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Abstract: Studying the moisture sources responsible for precipitation in Iran is highly important. In
recent years, moisture sources that influence precipitation across Iran have been studied using various
methods. In this study, moisture uptake rate from individual sources that influences precipitation
across Iran has been determined using the (E − P) values obtained by the FLEXPART model for the
1981–2015 period. Then, moisture uptake rate from individual sources has been used as independent
parameters to investigate the fractional importance of moisture sources that influence precipitation in
Iran using analytical hierarchy process (AHP) as well as machine learning (ML) methods including
artificial neural networks, Decision Tree, Random Forest, Gboost, and XGboost. Furthermore, the
average annual precipitation in Iran was simulated using ML methods. The results showed that the
Arabian Sea has a dominant fractional influence on precipitation in both wet (November to April) and
dry (May to October) periods. Simulation of precipitation amounts using the ML methods presented
accurate models during the wet period, whereas the developed models for the dry period were not
adequate. Finally, validation of the accuracy of the ML models using RMSE and R2 values showed
that the models developed using XGboost had the highest accuracy.

Keywords: Iran; moisture sources; fractional importance; machine learning techniques; FLEXPART model

1. Introduction

Located in the semiarid and arid parts of Southwest Asia in the Middle East, Iran often
faces intense droughts. According to meteorological station datasets, the average annual
precipitation in this country is 252 mm/year and the standard deviation of 44.68, which
is far lower than the global average [1]. The very low precipitation amounts in Iran are
also unevenly distributed as the Caspian Sea coast receives more than 1000 mm/year of
annual precipitation, whereas large parts of central Iran receive less than 100 mm/year of
annual precipitation [1,2]. In addition to the uneven spatial distribution of precipitation,
the temporal distribution of precipitation has also been observed. The hydrological year in
Iran is classified into a dry (May to October) and wet (November to April) period according
to previous studies [3–5]. This is owing to variations in the air masses that influence the
country throughout the year. During the wet period, Iran is mainly influenced by various
air masses, including maritime polar, continental polar, Mediterranean, and continental
tropical air masses [2,6,7]. However, during the dry period, only maritime tropical air
masses influence the south-western part of the country [1,7,8]. The maritime tropical air
mass causes intense sudden monsoon precipitation, mainly in the south-western part of
Iran. Numerous studies have been conducted on the variations in the precipitation across
Iran including [1,3,5,9,10], whereas only a few of these, such as [1,4,6–8,11], have addressed
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the moisture sources of precipitation in Iran. This may be because of the highly compli-
cated processes and software packages that are needed to monitor the moisture sources
of precipitation. Studies on the primary moisture sources in Iran were first conducted
using climatological maps, including atmospheric pressure, wind speed, and wind direc-
tion [12]. In addition to climatological maps, the Lagrangian particle dispersion model (The
FLEXible PARTicle dispersion model (FLEXPART)) [13,14] and the Hybrid Single-Particle
Lagrangian Integrated Trajectory model (HYSPLIT) [15] have been used to determine the
major moisture sources for precipitation in Iran [6,7].

Karimi and Farajzadeh [12] reported that the Arabian and Mediterranean seas, with
a share of 39% and 38% of total moisture uptake, are the primary moisture providers
for precipitation in Iran. However, in the study by Heydarizad et al. [7], the FLEXPART
model outputs showed that the Arabian Sea, with a share of 28.3% of the total moisture
uptake, is the dominant moisture source for precipitation in Iran during a wet period. The
Arabian sea anticyclone (AAC) exists over the Arabian Sea and the Arabian Peninsula
in the lower and middle levels of the atmosphere has a significant influence on Iran’s
precipitation by transferring the Arabian Sea moisture to Iran’s plateau [1]. According
to the study of Karimi et al. [16], the maximum number of AAC centers (41.6%) on rainy
days with low to moderate precipitation events (up to 30 mm) existed in the north-western
part of the Arabian Sea and the east coast of the Arabian Peninsula in the lower levels
of the troposphere. Furthermore, the significant numbers of AAC centers causing low to
moderate precipitation events were also observed over the Gulf of Aden at the 500 and
700 hpa troposphere level. For heavy precipitation events (>30mm), AAC centers were
observed mainly over the western part of the Arabian Sea and the east coast of the Arabian
Peninsula at three different atmospheric levels of 500, 700, and 850 hpa [16]. In addition
to the AAC, the Mediterranean Sea cyclones also have a dominant role in precipitation
across Iran by transferring the Mediterranean Sea moisture over this country, mainly to
the western parts. The main cyclogenesis centers over the Mediterranean Sea are the east
part of the Mediterranean Sea, south of Italy, Cyprus, and the Gulf of Genoa [17]. Increase
(decrease) of the sea surface pressure in cyclogenesis centers causes a decrease (increase)
in the annual frequency of cyclones in the Mediterranean region. The increase (decrease)
of cyclones is followed by the increase (decrease) in the precipitation amount across Iran,
mainly the western part [17]. In addition, whenever SST in the Mediterranean Sea is colder
(warmer) than usual, the number of cyclones in the Mediterranean region also increases
(decreases) [18].

In contrast to the wet period, during the dry period, the Red Sea plays a dominant
role, accounting for 52.2% of the total moisture uptake [7]. Dry period precipitation mainly
in the south-eastern part of Iran is mostly under the influence of the Indian monsoon [19].
According to Saligheh and Sayadi [20], the summer precipitation in Iran is mainly depen-
dent on some phenomena, including the increase of sea surface temperature (SST) in the
water bodies in the southern part of Iran, monsoon jet stream, and the divergence and
the convergence of the wind in the south-eastern part of the Arabian Peninsula, and the
south-eastern part of Iran, respectively. The early summer precipitation mainly in June was
mostly affected by the SST of the ocean, while mid-summer (August) precipitation events
were influenced by the eastern jet streams [20].

The differences observed between Karimi and Farajzadeh [12] and Heydarizad et al.’s [7]
studies (Figure 1) were owing to the methods used to determine the moisture uptake sources
as well as the period of their studies. Karami and Farajzadeh [12] considered the moisture
uptake sources for Iran during the rainy season (November to April), whereas Heydarizad
et al. [7] considered moisture uptake sources for both the dry and wet periods.
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Figure 1. Percentage contribution of various moisture sources to precipitation in Iran during the wet
and dry periods [7,12].

Although moisture uptake from the various sources in the dry period is similar or even
higher than that in the wet period, the precipitation amount reduces markedly across Iran
in the dry period (with an average of 36.7 mm/year and the standard deviation of 14.67)
compared to the wet period (with an average of 173.4 mm/year and the standard deviation
of 38.89). This is because the Azores subtropical high-pressure system causes intense atmo-
spheric stability over a large part of Iran during the dry period [2,7,8]. Atmospheric stability
occurs owing to the intense surface temperature of the Earth and prevents the occurrence
of precipitation by disrupting the air uplifting mechanism [2,7]. In a stable atmosphere, if
a parcel of air is blown upward by an updraft or lifted over a mountain, the lifted air will
sink back down because the air parcel is much cooler than the air parcels around it [7,8]. The
Omega (ω) Equation (1) is normally used to determine asymmetric stability:

ω = dp/dt (1)

This equation is the partial differential form of the vertical velocity equation, where
d/dt represents a material derivative. Positive values of ω indicate stable atmospheric
conditions. However, negativeω values indicate atmospheric instability [7,21].

To depict the influence of atmospheric stability on precipitation variations clearly, the
spatial variations in monthly omega (ω) values as well as monthly precipitation amounts
over Iran are shown for the dry and wet periods in Figure 2. The monthly precipitation
often decreases with an increase in atmospheric stability (higher values of ω) and vice
versa in both the dry and wet periods.
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Figure 2. Spatial distribution of atmospheric stability (ω) (a,b) derived from NOAA website [22]
and precipitation amount (c,d) over Iran derived from CRU3.23TS datasets [23] for the dry and wet
periods, respectively.

Although obtaining the contribution of each moisture source compared with the total
moisture uptake using methods such as HYSPLIT and FLEXPART is extremely important,
understanding the fractional importance of each moisture source that influences the amount of
precipitation is also necessary. This is crucial because it can help scientists understand which
moisture sources (water bodies) predominantly control the variations in precipitation amount
and cause climatological droughts. Various methods, including the analytical hierarchy
process (AHP) and machine learning (ML) methods have been used to study the fractional
importance of individual moisture sources that influence the precipitation amount.

Since Thomas L. Saaty developed the AHP method in the 1970s [24], it has been
applied in numerous studies to organize and analyse complicated scenarios. In addition to
AHP, ML methods can be applied to investigate the fractional importance of individual
moisture source affecting the amount of precipitation in Iran. Although the application of
ML methods in different aspects of the hydrological and climatological sciences, such as
in [25–33], has increased substantially during the last few years, comprehensive studies on
the application of ML methods in moisture source investigations are lacking.

The aim of this study was to determine the fractional importance of various moisture
sources influencing precipitation amounts across Iran using AHP and ML methods. In
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addition, the amount of precipitation across Iran was simulated using ML methods, and
the accuracy of the developed models was validated.

2. Materials and Methods

Figure 3 presents the outline of this study briefly. In the first step of the present study,
the moisture sources of precipitation in Iran were identified using global outputs from
FLEXPART v9.0 (Norsk Institutt for luftforskning (NILU), Oslo, Norway) [14,34] for the
period 1981-2015. In the modeling procedure, FLEXPART considers the atmosphere as
divided into approximately 2 million parcels with a resolution of 1◦, and input data for
every 6 h at 61 vertical levels of the atmosphere from the ERA-Interim Reanalysis project [35]
is used to drive the model. Air masses residing over Iran were tracked backward in time,
and the changes in specific humidity (dq) were computed every 6 h (dt) in air parcels
according to Equation (2):

dq
dt

= m(e − p) (2)

where m represents the constant mass value of each parcel, and e and p are the evaporation
and precipitation, respectively. By integrating the (e − p) values for all parcels in a vertical
column over an area, we obtained an approximation of the surface freshwater flux (E − P).
This budget was computed by considering the optimal number of days proposed in [36].
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Figure 3. Flowchart demonstrates the procedure of this study.

Thus, in a backward experiment, regions with (E − P) > 0 indicate moisture gain by the
air masses, and those with (E − P) < 0 indicate moisture loss. Regions with positive values
of the budget are considered sources of moisture, whereas negative regions as moisture
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sinks. In the present study, only regions that acted as moisture sources were used. The
approach for identifying moisture sources has been widely utilized in recent studies at
global [37,38] and regional [39] scales.

Furthermore, a statistical stepwise model has also been applied to investigate the
simultaneous effect of each marine moisture source on Iran’s average precipitation in the R
programing language. The stepwise model was utilized to fit a linear equation between
moisture uptake values from different sources (independent variables), and a dependent
variable (precipitation amount) as demonstrated in Equation (3) [40]:

Y = β0 + β1X1 + β2X2 + . . . + βnXn + ε (3)

where Y is the target variable, X1 to Xn are the parameters affecting Iran’s average pre-
cipitation (independent variables), β0 to βn are the partial regression coefficients, and ε
is the error term showing the variability of the target variable, which is impossible to be
explained by the stepwise model. The independent variables were added to the stepwise
model one by one to determine their importance and to clarify whether they should stay or
be removed from the final model. The independent variables with p-values of more than
0.05 were omitted from the model, while the rest of the independent variables were kept in
it [41].

Monthly (E − P) values calculated for each moisture source for the period 1981–2015
were applied as the sole predictor variables to forecast the average monthly precipitation
amount in Iran (target variable) as well as to determine the fractional importance of various
moisture sources that influence precipitation amount. The (E − P) values calculated for each
moisture source were identified using FLEXPART v9.0 outputs, and the amount of monthly
precipitation were derived from datasets of the Climatic Research Unit (CRU3.23TS) [23].

These datasets (CRU3.23TS) are available monthly on high-resolution (0.5 × 0.5 degree)
grids which have been produced by the Climatic Research Unit (CRU) at the University of
East Anglia in Norwich, Britain.

The predictor and target variables were then used as inputs to the simple AHP and
fuzzy AHP techniques to determine the fractional importance of various moisture sources
that influence precipitation amount using super decision software version 3.2. In addition
to AHP techniques, the ML methods were also used to determine the fractional importance
of various moisture sources that influence precipitation as well as to simulate monthly
precipitation amounts across Iran.

To apply the ML techniques, the (E − P) values for each moisture source as well as
annual precipitation datasets for Iran were divided into three subsets—training, testing,
and verifying using the rsample package [42] in the R programming language [43]. After
determining the fractional importance of each moisture source influencing the precipitation
amount, the (E − P) values in each source were also used to train various ML methods to
simulate the precipitation amount using packages in R. The ML methods applied included
the artificial neural network (ANN) and deep neural networks (DNN). The DNN is a
branch of the ANN model that consists of multiple layers between inputs and outputs.
A DNN is concerned with a number of layers of bounded size, which permits optimized
implementation [33]. In addition to neural networks, other ML methods such as Decision
Trees, Random Forest (RF), gradient boosting (GBoost), and eXtreme gradient boosting
(XGBoost) were used in this study. Decision Trees are popular tools in supervised learning
ML models and are commonly applied in decision analysis to achieve the final goals of
the study. The Decision Tree model is well known for its simplicity and intelligibility [44].
The RF is a supervised ML model which is extremely user-friendly and flexible. It is
a classification technique which consists of numerous Decision Trees trained using the
bagging method [45]. In addition to the above ML techniques, ensemble ML methods,
including GBoost and XGBoost, were also applied in the present study. GBoost is an ML
model which is used in both classification and regression tasks. This model presents the
anticipation of target values in the form of an ensemble of weak Decision Tree models [46].
Although the GBoost model has several advantages, such as its simplicity, it also has two
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main disadvantages: anticipation weakness and obstacles in the analysis of large trees [47].
The XGBoost method was developed to address these shortcomings, mainly in the training
procedure, to construct more accurate and faster models [48,49]. XGBoost is one of the
most important and popular ML methods first developed by Tianqi Chen in the C++
language [50]. The XGBoost is designed to expand the ML algorithms’ capability to omit
the computation limits which have been observed in other ML models and achieve a more
accurate, portable, and scalable algorithm. XGBoost utilizes a more regularized model
formalization to control and reduce over-fitting, which gives this model more accuracy.
In addition to a much better prediction performance which has been observed normally
in this model compared to other ML models, the XGboost also conducts the tasks at an
extremely higher speed (more than 10 times faster) compared to the available GBoost
algorithms like CatBoost, AdaBoost, and GBoost. This is because the XGBoost conducts
parallel computation tasks in which numerous processes and calculations are conducted
simultaneously [49].

Finally, the accuracy of the developed ML models was evaluated by comparing the
real and simulated precipitation amount values using the coefficient of determination (R2)
(Equation (4)) and root mean square error (RMSE) [51,52] as follows (Equation (5)):

R2 = 1 − (∑
i
(ŷ − yi)2/ ∑

i
(
−
y − yi)

2
) (4)

where
−
y is the average, yi is the i-th measured data, and ŷ is the corresponding predicted data;

RMSE =

√
∑N

i=1(predictedi − Actuali)2

N
(5)

where N is the number of data, actual (i) is the i-th measured data, and predicted (i) is the
corresponding predicted data.

3. Results and Discussion

The (E − P) > 0 values obtained by backward trajectory analysis of air masses arriving
over Iran illustrate the spatial distribution of the main moisture uptake sources and changes
in spatial extension between the dry and wet periods (Figure 4a,b) [7]. The blue line in
Figure 4a,b, shows 95% of the (E − P) > 0 annual values, and the 5% area, which is located
inside the blue line, represents the (E − P) > 0 values of 0.15 mm/day and 0.12 mm/day for
the dry and wet periods, respectively. Furthermore, the dominant moisture uptake sources
have also been shown for the dry and wet periods (Figure 4c,d).

The temporal variations of moisture uptake rate from various sources in Iran
and Iran’s average precipitation amount have been demonstrated in Figure 5. During
the wet period, Iran’s average precipitation often follows approximately the same
trend as the moisture uptake rate (Figure 5a). This is due to the fact that Iran’s aver-
age precipitation amounts are dominantly controlled and supplied by the mentioned
moisture sources, while the role of local small-scale parameters is negligible. During
the dry period, Iran’s average precipitation does not demonstrate the same trend as
the moisture uptake rates (Figure 5b). This is due to the severe atmospheric stability
caused by the Azores subtropical high-pressure system over most parts of Iran from
which prevents precipitation occurring during the dry period. The role of local and
small-scale parameters in controlling infrequent precipitation events is notable during
the dry period in most parts of Iran except for the south-eastern part of the country
where the mT airmass is active.
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To study the variations of (E − P) in the Mediterranean and the Arabian Seas (the
dominant moisture uptake sources during the wet periods) and mechanisms controlling
precipitation amount in the dry (1984, 1989, 1994, 2000, 2001, 2008, 2010, 2011, and 2015), as
well as wet years (1993, 1996, and 1998) in the study period, geopotential height data has
been applied. Geopotential height data were derived from the ERA-Interim gridded data
series in 850, 700, and 500 hpa to study the anticyclone and cyclone locations responsible
for precipitation.

Negative (positive) frequency of cyclones as well as positive (negative) sea-level
pressure anomalies were observed over the Mediterranean Sea during dry (wet) years. The
negative anomaly of relative humidity over the Mediterranean Sea as well as negative
anomalies in the meridional and zonal winds was also observed during the dry years which
resulted in a decrease in moisture flux from the Mediterranean Sea and a precipitation
amount decrease over Iran, mainly in the western part of the country. In addition, studying
the variations of the Arabian Sea anticyclone (AAC) showed an obvious increase (decrease)
in the number of anticyclones mainly over the East coast of the Arabian Peninsula and the
western part of the Arabian Sea at the 500 and 750 hpa troposphere level during the wet
(dry) years.

Studying (E-P) values of the main moisture sources during the dry period did not
show a meaningful correlation between any of the moisture sources and precipitation
in most of the study period. However, mild correlation has been observed between the
Indian Ocean and amount of precipitation. The previous studies [19,20] also confirmed
the dominant role of the Indian Ocean in summer (dry period) precipitation mainly in
the south-eastern part of Iran. During dry (wet) years, the Indian Ocean SST often shows
negative (positive) anomalies.

According to the stepwise model outputs, among the moisture sources that influence
Iran during the wet period, the moisture originating from the Arabian Sea, the Mediterranean
Sea, and the Persian Gulf directly influenced the precipitation in Iran, and the stepwise model
shows a high R2 = 0.79. These water bodies are the dominant moisture-providing sources of
precipitation across Iran during the wet period. In contrast, during the dry period, the Red Sea
only has a weak correlation with the precipitation amount, while other moisture sources have
a negligible correlation with the precipitation amount. The stepwise model developed for the
dry period shows a very weak R2 = 0.11. Although moisture uptake during the dry period
is also notable, this huge amount of moisture rarely turns to precipitation due to numerous
phenomena such as extremely high air temperatures over large parts of Iran. This reinforces
the Azores subtropical high-pressure system which causes atmospheric stability over large
parts of Iran and leads to an extreme decrease in precipitation.

As mentioned earlier, although (E − P) values from each moisture source were almost
the same during both periods, the precipitation significantly decreased during the dry
period compared to that in the wet period. The (E − P) values of each moisture source
demonstrate the moisture uptake from each source and do not completely clarify the
correlation between moisture sources and precipitation amount in Iran. Therefore, it is
important to determine the fractional importance of various moisture sources that influence
precipitation across Iran.

3.1. Importance of Moisture Sources (Predictor Variables) That Influence Precipitation Amount
(Target Variable) Determined Using the Ahp and Ml Methods

To study the fractional importance of various moisture sources that influence precip-
itation in Iran, AHP (simple and fuzzy AHP) methods were used first. During the wet
period (Figure 6a), when most of the precipitation occurs in Iran, the Arabian Sea had a
dominant fractional importance in influencing the amount of precipitation in Iran according
to results of both AHP models. The results of the ML models also verified the dominant
effect of the Arabian Sea. The Arabian Sea, as the dominant moisture provider for Iran
with a share of 28.3%, was verified as the predominant influence on precipitation amounts
(the fractional importance of this moisture source varied from 28.1% in AHP to 60.1% in
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the Gboost models). However, the Red Sea and Persian Gulf, with high contributions
toward moisture with shares of 17.1% and 21.5%, respectively, had a weak influence on
the amount of precipitation. The fractional importance of the Red Sea varied from 0.0% in
Decision Tree to 14.6 in DNN models, whereas that of the Persian Gulf varied from 0.2% to
12.3%, respectively. In contrast, the Black Sea and Indian Ocean, which make a very weak
contribution to moisture provision for Iran with shares of 0.31% and 0.23%, respectively,
had a stronger role in influencing the precipitation amount. The fractional importance of
the Black Sea varied from 0.46% in Decision Tree to 11.08% in fuzzy AHP models, whereas
for the Persian Gulf, it varied from 2.1% in XGboost to 23.9% in AHP models. These differ-
ences between the moisture contribution and fractional importance of the moisture source
that influences precipitation in Iran are because of local parameters. These local factors
influence atmospheric moisture and cause precipitation. For instance, moisture from the
Red Sea and Persian Gulf normally cannot be transferred deep inside the Iran Plateau, and
these sources normally influence low-elevation regions in the southern part of the Zagros
Mountains [7]. In this region, climatology is not appropriate for precipitation to occur [2].
However, moisture from the Black Sea is transferred to Iran via a maritime polar air mass
which mainly influences the north-western part of the country. The climatic conditions for
moisture from the Black Sea to transform into precipitation are entirely appropriate in this
part of Iran.

During the dry period (Figure 6b), the situation was even more complicated, as the role
of local parameters was even stronger than that of the wet period. In the dry period, various
moisture sources exhibited dominant fractional importance, influencing the precipitation
amount according to the studied ML methods. For instance, according to the Gboost, DNN,
and AHP models, the Arabian Sea was the dominant fraction. According to the ANN
model, the Black Sea exhibited dominant fractional importance, whereas according to the
fuzzy AHP model, it was the Indian Ocean. Finally, according to the RF and XGboost
models, the Mediterranean Sea had a dominant fractional influence on precipitation. A
significant difference in the various moisture sources between moisture contribution and
fractional importance was also observed during the dry period. For instance, the Red Sea
with a dominant role as a moisture provider for Iran with a share of 52.2%, had a very
weak influence on precipitation amount (with fractional importance varying from 1.2% in
Gboost to 10.2% in DNN models). This is owing to intense atmospheric stability within
the Iran plateau, mainly in the southern part of the country, where moisture from this
source enters Iran [2]. Unlike the Red Sea, the contribution of the moisture uptake from the
Black Sea and Indian Ocean was very scarce, with shares of 1.9% and 0.7%, respectively;
however, their fractional importance had a higher influence on precipitation in Iran. The
fractional importance of the Black Sea varied from 3.1% in Gboost to 24.3% in ANN models,
whereas that of the Indian Ocean varied from 7.0% in AHP to 31.19% in fuzzy AHP models.
Regarding moisture from the Black Sea during the dry period, its influence zone inside
Iran in the north-western part of the country was less affected by atmospheric stability
which makes the situation more suitable for precipitation to occur. Regarding the Indian
Ocean, the moisture from this water body is transferred via a maritime tropical air mass
and causes intense monsoon precipitation in the south-eastern part of the country. Similar
to the Black Sea, the moisture influence zone of the Indian Ocean within Iran was not
affected by atmospheric stability, and suitable conditions existed for air parcels to move
upward by an updraft and precipitation to occur.

3.2. Simulation of the Precipitation Amount Based on (E − P) Values of Various Moisture Sources
Using ML Models and Validation of the Accuracy of the Developed Models

In addition to evaluating the fractional importance of various moisture sources that
influence the precipitation amount across Iran, the precipitation amount was also simulated
using various ML techniques. The (E − P) values for each moisture source were used
as predictor variables and the precipitation amount was used as a target variable in the
ML model simulations. The results for the wet period (Figure 7) show that the ANN and
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DNN models cannot simulate precipitation amounts accurately according to the very high
RMSE values of 21.79 and 24.34 as well as very low R2 values of 0.35 and 0.30, respectively.
Among the evaluated ML models, XGboost was determined to be the most accurate model
as it showed the lowest RMSE (11.6) and the highest R2 (0.70) values.

Atmosphere 2022, 13, x FOR PEER REVIEW 12 of 17 
 

 

 

Figure 6. Fractional importance of various moisture sources that influence precipitation across Iran 

during dry (a) and wet (b) periods. The moisture uptake percentage from various sources for Iran 

during the dry (c) and wet (d) periods from 1981 to 2015. 

3.2. Simulation of the Precipitation Amount Based on (E − P) Values of Various Moisture 

Sources Using ML Models and Validation of the Accuracy of the Developed Models 

In addition to evaluating the fractional importance of various moisture sources that 

influence the precipitation amount across Iran, the precipitation amount was also simu-

lated using various ML techniques. The (E − P) values for each moisture source were used 

as predictor variables and the precipitation amount was used as a target variable in the 

ML model simulations. The results for the wet period (Figure 7) show that the ANN and 

DNN models cannot simulate precipitation amounts accurately according to the very high 

RMSE values of 21.79 and 24.34 as well as very low R2 values of 0.35 and 0.30, respectively. 

Figure 6. Fractional importance of various moisture sources that influence precipitation across Iran
during dry (a) and wet (b) periods. The moisture uptake percentage from various sources for Iran
during the dry (c) and wet (d) periods from 1981 to 2015.

In contrast to the wet period, the model developed for the dry period (Figure 8) was
not reliable and could not accurately predict the precipitation amount. Among the ML
models developed for the dry period, XGboost showed the lowest RMSE (4.97) and the
highest R2 (0.35) values, and it could predict precipitation more accurately compared to the
other models. The low accuracy of the ML models is because the dry period precipitation
in Iran is not dominant related to the amount of moisture transferred to this country, and
is mainly related to local and small-scale climatological conditions as well as the severe
atmospheric stability mentioned earlier in this study.
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(e) Gboost, and (f) XGboost during the wet period. RMSE and R2 values indicate the accuracy of the
developed ML models.
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Figure 8. Time series of measured monthly precipitation amounts from the Climatic Research
Unit (CRU3.23TS) dataset compared to simulated precipitation amounts obtained from the various
machine learning (ML) models including (a) Random Forest, (b) Decision Tree, (c) ANN, (d) DNN,
(e) Gboost, and (f) XGboost during the dry period. Root mean square error (RMSE) values indicate
the accuracy of the developed ML models.
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4. Conclusions

In the present study, first, among the primary moisture sources influencing Iran, the
AHP and ML models showed that the Arabian Sea had a dominant fractional importance
in influencing the precipitation amount. However, the contribution percentage of moisture
uptake from the various sources obtained by the FLEXPART model did not completely
match the fractional importance of the corresponding moisture sources that influence the
precipitation amount. Second, the simulation of the precipitation amount by various ML
techniques presents reliable and accurate models for the wet period, in contrast to the dry
period. Unlike in the wet period, the variations in moisture uptake rates did not have a
dominant effect on precipitation in the dry period. This is because of local phenomena
as well as atmospheric stability which predominantly control the amount of precipitation
during this period. Finally, accuracy assessment of the developed models using RMSE and
R2 values confirmed the highest accuracy of the models developed by XGboost compared
to those of models developed using other methods.
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