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a b s t r a c t

We study topologically charged propagation-invariant eigenstates of the 1+2-dimensional Schrödinger
equation with a cubic (focusing)–quintic (defocusing) nonlinear term. First, we revisit the self-trapped
vortex soliton solutions. Using a variational ansatz that allows us to describe the solutions as a liquid
with a surface tension, we derive a simple formula relating the inner and outer radii of the bright
vortex ring. Then, using numerical and variational techniques, we analyse dark soliton solutions for
which the wave function density asymptotes to a non-vanishing value. We find an eigenvalue cutoff
for the propagation constant that depends on the topological charge l. The variational profile provides
simple and very accurate results for l ≥ 2. We also study the azimuthal stability of the eigenstates
by a linear analysis finding that they are stable for all values of the propagation constant, at least for
small l.

© 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Beams carrying angular momentum (i.e.: vortices [1]) are
ascinating topological objects [2] present in many branches of
hysics, from optics [3] or electron beams [4] to coherent mat-
er [5], among many other fields. The nonlinear Schrödinger equa-
ion (NLSE) is a paradigmatic model for self-interacting waves and
ortices have been widely studied with different versions of it, see
.g. [6,7]. In this framework, vortices are quantized, in the sense
hat they are defects for which the amplitude of the field vanishes
nd the phase around the singularity has an integer number of
indings l.
The present contribution deals with the NLSE with a focusing

ubic and a defocusing quintic nonlinear potential. This model
s of substantial theoretical interest because the defocusing term
revents the collapse of the wavefunction that would take place
ith just the cubic term in dimension two or higher [8], thereby
roviding an important framework to analyse multidimensional
elf-trapped fields [9]. Having both focusing and defocusing in-
eractions allows for the existence of both bright and dark stable
ropagation-invariant soliton-like solutions, a peculiar fact that
eads to curious dynamical properties, see e.g. [10]. In particular,
here exist stable vortex solitons1 [15–18]. What happens for

∗ Corresponding author.
E-mail address: hmichinel@uvigo.es (H. Michinel).

1 Unfortunately, in the literature different and sometimes contradictory
enominations are used for the same kind of objects. We use the term vortex
oliton [11] for stationary solutions with angular momentum that have a finite
ttps://doi.org/10.1016/j.physd.2022.133340
167-2789/© 2022 The Author(s). Published by Elsevier B.V. This is an open access a

nc-nd/4.0/).
solitons with large norm is that they tend to present flat-top
profiles, namely the wavefunction has a nearly constant ampli-
tude within a certain region of space whereas it is exponentially
vanishing elsewhere. Due to this property, these objects share
many qualitative features with liquids [19].

In addition to its appealing mathematical properties, the cubic–
quintic model is valuable for the modelling of several physical
systems. It has been utilized for quite different situations [20],
including plasmas [21], and superfluids [22]. In the context of
optical beams, it is useful for laser propagation in certain materi-
als [23] and plays a role in systems with enhanced quintic non-
linearity [24,25] such as an adequately tailored sodium gas [26]
(notice that defocusing–focusing cubic–quintic models have also
been discussed at length [27]). We must also remark that a
cubic–quartic model [28] provides an accurate description of a
recently discovered state of matter, the quantum droplets [29,30].
Since the mathematical description of this type of Bose–Einstein
condensates shares many similarities with the one discussed in
the present paper, the methods presented below might prove
useful in that context too.

The purpose of this work is two-fold. First, we revisit the well-
studied problem of cubic–quintic vortex solitons by proposing a
novel variational ansatz that allows us to write down an effective
Hamiltonian for the system as the sum of a bulk term related

support in space. These configurations that have a dark region within a self-
trapped bright region are sometimes also called bright spinning solitons [12]
or vortex rings [13]. On the other hand, we use the term dark soliton [14] for
solutions where the vortex is embedded in an infinite fluid.
rticle under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-
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o the energy density, a boundary term coming from the surface
ension of the ‘‘liquid’’ and a centrifugal term that takes into
ccount the angular momentum. The formalism leads to a simple
ormula that relates the inner and outer radii of the vortex ring.
t turns out that the approximation is qualitative for l = 1 but
urprisingly precise for l ≥ 2. Then, we analyse dark solitons with
imilar methods. We find a one-parameter family of solutions
nd rigorously prove that a second family of regular solutions
ith a seemingly allowed asymptotic behaviour does not exist.
y adapting to this case the variational procedure, we find again
simple description that is in extremely good agreement with

he numerical results for l ≥ 2 and derive an l-dependent eigen-
alue cutoff that, in turn, results in a maximum possible value
or the vortex radius. Finally, stability of the stationary states
gainst azimuthal perturbations is studied by a linear analysis
omplemented by direct numerical simulations.

. Mathematical model and preliminary remarks

We study the cubic–quintic NLSE model in its dimensionless
orm:
∂Ψ

∂z
= −∇

2Ψ − (|Ψ |
2
− |Ψ |

4)Ψ (1)

where the operator ∇
2

= ∂2x + ∂2y is the Laplacian in two
dimensions. All the coefficients can be set to one as in Eq. (1)
without loss of generality by appropriately rescaling the wave
function and the coordinates x, y, z.

For the NLSE in general there are a number of conserved
quantities, including momentum, angular momentum, norm and
hamiltonian. We are interested here in the latter two, which we
define to be:

N =

∫
|Ψ |

2dxdy (2)

H =

∫ (
|∇⃗Ψ |

2
−

1
2
|Ψ |

4
+

1
3
|Ψ |

6
)
dxdy (3)

Generic propagation invariant eigenstates have the form:

Ψ = eiβzψ(x, y) (4)

and therefore satisfy the time-independent equation:

−βψ = −∇
2ψ − (|ψ |

2
− |ψ |

4)ψ (5)

In the following sections, we will look for solutions with vorticity
of the form:

Ψ = eiβzeilθψ(r) (6)

where r, θ are polar coordinates in the (x, y) plane and ψ(r) is
real function. Using the expression for the Laplacian in polar
oordinates, Eq. (5) becomes:

βψ = −ψ ′′
−

1
r
ψ ′

+
l2

r2
ψ − ψ3

+ ψ5 (7)

In Section 3, we will revisit solutions of this equation that are
self-trapped vortex rings in which the energy distribution is
confined in a region of space limr→∞ ψ(r) = 0, which we will
call vortex solitons [11]. In Section 4, we consider solutions with
limr→∞ ψ(r) = ψ∞ ̸= 0, namely dark solitons [14].

Even if this paper is focused in the two-dimensional case, it
s useful to recall the explicit one-dimensional (y-independent)
ink solution of Eq. (5) [31,32] that will be useful later. The kink
olution with propagation constant:

= βcr =
3

(8)

16 f

2

reads:

ψ(x) =

√
3/2√

e±

√
3
2 (x−x0) + 1

(9)

where x0 is an integration constant determining the kink position.
This solution was first reported, to our knowledge, in ref [33]. For
later convenience, let us introduce the width of the kink wk. We
can define it for instance, as the interval in x needed to increase
the density ψ(x)2 from 1% to 99% of its maximum, namely wk ≈

0.612.
One-dimensional kink solutions do not exist for other val-

ues of β . In order to prove this assertion, let us rewrite the
one-dimensional version of (5) as:

d2ψ
dx2

= βψ − ψ3
+ ψ5

≡ −
dV
dψ

(10)

where:

V (ψ) = −
1
2
βψ2

+
1
4
ψ4

−
1
6
ψ6 (11)

otice that from (10) is immediate to show that:

d
dx

(
1
2
ψ ′2

+ V
)

= 0 (12)

The quantity 1
2ψ

′2
+ V is therefore constant for all x. We are

ow interested in kink solutions, such that limx→−∞ ψ = 0 and
imx→∞ ψ = ψ∞. From the x → −∞ limit, we see that V = 0.
n the other hand, the derivative ψ ′ must asymptotically vanish
s x → ∞, leading to:

ψ∞ − ψ3
∞

+ ψ5
∞

= 0 (13)

ith two possible solutions:

2
∞,± =

1 ±
√
1 − 4β
2

(14)

Moreover, requiring also V = 0 at x → ∞, the only non-trivial
solution is ψ2

∞
= ψ2

∞,+ =
3
4 , with β =

3
16 , namely the one given

in (8), (9).
We close this section by commenting on the quantities N , H

defined in (3) for the solution (9) (we neglect here the integral
over y). Both N and H are of course infinite, but we can regularize
them by imposing a cutoff xcut − x0 ≫ wk. We find:

Ncut =

∫ xcut

−∞

ψ2dx =
3
4
(xcut − x0) + O

(
e−

√
3
2 (xcut−x0)

)
Hcut = −

9
64

(xcut − x0) +
3
√
3

32
+ O

(
e−

√
3
2 (xcut−x0)

)
(15)

This contains the sum of a bulk term in which the Hamilto-
ian density is −

9
64 and a boundary term that accounts for the

contribution to the Hamiltonian of the transition from the |ψ | ≈

0 region to the |ψ | ≈
√
3/2 region. Neglecting exponentially

suppressed terms, we see that Hcut + βcrNcut ≈
3
√
3

32 .

3. Vortex solitons: a new variational approach

In this section, we study bright vortex solitons that are eigen-
states with vorticity of the form (6) and with finite extent,
limr→∞ ψ(r) = 0. These solutions have been discussed in a
number of papers. The existence of stable l = 1 eigenstates was
discovered in [15]. This was generalized for l = 2 in [12,16] and
for larger values of l in [18,34,35]. In the case of relatively large
orticity, and dominant quintic self-defocusing nonlinearity, the
imple Thomas–Fermi (TF) approximation may be quite relevant
or the dark vortices [36].
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Variational approaches have been successfully developed since
long ago for different situations to find approximations to fea-
tures of many profiles of self-trapped solitons, being probably
the most famous the well-known unstable ‘‘Townes soliton’’[37].
For instance, building on arguments of [38], the authors of [39]
could predict the norm of the generalization of the Townes profile
to cases with topological charge. One can think about those
solutions with self-similar collapse as appearing in a limit of the
cubic–quintic model in which the quintic term is vanishingly
small. Notice however that the variational approach developed
in the present paper is valid in a different regime, since the
emergence of the liquid-like phase requires the competition of
the cubic and quintic terms.

It turns out that for every l ≥ 1 there is a value βst (l) of the
ropagation constant such that in the interval βst (l) < β < βcr
he vortex solitons are stable. In this region, ψ has a flat-top
rofile, with the size of the flat region growing as β approaches
he eigenvalue cutoff provided by βcr , above which solutions do
ot exist [40].
Even if vortex solitons in the cubic–quintic model are there-

ore well understood, we will put forward a novel variational
nsatz that will allow us to lay out a new perspective on the
roblem and to provide a simple yet accurate relation between
he inner and outer radii of the rings. Moreover, the type of ansatz
ntroduced below will prove also very useful to describe the dark
olitons of Section 4.
It is well known that for the cubic–quintic model (1) there

re flat-top eigenstates, namely propagation-invariant states that
ave almost constant amplitude |ψ(x)| ≈ A in a (bulk) region of
pace of surface S. Away from that region, the solution has almost
anishing amplitude ψ(x) ≈ 0. In the boundary of the region,
here is a non-trivial profile connecting both regions. In general,
or fixed norm and angular momentum, the profile minimizing
he Hamiltonian provides a solution. In a first approximation,
hen the norm N is large and therefore the surface S is large,
he value of the Hamiltonian is dominated by the bulk term and
he boundary terms would be subleading. Neglecting any such
oundary term, we find:

≈

∫ (
−

1
2
A4

+
1
3
A6
)
d2x = S

(
−

1
2
A4

+
1
3
A6
)

(16)

n the other hand, the norm is N ≈ SA2 and therefore H ≈(
−

1
2A

2
+

1
3A

4
)
. Minimizing this expression for fixed N yields:

cr =

√
3
2
, βcr =

3
16

(17)

here βcr was found directly from Eq. (5) from which −βcr =

(A2
cr − A4

cr ). This coincides with the one-dimensional result (8).
In fact, this result is valid for any dimension and does not depend
on angular momentum and therefore the amplitude and propaga-
tion constant for any finite flat-top solution of the cubic–quintic
model should tend to (17) when the flat region is asymptotically
large. Notice, however, that this argument implicitly assumes that
S is finite and therefore does not apply to dark solitons, as the
ones that we will analyse in Section 4.

As this reasoning suggests and as it was shown in [18], Eq. (7)
dmits flat-top solutions for any value of l when β approaches
cr . These solutions look like rings with interior radius Rint and
xterior radius Rext . For r ≪ Rint and r ≫ Rext we have ψ ≈ 0

and for Rint ≪ r ≪ Rext , we have ψ ≈ Acr . Our goal here is
to find new insights on these flat-top profiles and on the values
of the interior and exterior radii of the self-trapped vortex. As
a variational ansatz,2 we can approximate the flat-top profile of

2 Different variational approaches to the same problem were introduced in
18,35,41].
3

these vortices with the expressions of the one-dimensional kink,
Eq. (9). Let us define a value rcut = (Rint + Rext )/2 that is well
nside the flat region (this is only possible if Rext − Rint ≫ wk).
We take:

ψ(r) ≈

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

0 (r < rmin)
√
3/2√

e−
√
3
2 (r−Rint )+1

, (rmin ≤ r ≤ rcut )

√
3/2√

e

√
3
2 (r−Rext )+1

, (r > rcut )

(18)

We have also introduced a value 0 < rmin ≪ Rint in order
to avoid the divergence around r = 0 of the integral of the
term in H proportional to l2. Notice that these expressions solve
(7) with β = βcr if we neglect the second and third terms in
the right-hand side. The second term is comparatively small if
|
1
r ψ

′
| ≪ |ψ ′′

| at the kink position, resulting inwk ≪ Rint (if that is
satisfied, obviously wk ≪ Rext is also true). The third term would
be comparatively small if l2 ≪ r2 for the positions for which the
vortex has support, namely l ≪ Rint . Thus, the approximation
should work in cases with:

Rint ≫ l, wk (19)

The next step is to compute the norm and Hamiltonian of
Eq. (3) for the variational profile. Using a procedure analogous
to the one leading to (15), we find that the norm is:

N ≈
3π
4

(R2
ext − R2

int ) (20)

his is simply the area of the ring between Rint and Rext multiplied
y A2

cr . The Hamiltonian is:

= 2π
∫

∞

0
r
(
ψ ′2

+
l2

r2
ψ2

−
1
2
ψ4

+
1
3
ψ6
)
dr (21)

e can split this integral in the bulk contribution for Rint < r <
ext , considering a constant ψ and two boundary contributions
round Rint and Rext for which the r in the integral can be consid-
red approximately constant and factored out from the integral.
e find:

+ βN ≈ 2π

(
3
√
3

32
(Rint + Rext ) +

3
4
l2 log

(
Rext

Rint

))
(22)

he first term is a boundary term, analogous to the one found
n the one-dimensional case (15). It represents a surface ten-
ion [42] for the fluid of constant bulk density, thereby leading
o properties that resemble those of liquids [19]. The second
erm comes from the contribution of the angular momentum,
ntegrated between Rint and Rext .

The next step is to minimize this quantity for fixed l, N . In
rder to do that, we can substitute Rext =

√
R2
int +

4N
3π (Eq. (20)),

compute the first derivative with respect to Rint and then substi-
tute (20) back. Equating the derivative to 0, we find:

Rint =
8l2Rext

8l2 +
√
3Rext

(23)

In Fig. 1, we compare the variational ansatz to the exact profile.
Concretely, what we do for each example is the following: For
given values of l, β , we determine the profile numerically with
a standard relaxation method. From the solution, we extract Rext
(for consistency with (18), the values of Rint and Rext are deter-
mined from the numerical profiles looking for the value of r at
which ψ2 is half of its maximum value). Given Rext , the variational
approximation is determined by (18) with Rint given in (23).
It can be appreciated that the variational ansatz is increasingly
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Fig. 1. A comparison of the variational ansatz (18) (red dashed lines) with the numerical approximation to the exact solutions (blue solid lines). We present three
examples with l = 4 and different values of β .
Fig. 2. Internal radius of the ring as a function of the external radius for l = 1, 2, 3 (left) and l =, 4, . . . , 8 (right). Solid blue lines are the computed values from
he numerical solutions and red dashed lines correspond to the approximate expression (23).
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ore accurate as β approaches βcr and the profile becomes more
clearly flat-top.

In Fig. 2, we compare the prediction (23) with the numerical
data as a function of Rext for the lowest values of l. It can be seen
hat the formula is a very good approximation in all the cases
xcept for l = 1, for which it only produces a rough approxi-

mation. The inexactitude for the l = 1 case can be understood
in relation to the failure of the validity condition (19), provided
that Rint < wk for any value of Rext . Curiously, the accuracy of
the approximate formula (23) for l ≥ 2, with errors typically well
below 1%, is better than what could be expected since it works
very well for all the range of β , including values far from βcr for
which the profile does not have a flat top and the variational
profile (18) does not closely resemble the actual solution.

Let us now briefly comment on the stability of the self-trapped
soliton solutions from the point of view of the variational ap-
proach. Numerical simulations [18,35] and mathematical argu-
ments [34] have shown that for β near enough βcr , vortices of
any value of l are stable. We now present a new perspective on
this issue that provides a simple qualitative understanding of the
underlying reason.

The result of azimuthal instabilities is typically the disinte-
gration of the vortex eigenstate into several pieces that can be
thought of as solitons that fly away from the centre once the
vortex has been broken3 [12,41]. Thus, suppose that there is an
instability that ends up breaking the vortex into p pieces, giving
rise to a configuration in which the support of the wave function
is in several disjoint regions. Now, the optimal case (in the sense
of having smaller H) would be that each piece is a soliton, since
the soliton is, in fact, the solution of smaller H for a given N . Since
the conversion into solitons will never be perfect, the H of the
solution will be greater than that of the p solitons that move away
from each other. With this in mind, we want to compare the H
of the vortex with the H of p solitons. If the H of the solitons

3 Another sort of instability for vortex solitons could be the splitting of a
igher order topological singularity into several of smaller order. That process is
nalogous to the one driving instabilities for dark solitons and will be addressed
n Section 4, where we show that it does not generate instabilities in the
ubic–quintic model at least for large regions of the space of solutions.
 a

4

is greater than that of the vortex, then the evolution that breaks
the vortex will be impossible, which, therefore, should be stable.
Requiring that the norm of the vortex soliton is equal to the one
of the p resulting solitons yields:

N = π (R2
ext − R2

int ) = pπR2
sol (24)

where Rsol is the soliton radius. We can now compare the Hamil-
tonian of the vortex with the one from the separate solitons by
subtracting the surface tension contribution of p solitons to (22),
and we get:

∆H = 2π
3
√
3

32
((Rint + Rext ) − pRsol) =

= 2π
3
√
3

32

(
(Rint + Rext ) −

√
p
√
R2
ext − R2

int

)
(25)

We have disregarded terms related to angular momentum since
they are subleading. From this equation, it is clear that, when
Rext is large enough, ∆H will always become negative (we are
requiring p ≥ 2 taking into account conservation of linear and
angular momentum). This shows that a flat-top vortex soliton of
any l with large enough N cannot decay into separate solitons.
Intuitively, this is very easy to understand: for very large Rext , we
have Rint ≪ Rext and, in fact, the hole in the middle can be almost
eglected, the intensity profile of the vortex looks very much like
hat of a flat-top soliton which, obviously, is not energetically
avoured to decay into two or more separate solitons. Notice also
hat this argument suggests that the last decay mode that remains
nstable when Rext grows is p = 2, as it was found in [18] by
irect numerical integration.

. Dark solitons

In this section, we deal with solutions of Eq. (7) that asymptot-
cally tend to a non-zero value, limr→∞ ψ = ψ∞. To the best of
ur knowledge, these states in the cubic–quintic model have only
een briefly discussed in [43]. Clearly, from the r → ∞ limit of
he equation, we find the same Eqs. (13) and (14) that we had
ncountered in the one-dimensional case. It turns out that there
re no solutions asymptoting to ψ as defined in Eq. (14), as
∞,−
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e prove in the appendix by making use of Pohozaev’s identity.
herefore, we have:

2
∞

= ψ2
∞,+ =

1 +
√
1 − 4β
2

(26)

For simplicity of notation, for the rest of this section ψ∞ stands
for ψ∞,+. Unlike for the one-dimensional kink, the value of β is
not fixed and there is a continuous family of solutions depending
on this parameter. We start by studying this family of solutions
with variational methods and comparing the results with the
numerical solutions. Then, we present an analysis of the stability
properties of these dark solitons in the cubic–quintic NLSE.

4.1. Variational and numerical analysis

Provided the successful variational modelling of vortex soli-
tons in Section 3, it is natural to consider a profile resembling
(18):

ψ ≈
ψ∞

√
e−a(r−Rdark) + 1

(27)

e insert this expression into the following Lagrangian,4 whose
agrangian density gives rise to Eq. (7), see e.g. [44]:

= 2π
∫

∞

0
r
(
ψ ′2

+
l2

r2
ψ2

+ βψ2
−

1
2
ψ4

+
1
3
ψ6
)

(28)

We should fix parameters a and Rdark by minimizing L. Since L
s divergent, we introduce a cutoff for the integrals rcut that will
e later removed. Similarly to Section 3, the Lagrangian can be
pproximated as the sum of three terms:

≈ Lsurf + Lbulk + Ll (29)

here Lsurf is the surface tension contribution:

Lsurf = 2π
ψ2

∞

8a
(a2 + 4ψ2

∞
(1 − ψ2

∞
))Rdark (30)

the term Lbulk comes from the integral of the quadratic, quartic
and sextic terms:

Lbulk = 2π (βψ2
∞

−
1
2
ψ4

∞
+

1
3
ψ6

∞
)
1
2
(r2cut − R2

dark) (31)

nd the Ll term comes from angular momentum:

l = 2πψ2
∞
l2 log

(
rcut
Rdark

)
(32)

e can now easily fix a since it only appears in Lsurf . By cancelling
he first derivative, we get

= 2ψ∞

√
1 − ψ2

∞
(33)

nd therefore Lsurf = 2πRdark
1
2ψ

3
∞

√
1 − ψ2

∞
. Let us now define a

enormalized, finite, Lf by subtracting the infinite additive terms
ncluding rcut . Notice that those terms do not include Rdark and
herefore are irrelevant for the determination of that quantity.
utting everything together, we find:

f = πRdarkψ
3
∞

√
1 − ψ2

∞
+ π (−βψ2

∞
+

1
2
ψ4

∞
−

1
3
ψ6

∞
)R2

dark

− 2πψ2
∞
l2 log (Rdark) (34)

4 The procedure of minimizing H for fixed N used in Section 3 is ill-defined
ere because both quantities are divergent. On the other hand, the computation
f Section 3 could have been defined in terms of the Lagrangian, notice that
= H + βN , cf. Eq. (22).
5

Fig. 3. Examples of the variational Lagrangian with l = 2 and different values
of β . For β < 3

16 , Lf grows quadratically as Rdark → ∞ and there is only a local
minimum. In the limiting case β =

3
16 , Lf grows linearly as Rdark → ∞ and

there is still only a local minimum. For 3
16 < β < βmax(l), there exist a local

minimum and a local maximum. For β ≥ βmax(l) there are no local extrema.

We can rephrase this expression in terms of β by substituting
(26). We find:

Lf
π

=

√
βRdark

2
(1 +

√
1 − 4β) +

R2
dark

12
((1 − 4β)

3
2 + 1 − 6β)

− l2(1 +

√
1 − 4β) log (Rdark) (35)

Notice that limRdark→0 Lf = +∞ because of the centrifugal, loga-
rithmic term. The behaviour at Rdark → ∞ depends of the sign of
the quadratic term, which is positive for β < 3

16 and negative
for 3

16 < β < 1
4 . Thus, for β ≤

3
16 limRdark→∞ Lf = +∞

there is always a global minimum of Lf . For 3
16 < β < 1

4 , we
ave limRdark→∞ Lf = −∞. It turns out that there is a region of
arameter space 3

16 < β < βmax(l) for which there is a local
inimum and a local maximum whereas for β ≥ βmax(l) there
re no local extrema. Fig. 3 illustrates this point.
By finding the local minimum of Lf , we find:

dark =
−3

√
β +

√
12l2(1 +

√
1 − 4β − 8β) + 9β

1 +
√
1 − 4β − 8β

(36)

Thus, for given values of the parameters l and β , the variational
approximation is given in Eq. (27) with the values of ψ∞, a,
Rdark displayed in Eqs. (26), (33), (36), respectively. In Fig. 4, we
show a comparison of these variational profiles with numerical
solutions of Eq. (7) found by a standard relaxation method. The
graph shows that the approximation is extremely rough for l = 1
but works rather well for l ≥ 2 and gets better for larger values
of β .

The radius of the dark hole as given in (36) should be a real
positive number in order to have a sensible solution. Therefore,
we have to require that the expression inside the square root is
positive and this leads to 0 < β < βmax(l) with:

βmax(l) =
24l2(8l2 − 1)
(32l2 − 3)2

(37)

otice also that the value of Rdark for β = βmax(l) is finite, leading
o a limiting radius:

dark <
l
√
2(32l2 − 3)

√
3
√
8l2 − 1

(38)

n figure 5 we show a comparison of Eq. (36) to some values found
y numerically computing the eigenstates. Again, we see that the
ariational approach leads to a rough approximation for l = 1 but
ields rather accurate predictions for l ≥ 2 (see Fig. 5).
Reassuringly, it can be checked that the dark soliton with
= β =

3 is the infinite norm limit of the vortex solitons
cr 16
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Fig. 4. A comparison of the dark soliton profiles found numerically (solid lines) and the variational approximations (dashed lines) for different values of l and β .
Fig. 5. The radius of the infinite vortex solution as a function of the propagation constant β for different values of l. We show a comparison of the formula obtained
rom the variational model (36) (solid lines) to some values found by direct numerical computation of the vortices.
Ψ

w

G

f Section 3. In particular, using (23) and (36), we can see that
he radii of the dark regions coincide:

lim
ext→∞

Rint = lim
β→βcr

Rdark =
8l2
√
3

(39)

.2. Stability

The azimuthal stability of the dark soliton families can be
nalysed in a similar way as was done for the vortex solitons [18].
he stationary states of charge l, Ψ (r, z), are perturbed by small
 t

6

functions with a p-order azimuthal symmetry,

˜ (r, θ, z) = [Ψ (r, z) + F (r, z) exp(ipθ ) +

+G(r, z) exp(−ipθ )] exp[i(lθ + βz)], (40)

here

F (r, z) = f (r) exp(δz) (41)
(r, z) = g(r) exp(δ∗z). (42)

Replacing this perturbed state into Eq. (1) and keeping only
erms of first order (linearization) a set of coupled equations for
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(r, z) and G(r, z) is obtained and can be written in the form,

∂

∂z

(
F

−G∗

)
= −A

(
F
G∗

)
, (43)

being A the operator,

A =

(
∇

2
r −

(l+p)2

r2
+ Q R

R ∇
2
r −

(l−p)2

r2
+ Q

)
, (44)

nd where ∇
2
r ≡ ∂2r + (1/r)∂r , Q = −β + (2 − 3ψ2)ψ2 and

= (1 − 2ψ2)ψ2. The perturbation eigenstates can be obtained
pplying a finite difference scheme to the problem (43) and carry
ut propagation steps repeatedly up to the point the growth rate
f the field vector (f |g∗)T reaches a fixed value. From the growth
ate at any step a guess for δ can be obtained. This was the
ethod used in [18,45] and basically constitutes a variant of the
irect power method. Convergence is slow and requires from a
uite long propagation distance, particularly when the growth
ate is close to zero. At such condition it is also necessary to use
hort steps∆z in order to avoid precision errors. According to this
e decided to use a more straightforward and reliable method to
olve for the required eigenvalues.
Replacing Eqs (41) and (42) in Eq. (43) we get the following

eneralized eigenvalue problem,(
f
g∗

)
= (iδ)B

(
f
g∗

)
(45)

here (iδ) is the eigenvalue, A is the same matrix defined in (44)
nd B comes given by,

=

(
−I 0
0 I

)
(46)

eing I the identity operator. A finite difference scheme is then
pplied to the problem discretizing the variable r , as well as
unctions f (r) and g∗(r) into n samples to get a matrix algebraic
roblem of order 2n. Matrix A is real but non-symmetric which
eans there can exist eigensolutions in the form of complex
onjugate pairs. Those are actually the interesting ones since the
maginary part correspond to the real part of δ which accounts
or the growth rate of the perturbation. In fact, the existence
f conjugate pairs is in accordance to the propagation direction
nversion symmetry which means that the stable or unstable
haracter of a particular state should not depend on whether it
ropagates along z or −z direction.
The problem (45) was solved for different values of the charge

(l = 1, 2, 3, 4 and 10) and different perturbation orders p
anging from 1 to 8 (cases l = 1, 2, 3 and 4) and from 1 to
5 (case l = 10). In all cases a broad domain of β , from β =

.01 to β = βcr was scanned, carrying out the calculation in
bout 80 or 90 distributed points. In none of the cases a complex
igenvalue was obtained, revealing all those values of (iδ) are real
nd consequently all values of δ are purely imaginary. This means
hat all checked state families remain azimuthally stable for all
he perturbations analysed. It is expected that the stable character
ill remain for other larger perturbations as the term −(l ±

)2/r2 in the operator makes the effective potential increasingly
egative for increasing values of p.
Also, simulations to propagate a number of eigenstates after

ncluding numerical noise were also carried out and they re-
ained stable in all the cases. All this makes us to conclude with
great deal of confidence that dark soliton solutions are stable

or any value of β and probably for any angular momentum. This
onclusion substantially generalizes the result of [43], where the
tability of the dark solitons was only discussed for a limited
ange of solutions.
 d

7

. Conclusions

The main results of this work can be summarized as follows:

• We have developed a variational procedure that allowed us
to write down an effective Hamiltonian or Lagrangian for
a spinning wavefunction in its liquid-like phase in terms
of physically recognizable terms: a bulk density, a surface
tension and a centrifugal term. We have shown that it yields
a good approximation to the profiles and shapes of vortex
and dark solitons. The method was implemented for the
two-dimensional cubic–quintic model but it might prove
useful in other situations with flat-top solutions, such as the
three dimensional version of the model [17,46] or for other
physical settings like quantum droplets [29,30].

• We have presented the dark soliton solutions of the cubic–
quintic model and found an l-dependent eigenvalue cutoff.

• We have studied the azimuthal stability of the solutions by a
linear analysis finding that all of them are stable al least for
l = 1, 2, 3, 4 and 10. It is expected that this stable character
remains for other values of the angular momentum.

• We have derived the explicit form of the Pohozaev identity
for an infinite NLSE fluid with angular momentum and used
it to discard the existence of solutions with an asymptotic
behaviour which is seemingly allowed if we just look at the
large r region.
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ppendix. Pohozaev identity and non-existence of dark soli-
ons asymptoting to ψ∞,−.

In this appendix we will derive the explicit form of the Po-
ozaev identity [47,48] for the dark soliton solutions of
ection 4, namely for Eq. (7) with boundary condition limr→∞ ψ =

∞,± where ψ∞,± are given in Eq. (14). Then, we use this identity
o demonstrate that solutions such that limr→∞ ψ(r) = ψ∞,− =
1−

√
1−4β
2 do not exist.5 Finally, we briefly comment on how

he identity is satisfied by the variational profiles introduced in
ection 4.1 that asymptote to ψ∞,+.
We start by rewriting Eq. (7) as:

rψ ′)′ −
l2

r
ψ + rf (ψ) = 0 (47)

where we have defined:

f (ψ) = −βψ + ψ3
− ψ5 (48)

We can express Eq. (47) multiplied by rψ ′ as:

1
2
(r2ψ ′2)′ − l2ψψ ′

+ r2f (ψ)ψ ′
= 0 (49)

5 It is worth mentioning that in [40], Pohozaev’s identity was used to prove
hat there is an eigenvalue cutoff β < βcr in the case of solutions of Eq. (5) that
ecay to zero at infinity.
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ow, consider functions F±(ψ) for both types of boundary condi-
tions such that dF±

dψ = f and F±(ψ∞,±) = 0, namely:

±(ψ) = −
1
2
βψ2

+
1
4
ψ4

−
1
6
ψ6

+
1
2
βψ2

∞,± −
1
4
ψ4

∞,± +
1
6
ψ6

∞,± =

= −
1
6
(ψ2

− ψ2
∞±

)2
(
ψ2

−

(
1
2

∓

√
1 − 4β

))
(50)

otice that, by construction, we have required that F (ψ∞) = 0
and dF

dψ |ψ=ψ∞
= f (ψ∞) = 0. Therefore, F has a double zero at

ψ∞ in general. This can be explicitly seen in (50) for the cubic–
quintic case but the same would hold for any nonlinear potential
as long as F can be Taylor-expanded around ψ∞.

Using that dF±
dr = fψ ′, Eq. (49) can be rewritten as:

(r2ψ ′2)′ − l2(ψ2)′ + (2r2F±)′ − 4rF± = 0 (51)

Let us now integrate this expression from r = 0 to r = ∞. The
first three terms are total derivatives and therefore give rise to
boundary terms. In order to determine them, the next step is to
understand the asymptotic behaviour ofψ(r) at r = 0 and r = ∞.
eing a vortex of order l, ψ(r) is proportional to r l near r = 0 and

it is immediate to check that the three boundary contributions
vanish in this region. On the other hand, the r → ∞ limit of
ψ can be obtained by expanding the equation and we find that,
assuming l ̸= 0, the difference ψ − ψ∞ decays as r−2:

ψ = ψ∞

⎛⎝1 + l2
(

df
dψ

⏐⏐⏐⏐
ψ=ψ∞

)−1

r−2
+ O(r−4)

⎞⎠ (52)

Taking into account this expression and the double zero for F± at
ψ∞,±, see Eq. (50), the F± decays as r−4 for large r . Therefore, the
nly non-vanishing boundary contribution for the integral of (51)
omes from the second term. The sought Pohozaev identity is:

∞

0
rF±dr = −

1
4
l2ψ2

∞,± (53)

We will see now that this Pohozaev identity allows us to easily
rove that there cannot be regular solutions of (7) such that
imr→∞ ψ(r) = ψ∞,−. The point is that, in this case, the function
in (50) takes the form:

− = −
1
6
(ψ2

− ψ2
∞,−)

2(ψ2
− ψ2

F ) (54)

here ψ2
F =

1
2 +

√
1 − 4β . Notice that ψ2

F > ψ2
∞,+ > ψ2

∞,−.
For any value ψ2 < ψ2

F , the function F− is positive. On the other
hand, the Pohozaev identity tells us that the integral of rF− is a
negative number. If this is to be fulfilled, ψ should grow larger
than ψF at some value of r . Then, it should reach a maximum
and go back down to ψ∞,−. But from the Eq. (7) itself, we see
that this is impossible. At the maximum, we would have ψ ′

= 0
and ψ ′′ < 0. This would mean l2

r2
ψ + βψ − ψ3

+ ψ5 < 0.
However, βψ − ψ3

+ ψ5 < 0 is negative only in the interval
ψ∞,− < ψ < ψ∞,+ and therefore cannot be negative for any
ψ > ψF . It is impossible that ψ becomes larger that ψF and
hen starts decreasing at a larger value of r . Thus, no solutions
symptoting to ψ∞,− exist.
We close this appendix by analysing the physical solutions

symptoting to ψ∞,+ from the point of view of the variational
rofile discussed in Section 4.1. We can split the integral in (53)
n three regions: In the vortex hole, r ≤ Rdark, we have ψ ≈ 0 and
herefore F+ ≈ C where we introduce:

=
1
2
βψ2

∞,+ −
1
4
ψ4

∞,+ +
1
6
ψ6

∞,+ (55)

he contribution to the integral
∫
rF+dr is 1

2R
2
darkC . For r ≥

R , we have ψ ≈ ψ and therefore F ≈ 0 and there is
dark ∞

8

no contribution to the integral. Then we have the kink region∫
rF+dr ≈ Rdark

∫
Fkink ≈ −

1
8Rdarkψ

3
∞

√
1 − ψ2

∞
where we have

used the variational profile (27) with the value of a derived in
Eq. (33). Summing the three contributions, we can write the
Pohozaev identity as:

1
2
R2
darkC −

1
8
Rdarkψ

3
∞,+

√
1 − ψ2

∞,+ = −
l2ψ2

∞,+

4
(56)

sing the value of C given in (55) and the value of ψ∞,+ written
n (14), we can check that the solutions of this quadratic equation
re precisely (36).
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