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• Microplastic's (MPs) ability to act as
vectors of pollutants has received special
attention.

• Lethal and sublethal responses of
Rhodomonas lens to polyethylene MPs
were evaluated.

• MPs affect cell viability, population
growth and pigment content of R. lens.

• MPs modulate the toxicity of chlorpyrifos
and mercury to R. lens.
A B S T R A C T
A R T I C L E I N F O
Editor: Damia Barcelo

Keywords:
Microplastic
Mercury
Chlorpyrifos
Microalgae
Toxicity
The growing use of plastics, including microplastics (MPs), has enhanced their potential release into aquatic environ-
ments, where microalgae represent the basis of food webs. Due to their physicochemical properties, MPs may act as
carriers of organic and inorganic pollutants. The present study aimed to determine the toxicity of polyethylene MPs
(plain and oxidized) and themodel pollutants chlorpyrifos (CPF) andmercury (Hg) on the redmicroalgaeRhodomonas
lens, to contribute to the understanding of the effects of MPs and associated pollutants onmarine ecosystems, including
the role of MPs as vectors of potentially harmful pollutants to marine food webs. R. lens cultures were exposed to MPs
(1–1000 μg/L; 25–24,750 particles/mL), CPF (1–4900 μg/L), Hg (1–500 μg/L), and to CPF- and Hg-loaded MPs, for
96 h. Average specific growth rate (ASGR, day−1), cellular viability and pigment concentration (chlorophyll a, c2
and carotenoids) were measured at 48 and 96 h. No significant effects were observed on the growth pattern of the
microalgae after 96-h exposure to plain and oxidized MPs. However, a significant increase in cell concentration was
detected after 48-h exposure to plain MPs. A decrease of the ASGR was noticed after exposure to CPF, Hg and to
CPF/Hg-loadedMPs, whereas viability was affected by exposure to MPs, CPF and Hg, alone and in combination. Chlo-
rophyll a and c2 significantly decreased when microalgae were exposed to plain MPs and CPF, while both pigments
significantly increased when exposed to CPF-loaded MPs. Similarly, chlorophyll and carotenoids content significantly
decreased after exposure to Hg, whereas a significant increase in chlorophyll awas observed after 48-h exposure toHg-
loaded MPs, at the higher tested concentration. Overall, the presence of MPs modulates the toxicity of Hg and CPF to
these microalgae, decreasing the toxic effects on R. lens, probably due to a lower bioavailability of the contaminants.
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1. Introduction

Plastics are among the most widely used synthetic materials. Global
plastic production has continuously increased during the last decades,
reaching 367M tons/year in 2020 and, as a consequence, plastics have
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been recognized as an environmental threat (PlasticsEurope, 2021). Plas-
tics are formed by several synthetic organic polymers of high molecular
weight and long chain, usually based on hydrocarbons (Law, 2017). Due
to their physicochemical properties (chemical and corrosion resistance,
ductility or hardness) and potential uses (packaging, consumer products,
textiles or construction), many types of plastic polymers have been pro-
duced, with polyethylene (PE) being the most produced polymer and the
one that most commonly ends up in the aquatic environment (Andrady,
2011). The impact of large plastic debris on marine ecosystems has been
widely studied; however, in recent years, the distribution, abundance and
effects of themicroscopic fraction of plastics have generated immense inter-
est in the scientific community (Shruti et al., 2021).

Synthetic particles with sizes between 1 μm and 5 mm are called
microplastics (MPs) (Frias and Nash, 2019). The concentration of MPs in
the water column ranges from 0.00085 particles/m3 in Australian waters
(Reisser et al., 2013) and 0.001 particles/m3 in the neustonic layer of the
Atlantic Ocean (Law, 2010), to 1,720,000 particles/km2 in East Asian
waters (Isobe et al., 2015) or 102,000 particles/m3 in Swedish waters
(OSPAR, 2009). The accumulation of MPs is usually higher in coastal
areas, especially close to urbanized and/or industrialized areas, and in the
center of the oceanic gyres (Wright et al., 2013). Once in the aquatic envi-
ronment, MPs have been reported to alter biological responses from the
subcellular to the population level (Galloway and Lewis, 2016). These
particles can penetrate and eventually accumulate in the tissues of marine
organisms, which may disrupt the digestive system, alter feeding behavior,
increase antioxidant responses due to generation of oxidative stress and
affect growth and/or reproduction (Gola et al., 2021; Mkuye et al., 2022;
Pérez-Aragón et al., 2022). Alterations in growth, viability, photosynthetic
and enzymatic activity, among other effects, have been reported in primary
producers afterMPs exposure (Davarpanah andGuilhermino, 2015; Yokota
et al., 2017; Zhang et al., 2017). Phytoplankton represents the base of ma-
rine foodwebs, therefore the effects of MPs on these organismsmay cause a
knock-on effect on marine ecosystems. However, controversial effects have
been described in microalgae exposed toMPs, which are greatly dependent
on the studied species, on the type, size and concentration of MPs and on
the experimental conditions, such as exposure times (Bai et al., 2021;
Koelmans et al., 2022; Wan et al., 2018). In this regard, the cryptophycean
(flagellated) algae Rhodomonas lens is considered a relevant species since it
is widely used in aquaculture and constitutes a great source of nutrients for
marine invertebrates (Seixas et al., 2009; Strathman, 2014). Chlorophyll a,
chlorophyll c2, phycoerythrin and carotenoids are the main pigments in
this species (Gantt et al., 1971; Becker et al., 1998). The genus Rhodomonas
does not present a cell wall; instead, the cells are surrounded by a periplast
consisting of thin plates below the plasmamembrane (Thoisen et al., 2017).

Several studies had focused on the ability of plastics to transfer poten-
tially harmful chemicals to organisms, both by leaching plastic additives
and adsorbing pollutants from the surrounding environment, enhancing
their bioavailability and accumulation in organisms, and generating the
so-called “Trojan horse effect” (Koelmans et al., 2013; Avio et al., 2017;
Da Costa Araújo et al., 2023; da Costa Araújo et al., 2022). Results of
these studies have indicated that MPs may either increase or decrease the
availability of environmental pollutants to marine biota (Davarpanah and
Guilhermino, 2015; Beiras and Tato, 2019; Garrido et al., 2019; Bellas
and Gil, 2020; Cheng et al., 2021; Fernández et al., 2020). Therefore,
more research is needed on this topic.

Chlorpyrifos [O, O-diethyl O-(3,5,6-trichloro-2-pyridinyl) phosphoro-
thioate, CPF] is a widespread chlorinated organophosphorus pesticide
extensively used in pest control due to its easy accessibility, low price,
and short-moderate persistence in water (half-life of 16–81 days, depend-
ing on the pH) in comparison to other organophosphorus insecticides
(Asselborn et al., 2015; John and Shaike, 2015; Bellas and Gil, 2020).
CPF has been applied worldwide in the management of a wide variety of
pests, controlling several larval and adult forms of insects and mites, and
its potential to control arthropod pests, includingwidely distributed species
such as the mosquitoes Culex pipiens and Ochlerotatus caspius, or the termite
Odontotermes obesus, has made it one of the most efficient insecticides
2

(Giesy and Solomon, 2014; Mohammed et al., 2022; Venkateswara Rao
et al., 2005). Due to its widespread use, this pesticide has been detected
in water samples from many parts of the world (Huang et al., 2020). In
fact, CPF is the second most detected pesticide in water and food (John
and Shaike, 2015), and has also been found to be adsorbed (and potentially
desorbed) to plastic and sediment particles (Gebremariam et al., 2012; León
et al., 2018). Concentrations of CPF in water vary from non-detected to
37.3 μg/L (Hasanuzzaman et al., 2018). Even though CPF is considered
non-phytotoxic at insecticidal concentrations, negative effects of CPF
have been reported on the germination and morphological traits of plants,
with proved effects on white mustard (Sinapis alba) at exposure concentra-
tions from 0.1 μg/L (Gvozdenac et al., 2015; John and Shaike, 2015). Also
effects on the growth, ultrastructure, pigment content, and enzymatic activ-
ity of microalgae have been detected (Asselborn et al., 2015; Chen et al.,
2016; Echeverri-Jaramillo et al., 2020; Garrido et al., 2019), showing dele-
terious effects on Dunaliella tertiolecta from concentrations as low as 0.6 mg
CPF/L (DeLorenzo and Serrano, 2003). The use of this pesticide has been
regulated by the public bodies of 83 countries (Li, 2018), due to its
known neurotoxic and endocrine effects in vertebrates, including humans
(Rahman et al., 2021), being classified as a priority substance in the
Water Framework Directive (Directive, 2000/60/EC).

Mercury (Hg) is a heavy metal that occurs naturally at low concentra-
tions in the environment (Tchounwou et al., 2012). However, due to its
massive and continued industrial use, as well as its applications in agricul-
ture, its concentration on biotic and abiotic compartments has increased in
certain areas to alarming levels, reaching concentrations up to 27 μg/L
in coastal waters (Nasfi, 1995). It is encountered in nature in three forms
(elemental, inorganic, and organic). Its most commonly found organic
form in the environment, methylmercury (MeHg), is considered a highly
toxic contaminant to aquatic organisms due to its potent neurotoxic action
(Gworek et al., 2016). In fact, Hg has been labeled as a highly toxic sub-
stance for aquatic life by the European Chemicals Agency (ECHA, 2022).
Some of the effects detected on birds (e.g. Gavia immer), mammals (e.g.
Lontra canadensis) and fish (e.g. Pimephales promelas) include behavioral,
hormonal, reproductive and neurochemical changes, due to the exposure
in the wild to this metal, at concentrations of Hg in prey of 0.3 μg/g–
3.93 μg, (Scheuhammer et al., 2007).

The main objective of the present research was to study the toxicity of
polyethylene MPs, Hg and CPF, alone and in combination, to R. lens, in
order to contribute to the understanding of the impact ofMPs in the aquatic
environment. Specific objectives included the study of the possible role of
MPs as vectors of potentially harmful pollutants and the joint toxicity of
MP and Hg/CPF to marine organisms. Therefore, the two main hypotheses
of this study were: first, that MP are capable of causing toxicity to
microalgae, and second, that MPs are capable of acting as carriers of metals
and pesticides, being able to modulate their toxicity.

2. Materials and methods

2.1. Microalgae strains

Strains of the unicellular marine microalgae Rhodomonas lens (Pascher
& Ruttner in Pascher, 1913) were chosen as the phytoplanktonic model
organism to perform the exposure experiments. Microalgae were obtained
from the ECIMAT Culture Collection (ECC), at the Centro de Investigación
Mariña-Universidade de Vigo, and were grown in Walne medium enriched
with vitamins (Walne, 1966).

2.2. Experimental procedure

2.2.1. Experimental solutions and suspensions
High density polyethylene (HDPE) microparticles were chosen as the

model microplastics based on literature and on previous findings from
our research group (Fernández et al., 2020; Rivera-Hernández et al.,
2019). Two types of PE MPs, purchased from MicroPowders Inc. were
used. MPP 635-XF is a micronized powder with a size range of 1.4–42 μm
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(2–10 μm represent 99.9 % of the total particle distribution in number, and
92 % in volume) and a mean particle size of 7.73 μm (Garrido et al., 2019).
An oxidized high-density polyethylene (HDPE), Aquatex 325, was also
selected since it has been reported to have a higher affinity for metals than
plainMPs (Fernández et al., 2020; Rivera-Hernández et al., 2019). According
to the manufacturer, this product is uniformly produced with amean particle
size in the 10–15 μm range, reaching a maximum particle size of 44 μm. It
exhibits a melting point of 135–140 °C and a density of 0.99 g cm3 (25 °C).

Microplastics, CPF and Hgwere tested individually and inMP-pollutant
mixtures. MPs suspensions were prepared by addition of 1 mg of micron-
ized powder in 1 L of filtered seawater (FSW) and were subsequently
shaken for 20 min in an ultrasonic bath to achieve a homogeneous suspen-
sion. The non-ionic surfactant polyoxyethylene sorbitan monolaurate
(Tween 20, Fluka Chemika, Switzerland) was employed at a concentration
of 17.5 μg tween/mg MP to smooth the diffusion of the microparticles into
the water column. MPs bioassays involved the exposure of R. lens to a range
of concentrations: 1, 10, 100 and 1000 μg/L (equivalent to 25, 248, 2475,
24,750 particles/mL for MPP 635-XF and to 4, 42, 424, 4242 part/mL for
Aquatex 325, based on experimental measurements with a Multisizer®
3 Coulter Counter, Beckman Coulter, USA). In addition to the control
group, a dispersant control was included at the same concentration as in
the highest MPs treatments.

Analytical grade (99.9 %) CPF was purchased from HPC Standards
GmbH, Germany. Since this pesticide is poorly soluble in water (1.4 mg/L
at 25 °C), acetone was used as a carrier to prepare a 5 mg/L CPF stock solu-
tion. Experimental treatments were prepared by diluting the stock solution
in FSW, using amaximum concentration of 100 μL acetone/L. In addition to
the control group, an acetone solvent control (0.0001 % (v/v)) was
included. CPF experimental concentrations (1, 10, 100, 500, 1000, 1700,
2900 and 4900 μg/L) were selected on the basis of the previous work of
the research group and on data from literature (Asselborn et al., 2015;
Chen et al., 2016; Echeverri-Jaramillo et al., 2020). Chemical analyses
carried out by our research group indicated actual concentrations of CPF
between 74 % and 105 % of nominal concentrations, with recoveries of
90.1 ± 5.7 % (Garrido et al., 2019).

Mercury (II) nitrate (Hg(NO3)2, Panreac, p. a. C 99.0%, water solubility
5–10 g/L at 22 °C) was used for experiments. A standard solution of Hg
(1 g/L) was diluted in FSW in order to obtain the experimental concentra-
tions selected: 1, 50, 100, 250 and 500 μg/L, on the basis of literature
data (Gómez-Jacinto et al., 2015; Horvatić et al., 2007; Juneau et al.,
2001; Rodrigues et al., 2013; Wu and Wang, 2011; Zamani-
Ahmadmahmoodi et al., 2020). Chemical analyses carried out by our
research group indicated actual concentrations of Hg between 72 % and
101 % of nominal concentrations, with recoveries of 88.1 ± 10.2 %.

MPP 635-XF MPs suspensions were loaded with CPF (1 mg MPs/L +
1mg CPF/L) for 2 h in an orbital shaker at 18 °C, to ensure maximum sorp-
tion (i.e., concentrations between the solid MPs phase and liquid contami-
nant phase are constant and the equilibrium is reached) of the CPF to the
MPs (Albentosa et al., 2017). Aquatex 325 oxidized MPs suspensions
were loadedwithHg (200 μgMPs/L+200 μg Hg/L) for 168 h in an orbital
shaker at 18 °C (Rivera-Hernández et al., 2019; Fernández et al., 2020).
After incubation, the pollutant-loaded MPs suspensions were submitted to
an ultrasonic bath for 20min to warrant a homogeneous suspension. Exper-
imental concentrations of CPF-loaded and Hg-loaded MPs were 100, 250,
500, 750, 1000 μg CPF/L and 50, 100, 150 and 200 μg Hg/L. These range
of concentrations were chosen in order to cover the median effective
concentrations (EC50) of CPF and Hg, i.e., the concentrations causing
50 % cell growth inhibition of R. lens. According to recent studies from
our group, >70 % of the added CPF was adsorbed to the MPs (Garrido
et al., 2019), whereas the concentration of Hg loaded inMPswas equivalent
to 12.52 % (Rivera-Hernández et al., 2019; Fernández et al., 2020).

2.2.2. Microalgae bioassays
Exposure experiments were conducted according to the Organization

for Economic Cooperation and Development (OECD) No. 201 guideline
(OECD, 2011). All bioassays were started with an initial R. lens density of
3

10 × 104 cells/mL. The cultures were maintained in exponential growth
phase for 96 h in 100mL glass Erlenmeyer flasks at 20±2 °C, with a salinity
of 36 PSU, under continuous illumination (64 μmol/sm2) and orbital shaking
(90 rpm). All material was washed with HCl (10 % vol) and sterilized at a
temperature of 180 °C for 2 h before use, in order to avoid any biological or
chemical contamination. The seawater used for the bioassays was filtered
through a glass fibber 142 mm prefilter (13400-142K, Sartorius, Germany,
Europe) and a 0.2 μm cellulose acetate membrane filter (11107-142G, Sarto-
rius, Germany, Europe), and autoclaved prior to use. Each concentration was
tested in triplicate. Appropriatemovement and shape of themicroalgae in the
control flasks and pH in all flasks were checked daily.

2.3. Analytical procedures

2.3.1. Cell density
Cell density was measured daily using a PAMAS particle counter

(PAMAS Partikelmess-und analysesysteme GMBH, Germany). Aliquots of
10mLwere taken from the experimental flasks inside a laminar flow cham-
ber and added to 15 mL vials. Aliquots were diluted in FSW, when neces-
sary, to be under the maximum quantification threshold (3.36–10.25 μm)
of the particle counter and ensure a reliable result. Average specific growth
rates (ASGR) were calculated as stablished in the OECD 201 guideline
(OECD, 2011) and expressed as the logarithm of the cell number increase
per day during the 96-h test period.

2.3.2. Cell viability
Cell viabilitywas assessed after 48 and 96 h of incubation using thefluo-

rescent probe Propidium Iodide (PI, Invitrogen, ThermoFisher Scientific,
Germany, Europe), as previously described in Nogueira et al. (2015). In
brief, 6 mL samples were taken from the Erlenmeyer bioassay flasks and
incubated with PI at 10 μM for 15 min, in darkness. After the incubation
period, cell viability was estimated from PI fluorescence at an excitation
wavelength of 535 nm and an emission wavelength of 617 nm, using a
microplate reader (Tecan Infinite® 200 PRO, Männedorf, Switzerland).
The fluorescence obtained from the samples exposed to PI was corrected
with the autofluorescence of each corresponding sample. For cell viability
calculations, control values were taken as 100 % of viable cells.

2.3.3. Pigment content
The contents of chlorophyll a (Chla), c2 (Chlc2) and carotenoids were

determined at 48 and 96 h, following the aqueous acetone extraction
method of Yu et al. (2017), with some modifications. Briefly, a sample of
10 mL was pipetted from the bioassay flasks and was centrifuged at 20 °C
for 10 min at 3000 rpm. After removing the supernatant, the pellet was
resuspended twice in 10 mL of distilled water in order to eliminate salts.
Subsequently, 1.5 mL of 90 % acetone was added to the obtained pellet,
followed by homogenization in an ultrasonic water bath for 5 min. The ho-
mogenized sample was then incubated in a water bath for 30 min at 50 °C
and centrifuged again at 20 °C for 10 min at 3000 rpm. This procedure was
carried out in darkness to avoid excitation of the chlorophyll molecules.

The samples were allowed to stand for a fewminutes before starting the
measurements. The absorbance values of the samples were measured at
several wavelengths (480, 664, 630 and 750 nm) using a microplate reader
(Epoch, Biotek instruments Inc., USA). The concentration of Chla and Chlc2
was computed following the equations proposed by Humphrey (1979) for
cryptomonads in a 90 % aqueous acetone solution, while the total caroten-
oid content was obtained with the equation described by Strickland and
Parsons (1972). The three equations were modified by the method sug-
gested by Warren (2008) to adapt the trichromatic equations to microplate
measurements. The values obtainedwere divided by the cell density (cells/
mL) in each experimental flask.

2.4. Statistical analysis

The experimental data were processed using the SPSS® version
23.0 software package. Data sets were checked for normal distribution



0 1 10 100 250 500 750 1000 1700 2900 4900

0.0

0.2

0.4

0.6

0.8

A
ve

ra
ge

sp
ec

ifi
c

gr
ow

th
ra

te
/d

ay

CPF

MPs

MPs+CPF

***
*** *** ***

*

A

E.P. Pinto et al. Science of the Total Environment 857 (2023) 159605
(Shapiro-Wilk test) and homogeneity of variances (Lévene test). After veri-
fying the parametric assumptions, one-way ANOVA and Dunnett post hoc
test were applied in order to determine significant differences between
treatments and to determine lowest observed effect concentrations
(LOEC) and no observed effect concentrations (NOEC). A Two-way
ANOVA followed by Bonferroni post hoc test was performed to evaluate
the effect of ‘time’ and ‘treatment’ factors. When data did not meet normal-
ity or homoscedasticity assumptions, the Dunnett T3 test was used. All
statistical analyses were based on a 0.05 significance level. Growth inhibi-
tion EC50s were calculated according to the Probit method.
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Fig. 2. A. Average specific growth rate per day after 96 h exposure to plain MPs
(circle) and CPF (square) alone and in combination (triangle). B. Average specific
growth rate per day after 96 h exposure to oxidized MPs (circle) and Hg (square)
alone and in combination (triangle). n = 3; error bars represent standard
deviations; *, ** and *** designate statistically significant differences (p < 0.05,
0.01 and 0.001).
3. Results

3.1. Effects of MPs

Rhodomonas lens population growth was affected by exposure to plain
(MPP 635-XF) MPs (Fig. 1A). According to the two-way mixed ANOVA,
significant effect of ‘time’ (p = 0.000) and ‘concentration’ (p = 0.006)
and a significant interaction between both factors (p = 0.000) was
observed. One-way ANOVA showed a significant increase in cell growth at
48 h of exposure (p = 0.000) and post hoc tests indicated a significant
increase in all tested concentrations with respect to both control and
Tween-control (Fig. 1B). This effect was not detected at 72 or at 96 h, when
no significant differences with respect to controls were observed at any of
the concentrations tested. No significant effects were noted on ASGR after
96-h exposure of R. lens to plain (Fig. 2A, Table S1) or oxidized (Aquatex
325) MPs (Fig. 2B, Table S1) at the tested concentrations. There were also
no significant differences between the control and the Tween-control.

A significant decrease in cell viability was detected in microalgae
exposed for 48 h to 10, 100 and 1000 μg/L of plain MPs, with a reduction
with respect to control cultures of 17, 14 and 10 % respectively, and
in microalgae exposed for 96 h at the highest concentrations tested
(1000 μg/L), with a 29 % viability decrease (Fig. 3A, Table S1). A signifi-
cant decline in cell viability was also observed in microalgae exposed for
48 h to 1000 μg/L of oxidized MPs, with a reduction of 24 % with respect
to controls (Fig. 3B, Table S1). Significant effects on cell viability were
noted in microalgae exposed for 96 h at all tested concentrations, with
A
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Fig. 1. Effects of plain MPs on Rhodomonas lens. A. Number of cells/mL per treatment at
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test, p < 0.01 and 0.001, respectively).

4

reductions of 15, 12, 16 and 17 % at 1, 10, 100 and 1000 μg/L of oxidized
MPs. Tween did not affect cell viability.

Exposure to plainMPs also significantly decreased cellular concentrations
of Chla and Chlc2 in R. lens populations, at both 48 and 96 h (Fig. 4A, B,
Table S1).Moreover, the two-waymixedANOVA test showed a significant ef-
fect of ‘time’ (p=0.001) and ‘concentration’ (p=0.033) in Chlc2 (Table S2).
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Fig. 3. Cell viability after 48 h (dark grey) and 96 h (light grey) of exposure to plain MPs (A), oxidized MPs (B), CPF (C), Hg (D), CPF-loaded MPs (CPF concentration
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No significant effects on Chla, Chlc2 or carotenoids were detected after expo-
sure to oxidized MPs (data not shown). Pigment concentrations of the
microalgae were not affected by Tween.

3.2. Effects of CPF and Hg

Chlorpyrifos caused a significant decrease in ASGR above 1000 μg CPF/
L at 96 h (Fig. 2A). Total inhibition of microalgae growth was noticed at
concentrations above 1700 μg CPF/L at 24 h (data not shown). The
NOEC, LOEC and EC50 of CPF at 96 h were 100, 500 and 708.39 μg/L,
respectively (Table 1). No significant effects of acetone on cell growth
were observed.

Mercury significantly inhibited the microalgae ASGR at concentrations
higher than 100 μg Hg/L (Fig. 2B, Table S1). The ASGRwas 0.417 day−1 at
100 μg/L, which represents a 20 % decrease with respect to the control. A
total inhibition of the population growth was found at concentrations
higher than 250 μg/L at 24 h (data not shown). The NOEC, LOEC and
EC50 values at 96 h were 50, 100 and 132 μg Hg/L, respectively (Table 1).

A significant decrease of cell viability was detected in microalgae
exposed to CPF concentrations higher than 10 μg/L at 48 h of exposure
5

(Fig. 3C, Table S1). Viability percentages were 39, 30, 35, 15, 26 and
14 %, at 100, 500, 1000, 1700, 2900 and 4900 μg/L, respectively. A com-
plete inhibition of cell viability was observed at CPF concentrations higher
than 1000 μg/L, at 96 h. Cell viabilitywas also affected by exposure toHg at
both 48 and 96 h exposure (Fig. 3D, Table S1). A concentration-dependent
decrease was found and cell viability showed minimum values (8 % of via-
ble cells) at the two highest tested concentrations (250 and 500 μg/L) at
96 h. Acetone did not show effects on cell viability.

A significant reduction in Chla content was observed at 1700 μg
CPF/L and also for Chlc2 at 4900 μg CPF/L at 48 h (Fig. 4C, Table S1),
whereas significant differences at 96 h were only detected in Chla con-
tent at 4900 μg CPF/L (Fig. 4D, Table S1). Two-way ANOVA also identi-
fied a significant effect of ‘time’ and a significant interaction between
both factors on the two pigments tested (Table S2). Pigment contents
were affected by exposure to the different concentrations of Hg at 48
and 96 h. At 48 h of exposure Chla and carotenoids contents signifi-
cantly increased with respect to the control group at 1 μg Hg/L, while
no effect was noted on pigment contents at 50 and 100 μg Hg/L
(Fig. 4E). Chla, Chlc2 and carotenoids contents were significantly de-
creased at the highest tested concentrations, 250 and 500 μg Hg/L
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Fig. 4. Chlorophyll a (dark grey), c2 (light grey) and carotenoids (medium grey) after exposure to plain MPs at 48 h (A) and 96 h (B), CPF at 48 h (C) and 96 h (D), Hg at 48 h
(E) and 96 h (F), CPF-loaded MPs at 96 h (CPF concentration represented, G) and Hg-loaded MPs at 48 h (Hg concentration represented, H). n = 3; error bars represent
standard deviations; *p < 0.05, **p < 0.01, ***p < 0.001.
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(Table S1). At 96 h, a significant decrease on pigment contents was only
observed at the two highest tested concentrations (Fig. 4F, Table S1).
The two-way mixed ANOVA test performed showed a significant effect
of ‘time’ (p = 0.015) in Chlc2 of cells exposed to Hg, while ‘concentra-
tion’ and the interaction between both factors was significant in all pig-
ments tested (Table S2).
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3.3. Effects of CPF- and Hg-loaded MPs

Chlorpyrifos-loadedMPs caused a slight inhibition on ASGR at 1000 μg/L
(Fig. 2A, Table S1), corresponding to a 17 % decrease with respect to the
controls. The NOEC and LOEC values of the CPF-loaded MPs were 750 and
1000 μg/L, respectively (Table 1).



Table 1
NOEC, LOEC and EC50 values (μg/L) on the average specific growth rate of R. lens
after 96 h of exposure to the different treatments. Results come from the Analysis of
Variance (ANOVA) and Probit.

Pollutant NOEC LOEC EC50

MPs 1000 – –
CPF 100 500 708.390 (699.868–790.208)
CPF + MPs 750 1000 –
Oxidized MPs 1000 – –
Hg 50 100 131.923 (84.072–283.888)
Hg + oxidized MPs 100 150 204.985 (188.350–228.528)
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Mercury-loaded MPs inhibited the ASGR at 150 and 200 μg/L. The
ASGR was 0.302 day−1 at 200 μg Hg-loaded MPs/L, representing almost
a 50 % decrease with respect to the control (Fig. 2B, Table S1). The
NOEC and LOEC values at 96 h were 100 and 150 μg/L, respectively
(Table 1).

Cell viability was significantly reduced at 750 and 1000 μg CPF-loaded
MPs/L at 48 h, reaching a 36 and 45 % decrease with respect to controls,
respectively (Table S1). At 96 h a significant decline in cell viability was
only detected at the highest tested concentration (1000 μg/L), reaching a
35 % decrease with respect to controls (Fig. 3E, Table S1). Hg-loaded MPs
caused a concentration-dependent reduction in the percentage of viable
cells. Significant inhibition in viability was observed at 150 and 200 μg
Hg-loadedMPs/L, at both 48 and 96 h (Table S1). The percentages of viable
cells at 200 μg Hg-loaded MPs/L were 28 % and 32 %, at 48 and 96 h,
respectively (Fig. 3F).

Pigment contents were significantly affected by CPF-loadedMPs only at
96 h exposure (Table S1). Both, Chla and Chlc2 contents were significantly
increased at concentrations higher than 100 μg CPF-loaded MPs/L
(Fig. 4G), reaching maximum values of 8.56E−06 μg Chla/mL and 2.81E
−06 Chlc2/mL per cell at 500 μg CPF-loaded MPs/L. The two-way
ANOVA test carried out indicated a significant effect of ‘time’ (p = 0.000)
and a significant interaction between the two factors (p = 0.004) in Chla,
while ‘concentration’ was significant in both chlorophylls tested
(Table S2). Pigment contents were not significantly affected by Hg-loaded
MPs, with the exception of Chla at 200 μg/L that showed a significant
increase at 48 h, reaching 6.09E−06 μg Chla/mL per cell (Fig. 4H,
Table S1). The two-way ANOVA test performed showed a significant effect
of ‘time’ in Chlc2 (p = 0.010) and carotenoids (p = 0.001), and a signifi-
cant interaction between both factors in Chla (p= 0.004) and carotenoids
(p = 0.027) (Table S2).

4. Discussion

4.1. MPs effects on microalgae

Our results show the existence of significant effects on R. lens growth
rates after 48 h exposure to plain MPs, but no effects were observed at
increasing exposure times or after exposure to oxidized MPs. Several
authors have suggested that the impact of MPs on microalgae growth is
highly dependent on polymer chemistry, size and charge, concentration,
presence of additives and microalgae species (Hazeem et al., 2020; Prata
et al., 2019; Tunali et al., 2020). Some studies have found a pattern of
growth inhibition in microalgae at smaller MPs sizes and at higher concen-
trations (Hazeem et al., 2020; Tunali et al., 2020). In the present investiga-
tion, particle sizes of the MPs under study are in the range of 7–15 μm,
similar to the size of R. lens cells, thus, the uptake of MPs particles is
unexpected. However, it is possible to argue that the effects of the MPs
observed in this study may be due to a reduction of the mobility of the
microalgae due to the adsorption of MPs to the periplast (Davarpanah
and Guilhermino, 2015; Dong et al., 2022).

A pattern of increasing population growth similar to that described in
this study, has been previously found in marine and freshwater species ex-
posed to MPs (Canniff and Hoang, 2018; Cunha et al., 2020; Yokota et al.,
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2017). This effect has been credited to the ability of some microalgae spe-
cies to use MPs as substrates and develop biofilms on them (Canniff and
Hoang, 2018; Lagarde et al., 2016; Long et al., 2015; Yokota et al., 2017;
Zettler et al., 2013). These organisms are known to release exopolymeric
substances (EPS) due to the cellular stress caused by the interaction with
plastic particles (Shiu et al., 2020; Zettler et al., 2013), with higher concen-
trations of MPs triggering a higher release of EPS (Shiu et al., 2020). MPs
hydrophobic domains added to the physical changes in the particles as a re-
sult of the presence of EPS promotes aggregation (Casado et al., 2013;
Lagarde et al., 2016; Prata et al., 2019; Shiu et al., 2020). This leads to
the formation of heteroaggregates among MPs, microalgae and EPS, conse-
quently provoking a reduction in light availability and in substance ex-
change in microalgae. The genus Rhodomonas has been reported to create
heteroaggregates withMP particles and EPS (Long et al., 2015), which sup-
ports the results obtained in this work. The formation of heteroaggregates
in cultures exposed to these plain MPs was observed here under the micro-
scope. Previous publications have also highlighted the importance of the
zeta potential, defined as the charged attraction or repulsion among parti-
cles, on microalgae growth rates (Gomes et al., 2020; Hazeem et al.,
2020). If the zeta potential is low, the particles will tend to aggregate,
which may explain, to some extent, the variability observed here on the ef-
fects of plain and oxidizedMPs to R. lens. However, the zeta potential of the
particles under study has not been evaluated in this research.

After 48 h, a population growth decay trend was detected. At 96 h, no
significant differenceswere observed in growth at any of the concentrations
tested, compared to controls. Other authors have indicated comparable re-
sults at 96 h in Tetraselmis chuii exposed to PE particles with similar sizes
and concentrations (Davarpanah and Guilhermino, 2015; Prata et al.,
2018). The mechanisms associated to this decay in microalgae growth
can be also explained by the release of this EPS as a detoxification process,
whichmay lead to the consumption of energy, that will not be available for
growth (Gambardella et al., 2018).

Rhodomonas lenswas not affected by the oxidizedMPs at the tested con-
centrations (up to 1 mg/L), at any exposure time, which is in accordance
with previous findings that did not observe significant effects in other spe-
cies, up to 41.5 mg MPs/L (Prata et al., 2018; Garrido et al., 2019; Tunali
et al., 2020). It has been suggested that this lack of effects may be due to
MPs aggregation and flocculation, which would reduce the interaction
with the microalgae and thus diminish the possible effects (Davarpanah
and Guilhermino, 2015).

The viability of R. lens decreased at the highest concentrations tested
when exposed to both plain and oxidized MPs, which is in agreement
with previous work performed with chlorophytes and cryptophytes at
comparable particle concentrations (Gomes et al., 2020; Gunasekaran
et al., 2020). The observed reduction in cell viability can be interpreted
as an indicator of cell disruption caused by the interference of the plastic
particles with the periplast of the microalgae. Also, for the same particle
size, the effects on the viability of microalgae have been related to the
chemical structure of plastics (Hazeem et al., 2020), which may explain
the lower viability detected in R. lens exposed to plain MPs compared to
oxidized MPs.

Regarding the pigment contents, a significant decrease in Chla and
Chlc2 concentrations was found in R. lens exposed to plain MPs. A reduc-
tion in chlorophyll concentrations due to MPs exposure has been indi-
cated in previous works (Huang et al., 2020; Prata et al., 2018; Tunali
et al., 2020). Prata et al. (2018) found a significant reduction of Chla
in T. chuii exposed to 0.9 and 2.1 mg/L thermoset amino formaldehyde
polymer microspheres of a similar size to those studied here. Also, pre-
vious research with Scenedesmus obliquus indicated a reduction in Chla
concentrations at increasing concentrations of polystyrene nanoparti-
cles (Besseling et al., 2014). This can also be linked to the formation
of heteroaggregates mentioned above, which lead to lower light avail-
ability, ending up in lower pigment content. Also, an impact on the pho-
tosystem II, the electron transport chains and the electron donor site of
the microalgae, can be expected due to MPs exposure (Bhattacharya
et al., 2010; Mao et al., 2018).
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4.2. CPF and Hg effects on microalgae

This research has shown that exposure to CPF andHg alone significantly
reduced the ASGR of R. lens, causing total inhibition at concentrations
above 1700 and 250 μg/L at 24 h, respectively.

Research on the exposure of microalgae to CPF has shown great vari-
ability in the toxicity of this compound. The EC50 for growth rate inhibition
vary depending on the species tested, from 26 mg/L for Merismopedia sp.
(Chen et al., 2016), to 0.24 mg/L for Skeletonema costatum (DeLorenzo
and Serrano, 2003). The present study has established the EC50 of R. lens
in 0.71 mg/L, which is in the low range of sensitivity to CPF. Growth inhi-
bition due to CPF exposure has been attributed to cell apoptosis, owing to
an increase of cell volume, caused by detoxification processes, and to the
inhibition of cell division (Asselborn et al., 2015). Differences in sensitivity
of microalgae species are related to their cell structures, such as the lack or
presence of cell walls (DeLorenzo and Serrano, 2003). Similarly, some
characteristics of microalgae cells can have an effect on the toxicity of
CPF, such as the secretion of mucilage from the cell surface, which can
potentially decrease the bioavailability of CPF (Martinez et al., 2015).

The inhibition of acetylcholinesterase in animals by organophosphate
pesticides, such as CPF, has beenwell studied (Bellas et al., 2022); however,
sublethal effects of this compound on microalgae has not been studied as
much. Significant effects on the cell viability and chlorophyll content of
R. lens were observed here. Viability decreased in a concentration-
dependent manner, what can be associated with changes in the cell surface
and to apoptosis (Asselborn et al., 2015). Only a few studies have addressed
the effects of CPF on chlorophyll content and are in accordance with the
results here presented (Chen et al., 2016; Tien and Chen, 2012). Chen
et al. (2016) found a similar pattern of decreased chlorophyll content in
Chlorella pyrenoidosa, with a significant reduction of Chla at 4.8 mg/L,
after 48 h exposure to CPF. However, a significant increase in Chla was
found at 96 h, which is not consistent with the results reported here.

Toxicity of heavy metals to microalgae depends on several factors,
including experimental conditions and species sensitivity (Liu et al.,
2011). Exposure of R. lens to increasing Hg concentrations resulted in a
gradual decrease in growth rates, with an EC50 of 132 μg/L, within the
range of toxicity described for Hg in other species of microalgae (Arsad
et al., 2020; Fathi, 2002; Gómez-Jacinto et al., 2015; Wu and Wang,
2011). Several mechanisms may be responsible for the growth inhibition
observed in microalgae exposed to Hg, such as the disruption of photosyn-
thetic activities due to the destruction of chloroplasts (Lamai et al., 2005),
the substitution of essential metal ions per metalloproteins, the blocking
of proteins and enzymes, or fat formation (Wang et al., 2012). Likewise,
cell viability follows a concentration-dependent decrease, being more
sensitive than growth inhibition, since a significant reduction in cell viabil-
ity occurs from 50 μg/L, instead of 100 μg/L. Previous studies have found
that cell viability decreases gradually with increasing Hg concentrations.
This has been attributed to the accumulation of the compound in the cell,
which leads to the disruption of vital functions, such as those mentioned
above (Gómez-Jacinto et al., 2015).

Chlorophyll and carotenoids in R. lens exposed to Hg varied over time,
depending on the exposure concentration. At the lowest Hg concentrations,
both Chla and total carotenoid contents of microalgae cells significantly
increased compared to the controls, after 48 h of exposure, in harmony
with the studies of Bezzubova et al. (2018) withNannochloropsis sp. Besides
harvesting light in the process of photosynthesis, carotenoids play a key
role in photoprotection, either directly by scavenging reactive oxygen
species and decreasing cell damage, by quenching chlorophyll triplet states
or indirectly, by thermal dissipation of excess light energy (Goiris et al.,
2012; Rastogi et al., 2020). Thus, an increase in carotenoids has been
commonly suggested as a protection mechanism against the formation of
free radicals in microalgae exposed to xenobiotics (Cabrita et al., 2018).
However, after 96 h of exposure, this increase in pigment contents disap-
pears, probably due to the fact that the antioxidant capacity of the
microalgae is exceeded (Pinto et al., 2003). At high Hg concentrations,
Chla, Chlc2 and carotenoids significantly decreased at both 48 and 96 h
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of exposure. These results agree with the findings of previous studies
(Afkar et al., 2010; Chen et al., 2016; Zamani-Ahmadmahmoodi et al.,
2020) and it is considered as an indicator of heavy metal toxicity (Afkar
et al., 2010), due to either the substitution of magnesium present in central
position of the chlorophyllmolecule by heavymetals (Hg, in this case), or to
the disruption of the transport chain, which ultimately inhibits photosyn-
thesis (Küpper et al., 1996).

4.3. MPs effects on CPF and Hg toxicity

In the present research, MPs combined with CPF and Hg showed signif-
icant toxicity on the measured biological responses. Previous studies have
shown the capacity of several types of MPs, including polyethylene pellets,
to adsorb and accumulate heavymetals and organic pollutants from the sur-
rounding sea water (Ashton et al., 2010; Gebremariam et al., 2012; Holmes
et al., 2012; León et al., 2018). For instance, Garrido et al. (2019) and
Rivera-Hernández et al. (2019), using the same methodology employed
here, found that 70 % and 13 % of CPF and Hg, respectively, were adhered
to the MPs under study after a loading period of 2 h (CPF) and 7 d (Hg).
However, the binding of Hg and CPF to MPs might reduce their bioavail-
ability to microalgae, resulting in limited toxicity if the loaded MPs are
not incorporated into the cell. This can be the cause of the diminished
effects of the mixtures of MPs with CPF and Hg on R. lens, compared to
the exposure to CPF and Hg alone. This is in accordance with a recent
investigation performed with CPF-loaded MPs on marine phytoplankton
(Garrido et al., 2019), although a previous study found no influence of MPs
on the toxicity of heavy metals to the microalgae T. chuii (Davarpanah and
Guilhermino, 2015).

In terms of pigment content, Chla and Chlc2 increased even at low con-
centrations of CPF-loaded MPs. This can be linked to the microalgae defense
mechanisms, which include changes in pigment content, that counteract
stressors such as xenobiotic presence or light variations caused by the pres-
ence of MPs (Maneechote and Cheirsilp, 2021). These defense mechanisms
act by increasing its pigment content in order to meet the demand needed
for the normal development of the cell (Besseling et al., 2014). This effect
can be temporary, with an initial period of vulnerability before adaptation
(Mao et al., 2018; Yokota et al., 2017). In the case of Hg-loadedMPs, caroten-
oids were not significantly affected by exposure, probably indicating that the
stress caused is not enough to overcome the photoprotective and antioxidant
activity of these pigments (Novoveská et al., 2019).

The concentrations of MPs, CPF and Hg tested in the present research are
higher than those generally found in marine waters. However, MPs concen-
trations in polluted areas can reach concentrations up to 102,000 particles/
m3 (OSPAR, 2009). The concentrations of CPF and Hg reported in estuarine
and seawater usually range from not detected to 4.095 and 27.060 μg/L,
respectively (Nasfi, 1995; Sousa et al., 2020).

5. Conclusion

To the best of our knowledge, this is the first study that tested the growth
inhibition and sublethal effects of pesticides and metals in combination with
polyethyleneMPs on cryptophytes, whose species have colonized almost any
marine and freshwater habitats, from the arctic regions to the tropics. This is
also the first investigation studying the effect of Hg-loaded MPs in
microalgae. The most important results are summarized as follows: R. lens
growth rates were significantly affected by exposure to plain MPs after 48 h
of exposure, although no effects were observed at increasing exposure times
or due to exposure to oxidized MPs. Cellular viability decreased after expo-
sure to both oxidized and plain MPs and chlorophyll content was decreased
after exposure to plain MPs. Both CPF and Hg were toxic to R. lens at concen-
trations above 100 and 1 μg/L, respectively. Exposure to CPF/Hg-loadedMPs
mixtureswere less toxic toR. lens than CPF andHg alone, probably due to the
lower bioavailability of the contaminants.

Even though in this study MPs reduced the toxicity of Hg and CPF on
R. lens, the potential internalization and, consequently, a greater effect on
microalgae, should not be ruled out for smaller MPs and, especially, for
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nanoplastics-pollutant mixtures. Further experiments with nanoplastics
should, therefore, be performed to confirm this hypothesis.
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