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A B S T R A C T

The genomic profiling of circulating tumor cells (CTCs) in the bloodstream should provide clinically relevant 
information on therapeutic efficacy and help predict cancer survival. Here, we contrasted the genomic profiles of 
CTC pools recovered from metastatic colorectal cancer (mCRC) patients using different enrichment strategies 
(CellSearch, Parsortix, and FACS). Mutations inferred in the CTC pools differed depending on the enrichment 
strategy and, in all cases, represented a subset of the mutations detected in the matched primary tumor samples. 
However, the CTC pools from Parsortix, and in part, CellSearch, showed diversity estimates, mutational signa-
tures, and drug-suitability scores remarkably close to those found in matching primary tumor samples. In 
addition, FACS CTC pools were enriched in apparent sequencing artifacts, leading to much higher genomic di-
versity estimates. Our results highlight the utility of CTCs to assess the genomic heterogeneity of individual 
tumors and help clinicians prioritize drugs in mCRC.   

1. Introduction

Although research on cancer biology has traditionally been
hampered by sampling issues, with most approaches relying on highly 
invasive, risky, and, sometimes, difficult to obtain solid tissue biopsies 
[1–3], strong evidence has emerged in recent years that the peripheral 
blood, as well as other body fluids, offer a valuable source of cancer- 
associated materials [4,5]. As opposed to tissue biopsies, liquid bi-
opsies represent a minimally invasive alternative to capture clinically- 
relevant information about tumors [6], including circulating tumor 
cells (CTCs). CTCs are thought to consist of cells shed by the primary 
tumor (PT) and metastatic lesions into the bloodstream and have 

become the subject of intense research due to their potential role in the 
metastatic process [6–8]. In recent years multiple studies have demon-
strated the clinical significance of CTCs for prognosis and therapeutic 
management, with CTC burden being correlated with unfavorable 
overall survival in several cancer types [9–12]. 

Importantly, sequencing studies exploring the genomic landscape of 
CTCs [12]; [13–15] have shown that the mutational profiles of single 
CTCs generally reflect the overall genomic composition of both matched 
primary and metastatic lesions. In some cases, CTC genomic diversity 
might represent intratumoral heterogeneity better than single tumor 
tissue biopsies [16]. Incorporating CTC genomic information is expected 
to increase the clinical value of liquid biopsies by providing better 
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predictions of therapeutic sensitivity and survival outcomes [17,18]. 
Nevertheless, implementing a comprehensive molecular character-

ization of CTCs into routine clinical procedures has, so far, proven 
extremely challenging [19,20]. Indeed, despite the numerous strategies 
already available for isolating CTCs [21], ranging from methods based 
on the physical properties of cells (i.e., size and deformability) to others 
based on biological characteristics (e.g., cell surface marker expression), 
CTCs are typically present at low numbers in the blood and can show a 
wide range of phenotypes [20,22,23]. Consequently, these technologies 
are likely to differ in their detection sensitivity and recovery rates, but, 
to date, comparative analyses across distinct technologies are lacking 
[22]. Of particular interest to us, it remains unclear how the different 
isolation methods can impact the assessment of the genomic landscape 
of CTCs. 

To identify an efficient strategy for the downstream genomic 
profiling of CTCs in metastatic colorectal cancer (mCRC), we contrasted 
three CTC-enrichment approaches —CellSearch®, Parsortix®, and 
Fluorescence-Activated Cell Sorting (FACS). While all methods evalu-
ated here struggled with data quality issues, our results indicate that 
Parsortix and, in part, CellSearch can provide genomic heterogeneity 
scores, mutational signature profiles, and therapeutic targets compatible 
with those found in matching primary tumor samples. 

2. Material & methods 

2.1. Patient selection and blood collection 

We enrolled four mCRC patients diagnosed between October 2017 
and September 2019 at the Hospital Universitario de Ourense, Spain, 
with histologically proven CRC and either therapy-naive or showing 
evidence of progression. On the same day, we collected three blood 
samples per patient. We stored them in three different containers, one 
for each CTC-enrichment protocol, at room temperature: CellSave Pre-
servative tubes (Menarini Silicon Biosystems, Italy) for CellSearch, 
Transfix CTC-TVT tubes (Cytomark, UK) containing formaldehyde for 
Parsortix and cell-free DNA BCT CE tubes (Streck, NE, USA) for FACS. In 
addition, we obtained a formalin-fixed paraffin-embedded (FFPE) block 
of the primary tumor (PT) from each patient. Importantly, all specimens 
were obtained and collected after written informed consent from all 
subjects using a protocol approved by the Clinical Ethics Committee of 
Pontevedra-Vigo-Ourense (2018/301 approved 19/06/2018). 

2.2. CTC enrichment 

We drew the blood using three different strategies for CTC enrich-
ment. The CellSearch® system (Menarini, Silicon Biosystems, Bologna, 
Italy) enumerates and isolates CTCs of epithelial origin (CD45-, 
EpCAM+, and CK8+, 18+, and/or 19+). The Parsortix® platform 
(ANGLE plc, UK) traps CTCs due to their larger size and lower 
compressibility than blood cells. The FACS strategy separates CTCs 
based on custom markers; in our case EpCAM+/CD45-/CK7,8 + . 

2.2.1. CellSearch 
We processed 7.5 mL of whole blood for each sample in the Cell-

Tracks Autoprep system using the Circulating Tumor Cell Kit (Menarini, 
Silicon Biosystems, Bologna, Italy). This kit consists of ferrofluids coated 
with epithelial cell-specific anti-EpCAM antibodies to immuno- 
magnetically enrich epithelial cells and a mixture of antibodies 
directed to cytokeratins (CKs) 8, 18, and 19 conjugated to phycoerythrin 
(PE); an antibody to CD45 conjugated to allophycocyanin (APC); and a 
nuclear dye 4′,6-diamidino-2-phenylindole (DAPI). Staining steps 
involve the fixation and permeabilization of the cells. Afterward, ac-
cording to the manufacturer's instructions, we analyzed the processed 
samples with the CellTracks Analyzer II. We identified the CTCs as round 
or oval cells with an intact nucleus (DAPI positive), CK positive, and 
CD45 negative (Fig. S1). We stored the CTC-enriched samples at −80 ◦C 

after recovering the cells from the CellSearch cartridge. All samples were 
processed within 36 h of collection. 

2.2.2. Parsortix 
We loaded 7.5 mL of whole peripheral blood per sample into a 

Parsortix microfluidic device (Angle plc, UK). We enriched the samples 
in disposable Parsortix cassettes with a gap size of 6.5 μm (GEN3D6.5, 
Angle Inc., Guildford, UK) and at 99 mbar of pressure, according to the 
manufacturer's guidelines. After separation, we collected the captured 
cells in 200 μL of PBS and stored them at −80 ◦C. All samples were 
processed within 36 h of collection. 

2.2.3. Fluorescence-activated cell sorting (FACS) 
To obtain the peripheral blood mononuclear cell (PBMC) fraction –to 

be used as healthy controls– we took 1 mL from each blood sample and 
performed Ficoll-Paque gradient centrifugation. We kept the PBMCs in 
RNA later (Ambion, TX, USA) at −80 ◦C until the extraction of genomic 
DNA (gDNA). Then we used the remaining blood volume (7–9 mL) for 
CTC staining and collection. After validating our FACS protocol using 
spike-in experiments (see Supplementary note 1), we followed a similar 
approach to Miller et al. [24]. First, we lysed the red blood cells using BD 
Pharm Lyse lysing solution (BD Biosciences, NJ, USA), following the 
fabricant recommendations. When needed, we repeated the lysing step 
up to three times. We then resuspended the cells in phosphate-buffered 
saline (PBS) solution and filtered them with a 70 μm cell strainer (Fal-
con, NY, USA). We used the FIX & PERM™ Cell Permeabilization Kit 
(Invitrogen, MA, USA) and incubated the filtered cell suspensions with 
antibodies (BD Biosciences, NJ, USA) against the epithelial cell adhesion 
molecule (EpCAM; PerCP-Cy5.5, IgG1λ, clone EBA-1) and the leukocyte 
common antigen CD45 (FITC, IgG1κ, clone HI30) with reagent A for 25 
min in the dark at room temperature for fixation. Cells were washed 
once with 500 μL of PBS and centrifuged at 200×g for 5 min. We 
resuspended the cell pellet in 1 ml of PBS and incubated it with an 
antibody against the epithelial markers cytokeratins 7 and 8 (CK7,8; PE, 
IgG2ɑ/κ, clone CAM 5.2) and reagent B for 20 min in the dark at room 
temperature for permeabilization. We washed once again and resus-
pended the cells in 500 μl of PBS. Finally, we selected and collected 3 μl 
of PBS pools of CTCs based on an EpCAM+/CD45-/CK7,8+ phenotype 
(Fig. S2) using a FACSAria III (BD Biosciences, NJ, USA). We analyzed 
the data using the FACSDiva (BD Biosciences, NJ, USA) and FlowLogic 
software (Miltenyi Biotec, Germany). All samples were processed within 
24 h of collection. 

2.3. Whole-genome amplification of CTC-pools 

Given the large collection volume (~200 μl) from both CellSearch 
and Parsortix, we initially performed genomic DNA (gDNA) extraction 
of the CTC enriched samples obtained from these platforms using the 
QIAamp DNA Blood Mini Kit (Qiagen, Germany) before performing 
whole-genome amplification (WGA) using the Ampli1 kit (Menarini 
Silicon Biosystems, Italy). We carried out the WGA starting with 1 μl of 
DNA for the CellSearch and Parsortix samples and directly in the case of 
the FACS samples. We worked in a laminar-flow hood to avoid 
contamination and used a dedicated set of pipettes and UV-irradiated 
plastic materials. We included positive (10 ng/μl REPLIg human con-
trol kit, Qiagen, Germany) and negative controls (DNase/RNase free 
water) during the amplification and used the Ampli1 QC Kit to evaluate 
the amplification. Samples with a positive signal for at least two PCR 
fragments were selected to increase the total dsDNA content using the 
Ampli1 ReAmp/ds kit. We then removed the kit adaptors by incubating 
at 37 ◦C for 3 h a mixture of 5 μl of NEBuffer 4 10× (New England 
Biolabs, MA, USA), 1 μl of MseI 50 U/μl (New England Biolabs, MA, 
USA), 19 μl of nuclease-free water and 25 μl of dsDNA followed by a step 
at 65 ◦C for 20 min for enzyme inactivation. Finally, we purified the 
samples with 1.8× AMPure XP beads (Agencourt, Beckman Coulter, CA, 
USA), quantified the DNA yield with Qubit 3.0 fluorometer (Thermo 
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Fisher Scientific, MA, USA), and checked the amplicon size distribution 
with the D1000 ScreenTape System in a 2200 TapeStation platform 
(Agilent Technologies, CA, USA). 

2.4. FFPE and PBMCs bulk gDNA isolation 

We extracted bulk gDNA from FFPE samples using the QIAamp DNA 
FFPE tissue kit (Qiagen, Germany) by incubating and shaking them at 
60 ◦C for 1 h before slicing them and adding a deparaffinization solution 
(DS). We performed a 56 ◦C incubation step for 1 h and, when needed, 
conducted a second addition of DS in a new tube to remove the 
remaining paraffin. We used the QIAamp DNA Blood Mini Kit (Qiagen, 
Germany) for the extraction of gDNA from PBMCs bulks and estimated 
DNA yield using the Qubit 3.0 fluorometer (Thermo Fisher Scientific, 
MA, USA) and DNA integrity with the Genomic DNA ScreenTape Assay 
(Agilent Technologies, CA, USA). 

2.5. Whole-exome sequencing 

CTC pools and bulk sequencing libraries were constructed at the 
Spanish National Center for Genomic Analysis (CNAG; http://www.cn 
ag.crg.eu) with the SureSelect XT and Agilent Human Exon v5 kits 
(Agilent Technologies, CA, USA). In total, seven whole-genome ampli-
fied CTC-pools (two from FACS: P4 and P5, one from CellSearch: P1 and 
four from Parsortix: P1, P3, P4, and P5) and four FFPE bulk samples 
were sequenced at 100× and four PBMCs samples at 60×. All samples 
were run on an Illumina NovaSeq 6000 (PE100) at CNAG. 

2.6. Data processing and variant calling 

After trimming amplification and sequencing adapters from the raw 
FASTQ files, we aligned the sequencing reads from CTC pools, tumor, 
and healthy samples to the Genome Reference Consortium Human Build 
37 (GRCh37) using the MEM algorithm in the BWA software [25]. 
Following a standardized best-practices pipeline [26], we filtered out 
reads with low mapping quality. We next performed a local realignment 
around indels and removed PCR duplicates. We identified somatic single 
nucleotide variants (SNVs) for each CTC-capture method using the 
multi-sample variant-calling feature implemented in MuTect2 software, 
taking the BAM files of the available sample types (i.e., tumor bulk +
CTC-pool + healthy control). We then used FilterMutectCalls to remove 
calls in sequence context artifacts or contamination fractions (see Sup-
plementary note 2 and Fig. S3). Afterward, the genotypes of variants 
showing a coverage depth ≥ 10, alternative allelic depth ≥ 2 and allele 
frequency estimates ranging from 0.05 to 0.75 were kept for down-
stream analysis. We merged the inferred SNV calls for all datasets and 
performed variant annotation using Annovar software (v.20200608) 
[27]. 

2.7. Mutational signatures 

For all datasets, we ran sigProfilerExtractor [28] under default pa-
rameters to identify de novo mutational signatures for single-base sub-
stitutions (SBS), followed by the assignment of the decomposed 
signatures to known COSMICv3 SBS96 signatures [29]. 

2.8. PanDrugs 

We used PanDrugs [30] (http://www.pandrugs.org) –a web-based 
platform that attempts to match genomic data to available drug thera-
pies to guide personalized treatment selection– to explore changes in 
therapeutic options and drug suitability scores across the different 
datasets. For that purpose, we first ran PanDrugs using a VCF with the 
list of exonic mutations identified in the tumor bulk sample of each 
patient to identify CRC-specific therapeutic candidates. Next, we 
extracted the drug score (which ranges from −1 to 1 and measures the 

suitability of each drug using a database of curated gene-drug re-
lationships and the collective gene impact) to identify the top 25 ther-
apeutic candidates in the PT samples. Afterward, we performed a new 
query with PanDrugs using the exonic mutations in each CTC sample to 
examine whether the CTC-derived genomic information identifies 
similar therapeutic options and drug sensitivity scores as for the bulk. 

2.9. MATH scores 

For the datasets with an unknown number of CTCs or with CTC 
counts >1, we additionally estimated the mutant-allele tumor hetero-
geneity (MATH) score [31]. The MATH score is based on the distribution 
of allele fractions among somatic mutations. It is calculated as the per-
centage ratio of the width of the data to the center of its distribution: 

MATH = 100 ×
median absolute deviation (VAF)

median (VAF)

Importantly, since MATH scores are sensitive to unreliable allele 
frequency estimates stemming from sites with poor sequencing coverage 
depth, for their calculation, we applied an additional filter to restrict our 
mutation calls to positions showing a depth of coverage ≥25 and 
alternative allelic depth ≥ 5. 

3. Results 

3.1. CTC-counts 

Patient-level CTC counts were available for two of the selected CTC- 
capture methods (as the Parsortix platform does not provide CTC 
counts). Using the CellSearch system, we isolated one CTC from patient 
P1, whereas we did not detect CTCs for the remaining patients. Impor-
tantly, although we were able to recover potential CTCs from all patients 
using FACS (P1 = 2 CTCs; P3 = 6 CTCs; P4 = 2 CTCs; P5 = 1 CTC), after 
whole-genome amplification we only obtained high-quality sequencing 
libraries for patients P4 and P5. 

3.2. Tumor mutational burden 

Across all patients, we found sharp differences in the number of so-
matic mutations (SNVs) identified with the different CTC-capture 
methods (Fig. 1). While the number of mutations called with both 
CellSearch and Parsortix datasets was close to, or lower than, the 
number of mutations observed in the matched PT bulk samples, the 
mutation counts in the FACS CTC pools were consistently much higher 
(by one order of magnitude) than in the bulk samples. Remarkably, 
regardless of the CTC-capture strategy, we found a minimal overlap in 
mutation calls between CTC pools and PT datasets: Parsortix (average of 
4.6%), CellSearch (3.4%), and FACS (0.4%). 

Similarly, within each patient, the number of mutations shared be-
tween CTC pools captured with distinct methods was generally small 
(Fig. 2a). We identified many CTC-specific mutations across datasets, 
including non-silent ones (Fig. 2a and Fig. S4). 

Furthermore, within the PT samples, the median variant allele fre-
quency (VAF) of the shared mutations with CTC pools ranged from 0.19 
(Parsortix - P4) to 0.09 (FACS - P5), suggesting that the isolated CTCs 
derive from minor subclones within the PTs (Fig. 2b). We observed 
similar VAF scores between the CellSearch and Parsortix CTCs. In P4, we 
found a significant difference between Parsortix and FACS (Fig. 2b), 
with the FACS CTCs being generally enriched with mutations at low 
frequency. 

As shown in Fig. 2b, the CTC pools showed an evident depletion of 
clonal (i.e., allele frequency ≥ 0.4) mutations observed in the PT sam-
ples. While these results may appear surprising, as, in theory, clonal 
mutations in the PT should appear in all CTCs sampled, the failure to 
identify such mutations can be partly explained due to the limited 
coverage breadth of the CTCs. Indeed, across all samples, only a small 
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fraction (5 to 39%) of regions harboring clonal variants in the PTs were 
covered with sequencing reads in the CTC pools (Table SI). Moreover, 
after looking at the coverage statistics of heterozygous single-nucleotide 
polymorphisms (SNPs) (Fig. S5), we additionally found strong evidence 

of allele dropout (ADO) taking place during WGA. Despite being 
particularly obvious in the FACS datasets -which showed an averaged 
ADO of 67% for the heterozygous sites called-, all CTC pools showed 
some degree of ADO (CellSearch ADO: 9% and Parsortix ADO: 9%) 

Fig. 1. SNV abundance per CTC-capturing method. Barplots depicting the total number of SNVs identified by MuTect2 for each dataset. The number of SNVs is 
shown at the bottom of each bar. Bar colors reflect the different input material or capturing method: gray = FFPE primary tumor (PT) sample; gold = CellSearch CTC 
pool; blue = Parsortix CTC pool; pink = FACS CTC pool. Error bars are only available for bulk tumor samples and reflect the 95% confidence interval. Orange bars 
depict the number of shared sites between CTC datasets and PT samples. The y-axis is on the log scale. (For interpretation of the references to colour in this figure 
legend, the reader is referred to the web version of this article.) 

Fig. 2. Genomic profiling and clonality of CTC-pools. a. Occupancy matrix of shared sites (P1 = 41 SNVs; P4 = 65 SNVs; P5 = 100 SNVs) across the CTC-capture 
methods within patients. Different colored tiles reflect different mutation status: dark gray = mutation; white = reference/missing data. Patient ID is shown on the 
right. b. Boxplots depicting the bulk-level VAF estimates of the SNVs shared with the CTC pools. Boxplot colors represent the different CTC-capture methods. 
Statistical analysis was performed using the two-sample KS-test to compare bulk VAF estimates of shared sites between CTC-capture methods. Significant p-values are 
shown above boxplots. 
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which very possibly interfered with the identification of clonal 
mutations. 

3.3. Measuring intratumor genomic heterogeneity (ITH) 

Afterward, we explored potential differences in intratumor genomic 
heterogeneity (ITH) estimates between PT and CTC samples by exam-
ining the frequency distribution of somatic mutations across the 
different datasets. Significantly, since several of our CTC samples 
comprised only one cell, the subsequent analyses were limited to data-
sets with either an unknown number of CTCs or CTC counts >1 and 
included the Parsortix CTCs from patients P1, P3, P4, and P5, and the 
FACS CTCs from patient P4. 

As illustrated in Fig. 3a-b (and Fig. S6a-b), we found significant 
differences in the distribution of VAF estimates between PT and CTC 
pools. In patient P4, both FACS and Parsortix datasets showed an 
enrichment towards low-frequency variants compared to the corre-
sponding PT sample. Moreover, a quantile-quantile (Q-Q) plot further 
revealed contrasting differences in the skewness of the VAF distributions 
stemming from the different CTC-capture methods (Fig. 3b). Indeed, 
while the Parsortix CTCs encompassed a more significant number of 
mutations at intermediate frequencies when compared to the matched 
PT sample, the FACS CTCs showed a substantial depletion of this class of 
mutations. 

Interestingly, in the Parsortix CTCs, we found a significant positive 
correlation between the VAF estimates of shared mutations between the 

CTC pool and the PT sample (Fig. 3c). As for the FACS CTCs, although we 
found a positive trend, the relationship was not significant (similar to 
the results of the remaining datasets - Fig. S6c). 

We also observed sharp differences in the ITH levels, measured by 
MATH scores, among CTC-capture methods. In patient P4, the Parsortix 
CTCs and the PT sample returned highly concordant MATH scores (43.6 
and 43.0, respectively), while the FACS dataset displayed a much larger 
MATH score (62.8) (Fig. 3d). We observed similar MATH scores between 
the remaining Parsortix CTCs and the PT samples (Fig. S6d). 

3.4. Mutational signatures 

We next explored the mutational signatures in the different datasets 
to look for potential differences between CTC pools and PT samples 
(Fig. 4a). Across all datasets, SigProfilerExtractor identified five muta-
tional processes, with PT samples predominantly enriched in “clock- 
like” (i.e., aging) COSMIC signatures SBS1 and SBS5. A similar contri-
bution of SBS1 and SBS5 was also found in the CellsSearch and Parsortix 
CTC datasets, albeit the lower cosine similarity score (cosine similarity: 
0.505) obtained - likely due to the limited number of mutations avail-
able for signature assignment in these datasets. In contrast, FACS CTCs 
were predominantly characterized by signature SBS46 (65% in both 
cases), a mutational signature associated with sequencing artifacts. 

Fig. 3. Measuring ITH through CTC pools. a. Histograms depicting the variant allele frequency (VAF) distribution of somatic mutations for the different datasets of 
patient P4. Different datasets highlighted with different colors: PT = gray; FACS = pink; Parsortix = blue with dataset ID shown on the right. Histograms are scaled to 
percentages. b. Q-Q plot compares allele frequency estimates in CTC pools and PT samples of patient P4. Statistical analysis was performed using the two-sample KS- 
test to compare the VAF distribution between CTC pools and PT samples. KS D (distance) statistic and p-values are shown on the upper left side of the plot. c. Scatter 
plot describing the similarity of VAF scores of overlapping sites between CTC pools and PT samples. Solid lines represent the best fit from regression analysis. R2 

scores and p-values are shown on the upper left side of the plot. d. Barplot depicting the MATH scores obtained using the mutation sets passing our strict filtering - 
Primary tumor = 416 SNVs; FACS = 8193 SNVs; Parsortix = 46 SNVs (see methods). (For interpretation of the references to colour in this figure legend, the reader is 
referred to the web version of this article.) 
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3.5. Drug suitability scores 

Finally, using the list of exonic positions available, we collected the 
best drug candidates for each dataset to evaluate potential changes in 
the type and sensitivity of therapeutic options between CTC pools and 
PT samples (Fig. 4b). Across patients, both FACS and CellSearch CTCs 
recovered, in most cases, the top candidate drugs (i.e., with the highest 
D-Score) identified with the corresponding PT samples. The Parsortix 
CTCs, on the other hand, often returned only a subset of treatment op-
tions specified for the matched PT. All CTC-capture methods showed a 
significant positive correlation in drug sensitivity scores between CTCs 
and PT samples (Fig. 4c,) suggesting that the CTC genomic profiles offer 
reliable information for prioritizing therapeutic strategies in CRC. 

4. Discussion 

The isolation of CTCs remains challenging mainly because of their 
scarcity in peripheral blood and phenotypic heterogeneity. While recent 
technological advances have improved capture strategies, most avail-
able methods differ in crucial aspects such as enrichment efficiency, cell 
viability, and throughput. Studies evaluating the implications of 
different CTC-capture methods on downstream analyses are scant, and it 
remains unclear whether distinct enrichment approaches can provide 
compatible descriptions of the mutational landscape of CTCs. 

In this study, to evaluate the impact of different CTC-capture stra-
tegies on the downstream molecular characterization of CTCs, we con-
trasted the genomic profiles of primary tumor samples against CTC pools 
recovered using three different enrichment strategies in four mCRC 
patients. 

Our whole-exome sequencing experiments suggest differences in the 
mutational loads of CTC pools due to the enrichment method used. In 
sharp contrast to the results obtained with the CellSearch and Parsortix 
systems, the mutation counts in our FACS CTC pools exceeded the 
number of mutations observed in the corresponding primary tumor 

samples by an order of magnitude. Notably, the FACS datasets showed 
significant enrichment for mutations at lower frequencies. These mu-
tations were later linked to a mutational signature associated with 
sequencing artifacts (i.e., SBS46). 

These results suggest that our FACS-derived CTCs might have accu-
mulated DNA lesions along with the different steps of the protocol. 
Indeed, FACS-sorted CTCs are fixed with a solution containing formal-
dehyde, which might induce some degree of DNA damage. However, 
since formaldehyde is also present in the collection tubes used with the 
Parsortix system, it is unlikely that this is the main reason for the large 
number of presumably spurious mutations seen in the FACS-sorted 
CTCs. Unfortunately, identifying and subsequently removing these po-
tential errors is not necessarily straightforward. Although one could 
argue that setting lower and upper bounds on the minor allele frequency 
could potentially prevent downstream variant call artifacts, we should 
note that multiple rounds of genomic amplification must precede 
sequencing CTC pools. Since most WGA methods inevitably introduce 
biases in the resulting sequencing data (e.g., uneven genome amplifi-
cation, allelic imbalances, and dropout), for any given site, the derived 
allele frequency score will not necessarily reflect its actual frequency in 
the CTC population sampled. Indeed, our datasets reflected these biases 
in the imbalanced distribution of allele frequencies of heterozygous 
SNPs and the relatively poor concordance in VAFs of shared somatic 
sites between CTC pools and PT samples. 

In any case, and for all datasets analyzed, Parsortix-derived CTC 
pools provided similar descriptions of ITH when compared to the cor-
responding PT samples, with MATH scores in explicit agreement with 
previous estimates in mCRC [32]. In contrast, this metric was vastly 
overestimated in our FACS dataset, perhaps due to many potential 
sequencing artifacts. Moreover, while the identification of therapeutic 
candidates was not always identical between CTC pools and PT samples, 
all CTC pools analyzed suggested drug candidates displaying a signifi-
cant probability of response and highly concordant sensitivity scores 
with the PT samples, thus providing strong evidence that CTC-based 

Fig. 4. Mutational signatures and drug sensitivity concordance. a. Barplots depict the proportion of mutations contributing to the different signatures/processes 
across the samples. Sample IDs are shown at the bottom, and patient IDs are at the top. Different colors reflect the identified mutational signature with the COSMIC 
SBS ID displayed at the right of the plot. Legend asterisks distinguish mutational signatures identified by SigProfilerExtractor showing suboptimal cosine similarity 
scores (i.e., < 0.90). b. Tile plots depicting the overlap between the top-3 drug candidates in the primary tumor (PT) samples (ordered from left to right) and 
corresponding CTC-pools. Tiles are colored according to the drug sensitivity score (D-score). Gray tiles correspond to therapeutic options not recovered by PanDrugs 
for that specific sample. c. Scatter plot depicting the correlation between the best therapeutic candidates (measured using the D-score) identified in PT and CTC 
samples. Shape distinguishes the different patients, while colors reflect the different CTC-capture methods. Solid lines represent the best fit from regression analysis. 
R2 scores and p-values are shown on the bottom right side of the plot. 
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mutational profiles may contribute with valuable guidance for refining 
treatment tailoring [33–35]. 

5. Conclusion 

In conclusion, CTC genomics still faces technical challenges for 
straightforward clinical applications. As seen throughout our study, all 
methods evaluated struggled with data quality issues –potentially 
caused by the inherent technical bias introduced by the limiting 
amounts of input material [36] and background DNA contamination (e. 
g., white blood cells) [37] – which resulted in a somewhat incomplete 
picture of the mutational landscape of these tumors. Moreover, the 
limited number of patients analyzed and the failure of some enrichment 
methods to recover CTCs for all patients, may prevent the findings from 
this study from being fully generalizable. Still, it is essential to highlight 
that the CTC pools recovered from Parsortix and, in part, CellSearch 
returned comparable ITH estimates, similar mutational signature pro-
files, and suggested equivalent therapeutic targets, when compared to 
those found in matching primary tumor samples. 

On this basis, as the performance of technologies for the detection 
and isolation of CTCs continues to improve, allowing for more accurate 
and informative genomic data to be produced [38], future studies using 
larger cohorts should explore whether the mutational landscape and 
genomic diversity of CTC populations can indeed provide clinically 
relevant prognostic and predictive information beyond simple 
enumeration. 
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