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Abstract: Heterogeneous photo-electro-Fenton process is an attractive technology for the removal of
recalcitrant pollutants. To better exploit the presence of an irradiation source, a bifunctional catalyst
with TiO2 nanoparticles embedded into an iron–chitosan matrix was developed. The catalytic activity
of the catalyst was improved by the optimization of the loaded TiO2content. The prepared composite
catalysts based on TiO2, Fe3O4 and chitosan were called TiO2/Fe3O4-CS beads. The best catalyst
with an optimal ratio TiO2/Fe = 2 exhibited a high efficiency inthe degradation and mineralization of
chlordimeform (CDM) insecticide. Under the optimum conditions (concentration of catalyst equal
to 1 g L−1 and applied current intensity equal to 70 mA), a real effluent doped with 30 mg L−1

of CDM was efficiently treated, leading to 80.8 ± 1.9% TOC reduction after 6 h of treatment, with
total removal of CDM after only 1 h.The generated carboxylic acids and minerals wereidentified
and quantified. Furthermore, the stability and reusability of the developed catalyst was examined,
and an insignificant reduction in catalytic activity was noticed forfour consecutive cycles of the
photo-electro-Fenton process. Analyses using SEM, XRD and VSM showed a good stability of the
physicochemical properties of the catalyst after use.

Keywords: photo-electro-Fenton process; chlordimeform; wastewater treatment; bifunctional catalyst

1. Introduction

In recent decades, the extensive use of pesticides to improve agricultural production
has led to an increased risk of water pollution. In fact, these pollutants can be classified as
persistent and extremely toxic organic substances. The ability of these harmful pollutants
to easily bioaccumulate even at very low concentrations represents a serious issue that can
cause problems for the environment, human health and living organisms [1]. Consequently,
the removal of pesticides from water and wastewater has become a great global challenge.

In recent years, electrochemical advanced oxidation processes (EAOPs) have been-
considered an option for the removal of toxic and persistent organic micropollutants from
wastewater [2–4]. One of the most powerful and attractive techniques among EAOPs is the
electro-Fenton (EF) process, where by hydrogen peroxide (H2O2) is generated at a cathode
by O2 reduction (Equation (1)), and a ferrous ion or iron oxide catalyst is added to the
effluent [5]. The EF process is very effective in the mineralization of organic pollutants
due to the production of strongly oxidizing hydroxyl radicals through the Fenton reaction
(Equation (2)) [6]. However, this technology is limited by a few factors, such as the rapid
accumulation of Fe(III) ions and the possibility of their complexation with hydroxyl ions
and oxidation products during treatment [7].

O2 + 2 H+ + 2 é → H2O2 (1)
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H2O2 + Fe2+ → Fe3+ + OH− + •OH (2)

The presence of UV irradiation has two specific aims: the regeneration of Fe(II) ions
and the degradation of the formed complexes until their mineralization due to an additional
production of •OH [8]. This process is called the photo-electro-Fenton (PEF) process, and it
leads to great performance in the mineralization of organic pollutants [9,10].

However, the application of UV irradiation could increase the operational cost, but
it can be justified by the use of a photocatalyst, such as TiO2, to increase its economic
costeffectiveness. The application of a ferromagnetic-TiO2 composite material is widely
used for photocatalysis due to its efficiency and magnetic properties [11,12].

In fact, in a heterogeneous system, many solid catalysts containing iron, such as Fe,
Fe2O3, Fe3O4 and FeOOH, were successfully used for the treatment of recalcitrant organic
pollutants in water [13–17]. Among iron oxides, the immense popularity of Fe3O4 as
a catalyst originates from its broad application potential due to high saturation magne-
tization, easy handling, relatively low cost, non-toxicity and environmentally friendly
character [18,19]. Titanium oxide (TiO2) has also shown widespread photocatalytic applica-
tion in the field of wastewater treatment due to its unrivalled properties of non-toxicity,
easy UV activation, chemical stability and availability [20]. Despite all these outstanding
properties, TiO2 deployment for photocatalytic application has witnessed drawbacks due
to its large energy band gap of about 3.2 eV [20,21]. In addition, one of the problems
hindering TiO2 use is its agglomeration in aqueous solution, which requires a post-filtration
treatment [21]. In order to overcome the problem of the band gap of TiO2, several studies
revealed that the presence of Fe3O4 enhances the photocatalytic activity of TiO2 by decreas-
ing the charge carrier recombination, with a band gap of the composite material around
2.5 eV. This is caused by the generated Z-scheme on the composite TiO2/Fe3O4 where
the recombination between holes and electrons on TiO2 is restrained by the addition of
another valence band (Fe3O4). Indeed, Fe-species have been reported as an outstanding
alternative for creating Z-scheme photocatalytic heterojunction systems [22]. Moreover,
this modified TiO2 nanoparticle can be separated from water by means of an external
magnetic field [11,23]. However, the use of magnetic separation is complicated in real water
applications. Therefore, the use of a catalytic support, such as chitosan, for both metal
oxides (Fe3O4 and TiO2) not only avoids the agglomeration issue, but it also facilitates
catalyst recovery, protects ferroparticles from oxidation and extends their storage life [24].

Therefore, in the present study, we innovatively synthesized the TiO2/Fe3O4-CS cat-
alytic beads through a green co-precipitation method in only one step. The co-precipitation
method involves the dispersal of a mixture of chitosan and metals into an alkaline solution
to form nanoparticles strongly bound to chitosan with attractive catalytic and magnetic
properties for easy catalyst recovery and reuse [24–28]. TiO2/Fe3O4-CS was used as a novel
nano-structured heterogeneous catalyst for the oxidation of CDM insecticide by an efficient
cyclic PEF process; therefore, Fe(II), within the structure of Fe3O4, can activate the Fenton
system [29], and TiO2 acts as a photocatalyst to better exploit the use of UV irradiation.
In the PEF system, an electrochemical reactor was used for the electrogeneration of H2O2,
and the catalyst was added to a second photocatalytic reactor. The effects of operational
parameters were studied, such as the TiO2 loading in the beads, catalyst dosage and the
current intensity applied. Under optimal conditions, aqueous wastewater doped with
30 mg L−1 of CDM was treated. The carboxylic acids and inorganic ions generated during
the treatment process were identified and quantified. Finally, the electric energy consumed
was estimated, and the stability of the best catalyst in terms of CDM and TOC removal
efficiencies was studied.

2. Results
2.1. Optimization of Operational Parameters
2.1.1. Performance Comparison of Several Processes for the Removal of CDM

Initially, some control experiments were performed. To begin with, the adsorption
assays of the developed catalytic beads showed no CDM adsorption after 4 h of treat-
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ment on the synthesized catalytic beads (data not shown). Then, the low efficiencies
of photoelectrolysis–H2O2 (electrogenerated H2O2 + UV-LED) and photocatalysis (1 g
of TiO2/Fe3O4-CS catalyst + UV-LED) systems revealed, respectively, 70.6 ± 5.3% and
13.2 ± 4.4% of CDM removal yield after 1 h of electrolysis (Figure 1) along with only
18.2 ± 3.3% and 4.4± 1.6% of TOC abatement after 4 h of treatment (Table 1). However, the
PEF process running at I = 50 mA and pHi = 3, in the presence of 1 g L−1 TiO2/Fe3O4-CS, ex-
hibited higher efficiency, with total degradation of CDM after only 1 h and TOC abatement
equal to 69.6 ± 2.7% after 4 h of treatment (Table 1).
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Figure 1. Performance comparison of several processes and effect of the addition of TiO2 to magnetic
chitosan beads: (a,d) % removal of CDM; (b) −Ln (C/C0) vs. time; (c) [H2O2] vs. time: I = 50 mA in
the presence of 1 g L−1 of catalyst and at pHi = 3.

2.1.2. Influence of TiO2 in Magnetic Chitosan Beads

As found previously in the PEF system, the composite catalyst TiO2/Fe3O4-CS showed
higher catalytic activity, with total degradation of CDM after only 1 h and TOC abatement
of around 70% after 4 h of treatment. However, in the presence of Fe3O4-CS catalytic
beads, only 87.9 ± 3.1% CDM removal yield and TOC abatement was achieved, not
exceeding 33.9 ± 4.1%. The higher photocatalytic activity of TiO2/Fe3O4-CS beads could
be attributed to the acceleration of electron mobility in the FeIII/II/TiO2 system [12,30]
and the synergistic combination of PEF with photocatalysis. It is widely reported that
the combination of TiO2 and Fe3O4, with their different band gaps, can suppress the
electron–hole recombination, enhancing the photocatalytic activity, and thus, the PEF
process efficiency, thanks to the generation of the Z-scheme [11,22,30–32]. Moreover, the
degradation of CDM by the PEF process was found to follow a pseudo-first-order kinetic
(Figure 1b), which is probably related to the steady •OH concentration throughout the
treatment process [33,34]. To evaluate the catalytic decomposition of the oxidant, the
concentration of H2O2 was monitored during treatment with and without the developed
catalysts, and the results are presented in Figure 1c. In the absence of the catalyst and
UV-LED lamp, the accumulated amount of H2O2 after 4 h of electrolysis was estimated
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at 64.4 ± 0.5 mg L−1. In the presence of UV-LED irradiation, the concentration of H2O2
decreased to 53.8 ± 0.9 mg L−1, which means that the amount of H2O2 decomposed by
photolysis after 4 h of electrolysis was around 16.6%. As expected, by adding the Fe3O4-CS
and TiO2/Fe3O4-CS catalytic beads to the (H2O2 + UV-LED) system, the concentration of
the oxidant decreased significantly to 39.9 ± 1.1 mg L−1 and 29 ± 0.8 mg L−1, respectively,
indicating that approximately 38% and 55% of the H2O2 amount was decomposed. These
findings were in agreement with our previous results, and they confirmed the best catalytic
activity of TiO2/Fe3O4-CS beads because an increase in the decomposition rate of H2O2
is related to an increase in the production yield of •OH radicals [35]. Therefore, it is clear
that the incorporation of TiO2 into magnetic CS beads favors an effective usage of H2O2,
allowing great improvement to the PEF process efficiency.

Table 1. Summary table of mineralization rates.

Parameter Assay Rate of TOC Removal after 4 h of
Treatment

Performance comparison of
several processes

TiO2/Fe3O4-CS(2) + UV-LED 4.4 ± 1.6
H2O2 + UV-LED (Without catalyst) 18.2 ± 3.3

TiO2/Fe3O4-CS(2) + H2O2 + UV-LED 69.6 ± 2.7
Influence of TiO2 in magnetic

chitosan beads
Fe3O4-CS + H2O2 + UV-LED 33.9 ± 4.1

TiO2/Fe3O4-CS(2) + H2O2 + UV-LED 69.6 ± 2.7

Effect of TiO2 loading content into
magnetic chitosan beads

Molar ratio TiO2/Fe = 1 38.2 ± 3.5
Molar ratio TiO2/Fe = 2 69.6 ± 2.7
Molar ratio TiO2/Fe = 3 54.2 ± 5.6
Catalytic beads of TiO2 24.5 ± 1.9

Effect of catalyst dosage

0.25 g L−1 40.9 ± 4.1
0. 5 g L−1 60.8 ± 3.2

1 gL−1 69.6 ± 2.7
1.5 g L−1 70.2 ± 1.7
2 g L−1 58.2 ± 6.2

Effect of current intensity
50 mA 68.6 ± 4.9
70 mA 76.9 ± 3.7
100 mA 77.7 ± 1.2

2.1.3. Effect of TiO2 Loading Content into Chitosan Beads

In order to increase the catalytic activity of TiO2/Fe3O4-CS beads, the effect of TiO2
content in the catalyst was studied. For this purpose, the molar ratio TiO2/Fe was varied
during the preparation of the catalyst from 1 to 3 (to facilitate a designation of the developed
catalysts, the molar ratio values between the brackets were added to TiO2/Fe3O4-CS). The
results showed that a molar ratio equal to 2 (TiO2/Fe3O4-CS(2)) was optimal, leading to total
degradation of CDM after 1 h (Figure 1d) and TOC removal yield of around 70% after 4 h of
treatment (Table 1), against 38.2 ± 3.5% and 54.2 ± 5.6%, respectively, for the molar ratios
TiO2/Fe = 1 and 3. On the other hand, the comparison of the photocatalytic activities of
TiO2/Fe3O4-CS(2) and TiO2-CS (Figure 1d) showed a remarkable difference in their catalytic
performance, which was greater for the composite catalyst. In fact, the CDM degradation
rate did not exceed 35% after 1 h of treatment using TiO2-CS beads, with low TOC abatement
estimated at 24.5± 1.9% after 4 h of treatment. Therefore, it is obvious that the Fe(II) ions in
TiO2/Fe3O4-CS catalytic beads notably improve their catalytic performance by the Fenton
reaction with H2O2, so that •OH radicals are produced. Numerous studies have reported
the high photocatalytic activity of the mixture of TiO2/Fe3O4 compared to pure TiO2, and
they explained this improvement by the fast photogenerated electron transfer between
Fe3O4 and TiO2, which can effectively reduce electron/hole recombination [12,33,36,37].

To sum up, a molar ratio TiO2/Fe = 2 is optimal both for the removal of the pollutant
and its mineralization. In fact, varying the molar ratio from 1 to 2, the photocatalytic
activity of the catalytic beads increased through the increase in TiO2 active sites. The
improvement in pollutant degradation and mineralization by the increase in TiO2 load in
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the iron catalysts has already been reported by many research studies, and it is related to
the enhancement of the electron transfer reducing electron–hole recombination [32,38]. For
a molar ratio TiO2/Fe = 3, the catalytic performance of the system decreased due to the
decrease in active iron sites in favor of the photocatalytic sites of TiO2, which has a wide
band gap energy, causing a rapid recombination of the electron–hole pairs [39]. It is well
known that the fast recombination of charge carriers significantly lowers the photocatalytic
performance [24,40]. Thus, a TiO2/Fe molar ratio equal to 2 was optimal for the preparation
of TiO2/Fe3O4-CS beads, and the catalyst TiO2/Fe3O4-CS(2) was selected thereafter.

The photodegradation of pesticides using TiO2/Fe3O4-based materials as catalysts has
been poorly reported. Compared to the efficiency of TiO2/Fe3O4 composite catalysts listed
in Table 2, TiO2/Fe3O4-CS showed good catalytic activity. Nevertheless, the reactor set-up,
such as the irradiation source, can greatly affect the overall efficiency of the process [41].

Table 2. The comparison of photodegradation efficiency of TiO2/Fe3O4-CS catalytic beads with other
TiO2/Fe3O4-based materials against different pesticides.

Catalysts Pesticides Degradation Efficiency (%) Refs.

Fe3O4-TiO2/reduced graphene oxide Atrazine 99% within 40 min [42]
N-doped TiO2@SiO2@Fe3O4 nanocomposite Paraquat 98.7% within 180 min [43]
Bare 3D-TiO2/magnetic biochar dots Diazinon 98.5% within 30 min [44]
TiO2/Fe3O4-CS Chlordimeform 100% removal within 60 min Present work

2.1.4. Effect of Catalyst Dosage

Catalyst dosage was another parameter affecting the heterogeneous Fenton
reaction [45]. The effect of catalyst dosage on the degradation of CDM by the PEF process
was studied by applying a current intensity of 50 mA at pHinitial = 3. It is clear from
Figure 2a that the increase in TiO2/Fe3O4-CS(2) catalytic beads from 0.25 g L−1 to 1 g L−1

increased the rate of CDM removal, and an almost total degradation was obtained for all
assays after 1 h of treatment, with an improvement in TOC abatement, respectively, from
40.9 ± 4.1% to 69.6 ± 2.7% (Table 1). For a concentration equal to 1.5 g L−1, there was a
trivial enhancement in CDM and TOC removal efficiencies. However, the removal yields
of CDM and TOC were decreased for a high concentration equal to 2 g L−1. Indeed, an in-
crease in the concentration of catalytic beads in solution can inhibit the penetration of light
into the photocatalytic reactor [46,47]. Additionally, an increase in the active catalytic sites
can cause secondary reactions with •OH radicals, thus producing less reactive oxidizing
species (Equation (3)), which can reduce the efficiency of the process for the mineralization
of organic pollutants [25].

Fe2+ + •OH → Fe3+ + OH− (3)

2.1.5. Effect of the Current Intensity

The current intensity applied is a key parameter in the electrochemical Fenton tech-
nologies because it is the driving force for the reduction in oxygen, leading to the generation
of H2O2 at the cathode, and it affects the regeneration of Fe(II) [48]. In order to study the
effect of the current intensity applied on CDM degradation and its mineralization by the
PEF process, several experiments were carried out using different current intensities in
the range from 50 mA to 100 mA in the presence of 1 g of TiO2/Fe3O4-CS(2) and at initial
acid pH (Figure 2b). The results showed that an increase in the current intensity from
50 mA to 70 mA leads to total degradation of the pollutant after only 1 h, with almost 10%
improvement in TOC abatement (Table 1). This finding can be mainly attributed to the fast
production of H2O2 at a higher current and the fast regeneration of Fe(II) enhancing the
production of •OH radicals [49].
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As seen in Figure 2b and Table 1, no further increase in the removal efficiencies was
observed for the current intensity applied beyond 70 mA. This behavior can indicate that
parasitic reactions, such as the four-electron reduction in O2 with H2O formation, as well
as the decomposition and hydrogenation of H2O2, would take place when the current
increased beyond a certain value [49–52]. On the other hand, working at higher current
intensities can generate a degradation of our organic catalytic support “CS”. In fact, several
studies have shown the degradation of CS in the presence of an irradiation source and
high concentrations of H2O2 [53,54]. An optimal current intensity equal to 70 mA, which
ensured high treatment efficiency and good catalyst stability, was therefore established for
the upcoming experiments.

To confirm the role of •OH radicals in the mineralization of the organic pollutant,
isopropanol was used as a •OH scavenger. The degradation of CDM was totally inhibited
in the presence of isopropanol. Thus, •OH should be the main active species for the
degradation of CDM by the PEF process.

2.2. Treatment of Wastewater Doped with Chlordimeform by Photo-Electro-Fenton Process

To evaluate the applicability of the PEF process using TiO2/Fe3O4-CS(2) as a catalyst
for the removal of CDM in a more complex matrix than ultrapure water, an experiment
was carried out on secondary treated wastewater kindly given by the municipal wastew-
ater treatment plant in the northwest of Spain, whose physiochemical characteristics are
summarized in Table 3.

Table 3. Physicochemical properties of the collected wastewater.

Parameter Value

Total organic carbon TOC (mg L−1) 52.7
Chemical oxygen demand DCO (mg L−1) 35
Biological oxygen demand BOD5 (mg L−1) 2
Conductivity (mS cm−1) 3.33
pH 7.31
Turbidity (mg L−1) 12

Under optimal experimental conditions ([CDM]i = 30 mg L−1, [TiO2/Fe3O4-CS(2)]
= 1 g L−1, and I = 70 mA), total degradation of CDM was achieved after 1 h, and TOC
abatement reached 50.6 ± 5.1% after 1 h of electrolysis; then, it increased slowly to attain
80.8 ± 1.9% after 6 h of treatment (Figure 3b).

Furthermore, a slight decrease in the efficiency of the system was noticed compared
to previous results when ultrapure water was used as the matrix (Figure 2b). This finding
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can be explained, according to zazouli et al. [55], by the presence of organic matter and
inorganic anions in wastewater. In fact, the anions (X−) can react with the •OH to produce
X−• radicals, which are less reactive.

In addition to the aqueous matrix influence, it should be noted that EEC is another big
concern, which should be considered for sustainable development [56]. The results showed
that global EEC was low compared to some literature values on the treatment of real
wastewater by electrochemical processes [57–59] around 1.7 kWh m−3 and 1.4 kWh m−3,
respectively, for real wastewater and ultrapure water matrices. However, it should be
noted that the difference ('0.3 kWh m−3) is probably due to the presence of degradable
compounds in the treated wastewater matrix, whose oxidation requires a little more energy.

2.3. Evaluation of Organic Acids and Minerals Produced during Treatment

Studies of organic pollutants’ mineralization by advanced oxidation processes show
that oxidation by •OH radicals leads to the formation of carboxylic acids [60,61]. To
better assess the oxidative capacity of our PEF process, an analysis of carboxylic acids
was performed in order to identify and quantify them during treatment. The evolution
of the identified acids during the mineralization of CDM is presented in Figure 3c. All
the acids produced reached their maximum concentrations after around 2 h. Then, they
decreased to a zero value after 6 h of treatment, indicating the deep mineralization of all
detected acids. The concentration of oxalic acid during the treatment process was low
(almost zero), which can be explained by the high reactivity of oxalic acid with Fe(III) and
the formation of Fe(III)–oxalate complexes that are easily photolysed in the presence of
UV light and H2O2 oxidant [62]. However, the other acids detected were malonic, succinic,
formic and glycolic acids, appearing at the beginning of treatment. These results showed
the effectiveness of our PEF process in removing the aliphatic compounds known for their
resistance to oxidation.
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Figure 3. Treatment of a real effluent: (a) % removal of CDM; (b) % removal of TOC; (c) [carboxylic
acids] vs. time (d) [ions] vs. time: I = 70 mA in the presence of 1 g L−1 of TiO2/Fe3O4-CS(2) and at
pHinitial = 3.

On the other hand, considering the CDM molecule is composed of a chlorine atom and
two nitrogen atoms, its treatment by an advanced oxidation process leads to the production
of minerals. The evolution of these ions was monitored by ion chromatography. The ob-
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tained results (Figure 3d) showed that the chloride ions reached a maximum concentration
of 6.22 mg L−1 after 1 h; this concentration presented the total amount initially present in
the parent molecule. This finding was in agreement with several studies, which have shown
that the release of chloride ions is rapid using a BDD anode and that the dechlorination
of aromatic compounds occurs before the opening reaction of the aromatic cycle [63–65].
Then, the concentration of chloride ions decreased to approximately half (3.05 mg L−1)
after 6 h of treatment, which was in agreement with the results found by Mhemdi et al. [64]
who studied the effect of the anode material (platinum and BDD) on the evolution of
chlorides during the mineralization of 2-chlorobenzoic acid by an electrochemical oxidation
process. The results showed that, for platinum, the concentration of chloride ions reached
a maximum after 2 h and then remained constant. Using the BDD anode, a different
behavior of chloride ions was observed. They accumulated rapidly after 1 h; then, their
concentration decreased due to their oxidation to chlorine (Cl2), which transformed into
hypochlorite ions HClO− by hydrolysis. Consequently, the decrease in the accumulated
chloride concentration during treatment could be explained by the oxidizing power of the
BDD anode and the synthesized catalysts, causing the transformation of Cl− ions into Cl2.

Furthermore, the concentration of nitrate ions (NO3
−) after 6 h was estimated at

0.68 mg L−1. However, the accumulated concentration of ammonium ions (NH4
+) was

high, and it was around 4.75 mg L−1. The accumulated concentrations of nitrate and
ammonium ions after 6 h of treatment represent approximately 90% of the amount of
nitrogen initially contained in the molecule of CDM. Consequently, one can confirm that
CDM is mineralized during PEF application.

2.4. Stability of the Catalyst
2.4.1. Catalytic Stability

The recycling and reusability of a heterogeneous catalyst are important parameters for
economic and environmental considerations [66]. The TOC abatement obtained using the
same TiO2/Fe3O4-CS(2) beads for four consecutive runs is depicted in Figure 4. After each
run, the catalyst was washed with distilled water and dried at ambient temperature. The
results showed that TOC removal remained almost constant for four cycles of reuse. The
slight decrease ('6.7%) observed in the fourth cycle could be attributed to the modification
of the physicochemical properties of the catalyst’s surface by the effect of UV-LED irradia-
tion and the presence of H2O2 as an oxidant. In addition, possible leaching of Fe ions in the
reaction medium was checked. The leached amount of Fe after each run did not exceed
1.7 mg L−1, corresponding to 0.5% of the initial metal content in catalytic beads. These
results revealed an excellent structural stability of the catalytic beads and minimal leaching
of iron according to the environmental standards demanded by the European Union (<2
mg L−1) [67].

2.4.2. Characterization of Catalyst before and after Use
SEM Analysis

The SEM images of TiO2/Fe3O4-CS(2) beads before and after use are illustrated in
Figure 5. As shown, the surface of the beads is smooth, indicating that iron and TiO2
are attached to CS. The use of high magnification highlighted the observation of TiO2
nanoparticles on the surface of the beads. The comparison of images in Figure 5a,b showed
that, after four consecutive cycles, the surface of the beads was slightly damaged by
oxidizing conditions and UV-LED irradiation, which explained the leaching of the metal.
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XRD Analysis

In order to determine the crystalline structure of the TiO2/Fe3O4-CS(2) beads, an
XRD analysis was performed. In the XRD patterns (Figure 6a), the peak positions at
2Theta = 30.14◦, 35.59◦, 43.47◦, 53.87◦, 57.41◦ and 62.65◦ corresponded, respectively, to
the Miller indices of (220), (311), (400), (422), (511) and (440) of the crystalline structure
of Fe3O4, and the peak positions at 2Theta = 25.29◦, 37.78◦, 38.59◦, 48.01◦, 55.03◦, 68.74◦,
70,25◦, 75.01◦, 82.62◦ could be attributed to the diffraction planes of (110), (101), (004),
(220), (105), (400), (220), (215) and (312) of the crystalline structure of TiO2. The obtained
peaks are well matched with standard data JCPDS-ICDD card N◦:00-019-0629 for the Fe3O4
magnetite and 00-021-1272 for the TiO2 anatase.
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The analysis of the catalytic beads used allowed us to obtain a diffractogram similar
to that of fresh beads. In fact, indexing the pattern exhibited the crystal structure of the
TiO2 anatase (ICDD 00-021-1272). However, the peak positions at 2Theta = 30.14◦, 35.59◦,
43.47◦, 48.01◦, 55.03◦, 57.41◦ and 62.65◦ corresponded, respectively, to the Miller indices
of (220), (311), (400), (421), (422) (511) and (440) of the crystalline structure of maghemite
Fe2O3 (ICDD 00-039-1346) instead of magnetite Fe3O4. Fe2O3 had the same spinel structure
as magnetite, but it only contained iron in the trivalent Fe(III) state [68], which indicated
the oxidation of Fe3O4. Furthermore, using the Debye–Scherrer equation, the grain size of
TiO2 was estimated at 64.5 nm, while the size of Fe3O4 was around 11.6 nm, indicating that
the beads exhibit superparamagnetic behavior [69].

Magnetic Properties Analysis

The magnetization curve of the TiO2/Fe3O4-CS(2) beads revealed a saturation intensity
equal to 11.40 emu/g (Figure 6b). This low value is due to the presence of non-magnetic
materials (CS and TiO2) [70]. The magnetization intensity of the beads used was almost
the same, and it was estimated at 10.48 emu g−1, which means that the beads have a good
stability of the magnetic properties after four consecutive cycles.

3. Materials and Methods
3.1. Chemical Products

All chemicals were of analytical–laboratory grade and applied without further pu-
rification. Chlordimeform, chitosan, sodium hydroxide, ferrous sulfate iron (II), iron (III)
chloride, titanium oxide and potassium titanium oxide oxalate dehydrate were purchased
from Sigma-Aldrich (Madrid, Spain). Acetic acid, sulfuric acid and nitric acid were sup-
plied by Analar Normapur (Radnor, PA, USA). Acetonitrile (HPLC-grade) was purchased
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from Fisher Scientific (Loughborough, UK). Ultrapure water obtained through reverse
osmosis technology (Basic 360) was utilized throughout all the experiments.

3.2. Preparation of TiO2/Fe3O4-Chitosan Magnetic Beads

An eco-friendly, low-cost and simple approach was used to synthesize the composite
catalysts. Magnetic TiO2/Fe3O4-CS beads were prepared via a precipitation method using
sodium hydroxide (1 M) as a precipitating agent. First, 2% CS gel solution was prepared by
dissolving 1 g of CS in acetic acid (1%) under stirring at room temperature. After the total
dissolution of CS flakes, 5 mmol of iron salts at a molar ratio Fe3 +:Fe2 + = 2:1 was added.
Then, the TiO2 nanoparticles were blended in the iron salts–CS gel solution. The amount
of TiO2 varied from 5 mmol, 10 mmol to 15 mmol, which corresponds, respectively, to the
molar ratios TiO2/Fe equal to 1, 2 and 3. By adding TiO2, the color of the solution changed
from orange to white, as shown in Figure 7A. Then, the mixture was dropped through a
syringe into the hardening sodium hydroxide solution to create spherical CS gel beads. The
beads were washed several times with deionizer water to remove any residual alkali and
dried in an oven at 50 ◦C.
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As seen in Figure 7B, the obtained beads are black for those containing iron only, and
they take on a greenish coloration in the presence of TiO2. All the prepared beads exhibited
magnetic behavior in the presence of an external magnetic field (Figure 7C). The TiO2-CS
beads were prepared following the same alkaline co-precipitation method without addition
of iron salts.

3.3. CDM Removal Assays

The PEF process of CDM degradation was performed in a cyclic mode, as shown in
Figure 8. The process was composed of two reactors connected in series, allowing the
treatment of (400 mL, 30 mgL−1) CDM solution. A recirculation flow (200 mL min−1) was
set using a pump to connect the two reactors.
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Figure 8. Cyclic electro-photocatalytic reactors: (I) electrochemical reactor: (1) power supply,
(2) carbon felt electrode, (3) BDD electrode, (4) air supply, (5) magnetic stirrer, (6) peristaltic pump;
(II) photocatalytic reactor: (5) magnetic stirrer, (7) UV-LED lamp, (8) catalytic beads.

The first reactor is electrochemical, composed of a glass beaker with a capacity of
250 mL, which permits the production of H2O2 by the reduction of dissolved oxygen on the
cathode surface, which is a carbon felt (19.5 × 6 × 0.3 cm, Mersen, Barcelona, Spain) placed
around the inner wall of the cylindrical cell, while the anode is a boron-doped diamond
(BDD: 5 × 2.5 × 0.2 cm, Neocoat S.A.) placed in the middle of the cell. The system was run
under a galvanostatic mode using an E 3512 A generator (Agilent, Santa Clara, CA, USA).

Na2SO4 was added previously as a support electrolyte at a concentration of 0.01 M,
and the pH was adjusted to 3 using sulfuric acid solution. Air bubbling was maintained
15 min before the start of the reaction and through the treatment in order to saturate the
medium with oxygen.

The second reactor is a cylindrical glass cell. A low-consumption UV-LED lamp
(365 nm, 40 W, 550 lumens) from Luckylight electronics was placed above it, emitting at
a wavelength equal to 365 nm. The catalyst was added into the photocatalytic reactor to
promote its activation and avoid its electrochemical degradation, especially in the presence
of a powerful oxidizing BDD anode in the first reactor.

To highlight the contribution of (photoelectrolysis + H2O2) and photocatalysis pro-
cesses to the degradation of CDM, assays were conducted, respectively, without catalytic
beads and in the absence of a current. Likewise, to evaluate the adsorption process contri-
bution, another assay was conducted in the absence of UV irradiation and a current.

3.4. Analytical Methods
3.4.1. Determination of CDM Concentration

During experiments, the samples were collected and filtered prior to analysis through
a 0.45 µm pore-size cellulose acetate membrane. CDM was quantified by HPLC (Agilent
1260 equipped with UV detector) with a C18 reverse-phase (4.6 mm × 250 mm, 5 µm;
Agilent) column. The diode array detector was set at a fixed wavelength equal to 240 nm.
The eluent was water/acetonitrile (60/40), with a flow rate of 1 mL min−1.

3.4.2. Determination of Carboxylic Acids Concentrations

To identify and quantify the carboxylic acids generated during electrolysis, an HPLC
was used with a diode array detector fixed at 206 nm. A Rezex™ ROA-Organic Acid
H+ (8%) (300 × 7.8 mm, i.e., 8 µm) column was used and placed in an oven at 60 ◦C.
The eluent was 0.005 N H2SO4 solution pumped at a flow rate of 0.5 mL min−1. The
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identification of carboxylic acids was based on a comparison of the retention times with
those of pure standards.

3.4.3. Determination of Ions Concentrations

The ions generated were quantitatively followed by an ion chromatography system
DIONEX ICS-3000. The separation of ions was performed by a Metrosep A Supp 5 column
(4.0 × 250 mm). The eluent was 3.2 mmol L−1 Na2CO3 and 1 mmol L−1 NaHCO3 at a flow
rate of 0.7 mL min−1. The limit of quantification (LOQ) of all chromatographic methods
was 0.1 mg L−1.

3.4.4. Total Organic Carbon Measurements

The total organic carbon (TOC) was measured via catalytic high-temperature combustion
by multi N/C 3100 equipment (Analytic Jena, Germany) coupled with a non-dispersive
infrared detector. The percentage removal of TOC was calculated using the following equation:

% removal of TOC =
TOC0 − TOCt

TOC0
× 100 (4)

with TOC0 and TOCt representing the initial TOC and that at instant t.

3.4.5. Determination of Fe Concentration

The Fe concentration was determined by Inductively Coupled Plasma ICP (model:
Optima 4300 DV Perkin Elmer Instruments). To obtain a metal solution from the heteroge-
neous catalyst, an acid digestion method was carried out using a concentrated nitric acid
solution with the beads and placed on an autoclave at 121◦C (Danish standard DS250).

3.4.6. Determination of H2O2 Concentration

The concentration of H2O2 was determined by a colorimetric method using a (Thermo
Electron Corporation Helios) spectrophotometer because a titanium oxalate complexing
agent can react with H2O2, producing a yellow peroxo–titanium complex, which absorbs
at λmax = 400 nm [71].

3.4.7. Characterization of the Synthesized Catalysts

The surface morphology of the catalytic beads was observed using a scanning elec-
tron microscope (JEOL JSM-6700F). The crystalline structure of the obtained catalysts was
determined by X-Ray Diffraction (XRD, X’Pert PRO MPD). Finally, the Physical Proper-
ties Measurement System equipment (PPMS Ever Cool-II 9T) with a Vibrating Sample
Magnetometer (VSM) at 298 K was used to explore the magnetic properties of the catalysts.

3.5. Specific Energy Consumption

The electric energy consumption (EEC) per unit volume of treated solution (kWh m−3)
was calculated according to the following equation [72]:

EEC
(

kWh m−3
)
=

I× E × t
V

(5)

where I is the current applied (A), E is the average cell voltage (V), t is the electrolysis time
(h), and V is the solution volume (L or m3).

4. Conclusions

In summary, magnetic TiO2/Fe3O4-CS beads were synthesized following an easy in
situ co-precipitation approach. The molar ratio TiO2/Fe was studied, and the enhanced
catalytic activity of TiO2/Fe3O4-CS, with a molar ratio equal to 2, was probably due to the
reduced recombination of charge carriers on the surface of the catalyst.

The performance of the PEF process using TiO2/Fe3O4-CS(2) as a photocatalyst for the
treatment of real wastewater doped with CDM insecticide was evaluated under optimal
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experimental conditions. Complete CDM removal was attained in 1 h, and more than 80%
TOC abatement was achieved after 6 h of treatment, with simple carboxylic acids as the
main by-product.

The catalytic activity of TiO2/Fe3O4-CS(2) was satisfactorily validated in four con-
secutive cycles, and a slight decrease was obtained between the first and the fourth runs.
Post-reaction catalyst characterization showed a high stability of magnetic properties
despite the oxidation of Fe3O4 to Fe2O3, which is known for its good catalytic activity,
sometimes similar to Fe3O4. Thus, the slight decrease in the catalytic activity could be
attributed to the leaching of metals caused by the effect of the oxidizing conditions and
UV-LED irradiation on catalytic beads.

This study offered a simple approach for constructing an eco-friendly, simple recovery
and efficient bifunctional catalyst for advanced oxidation processes for treating recalcitrant
organic pollutants in wastewater.
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