ̃ ∈ C we can set

γ (z) := γ̃ (t) if z = c(t) with t ∈ [0, 1).

Despite the fact that (c|[0,1))−1
: SR → [0, 1) is discontinuous, the function γ = γ̃ ◦

(c|[0,1))−1 is continuous, since c|[a,b] → c([a, b]) is a homeomorphism when [a, b] ̸=

[0, 1] and γ̃ (0) = γ̃ (1). So, γ ∈ A.
In fact, we have that

c∗ :A → C, γ ↦→ γ ◦ c,

is a homeomorphism.
For γ ∈ A let us consider η(γ ◦ c), the winding number of the closed curve γ ◦ c

around 0, see [8]. Our main goal in this section is to give a very concise characterization

of |η(γ ◦ c)| by means of the existence of continuous nth roots.
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efinition 5.1. Let γ ∈ A and consider the set

Rγ := {n ∈ N : γ admits a continuous nth root}.

Then we define I :A → N0 as

I (γ ) :=

{
max Rγ i f Rγ is bounded,

0 otherwise.

The previous definition of I allows to give a direct proof of the analogues of property
1, 4 and 5 in Lemma 2.2, that is:

Lemma 5.1. For γ, δ ∈ A we have:

1. R1/γ = Rγ and in particular I (1/γ ) = I (γ ).
2. If Rγ δ = N then Rγ = Rδ and in particular I (γ ) = I (δ).
3. If c ∈ C \ {0} then Rc = N and in particular I (c) = 0.

In turn, the two first properties are enough to prove the continuity of I by adapting
Lemma 2.4, with the aid of Corollary 4.3, and then proceeding as in Lemma 2.5.

emma 5.2. I :A → N0 is continuous.

The continuity of I shall be crucial to prove the main result of this section since it
mplies its homotopy invariance. Notice that we are dealing with two different definitions
f homotopies on the sets A and C, namely:

• γ, δ ∈ A are homotopic if there exists h : SR × [0, 1] → C\{0} continuous such that
h0 = γ and h1 = δ, where hs(z) := h(z, s).

• γ̃ , δ̃ ∈ C are homotopic if there exists h : [0, 1] × [0, 1] → C\{0} continuous such
that h0 = γ̃ , h1 = δ̃ and hs(0) = hs(1) for all s ∈ [0, 1], where hs(t) := h(t, s).

Clearly, both concepts are linked because if h(z, s) is a homotopy between γ, δ ∈ A then
h̃(t, s) := h(c(t), s) is a homotopy between c∗(γ ), c∗(δ) ∈ C and, conversely, a homotopy
etween elements of C induces a homotopy in A. That is, both concepts are equivalent
hrough the homeomorphism c∗.

heorem 5.2. For γ ∈ A holds that

I (γ ) = |η(γ ◦ c)| .

For a proof, we shall proceed in a series of steps.

tep 1. Root along a curve. We shall define an nth root along the curve γ̃ ∈ C as a
continuous function ρn : [0, 1] → C such that ρn(t)n

= γ̃ (t) for all t ∈ [0, 1].
The following is a direct consequence of Lemma 4.3.

roposition 5.1. Let γ̃ ∈ C and wn be an nth root of γ̃ (0). Then there exists a unique
th root along the curve γ̃ , ρn , such that ρn(0) = wn .

Step 2. Existence of nth roots and the root along a curve. Now, for γ ∈ A fix wn an

th root of γ (c(0)) and set ρn as the unique nth root along γ ◦ c such that ρn(0) = wn .
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Proposition 5.2. For γ ∈ A and n ∈ N the following claims are equivalent:

1. γ admits a continuous nth root, that is, n ∈ Rγ .
2. ρn ∈ C, that is, ρn(1) = ρn(0).

Proof. If γ (z) = δ(z)n with δ ∈ A, then

ρn(t)n
= γ (c(t)) = δ(c(t))n for all t ∈ [0, 1]

nd, from by Lemma 4.2,
ρn(1)
ρn(0)

=
δ(c(1))
δ(c(0))

= 1.

onversely, if ρn ∈ C then δ := (c∗)−1(ρn) ∈ A is a continuous nth root of γ . □

tep 3. Reduction process. In this step, for γ ∈ A we shall transform the closed curve
◦ c into an equivalent one γ̃1 ∈ C, for which the computation of η(γ̃1) and the ratio

ρn (1)
ρn (0) become easier. This will allow us to obtain the relation between the values η(γ ◦ c)
and I (γ ).

Firstly, consider the continuous homotopy h : SR × [0, 1] → C \ {0} given by

h(z, s) := l(s)
γ (z)

s(|γ (z)| − 1) + 1
,

where l : [0, 1] → C \ {0} is a continuous curve such that

l(0) = 1 and l(1) =
|γ (c(0))|
γ (c(0))

i.

This allows to assume that γ : SR → S1 and γ (c(0)) = γ (c(1)) = i . Now, we define two
cancellation rules”, according to the intuitive idea that the following two situations do
ot affect to the computation of η:

1. If the curve γ ◦ c passes through one of the poles ±i and returns to the same pole
without passing through the opposite one, then this section may be deleted.

2. If the curve γ ◦c moves from one pole to the opposite one and comes back through
the same arc, then the whole cycle may be deleted.

ith this in mind, we may formalize the situations described above by defining the
ollowing homotopies:

1. If γ (c(ta)) = γ (c(tb)) and γ (c(t)) ̸= −γ (c(ta)) for all t ∈ (ta, tb), then take the
homotopy

h(t, s) = (1 − s)γ (c(t)) + sγ (c(ta)), for t ∈ [ta, tb]

and h(t, s) = γ (c(t)) otherwise. In other words, γ ◦ c is homotopic to a curve in
C that remains unchanged for t /∈ [ta, tb] and keeps still between ta and tb.

2. If γ (c(ta)) = −γ (c(tb)) = γ (c(tc)) with ta < tb < tc and γ (c([ta, tc])) is
contained in A+ or A−, then fix two values t∗ ∈ (ta, tb) and t∗ ∈ (tb, tc) such
that γ (c(t∗)) = γ (c(t∗)) and define the homotopy given by

h(t, s) = (1 − s)γ (c(t)) + sγ (c(t∗)), for t ∈ [t , t∗]
∗
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and γ (c(t)) otherwise. Again, when s = 1, after t = t∗ we remain at γ (c(t∗)) until
t = t∗, so we do not pass through γ (c(tb)). Next, combined with the previous rule,
the whole interval [ta, tc] may be eliminated.

Since γ (c(0)) = γ (c(1)) = i , then either γ ◦ c does not pass through −i or else there
xist finitely many points t̃0 = 0 < t̃1 < t̃2 < · · · t̃2m−1 < t̃2m ≤ 1 such that

• γ (c(t̃k)) = (−1)k i , for all k = 0, 1, . . . , 2 m,
• γ (c(t)) ̸= −γ (c(t̃k)) for all t ∈ [t̃k, t̃k+1) and k = 0, 1, . . . , 2m − 1,
• γ (c(t)) ̸= −i for all t ∈ [t̃2m, 1].

ow, the combination of the previous cancellation rules allows us to show that γ ◦ c is
omotopic to a curve γ̃1 ∈ C such that: either

γ̃1 ≡ i (in which case we set N = 0),

r there exist an even number N > 0, and points

t0 := 0 < t1 < t2 < · · · < tN−1 < 1 =: tN

uch that

• γ̃1(t j ) = (−1) j i for all j = 0, . . . , N ,
• γ̃1([t j , t j+1]) ⊂ A j for all j = 0, . . . , N − 1, where A j = A±, and
• the signs of A j = A± alternate.

roposition 5.3. The previous reduction yields η(γ ◦ c) = ±
N
2 .

Proof. It suffices to observe that η(γ ◦c) = η(γ̃1) and that every time the curve γ̃1 moves
from γ̃1(t j ) to γ̃1(t j+1), it performs half turn around the origin, always according to the
ame orientation of the circumference S1. In consequence, the winding number of η(γ̃1)

equals ±
N
2 . □

Regarding the computation of I (γ ), we have:

Lemma 5.3. If ρn is an nth root along γ̃1, then ρn(1) = ρn(0) if and only if rn(i)2N
= 1.

roof. If N = 0 we have that γ̃1 is constant so both conditions are obviously true. Then,
uppose N > 1 and observe that

ρn(1)
ρn(0)

=

N−1∏
j=0

ρn(t j+1)
ρn(t j )

.

ssume for example that A0 = A− (namely, the positive orientation) and fix the nth root
n in A+, given in Corollary 4.3, and r̃n(z) = ξrn(−z) in A− where ξ is an arbitrary nth
oot of −1. From Lemma 4.2 it follows that

ρn(1)
ρn(0)

=
r̃n(−i)
r̃n(i)  

rn(i)
rn(−i)   . . .

r̃n(−i)
r̃n(i)  

rn(i)
rn(−i)   =

(
rn(i)

rn(−i)

)N

.

j=0 j=1 j=N−2 j=N−1
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To conclude, observe that because of Lemma 4.4 for z ∈ S1\{−1} we have that rn(z) =
n(z). Hence

rn(z)rn(z) = |rn(z)|2 = 1 for z ∈ S1\{−1},

and, in particular, rn(−i) = rn(i)−1. □

The condition rn(i)2N
= 1 in the previous lemma becomes obviously true when N = 0

and observe, in this case, that γ ◦ c is homotopic to a constant. More generally, we have:

Lemma 5.4. In the previous setting,

rn(i)2N
= 1 ⇐⇒ n|

N
2

.

roof. ⇐H) follows immediately from the fact that rn(i)4n
= (rn(i)n)4

= 1.
H⇒) From Lemma 4.4 and Remark 4.1 we deduce that rn(i) ̸= 1 is the first 4n-th root

f 1 according to the positive orientation of S1. Then it is primitive and, consequently,
n divides 2N . □

Based on the preceding lemmas the following corollary is obtained which, combined
ith Proposition 5.3, completes the proof of Theorem 5.2.

orollary 5.1. In the previous situation, I (γ ) = N
2 .

Proof. The conclusion is clear when N = 0 because in that situation γ is homotopic
to a constant. If, otherwise, N > 1 then I (γ ) = I (γ1), where γ1 = (c∗)−1(γ̃1), and
from Proposition 5.2 and the preceding lemmas we have that I (γ1) = n, where n is the

aximum value that divides N
2 , that is n =

N
2 . □

As consequence of the reduction process and Corollary 5.1 we obtain the following
characterization for the case I (γ ) = 0.

Proposition 5.4. In the previous setting the followings claims are equivalent:

1. γ ∈ A is homotopic to a constant in C\{0},
2. Rγ = N,
3. I (γ ) = 0.

Notice that a property derived from Proposition 5.4, which is not self-evident, is the
following: if γ ∈ A has a continuous nth root for infinitely many values of n, then
t has a continuous nth root for all n ∈ N. Another property that can be derived is

characterization of simply connected regions without the use of complex integration
heorems. To this end, let us firstly observe that if γ : SR → C is continuous, then the
apping

w ↦→ I (γ − w)

s constant over each connected component of C\Im(γ ) and vanishes in the unbounded
omponent. This is a well-known property of the winding number but, in the present
ontext, follows trivially from the continuity of I . Moreover, a standard “paving”
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rgument shows that if U ⊂ C is open and K is an open subset of U , then there exists
δ : SR → U\K continuous such that I (δ − w) = 1 for all w ∈ K .

Proposition 5.5. Let U ⊂ C\{0} be open and let n > 1. Then there exists a continuous
nth root of the identity defined over U if and only if I (γ ) = 0 for all γ : SR → U
continuous.

Proof. Necessity: suppose I (γ ) ̸= 0 for some γ ∈ C(SR, U ) and let K := V , where V is
the connected component of C\Im(γ ) containing 0. Because V is bounded, we deduce
the existence of δ ∈ C(SR, U ) such that I (δ) = 1. This implies that δ cannot have a
continuous mth root for any m > 1 and, consequently, a continuous nth root of z defined
on U cannot exist.

For the converse, we may assume w.l.o.g. that U is connected and fix an arbitrary
z0 ∈ U . For z ∈ U , take a continuous arc c : [0, 1] → U joining z0 and z and
ρ : [0, 1] → C continuous such that ρ(t)n

= c(t) for all t , that exists from Lemma 4.3.
Next, define r (z) := ρ(1), that is, r (z)n

= c(1) = z. The assumption I (γ ) = 0 for all
γ ∈ C(SR, U ) implies that r is well defined and continuous. □

Corollary 5.2. Let U ⊂ C be open, then the following statements are equivalent:

1. I (γ − w) = 0 for all γ ∈ C(SR, U ) and all w /∈ U.
2. For each w /∈ U and all n > 1 there exists a continuous nth root of z −w defined

over U.
3. For each w /∈ U there exists n > 1 such that a continuous nth root of z − w

defined over U exists.

. The p-adic valuation of the index

The results in Section 4 allow us to define, for each prime number p and γ ∈ A, the
umber vp(γ ) exactly as in the case p = 2, and the analogues of Lemmas 2.2, 2.1, 2.4,
.5, 2.6 and 2.7 are readily verified.

The main goal of this section is to prove that vp(γ ) provides actually the p-adic
aluation of I (γ ) and hence, in view of Theorem 5.2, the p-adic valuation of the winding
umber of γ ◦ c around 0.

We start by showing the following extension of Lemma 2.8 whose similar proof is
mitted.

emma 6.1 (n-Borsuk). If γ ∈ A and there exist nth roots of 1, ξ, ξ̃ ̸= 1, such that
(ξ z) = ξ̃ γ (z) for all z, then γ does not admit a continuous nth root (in particular, when
= p is a prime number we have vp(γ ) = 0).

Furthermore, we have the following extension of property 6 in Lemma 2.2:

emma 6.2. For γ ∈ A and a prime number p we have:

1. If m ∈ N0 then

vp

(
γ pm

)
= vp(γ ) + m.
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2. If k ∈ N such that p does not divide k then

vp
(
γ k)

= vp(γ ).

roof. The proof of 1 is trivial for m = 0 and for m = 1 is analogous to property 6 in
emma 2.2. Then 1 follows by induction.

For the proof of 2: since gcd(k, p) = 1 then it is possible to write 1 = ak + bp for
some integers a, b and then

vp(γ ) = vp(γ akγ bp) ≥ min{vp(γ ak), vp(γ bp)} = vp(γ ak),

since by 1 we have

vp(γ bp) = vp((γ b)p) = vp(γ b) + 1 ≥ vp(γ ) + 1 > vp(γ ).

inally, 2 follows because vp(γ ak) ≥ vp(γ k) ≥ vp(γ ). □

As a straightforward consequence of Lemma 6.2, by writing n = pνp(n)
·k where νp(·)

tands for the p-adic valuation of the integers, we obtain:

orollary 6.1. For each n ∈ N it holds that

vp
(
γ n)

= vp(γ ) + νp(n).

emark 6.1. From Lemma 6.1 it follows that vp(z) = vp(1/z) = 0 for all p and then
orollary 6.1 implies that

vp(zn) = vp(1/zn) = νp(n),

hich is the analogous property to the one stated for v2 in Remark 2.2. As vp(1) = ∞

or all p then we have that

vp(zn) = νp(|n|) f or all n ∈ Z. (5)

In general, the following property holds for arbitrary γ ∈ A.

heorem 6.2. If γ ∈ A then

vp(γ ) = νp(I (γ )) f or all p.

roof. Assume firstly that I (γ ) = n ∈ N, that is, γ = δn with n maximum. Then from
orollary 6.1 we have, for each prime p,

vp(γ ) = vp(δn) = vp(δ) + νp(n).

Furthermore, if δ = ξ p, then γ = ξ pn , which contradicts the maximality of n. Thus,
vp(δ) = 0 and

vp(γ ) = νp(n) = νp(I (γ )) for all p.

Next, assume that I (γ ) = 0. From Proposition 5.4 it follows that vp(γ ) = ∞ for all p
nd thus

v (γ ) = ∞ = ν (0) = ν (I (γ )) for all p. □
p p p
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emark 6.3. From equality (5) and Theorem 6.2 it follows that

νp(|n|) = vp(zn) = νp(I (zn)) f or all p,

and then

I (zn) = |n| f or all n ∈ Z.

7. Further comments

7.1. The reconstruction of I

In view of the results in the previous section, it is worthy to take a look at the
properties of the index within the scope of the functions vp defined above. For this
purpose notice, in the first place, that Theorem 6.2 shows that

I (γ ) = I (δ) if and only if vp(γ ) = vp(δ) for all p

nd that

I (γ ) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
∏

p prime
pvp(γ ) if vp(γ ) < ∞ for some p,

0 if vp(γ ) = ∞ for some p.

Notice that the well definiteness of the previous formula relies on two nontrivial facts
rovided by Theorem 6.2:

• If vp(γ ) < ∞ for some p, then vp(γ ) < ∞ for all p.
• If vp(γ ) < ∞ for some p, then vq (γ ) = 0 for all q except for a finite set.

7.2. The Hopf’s Theorem

Observe, moreover, that our reduction process in Section 5, combined with the fact
that the mapping z ↦→ z inverts the orientation of the plane, shows that:

• If γ, δ ∈ A and I (γ ) = I (δ), then either γ and δ are homotopic or γ and δ are
homotopic.

In particular, from Remark 6.3, this implies that each γ ∈ A is either homotopic to
zn or zn for some n ∈ N0 or, equivalently, that γ is homotopic to zn for some n ∈ Z.
We may also notice that if h : SR × [0, 1] → C\{0} is a homotopy between zn and zk ,
with n, k ∈ Z, then z−kh(z, s) is a homotopy between zn−k and 1, that is, n = k. So, in
each homotopy class in A there exists a unique representative of the form zn with n ∈ Z.
This yields an elementary version of the Hopf theorem that characterizes the homotopy
classes in A by means of the winding number, see [8, Theorem 3.1].

On the other hand, we have seen in Lemma 5.2 and in Remark 6.3 that I satisfies:

(I1) I :A → N0 is continuous.
(I ) I (zn) = |n| for alln ∈ Z.
2
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It turns that these two properties characterize I : indeed, let Ĩ any function satisfying
(I1) and (I2). Then both I and Ĩ satisfy the homotopy invariance and since γ ∈ A is
homotopic to zn , for some n ∈ Z, we have

Ĩ (γ ) = Ĩ (zn) = |n| = I (zn) = I (γ ) for all γ ∈ A.

7.3. A look at some properties of I

It is worthy noticing that, as mentioned in Section 5, the definition of I allows to give
a direct proof of those properties in Lemma 2.2 employed in the proof of the homotopy
invariance. In fact, analogues of the subsequent lemmas in Section 2 are easily obtained,
namely:

• If γ ∈ A and ℜ(γ ) ≥ 0, then Rγ = N and in particular I (γ ) = 0. Furthermore, due
to the homotopy invariance the assumption may be replaced by Im(γ ) ⊂ A, where
A ⊂ C\{0} is an arbitrary simply connected set.

• If |γ − δ| < |γ |, then I (γ ) = I (δ).
• If f : DR → C\{0} is continuous, then I ( f |SR ) = 0.
• Let f : DR → C be continuous with ε := inf | f ||SR

> 0. If I ( f |SR ) ̸= 0, then
Dε ⊂ Im( f ).

In this new context, Lemma 2.8 simply expresses the fact that:

• If γ ∈ A is odd, then I (γ ) is also odd.

he generalization given in Lemma 6.1 yields an analogous property and is left as an
xercise for the reader.

It is also interesting to notice that Corollary 6.1 and Theorem 6.2 provide the identity:

• I (γ n) = nI (γ ) for γ ∈ A and n ∈ N.

However, the interpretation of properties 2 and 3 Lemma 2.2 in terms of I is more
ubtle. It is intuitively clear the connection with the formula:

• I (γ ) + I (δ) = max{I (γ δ), I (γ δ)} for γ, δ ∈ A.

which can be immediately deduced using the fact that γ ∼ zn and δ ∼ zk for some
, k ∈ Z; however, it is not clear how this property can be obtained from the definition,

.e. without invoking the previous characterization.

.4. The winding number and the Brouwer degree

With the notation introduced at Section 5 we can reformulate Theorems 5.2 and 6.2
just by saying that the following diagrams are commutative:

A c∗ →→

I
↓↓

C

η

↓↓
N0 Z←←

A

I
↓↓

vp

↘↘
N0 ν

→→ N0 ∪ {∞}

|·| p
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Notice that all the previous properties of I have a counterpart in terms of η; in
particular, the first two properties in Lemma 5.1 correspond to

• η(1/γ̃ ) = −η(γ̃ ),
• η(γ̃ δ̃) = 0 H⇒ η(γ̃ ) = −η(δ̃).

In fact both properties are a consequence of the more general one

• η(γ̃ δ̃) = η(γ̃ ) + η(δ̃),

which, when γ̃ and δ̃ are smooth, follows from the fact that

(γ̃ δ̃)′

γ̃ δ̃
=

γ̃ ′

γ̃
+

δ̃′

δ̃
.

inally, we recall the relation between the winding number and the Brouwer degree, [2,
ection 6.6]: if γ ∈ A and f denotes any continuous extension of γ to DR then

η(γ ◦ c) = dB( f, DR, 0),

here dB stands for the Brouwer degree. Notice that a continuous extension of γ always
xists by Tiezte’s theorem and that the value of dB is independent of the particular
xtension f because the Brouwer degree depends only on f |SR = γ .

Thus we also have

I (γ ) = |dB( f, DR, 0)|.

This equality allows to prove that if f :U ⊂ C → C is an analytic function in the
pen set U , DR ⊂ U and f |Sr does not vanish then I ( f |SR ) counts exactly the zeros
f f in DR with its multiplicity. Details are left to the reader: it is enough to use the
dditivity–excision property of the Brouwer degree and the relation between the index
f an isolated zero and its multiplicity, see [2, Section 6.6].

In particular, if h ̸≡ 0 is an entire function (that is, h is holomorphic in C) then h has
zero if and only if I (h|SR ) ̸= 0 for an unbounded set of values R > 0. This observation
rovides a natural candidate for the function g in Theorem 3.3 that leads to the following

simple asymptotic condition for the existence of a zero of a continuous function, see a
related result in [7].

Corollary 7.1. The continuous function f :C → C has a zero provided that there exists
an entire function h :C → C such that h(0) = 0 and lim|z|→+∞

h(z)
f (z) ∈ C \ {0}.
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