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A B S T R A C T   

Providing accurate information about the indoor environmental quality (IEQ) conditions inside building spaces is 
essential to assess the comfort levels of their occupants. These values may vary inside the same space, especially 
for large zones, requiring many sensors to produce a fine-grained representation of the space conditions, which 
increases hardware installation and maintenance costs. However, sound interpolation techniques may produce 
accurate values with fewer input points, reducing the number of sensors needed. This work presents a platform to 
automate this accurate IEQ representation based on a few sensor devices placed across a large building space. A 
case study is presented in a research centre in Spain using 8 wall-mounted devices and an additional moving 
device to train a machine learning model. The system yields accurate results for estimations at positions and 
times never seen before by the trained model, with relative errors between 4% and 10% for the analysed 
variables.   

1. Introduction 

Meeting occupants’ needs is a key requirement in the Architecture, 
Engineering, Construction, and Operation (AECO) sector. Buildings and 
infrastructure directly affect their users [1]. Factors such as health, 
comfort, accessibility and productivity are essential to provide an 
adequate environment for occupants [2]. Comfort, specifically, is 
especially relevant in terms of social, environmental, and economic as-
pects [3]. Indoor environmental quality (IEQ) has a direct impact on the 
occupants of a building, and IEQ-based factors can be used to determine 
the range of acceptable comfort levels [4]. In fact, indoor air pollution is 
the leading cause of 1.6 million premature deaths per year, according to 
the World Health Organization. However, it is infrequent to systemati-
cally recognise IEQ and health as key issues in localised green building 
codes, especially in the developing world [5]. 

In this context, many companies have started the development of 
applications based on the Internet of Things connected to low-cost 
sensors to monitor IEQ variables [6]. The selection of measured pa-
rameters and sensors is important to provide relevant results. Most 
studies that analyse IEQ include indoor thermal comfort assessment 

(temperature and relative humidity), CO2 sensing and particle concen-
tration [6]. Lighting is also an important factor that may significantly 
influence IEQ. [7]. External weather conditions are another critical 
source of information for IEQ analyses. Variables such as air tempera-
ture, air relative humidity or solar irradiation have a strong effect on the 
thermal fluxes entering and exiting a building, and hence affect the IEQ 
of indoor spaces, both directly and through their effects on the heating, 
ventilating and air conditioning needs [8]. Regarding sensors, there are 
several low-cost options available in the market, with varying levels of 
performance [9,10]. 

Tools used to study these comfort-related parameters should provide 
good interoperability and visualisation methods to identify potential 
problems [2]. Moreover, the evaluation of the IEQ conditions should not 
be limited to a few points in a specific building zone when aiming to 
provide a detailed analysis, especially in large open spaces. Thus, many 
studies present mobile devices, or fixed low-cost sensors to acquire 
values at different locations across the building space [11–13]. How-
ever, those methods relies on the constant use of the mobile devices to 
provide inputs. To address this problem, artificial intelligence can be 
used to obtain values at many points in the entire room. This is done 
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without requiring the continuous use of mobile sensing devices while 
preserving a comparable accuracy [14,15]. 

Nowadays, the use of artificial intelligence in energy efficiency and 
indoor environment analysis in buildings is widespread. The algorithms 
within this approach, know as black box or machine learning models, 
are characterised by their ease of implementation, robustness and high 
performance [16–18]. They are capable of replicating complex patterns 
without requiring specific knowledge about detailed physic relations 
behind the study subject [17]. Moreover, there exist numerous algo-
rithms, each with its own characteristics, to carry out the learning 
process but the best known are the Artificial Neural Networks (ANN). 
ANN are mathematical models that aim to emulate the behaviour of the 
biological neurons. They have a remarkable ability to model non-linear 
relations between the inputs and the outputs of the model thanks to their 
extensive inter-connectivity [19]. There are also different types of ANNs, 
but the most widely used is the MultiLayer Perceptron (MLP) neural 
network. This specific type of model is characterised by its structure 
divided into layers connecting the inputs to the targeted output [20]. In 
recent years MLP neural networks have been applied in numerous 
related fields such as indoor environment [21,22], sensors [23,24], 
energy efficiency in buildings [18,19] or computer communications 
[25,26]. 

Other machine learning algorithms have also demonstrated their 
efficiency extracting patterns of data. Along with MLP neural networks, 
Random Forest (RF) and Support Vector Regression (SVR) are some of 
the most well-known algorithms in the context of building analysis. On 
the one hand, the RF algorithm is based on individual regression trees. 
Through techniques such as bagging the original data or splitting the trees, 
the most significant information is selected to yield the final predictions. 
Its great adaptability and simple implementation have allowed its 
expansion to a wide variety of scientific fields as building energy con-
sumption [27], health [28,29], environment [30,31] or software 
controller [32,33]. On the other hand, the SVR algorithm differs from 
others by attempting to minimise an upper bound on the generalisation 
error instead of minimising the prediction error (known as empirical risk 
minimisation) [34,35]. In addition, considering the dual form of the 
problem and using a specific loss function also makes it stand out 
[18,36]. Thus, this algorithm has been extended to different study areas 
such as energy analysis in buildings [18,37], renewable energies 
[35,36], industrial processes [34,38], finance [39] or electrical engi-
neering [40,41]. The selection of these particular algorithms, together 
with linear regression as a classical technique, is due to the aim of 
comparing algorithms with significantly different characteristics and 
which were already applied in similar fields. 

The aim of this paper is to present an automated low-cost system to 
monitor the IEQ of a large building space, combined with the imple-
mentation of machine learning models that generate estimations 
throughout the entire analysed space (horizontally and vertically). Thus, 
we will be able to accurately control the environmental conditions of a 
building in real time. In the present study, this system is tested on a 
research centre located in north-western Spain. From the set of IEQ- 
related variables that could be monitored and analysed, three are 
selected: temperature, relative humidity and CO2 concentration. In this 
case, the available data are four months of minute frequency values for 
each of the variables analysed. Three different models, based on three 
different machine learning algorithms, are trained with the monitored 
data to analyse and compare their efficiency interpolating the selected 
variables. In addition, three temporal variables (hour of the day, day of 
the week and day of the year) and 10-min frequency weather data of the 
area are also considered as model inputs. Thus, the trained machine 
learning models will be capable of detecting changes in IEQ distribution 
patterns such as opening door or windows [16]. First, the efficiency 
analysis consists of a positional cross-validation experiment, in which 
the model estimates values at each of the positions where the mobile 
device was placed, previously extracting these information from the 
training sample. Second, once the best algorithm is identified, a 

temporal analysis focused on interpolating the values of the variables 
throughout two entire days is presented. The metrics selected to eval-
uate the efficiency of the machine learning models are the computa-
tional time required for training, the the Normalised Mean Biased Error 
(NMBE) and the Coefficient of Variation of the Root Mean Square Error 
(CV(RMSE)), as recommended by the American Society of Heating, 
Refrigerating and Air-Conditioning Engineers (ASHRAE). Moreover, the 
possibility of reducing the number of sensors, used to produced in-
terpolations through machine learning models, using multi-objective 
genetic algorithms was analysed in another study [42]. This allows 
reducing the cost of the installation and the possible interference with 
the normal activities of the building’s users. 

The novelty of this work lies in the implementation of an automated 
monitoring system alongside a machine learning algorithm to collect, 
control and estimate the indoor environmental conditions at every po-
sition in a large multi-zone building space with only a few acquisition 
points that may be positioned outside the occupation area. The proposed 
system provides a method to show, at every minute, a real-time image of 
the variables that summarise the IEQ and their distribution throughout 
the building. In this way, this information could be integrated in a digital 
twin representation of the analysed building [43]. 

2. Materials and methods 

The objective of the proposed system is to provide detailed envi-
ronmental conditions for the entire volume of a building space based on 
the information acquired from a small predefined set of fixed points 
inside it. It comprises a set of hardware and software components to 
acquire indoor and outdoor environmental information, process and 
analyse these data, and visualise all the collected information. 

To deploy the platform and obtain accurate results, first an initial 
acquisition step is performed with the wall-mounted devices at fixed 
locations and the mobile device obtaining data for different positions in 
the room. The information gathered in this step feeds the training of the 
system, in order to produce accurate results for different spatial loca-
tions. After that, the mobile device is removed and the only available 
information comes from the wall-mounted devices and the initial 
training. Thus, no further human intervention is required for the system 
to produce the desired data. 

This section describes the hardware used to physically obtain and 
send the information in a given building space and the software platform 
to acquire additional information and handle the communication, stor-
age, analysis and user interaction. 

2.1. Hardware components 

As previously mentioned, ad-hoc hardware components were 
developed to obtain indoor environmental conditions. Different types of 
devices were designed to accommodate to several acquisition re-
quirements: first, wall-mounted devices acquire data at fixed locations 
in the space with different sets of sensors; second, a mobile device is used 
to obtain data at different positions. 

The core of the devices, common to all of them, comprises a set of 
sensors connected to a Raspberry Pi Zero to do the processing and the 
transmission via WiFi. Each device has a different collection of sensors, 
detailed in Table 1, using either I2C-based or serial-based communica-
tion, with a total of four models: WMA, WMB and WMC for the three 
versions of the wall-mounted devices, and MOB for the mobile device. 
The structural components of all the devices were 3D printed using 
polylactic acid (PLA) as the base material, with additional metal parts 
for the pole and handles of the mobile device to provide the required 
structural integrity to support the moving pan and tilt unit. 

2.1.1. Wall-mounted devices 
These devices are designed to be mounted in a vertical surface to 

provide continuous environmental information of a single point in 
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space. They are composed of a rigid box with ventilation and perfora-
tions to enable the acquisition of external environment information. 
Fig. 1 shows these devices, both internally and externally, and the cor-
responding CAD model used for 3D printing and prototyping. 

Model WMA contains additional sensors with higher costs for pa-
rameters with a small variations relative to the spatial location, such as 
radon concentration. Modesl WMB and WMC have minor differences, 
sharing the same set of measurable parameters. 

2.1.2. Mobile device 
The mobile device comprises the pan and tilt head with sensors 

mounted on a movable elevating platform. The design is divided into 
three sections: base, elevating platform, and pan and tilt head. The 
complete system is shown in Fig. 2, including the CAD model and the 
internal components of the head. 

The base contains the main structural components of the device. It 
includes the wheels, handle, pole and battery receptacle. There are two 
battery slots to enable hot swapping, with one LED for each of them to 
indicate charge status. The battery swapping logic is controlled by an 
Arduino Nano, that switches the power input depending on the presence 
and voltage of the batteries. The pole includes a toothed belt for the 
vertical movement of the elevating platform. 

The platform contains another Arduino Nano that controls the 
stepper motor for its own vertical movement and the two servomotors 
for the pan and tilt structure to change the orientation of a head with 
additional sensors. The platform contains the same logic design as the 
wall-mounted devices, with a different physical arrangement to separate 
the sensors that are placed in the head from those that are in the main 
non-rotating part. 

2.2. Software platform 

The system comprises several software modules to send, store and 
process the data obtained from the sensors. The general client-server 
architecture is illustrated in Fig. 3, containing client nodes that gather 
data from sensors and a central server node to store and process all the 
information from the clients. Additionally, the server node collects data 
from third-party meteorological sources to obtain environmental infor-
mation of the building exterior. 

The communication between the server and each client node inside 
the acquisition devices is based on the Advanced Message Queuing 
Protocol (AMQP) [44], using RabbitMQ message brokers on each side. 
There are two internal communication channels, one for sensor data and 
other for device status, that are processed in different ways on the 
server. To relay messages from client to server, the RabbitMQ shovel 
plugin is configured in the client nodes to redirect incoming messages 
from the internal exchanges to the corresponding queues in the server. 
Messages are configured to be persistent and queues to be durable, using 
the corresponding configuration parameters, to ensure that the infor-
mation is persisted to disk in case of network errors. Moreover, 
authentication, authorisation and access control are also configured to 
restrict communication to valid nodes. 

2.2.1. Client node 
The client node is responsible for reliably sending sensor data and 

device status. It is composed of three main parts, as depicted in Fig. 4: (i) 
a Telegraf node that gathers internal information that is send to the 
“status” exchange; (ii) an ad-hoc sensor reading software that collects 
sensor values and sends them to the “data” exchange; (iii) a RabbitMQ 
broker that relays messages from both exchanges to queues in the server 
using the shovel plugin. The acquisition software is implemented in the 
Python programming language, using dedicated modules for each sensor 
in the client node. This software automatically connects to the appro-
priate drivers and schedules readings based on a configuration file that 
contains several parameters for each of the sensors in the system. 

2.2.2. Server node 
The server node comprises the set of logical components illustrated 

in Fig. 5. First, a RabbitMQ broker is configured with two queues, “data” 
and “status”, to listen for incoming messages from the client nodes. 
These messages are forwarded to a Telegraf agent that relays them to 
different databases, depending on the input RabbitMQ exchange. At the 
same time, a collecting agent is used to actively request meteorological 
information from third party sources at regular intervals though the 
corresponding communication layer to provide up-to-date weather 
information. 

The main storage system is an InfluxDB-based system [45] comprised 
of two main time series databases: “status”, to store transient informa-
tion about the operational state of the client devices, with a configured 
retention policy of 24 h; and “data”, to save the acquired measurements 
from sensors and meteorological sources indefinitely. The “status” 
database contains information such as CPU and RAM usage, available 
disk space and uptime, with one InfluxDB measurement for each of these 
parameters. This allows for the identification of potential issues with the 
operation of the client devices. The internal structure of “data” is divided 
based on the origin of the information, with a different measurement for 
each sensor and third-party meteorological source. For each measure-
ment, several InfluxDB tags are defined depending on the given 

Table 1 
List of sensors included in the devices.  

Model Measurements Features WMA WMB WMC MOB 

adxl345 Acceleration Resolution: 
±2g – ±16 g    

H 

amg8833 Temperature Range: 0∘C – 
80∘C; Acc.: 
±2.5∘C    

H 

bme680 Temp./Rel. 
humidity/ 
Pressure 

Acc.: ±1.0∘C, 
±3%H, ±1 
hPa 

X X  X 

hmc5883l Magnetic field Range: − 8 – 
+8 G    

H 

itg3200 Angular 
velocity 

Acc.: 2%    H 

mhz14 CO2 

concentration 
Range: 
0–10,000 
ppm; Acc.: 
±50 ppm 
±5% 

X X X X 

mlx90614 Surface 
temperature 

Range: − 70∘C 
– +380∘C; 
Acc.: ±0.5∘C 

X X X H 

pt100 Radiation 
temperature  

X    

rd200m Radon 
concentration 

Range: 
0.2–99.9 pCi/ 
L; Acc.: 
±10% 

X    

sds011 Particle 
concentration 

Range: 
0.0–999.9 
μg/m3; Acc.: 
max(±10μg/ 
m3, 15%) 

X    

sht31d Temp./Rel. 
humidity 

Acc.: ±0.3∘C, 
2%H 

X X X X 

TFmini Distance Range: 
0.3–12 m; 
Acc.: ±4cm 
(0.3–6 m), 
±6 cm (≤12 
m)    

H 

tsl2561 Illuminance Range: 
0.1–40,000 lx 

X X  H 

tsl2591 Illuminance Range: 188 
μlux – 88,000 
lx   

X  

WMA, WMB, WMC: wall-mounted devices with different sets of sensors; MOB: 
mobile device. “H” indicates that the sensor is placed in the head of the mobile 
device. 
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measurement, with only one tag being mandatory for all measurements: 
“host”, which indicates the client node in which the reading was per-
formed for sensor data or the specific weather station identifier for 
meteorological information. InfluxDB fields include values for parame-
ters such as temperature, humidity and CO2 concentration, depending 
on the output values of the specific sensor. All this information is ready 
to be exposed for a digital twin representation of the building, including 
real-time values of the IEQ conditions. 

Visualisation and management is done using three main nodes: 
Kapacitor, Chronograf and Grafana. Kapacitor enables alerting based on 
rules for the detection of an anomalous operation of the devices. It is 
configured to send automatic alerts based on unfeasible sensor values in 
“data” for each physical property and anomalous parameters in “status” 

for fast malfunction detection. Chronograf is the main management 
interface, allowing for data exploration, access control management and 
alert configuration. Finally, Grafana is used as the visualisation front- 
end, with preconfigured charts for the most relevant information. The 
visualisation is divided into two separate dashboards, corresponding to 
the two databases in the system. The first one shows relevant status 
information for each client device, while the second shows sensor values 
for different parameters. Examples of these two dashboards are dis-
played in Fig. 6. The visualisation system presented in this work is just 
one of many potential integrations with other tools that could acquire 
the input information from the core database to provide additional in-
sights and analytics. 

Fig. 1. Wall-mounted devices: (a) installed device; (b) CAD model; (c) internal design for WMA and (d) for WMB, with WMC being almost identical to WMC.  

Fig. 2. Mobile device: (a) assembled device; (b) CAD model of the header, with distances in mm; (c) internal design with the sensors.  
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Fig. 3. High-level block diagram of the software platform, exposing the underlying client-server architecture.  

Fig. 4. High-level block diagram of the client node.  

Fig. 5. High-level block diagram of the server node.  
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2.3. Artificial intelligence algorithms 

In this paper, three different artificial intelligence algorithms, in 
addition to the classical linear regression introduced as a comparison, 
were tested to try to interpolate the environmental conditions inside a 
building. In particular, the machine learning techniques that were taken 
into account are: MultiLayer Perceptron (MLP) neural network, Random 
Forest (RF) and Support Vector Regression (SVR). 

2.3.1. MultiLayer perceptron neural network 
MLP neural networks are the most widely used Artificial Neural 

Network (ANN) among feed-forward ANNs and they are composed of 
three different types of layers (see Fig. 7). The model inputs are intro-
duced in the first or input layer and the results yielded by the model are 
given by the last or output layer. Moreover, there are also intermediate 
layers, known as hidden layers, which are interconnected and can be 
zero, one or more [19,46]. In each of the layers a specific number of 

neurons are distributed and this number is conditioned by the inputs and 
outputs of the model. As presented in Fig. 7, each neuron of the layers, 
except for the input layer, is fed from the previous layer‘s neuron 
[47–49]. 

In addition, Table 2 shows the specific MLP architectures used in this 
study to estimate each of the variables analysed. As in previous studies, 
such as [50,51], these architectures were obtained using the Non- 
Dominant Sorting Genetic Algorithm (NSGA-II), which significantly re-
duces the number of evaluations needed to yield the optimal result. 

The aim of the built MLP neural network is to efficiently fit the in-
ternal parameters of the network to be able to obtain a predicted value ̂yi 
close to the real one yi for i = 1, …, N (where N is the sample size). The 
task assigned to each network node is to calculate a weighted sum of its 
inputs and pass the sum through an activation function [47]. In this case, 
the activation function considered in model training is the Rectified 
Linear Unit function (reLU = max(0,x)) [52]. The training process is 
performed with a backward propagation algorithm, which aims to 

Fig. 6. Visualisation dashboards for (a) device status and (b) sensor data.  
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minimise a specific cost function. Thus, the real values of the variables of 
interest must be known [19,53]. In this study the Mean Squared Error 
(MSE): 1n

∑N
i=1

(
ŷi − yi

)2 is the selected cost function. Furthermore, model 
training is performed through the batch mode: weights are updated with 

an average update, which is produced by incorporating all the patterns 
in the input file (an epoch) and accumulating all the individual updates 
[46]. On the other hand, due to its effectiveness for stopping the training 
process when the best generalisation is reached, the stop criterion 
selected is cross-validation [54]. This method stops the training when, 
after a certain number of epochs, the MLP performance, validated with a 
previously separated individual sample, begins to decrease or stagnates 
[18,19]. In this case the limit was set to 50 epochs. Lastly, every MLP 
built in this analysis was trained taking into account a Gaussian kernel 
initialiser, the Adaptive Moment Estimation (Adam) optimiser [55] and 
the mini-batch gradient descent algorithm [56]. Further information 
about MLP neural networks can be found in [19,49]. 

2.3.2. Random forest 
RF algorithms are based on a set of D unpruned regression trees, built 

from a bootstrap sampling of the initial training data. The trees are 
structured in root node, branch nodes and leaf nodes [27,57] and, in each 
of the nodes, the optimal node splitting feature is sought among a set of c 
features (also randomly selected from the feature space with size C). On 
the one hand, c < C causes a decrease in the correlation between the 
different trees, and therefore the average outputs is expected to have less 
variance than a single regression tree [38,58]. On the other hand, there 
exists a trade-off in the size of c: higher values of c can improve the 
predictive accuracy of individual trees but can also cause an increase in 
the correlation between trees, wasting any improvement in individual 
predictions. The RF training process (see Fig. 8) can be summarised as 
follows [31,38,58]:  

1. Bagging: Based on the original training data set S = {(x1,y1), (x2,y2), 
…, (xN,yN)}, bagging or bootstrap aggregation generates D new data 
sets Si through N-size sampling with replacement of the original data 

Fig. 7. MLP architecture with an input layer, several hidden layers and an 
univariate output layer. 

Table 2 
MLP architectures considered to estimate the values of each of 
the three variables related with the IEQ of the analysed 
building.  

Variable Hidden Neurons 

Temperature 30–20 
Relative humidity 110–10 
CO2 levels 20  

Fig. 8. Summary of the training process for the Random Forest algorithm. The way of obtaining the final output as a combination of the outputs of the individual 
trees (Td(x)) is also presented. 

F. Troncoso-Pastoriza et al.                                                                                                                                                                                                                   



Automation in Construction 139 (2022) 104261

8

set. The aim of this technique is to prevent over-fitting and to reduce 
the variance.  

2. Variables selection: In each of the bootstrap samples Si, an unpruned 
regression tree is formed as follows: in each node of the tree, c var-
iables are randomly selected and then, the best split of them is 
chosen. This process is usually known as feature bagging [59].  

3. Process of splitting: Given a partition of J regions R1, R2, …, RJ in 
which the output can be modelled by a constant aj in each of the 
regions: 

f (x) =
∑J

j=1
ajI

(
x ∈ Rj

)
, (1)  

the splitting criterion in each node is carried out by minimising the sum 
of squares (Ex, y(y − f(x))2). After several operations presented in [58] 
and in [38] and considering first a binary division, for any z and q, the 
solution for the minimisation problem is given by: 

â1 =

∑n
i=1I(yi|xi ∈ R1(z, q) )

n
, â2 =

∑n
i=1I(yi|xi ∈ R2(z, q) )

n
. (2) 

In this way, the sample is divided into two regions, and this process 
will be repeated until some specific stopping criterion is reached.  

4. Stopping Criterion: The splitting process continues until the size of Si 
falls below a threshold. Once D regression trees Td are constructed, 
the predicted value at a new point x is obtained through an average 
of the predictions from all the individual regression trees: 

f̂
D
(x) =

1
D

∑D

d=1
Td(x). (3) 

Furthermore, RF optimisation requires tuning multiple parameters. 
In this study, the optimal values of the parameters max_depth, min_-
samples_split and n_estimators (some of the most significant ones [60]) 
were found via a k-fold cross-validation process (k = 5). Further infor-
mation about RF can be consulted in [27,58]. 

2.3.3. Support vector regression 
SVR algorithms are characterised by creating a non-linear mapping 

of the input space into a feature space of a higher dimension and con-
structing a linear regression into this new feature space. This algorithm 
is focused on the structure risk minimisation (SRM) principle, which in-
tends to minimise an upper limit of an overall error that takes into ac-
count the sum of training error and the confidence level [34,39]. Thus, 
SVR is highly effective at solving non-linear problems even with a small 
training sample [35]. Assuming that the sample set has the form {(xi, 
yi)}i=1

N , SVR approximates the objective function as shown in Eq. 4 
[36,37,39]: 

y = s(x) = wT ϕ(x)+ b (4)  

where ϕ(x) represents the non-linear mapping that connects the input 
space to a higher dimensional feature space. Additionally, w is the 
weight vector, b the bias term and x the input data. The aim of this al-
gorithm is based on the search of a function s(x) for which the highest 
deviation from training data is less than a predefined value ε, main-
taining the maximum possible flatness [34,37]. Once the slack variable 
ξi, ξi* is introduced, w and b can be obtained solving the minimisation 
problem presented in Eq. 5 [35,39]: 

minimise
w,b

G
(
ξi, ξ*

i ,w
)
=

1
2
‖ w‖2 + C

∑p

i=1

(
ξi + ξ*

i

)

subject to yi − wT ϕ(x) − b ≤ ϵ + ξi

− yj + wT ϕ(x) + b ≤ ϵ + ξ*
i

ξi, ξ*
i ≥ 0

(5)  

being ‖w‖2 a regularisation term, C > 0 the penalty parameter that 
determines the trade-off between model flatness and training error, and 
p the number of training patterns. 

By means of the Lagrange duality, explained in Wei et al. [34] and 
Ahmad et al. [35], the optimised target function shown in Eq. 6 can be 
obtained (see Fig. 9:): 

s(x) = wT ϕ(x)+ b =
∑p

i=1
K(xi, x)

(
α*

i − αi
)
+ b (6)  

where K(xi,x) is the kernel function based on the inner product 〈ϕ(xi),ϕ 
(x)〉 and αi, αi* are the solutions to the dual problem (Lagrangian 
multipliers). 

Lastly, SVR optimisation involves tuning certain parameters. In this 
case, the selected parameters to optimise through a k-fold cross- 
validation method (k = 5) were epsilon, C and max_iter. Further infor-
mation about SVR can be consulted in [39,61]. 

3. Experimental system 

The studied building is the Centre for Research in Technology, En-
ergy and Industrial Processes (CINTECX), located at the University of 
Vigo in north-western Spain. A wide variety of activities take place in-
side this large room due to the different research groups working in it 
(energy, electronics, sustainability or automation). The installation of 
the monitoring devices is carried out on the ground floor of the building, 
where the laboratories are located. In this large multi-zone space, with 
approximately 825 m2 and a height of 6 m, workers conduct the 
experimental part of their investigations. There is different equipment 
such as heaters, engines or boilers which have a significant influence in 
the environment quality. Specifically, the installed heating and cooling 
system comprises four fan coils placed throughout the room. Fig. 10 
presents this building and some pictures of its interior. 

The data considered for this study come from two different sources: 
the presented monitoring system and the nearest meteorological station, 
using a Numerical Weather Prediction model when real exterior weather 
values are not available [8]. 

3.1. Monitored data 

The built system is composed of nine custom-made devices: 8 wall- 
mounted devices (see Fig. 1) and one mobile device (see Fig. 2). In 
this research, only sensors for temperature, relative humidity and CO2 
levels are considered. The mobile device (D0) allows collecting data 
from different positions in the work area. The fixed devices (D1 to D8) 
are placed at fixed locations at heights between 1.9 and 3.2 m where 
they do not interfere in the tasks of the building users. 

All the collecting devices have the same sensors to monitor the in-
door environmental conditions (see Table 1). In this case, SHT31-D 

Fig. 9. SVR parameters considered in the training process.  
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sensor is used to measure the temperature and the relative humidity and 
MHZ-14 sensor is used to measure CO2 concentration. The specific po-
sitions where the fixed devices are placed are presented in Fig. 11 
(length and width in the axes). The analysed room is a multi-zone open 
space although, in this research, closed areas are not considered and are 
represented in Fig. 11 hatched in grey. Moreover, this floor of the 
building has an envelope of concrete with numerous windows. The saw- 
toothed roof and the two shorter facades of the building are fully glazed. 
Additionally, one of the long sides of the building also has windows. 

3.2. Weather data 

The principal source of weather data was an automatic weather 

station belonging to the MeteoGalicia weather agency (MG). Said station 
is located 300 m northeast of the centre of the studied building, with an 
upward height difference of 43 m. The weather variables taken into 
account from this station are mean air temperature, relative humidity 
and global solar irradiation (measured at 1.5 m height). Accuracy, 
model and manufacturer of each sensor can be seen on Table 3. 

The station data are collected using an RSS service provided by MG 
[62]. These data are obtained every 10 min, with a time delay of 15–25 
min. Additionally, the forecast values provided by the Global Forecast 
System surface flux (GFS sflux) model were used to fill missing or invalid 
data from the main source. GFS is a numerical weather model focused on 
global meteorological predictions and implemented by the National 
Oceanic and Atmospheric Administration (NOAA) of the United States. 
GFS is executed four times per day, at 00, 06, 12 and 18 h UTC, and their 
outputs are stored at the NOAA Model Archive and Distribution System 
(NOMADS) repository for 10 days [63]. Moreover, GFS sflux version 
offers forecasts each hour over a ≈ 13 km resolution horizontal grid. In 
addition, each time instant, weather conditions are extracted from the 
GFS sflux output file with the shortest available forecast step, at the 
nearest grid point. This point is located at coordinates 42.11519Â◦N 
8.67187Â◦ W; 5.94 km from the analysed building. A detailed 

Fig. 10. Photographs of the studied building.  

Fig. 11. Floor plan of the study area. Red boxes show the positions the wall-mounted devices, blue dots indicate the positions in which the mobile device has been 
temporarily located, and the hatched grey areas correspond to the closed laboratories that are omitted from the study. (For interpretation of the references to colour 
in this figure legend, the reader is referred to the web version of this article.) 

Table 3 
List of MG weather station sensors used as inputs in the machine learning 
models.  

Sensor Accuracy Model Manufacturer 

Temperature ±0.25∘C HMP155 Campbell 
Relative Humidity ±1% at 15 − 25∘C, 0–90% RH   
Solar irradiation <1.8% SR01 Hukseflux  
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explanation of the model can be found at [64]. 

3.3. Data preprocessing 

This study focuses on the use of the monitored data to interpolate, 
with machine learning algorithms, variables directly related to the IEQ 
of a building (indoor temperatures, relative humidity and CO2 concen-
tration). The available data are minute measurements from sensors 
placed in 8 wall-mounted devices on the one hand, and a mobile device 
on the other hand. The entire monitoring period was between 18 
November 2020 and 10 March 2021, yielding a sample of about 135,000 
observations (taking into account that many times not all wall-mounted 
devices are sending data) and considering 26 different positions in 
which the mobile device was placed. The mobility of this device allows 
the use of its distances, in three dimensions (x-, y- and z-axes), to the 
fixed devices as model inputs. Moreover, mobile device data (desired 
values) are temporarily interpolated because the device does not collect 
data during its vertical movement. Thus, a smoothing process of the 
devices data is performed to compensate this temporal interpolation and 
facilitate the model training process (see Fig. 12). Additionally, meteo-
rological information of the area (section 3.2) and three temporal var-
iables (hour of the day, day of the week and of the year) are also used as 
model inputs. Weather data values are replicated at every 10-min in-
terval to generate data at the correct frequency required by the model. 
The structure of the model inputs and outputs implemented in this study 
is presented in Fig. 13. In this case, the model is trained to be capable of 
performing interpolations with up to three fixed devices malfunctioning. 

Additionally, a comparison between the efficiency of the different 
machine learning algorithms presented is carried out (see section 4). It is 
based on the average errors yielded by each of them and the average 
computational times (measured in seconds) that they needed to train. 
Due to the correlation among the variables available for this analysis, 
the model inputs for each of the interpolated variables are different. Its 
structure is summarised as follows:  

• Indoor temperature (45 inputs): Temperature values of fixed devices, 
outdoor temperature, solar radiation, time variables and distances to 
the fixed devices.  

• Relative humidity (45 inputs): Relative humidity values of fixed 
devices, outdoor relative humidity, solar radiation, time variables 
and distances to the fixed devices.  

• CO2 levels (43 inputs): CO2 values of fixed devices, time variables 
and distances to the fixed devices. 

Finally, a time lag of one minute is considered in the indoor envi-
ronmental variables due to the existing inertia in this type of variables 
[19]. 

3.4. Validation and error assessment 

The validation metrics considered in this work to measure the ac-
curacy of the machine learning models are the Coefficient of Variation of 
the Root Mean Square Error (CV(RMSE)) and the Normalised Mean 
Biased Error (NMBE): 

CV(RMSE) = 100 x

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅∑N
i=1(yi − ŷi)

2/N
√

y
, (7)  

NMBE = 100 x
∑N

i=1(yi − ŷi)
∑N

i=1(yi)
. (8) 

They are both used to compare the performance of the models 
through a cross-validation process with average results presented in the 
next section. These metrics, which are recommended by ASHRAE, were 
used in similar studies such as [18,19,65]. In particular, it was demon-
strated that CV(RMSE) is the best metric to analyse and evaluate 
building simulations [65]. 

4. Results and discussion 

A system for estimating the environmental conditions in a large open 
space inside a building through data interpolation based on machine 
learning is presented in this paper. Specifically, as mentioned in the 
previous section the analysed building is a research centre and the 
available data are approximately four months of minute observations. 

This section shows, first, the average accuracy and the average 
computational time required in the training process for each of the black 
box algorithms analysed through a positional cross-validation (see 
Table 4). This analysis is based on the estimation of the temperature, 
relative humidity and CO2 concentration in each of the positions in 
which the mobile device was placed, comparing them with the real 
values. In this case, the models do not have any information about these 
positions, as these data were previously extracted from the training set. 
Then, the performance of the most efficient algorithm at estimating each 
of the three variables that summarise the IEQ of a building is analysed 
over two specific days (January 12 and February 2021). In this way, the 
algorithm parameters are adjusted to each of the interpolation problems 
(one per variable) creating three different models. Fig. 14 shows the 
capability of the selected models interpolating data from a temporal 
point of view. The results presented hereinafter are based on the Python 
programming language [66]. 

Regarding the temperature results,the RF model stands out from the 
other models in terms of relative errors and its variability in the results 
(see Table 4). While it obtained an average CV(RMSE) below 5% and a 
standard deviation of ±1.63, the liner regression, the MLP neural 
network and the SVR model show average CV(RMSE) values close to 
10% with variabilities above ±6. Additionally, the average NMBE yiel-
ded by MLP and RF are very close to 0% and the variability of their 
results are ±5.83 and ±2.77, respectively. In contrast, SVR presents an 
average NMBE of 0.67% and the linear regression above 2%, both with 
higher standard deviations than the ones exhibited by MLP and RF. In 
terms of average computational times, Table 4 shows that the linear 
regression and SVR are the ones that obtained notably lower results (less 
than 30 s) than the values given by MLP and RF (higher than one min-
ute). Nevertheless, this improvement in training time causes relative 
errors to increase significantly in these models, which make them un-
suitable. In particular, the RF model is the most efficient because it 

Fig. 12. Smoothing process applied to several hours of temperature data ac-
quired with the mobile device. 
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achieves the lowest errors requiring an acceptable average computa-
tional time for training (see Table 4). 

In the case of relative humidity, as for temperature, the RF model 
obtained average relative errors, as well as their respective variabilities, 
lower than those presented by the other models (see Table 4). The 
average CV(RMSE) yielded by RF is slightly above 5% with a standard 
deviations of ±2.38, whereas the average CV(RMSE) of the linear 
regression, MLP and SVR are all around 6% showing a variability of 
more than ±3. Furthermore, in relation to average NMBE results, all the 
models except for the MLP neural network present values lower than 
1%, with best results produced by the RF and the SVR model, very close 
to 0 (see Table 4). In this case, the variability in the results of all the 
models is similar. With regard to the average computational times 
required for the training, the linear regression and the SVR model are 
again the fastest (times under 15 s) compared to the times needed for 
MLP and RF (approximately 92 and 152 s, respectively). Considering all 
of the above results together, the efficiency of the SVR model and the RF 
model is higher than the rest, and similar between them. Whereas RF 
shows, on average, better CV(RMSE) values, SVR shows a better average 
NMBE in addition to a significant lower computation time (see Table 4). 

With respect to CO2 concentration, the RF model is the only one that 
yielded an average CV(RMSE) lower than 10%. The others, being the 
linear regression which perform the worst, show an average CV(RMSE) 
higher than 15% (see Table 4). In addition, observing the variability in 
the CV(RMSE) results, the RF model also presents the lowest standard 
deviation (±3.41). Regarding average NMBE results, RF is again the only 
model that obtained an average value below 1% (0.33%). Linear 
regression and MLP neural network show average values of 2.49% and 
1.25% respectively, while the average NMBE of the SVR model rises to 
− 11.12%. As in CV(RMSE) results, there is less variability in the results 
obtained by the RF model, which has a standard deviation of ±5.45. 

Additionally, analysing the average computational times required by 
each model, it is observed that the linear regression is the fastest method 
(less than 1 s) and MLP neural network is the lowest (requiring 
approximately 82 s). In spite of this, the model that proves to be the most 
efficient is the RF model due to its lower relative errors and the fact that 
its computing time needed to train, on average, is reasonable (slightly 
above one minute, see Table 4). 

Moreover, Table 4 shows that the efficiency of the built models varies 
among the studied variables. The main reasons are, on the one hand, 
their different daily behaviour and, on the other hand, the different 
quality of the sensors used to monitor each of the variables (see Fig. 14). 
While for temperature and relative humidity the overall performance is 
similar, for CO2 concentration the performance of the models is worse. 
Observing the NMBE results it can be seen that, on average, the esti-
mations given by the models are below the real values for all the vari-
ables analysed due to their positive values (except for the interpolations 
of the CO2 levels given by the SVR model). Lastly, according to the 
average relative errors obtained for each of the variables, together with 
the average computational time required in the training process, it is 
demonstrated that RF model is the most efficient model among the 
analysed ones. 

On the other hand, Fig. 14 shows the performance of RF interpolating 
temperature, relative humidity and CO2 concentration over two specific 
days. These days were selected as they represent different behaviour in 
the analysed variables. Thus, the accuracy of the model estimating in 
different real situations is tested. In this case, the trained model has 
information of the positions where the interpolations are made due to 
the mobile device is at the same position several days. Thus, in training 
sample there are values collected in the same positions as the test 
sample. For this reason the relative errors presented in Fig. 14 are lower 
than the ones shown in Table 4. 

Fig. 13. Summary of the interpolation process after train the machine learning method. Black boxes represent the inputs and the list of variables the outputs from the 
interpolation process. 

Table 4 
Numerical results of the interpolations of the three variables studied through a positional cross-validation. The average CV(RMSE) and NMBE together with their 
standard deviations (SD) and their computational times (c.t.), in seconds, required to be trained are presented.   

Temperatures Relative Humidity CO2 

Models CV(RMSE) 
[%] 

SD NMBE 
[%] 

SD c.t. 
[sec] 

CV(RMSE) 
[%] 

SD NMBE 
[%] 

SD c.t. 
[sec] 

CV(RMSE) 
[%] 

SD NMBE 
[%] 

SD c.t. 
[sec] 

Linear 10.85 17.01 2.44 10.03 0.17 6.19 6.24 0.83 2.74 0.17 20.72 28.18 2.49 11.98 0.09 
MLP 9.96 10.49 0.04 5.83 85.21 6.46 4.00 1.19 4.32 92.49 16.18 9.34 1.25 9.82 82.08 
RF 4.79 1.63 0.02 2.77 74.50 5.19 2.38 0.14 3.49 151.57 9.61 3.41 0.33 5.45 64.95 
SVR 8.06 6.78 0.67 5.89 24.51 5.98 3.80 0.02 4.60 13.14 19.99 8.00 − 11.12 13.54 2.96  
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It can be seen that, in general, the RF model is capable of replicating, 
in different situations, the behaviour of the three variables efficiently. As 
in the positional cross-validation, the model built for temperature esti-
mations performs better and the model used to estimate CO2 values is 
the one that obtains the worst results. Fig. 14 shows that the built RF 
models interpolate temperatures with a CV(RMSE) below 3.50%, rela-
tive humidity values with a CV(RMSE) below 4% and CO2 levels with a 
CV(RMSE) below 6%. The built models based on RF algorithm demon-
strates its efficiency interpolating data of the three variables studied. 

In summary, the results of both positional cross-validation and ac-
curacy analysis on specific days demonstrate the efficiency of the RF 
algorithm interpolating temperature, relative humidity and CO2 con-
centration. Specifically, the error values obtained by the built models, 
considering the ability to tolerate up to three malfunctioning wall- 
mounted devices, are in the same range or lower than the values pre-
sented in similar studies [16,21,67,68]. These studies, in which machine 
learning or simulation models are also used, yield CV(RMSE) values of 
approximately 6% for temperature, 4% for relative humidity and 10% 
for CO2 concentration. Moreover, it is also shown that this type of 
models only requires a few minutes to be trained with data. Thus, the 
models used prove the usefulness of the built monitoring system and its 
ability to interpolate data both spatially and temporally in a large open 
space. 

5. Conclusions 

A low-cost system focused on automatically monitoring, instantly 
displaying the collected values, combined with machine learning 
models, which interpolate data of specific IEQ-related variables 
throughout a building, is presented in this paper. The study was con-
ducted for approximately 4 months collecting data of temperature, 
relative humidity and CO2 concentration inside the CINTECX building in 
north-western Spain. The system is based on 8 wall-mounted devices 
and a mobile device, which in this case was placed in 26 different po-
sitions. These devices are connected to a remote platform with storage 
and visualisation capabilities by means of message brokers to handle 
data transfer, a time series database to store sensor and status infor-
mation and an analytics and monitoring front-end for data aggregation 
and charting. Furthermore, the monitored data, with minute frequency, 
are used to train different machine learning models with the aim of 
interpolating the values of the analysed variables. Thus, the quality and 
the usefulness of the data collected by the presented system is demon-
strated. After a comparison between the different models, the RF algo-
rithm is selected as the most efficient based on the average relative 
errors and the average computational time required to be trained. Spe-
cifically, a different RF model is trained to interpolate data for each of 
the variables analysed. To this end, the values collected by the mobile 
device are mapped to the values collected by the fixed devices, along 
with their distances to it. In addition, meteorological data of the area 

Fig. 14. Results of the interpolations made with the RF model in specific days and, thus, in positions known by the mobile device, together with the errors obtained. 
Indoor temperatures are presented in the first row, relative humidity in the second and CO2 concentration in the third. 
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and three temporal variables (hour of the day, day of the week and day 
of the year) are also considered as model inputs to improve the training 
process. 

The results obtained by the built RF models show that, based on the 
data monitored by the presented system, it is possible to efficiently es-
timate the indoor environmental conditions in a building. On the one 
hand, a positional cross-validation is performed to demonstrate the 
capability of the trained models to spatially interpolate data. In the case 
of temperatures, the built RF model yields an average CV(RMSE) of 
4.79% and an average NMBE of 0.02%. For relative humidity values, the 
average CV(RMSE) and the average NMBE obtained by the model are 
5.19% and 0.14%, respectively. Lastly, with regards to CO2 levels, the 
built RF model yields an average CV(RMSE) of 9.61% and a average 
NMBE of 0.33%. On the other hand, through a temporal analysis focused 
on specific days, it is also proved that the estimations produced by the 
trained models effectively replicate the behaviour of the selected vari-
ables. In this case the interpolations achieved a CV(RMSE) lower than 
3.5% for temperature, lower than 4% for relative humidity and lower 
than 6% for CO2 levels. The fact that these values are within the same 
range or lower than the error values obtained in similar studies 
demonstrate the quality of the monitored data. In addition, once the RF 
model is trained, no human intervention is required to collect the data 
that the model needs to perform the interpolations. 

The main contribution of this paper is the design and development of 
an intelligent monitoring system that collects values of specific variables 
related to the IEQ. This platform, connected with a trained machine 
learning models, contribute to improving the control of the indoor 
environmental conditions throughout a space in a building. In this way, 
the detection of low comfort areas or where the users’ health is at risk is 
possible. Moreover, this methodology is also useful to analyse possible 
deficiencies in the building envelope or in the heating and cooling sys-
tem. The machine learning models are trained with the collected data so 
that the inputs required by the models are provided without relying on a 
mobile device that is constantly traversing the space and without the 
need to actually measure inside the occupied area. The main limitation 
of this research is the duration of the study and, although the size of the 
data sample is sufficient to present a consistent analysis, a larger sample 
would allow a more complete analysis to be carried out. On the one 
hand, the mobile device could be in more positions throughout the 
building and, on the other hand, data from different seasons of the year 
could be used. In addition, the fact that the analysed space is a large 
multizone open space makes the system, together with the interpolation 
methodology, applicable to similar buildings and, considering that the 
difficulty of the problem is reduced, also to smaller buildings. As future 
lines of research, other variables related to the IEQ of a building or an 
index summarising the indoor comfort, other combinations of fixed 
devices (positions, number of sensors, etc.) or even more accurate sen-
sors could be considered to attempt a more complete analysis. Ulti-
mately, alert systems that detect low comfort areas can be built to 
efficiently control the IEQ of a building in an automated way. 
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Torres, S. Martínez-Mariño, Heat loss coefficient estimation applied to existing 
buildings through machine learning models, Appl. Sci. 10 (24) (2020), https://doi. 
org/10.3390/app10248968. URL, https://www.mdpi.com/2076-3417/10/2 
4/8968. 

[19] M. Martínez Comesaña, L. Febrero-Garrido, F. Troncoso-Pastoriza, J. Martínez- 
Torres, Prediction of building’s thermal performance using lstm and mlp neural 

F. Troncoso-Pastoriza et al.                                                                                                                                                                                                                   

https://doi.org/10.1108/ECAM-09-2018-0390
https://doi.org/10.1016/j.autcon.2020.103528
https://www.sciencedirect.com/science/article/pii/S0926580520311080
https://www.sciencedirect.com/science/article/pii/S0926580520311080
https://doi.org/10.1057/jba.2008.22
https://doi.org/10.1057/jba.2008.22
https://doi.org/10.1016/j.enbuild.2012.08.037
https://www.sciencedirect.com/science/article/pii/S0378778812004410
https://www.sciencedirect.com/science/article/pii/S0378778812004410
https://doi.org/10.1016/j.buildenv.2021.107592
https://www.sciencedirect.com/science/article/pii/S0360132321000081
https://www.sciencedirect.com/science/article/pii/S0360132321000081
https://doi.org/10.1007/s10661-020-08781-6
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85100111018&amp;doi=10.1007%2fs10661-020-08781-6&amp;partnerID=40&amp;md5=064a70e71148100a257be908da78bebc
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85100111018&amp;doi=10.1007%2fs10661-020-08781-6&amp;partnerID=40&amp;md5=064a70e71148100a257be908da78bebc
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85100111018&amp;doi=10.1007%2fs10661-020-08781-6&amp;partnerID=40&amp;md5=064a70e71148100a257be908da78bebc
https://doi.org/10.1016/j.enbuild.2020.110570
https://doi.org/10.1016/j.enbuild.2020.110570
https://www.sciencedirect.com/science/article/pii/S0378778820333569
https://www.sciencedirect.com/science/article/pii/S0378778820333569
https://doi.org/10.1016/j.scs.2020.102403
https://www.sciencedirect.com/science/article/pii/S2210670720306247
https://doi.org/10.1016/j.buildenv.2020.107415
https://www.sciencedirect.com/science/article/pii/S0360132320307836
https://www.sciencedirect.com/science/article/pii/S0360132320307836
https://doi.org/10.1016/j.scitotenv.2020.138385
https://www.sciencedirect.com/science/article/pii/S0048969720318982
https://doi.org/10.1016/j.buildenv.2017.11.003
https://www.sciencedirect.com/science/article/pii/S0360132317305012
https://www.sciencedirect.com/science/article/pii/S0360132317305012
https://doi.org/10.1016/j.jclepro.2020.125780
https://www.sciencedirect.com/science/article/pii/S0959652620358261
https://www.sciencedirect.com/science/article/pii/S0959652620358261
https://doi.org/10.1016/j.scitotenv.2021.145304
https://doi.org/10.1016/j.scitotenv.2021.145304
https://www.sciencedirect.com/science/article/pii/S0048969721003703
https://www.sciencedirect.com/science/article/pii/S0048969721003703
https://doi.org/10.1016/j.autcon.2018.10.004
https://doi.org/10.1016/j.autcon.2018.10.004
https://www.sciencedirect.com/science/article/pii/S0926580518303819
https://www.sciencedirect.com/science/article/pii/S0926580518303819
https://doi.org/10.1016/j.autcon.2015.11.003
https://www.sciencedirect.com/science/article/pii/S0926580515002289
https://www.sciencedirect.com/science/article/pii/S0926580515002289
https://doi.org/10.1016/j.buildenv.2021.108243
https://doi.org/10.1016/j.buildenv.2021.108243
https://doi.org/10.1007/s12178-020-09600-8
https://doi.org/10.3390/app10248968
https://doi.org/10.3390/app10248968
https://www.mdpi.com/2076-3417/10/24/8968
https://www.mdpi.com/2076-3417/10/24/8968


Automation in Construction 139 (2022) 104261

14

networks, Appl. Sci. 10 (21) (2020), https://doi.org/10.3390/app10217439. URL, 
https://www.mdpi.com/2076-3417/10/21/7439. 

[20] D. Li, F. Huang, L. Yan, Z. Cao, J. Chen, Z. Ye, Landslide susceptibility prediction 
using particle-swarm-optimized multilayer perceptron: comparisons with 
multilayer-perceptron-only, bp neural network, and information value models, 
Appl. Sci. 9 (18) (2019), https://doi.org/10.3390/app9183664. URL, 
https://www.mdpi.com/2076-3417/9/18/3664. 

[21] Z. Yu, Y. Song, D. Song, Y. Liu, Spatial interpolation-based analysis method 
targeting visualization of the indoor thermal environment, Build. Environ. 188 
(2021) 107484, https://doi.org/10.1016/j.buildenv.2020.107484. URL, https:// 
www.sciencedirect.com/science/article/pii/S0360132320308519. 

[22] J.H. Cho, Detection of smoking in indoor environment using machine learning, 
Appl. Sci. 10 (24) (2020), https://doi.org/10.3390/app10248912. URL, htt 
ps://www.mdpi.com/2076-3417/10/24/8912. 

[23] H.-S. Jo, C. Park, E. Lee, H.K. Choi, J. Park, Path loss prediction based on machine 
learning techniques: principal component analysis, artificial neural network, and 
gaussian process, Sensors 20 (7) (2020), https://doi.org/10.3390/s20071927. 
URL, https://www.mdpi.com/1424-8220/20/7/1927. 

[24] S. Mishra, H.K. Tripathy, P.K. Mallick, A.K. Bhoi, P. Barsocchi, Eaga-mlp—an 
enhanced and adaptive hybrid classification model for diabetes diagnosis, Sensors 
20 (14) (2020), https://doi.org/10.3390/s20144036. URL, https://www.mdpi. 
com/1424-8220/20/14/4036. 

[25] K.A. Suaza Cano, J.F. Moofarry, J.F. Castillo Garcia, Proposal for the 
implementation of mlp neural networks on arduino platform, in: M. Botto-Tobar, 
M. Zambrano Vizuete, P. Torres-Carrión, S. Montes León, G. Pizarro Vásquez, 
B. Durakovic (Eds.), Applied Technologies, Springer International Publishing, 
Cham, 2020, pp. 372–385, https://doi.org/10.1007/978-3-030-42520-3_30. 

[26] N. Eiamkanitchat, N. Kuntekul, P. Panyaphruek, Ensemble mlp networks for voices 
command classification to control model car via piface interface of raspberry pi, 
Int. J. Geomate 13 (2017) 9–15, https://doi.org/10.21660/2017.37.2817. 

[27] M.W. Ahmad, M. Mourshed, Y. Rezgui, Trees vs neurons: comparison between 
random forest and ann for high-resolution prediction of building energy 
consumption, Energy Build. 147 (2017) 77–89, https://doi.org/10.1016/j. 
enbuild.2017.04.038. URL, http://www.sciencedirect.com/science/article/pii/ 
S0378778816313937. 

[28] P. Moore, T. Lyons, J. Gallacher, Random forest prediction of alzheimer’s disease 
using pairwise selection from time series data, PLoS One 14 (2019), e0211558, 
https://doi.org/10.1371/journal.pone.0211558. 

[29] B. Manavalan, T.H. Shin, M. Kim, G. Lee, Aippred: sequence-based prediction of 
anti-inflammatory peptides using random forest, Front. Pharmacol. 9 (2018), 
https://doi.org/10.3389/fphar.2018.00276. 

[30] C.-L. Wei, G.T. Rowe, E. Escobar-Briones, A. Boetius, T. Soltwedel, M.J. Caley, 
Y. Soliman, F. Huettmann, F. Qu, Z. Yu, C.R. Pitcher, R.L. Haedrich, M.K. Wicksten, 
M.A. Rex, J.G. Baguley, J. Sharma, R. Danovaro, I.R. MacDonald, C.C. Nunnally, J. 
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